2016届高三文科数学试题(45)
2016年高考浙江卷文数试题(含答案)
2016年普通高等学校招生全国统一考试(浙江卷)数学(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(C U P) Q=A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}2.已知互相垂直的平面αβ,交于直线l.若直线m,n满足m∥α,n⊥β,则A.m∥lB.m∥nC.n⊥lD.m⊥n3.函数y=sin x2的图象是4.若平面区域30,230,230x yx yx y+-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是5.已知a,b>0,且a≠1,b≠1,若1log>ba,则A.(1)(1)0a b--< B. (1)()0a a b-->C. (1)()0b b a--< D. (1)()0b b a-->6.已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知函数()f x满足:()f x x≥且()2,xf x x≥∈R.A.若()f a b≤,则a b≤ B.若()2bf a≤,则a b≤C.若()f a b≥,则a b≥ D.若()2bf a≥,则a b≥8.如图,点列{}{},n nA B分别在某锐角的两边上,且*1122,,n n n n n nA A A A A A n++++=≠∈N,*1122,,n n n n n nB B B B B B n++++=≠∈N.(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则A.{}n S 是等差数列B.{}2n S 是等差数列C.{}n d 是等差数列D.{}2n d 是等差数列二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.10.已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.11. 已知)0()sin(2sin cos 22>++=+A b wx A x x ϕ,则A= ,b=12.设函数f (x )=x 3+3x 2+1.已知a ≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______.13.设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.14.如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD ADC =90°.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是______.15.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是______.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(Ⅰ)证明:A =2B ; (Ⅱ)若cos B =23,求cos C 的值.17.(本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈. (I )求通项公式n a ;(II )求数列{2n a n --}的前n 项和.18.(本题满分15分)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3. (I )求证:BF ⊥平面ACFD ;(II )求直线BD 与平面ACFD 所成角的余弦值.19.(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.20.(本题满分15分)设函数()f x =311x x++,[0,1]x ∈.证明: (I )()f x 21x x ≥-+;(II )34<()f x 32≤.数学(文科)一、选择题1.【答案】C2. 【答案】C3. 【答案】D4.【答案】B5. 【答案】D6. 【答案】A7. 【答案】B8. 【答案】A二、填空题9. 【答案】80 ;40. 10.【答案】(2,4)--;5.11. 1. 12.【答案】-2;1. 13.【答案】.14.【答案】6615.三、解答题16.【答案】(1)证明详见解析;(2)22cos 27C =. 【解析】试题分析:本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.试题解析:(1)由正弦定理得sin sin 2sin cos B C A B +=,故2sin cos sin sin()sin sin cos cos sin A B B A B B A B A B =++=++, 于是,sin sin()B A B =-,又,(0,)A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-, 因此,A π=(舍去)或2A B =,所以,2A B =. (2)由2cos 3B =,得sin 3B =,21cos 22cos 19B B =-=-, 故1cos 9A =-,sin A = 22cos cos()cos cos sin sin 27C A B A B A B =-+=-+=. 考点:三角函数及其变换、正弦和余弦定理. 【结束】 17.【答案】(1)1*3,n n a n N -=∈;(2)2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩.【解析】试题分析:本题主要考查等差、等比数列的基础知识,同时考查数列基本思想方法,以及推理论证能力.试题解析:(1)由题意得:1221421a a a a +=⎧⎨=+⎩,则1213a a =⎧⎨=⎩,又当2n ≥时,由11(21)(21)2n n n n n a a S S a +--=+-+=, 得13n n a a +=,所以,数列{}n a 的通项公式为1*3,n n a n N -=∈. (2)设1|32|n n b n -=--,*n N ∈,122,1b b ==. 当3n ≥时,由于132n n ->+,故132,3n n b n n -=--≥.设数列{}n b 的前n 项和为n T ,则122,3T T ==.当3n ≥时,229(13)(7)(2)351131322n n n n n n n T --+---+=+-=-,所以,2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩.考点:等差、等比数列的基础知识. 【结束】 18.【答案】(1)证明详见解析;(2. 【解析】试题分析:本题主要考查空间点、线、面位置关系、线面角等基础知识,同时考查空间想象能力和运算求解能力.试题解析:(1)延长,,AD BE CF 相交于一点K ,如图所示,因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以 AC ⊥平面BCK ,因此BF AC ⊥,又因为//EF BC ,1BE EF FC ===,2BC =,所以 BCK ∆为等边三角形,且F 为CK 的中点,则BF CK ⊥, 所以BF ⊥平面ACFD .(2)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角,在Rt BFD ∆中,32BF DF ==,得cos 7BDF ∠=,所以直线BD 与平面ACFD .考点:空间点、线、面位置关系、线面角. 【结束】 19.【答案】(1)p=2;(2)()(),02,-∞+∞ . 【解析】试题分析:本题主要考查抛物线的几何性质、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题方法.试题解析:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线x=-1的距离. 由抛物线的第一得12p=,即p=2. (Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠±.因为AF 不垂直于y 轴,可设直线AF:x=sy+1,()0s ≠,由241y xx sy ⎧=⎨=+⎩消去x 得2440y sy --=,故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又直线AB 的斜率为212tt -,故直线FN 的斜率为212t t--,从而的直线FN:()2112t y x t-=--,直线BN:2y t =-,所以2232,1t N t t ⎛⎫+- ⎪-⎝⎭,设M(m,0),由A,M,N 三点共线得:222222231t t t t t m t t +=+---, 于是2221t m t =-,经检验,m<0或m>2满足题意.综上,点M 的横坐标的取值范围是()(),02,-∞+∞ . 考点:抛物线的几何性质、直线与抛物线的位置关系. 【结束】20.【答案】(Ⅰ)证明详见解析;(Ⅱ)证明详见解析. 【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到()32f x ≤,再结合第一问的结论,得到()34f x >,从而得到结论. 试题解析:(Ⅰ)因为()()4423111,11x x x x x x x----+-==--+ 由于[]0,1x ∈,有411,11x x x-≤++即23111x x x x -≤-++,所以()21.f x x x ≥-+(Ⅱ)由01x ≤≤得3x x ≤, 故()()()()312111333311222122x x f x x x x x x -+=+≤+-+=+≤+++, 所以()32f x ≤. 由(Ⅰ)得()221331244f x x x x ⎛⎫≥-+=-+≥ ⎪⎝⎭,又因为11932244f ⎛⎫=> ⎪⎝⎭,所以()34f x >,综上,()33.42f x <≤ 考点:函数的单调性与最值、分段函数.。
2016级高三文科数学9月试题Word版含答案
2016级高三文科数学9月试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|22,},{|450}A x x x Z B x x x =-<≤∈=--<,则A B =A .{}0,1,2B .(1,2]-C .{}1,2D .()1,2] 2.下列函数中为偶函数的是A .22y x x =- B .lg y x = C .33xxy -=+ D .2x xy =3.已知0.40.420.4, 1.2,log 0.4a b c ===,则,,a b c 的大小关系为A .c a b <<B .c b a <<C .a b c <<D .a c b <<4.命题200:,1p x N x ∃∈<,则p ⌝是A .200,1x N x ∃∈≥B .200,1x N x ∃∈>C .2,1x N x ∀∈>D .2,1x N x ∀∈≥5.函数()27log f x x x=-的零点包含于区间 A .()1,2 B .(2,3) C .(3,4) D .()4,+∞6.曲线()2xf x e x =+在点(0,(0))f 处的切线与坐标轴围成的三角形的面积为A .16 B .14 C .13 D .127.函数()210210x x f x x x x +≥⎧=⎨++<⎩,若矩形ABCD 的顶点A 、D 在x 轴上,B 、C 在函数()y f x =的图象上,且)0,1(A ,则点D 的坐标为A .()2,0-B .(12,0)--C .(1,0)-D .1(,0)2- 8.已知二次函数()2f x ax bx c =++,若()()()067f f f =<,则()f x 在A .(),0-∞上是增函数B .()0,+∞上是增函数C .(),3-∞上是增函数D .()3,+∞上是增函数9.已知定义在R 上的函数()f x 的导函数()f x ',若()f x 的极大值为()1f ,极小值为(1)f -,则函数()(1)y f x f x '=-的图象有可能是10.已知,x y R ∈,命题:p 若x y >;命题:q 若0x y +>,则22x y >,在命题(1)p q ∨;(2)()()p q ⌝∧⌝;(3)()p q ∧⌝;(4)p q ∧中,证明题的个数为A .1B .2C .3D .411.函数(0,1)x y a a a a ->≠的定义域和值域都是[]0,1,则 548log log 65aa += A .1 B .2 C .3 D .4 12.设()32133f x x x ax =++,若()14x g x =,对任意11[,1]2x ∈,存在21[,2]2x ∈,使得12()()f x g x ≤成立,则实数a 的取值范围为 A .11[,)4-+∞ B .13(,]2-∞- C .11(,]4-∞- D .13[,)2-+∞ 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2016年四川省高考数学文科试题含答案(Word版)
2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)第I 卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设i 为虚数单位,则复数(1+i)2= (A) 0 (B)2 (C)2i (D)2+2i2.设集合A={x11≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是 (A)6 (B) 5 (C)4 (D)33.抛物线y 2=4x 的焦点坐标是(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 4.为了得到函数y=sin )3(π+x 的图象,只需把函数y=sinx 的图象上所有的点(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度5.设p:实数x ,y 满足x>1且y>1,q: 实数x ,y 满足x+y>2,则p 是q 的 (A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6.已知a 函数f(x)=x 3-12x 的极小值点,则a= (A)-4 (B) -2 (C)4 (D)27.某公司为激励创新,计划逐年加大研发奖金投入。
若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是 (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) (A)2018年 (B) 2019年 (C)2020年 (D)2021年8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法。
如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A)35 (B) 20 (C)18 (D)99.已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BM uuu r 的最大值是 (A)443 (B) 449(C) 43637+ (D) 433237+10. 设直线l 1,l 2分别是函数f(x)= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)第II 卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016安徽高考文科数学真题及答案
2016安徽高考文科数学真题及答案注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ( )。
(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【参考答案】B【答案解析】集合A 与集合B 公共元素有3,5,故{}35A B ⋂=,选B 。
【试题点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=( )。
(A )-3(B )-2(C )2(D )3 【参考答案】A【答案解析】设i a a i a i )21(2))(21(++-=++,由已知,得a a 212+=-,解得3-=a ,选A. 【试题点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 (A )13(B )12(C )13(D )56【参考答案】A【答案解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有2种,故概率为31,选A. 【试题点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=( )。
2016年江苏省高考文科数学试题及答案
数学Ⅰ试题参考公式圆柱的体积公式:=Sh,其中S是圆柱的底面积,h为高.圆锥的体积公式:Sh,其中S是圆锥的底面积,h为高.一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合则________▲________.2.复数其中i为虚数单位,则z的实部是________▲________.3.在平面直角坐标系xOy中,双曲线的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.5.函数y=的定义域是▲ .6.如图是一个算法的流程图,则输出的a的值是▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲ .8.已知{a n}是等差数列,S n是其前n项和.若a1+a22=3,S5=10,则a9的值是▲ .9.定义在区间[0,3π]上的函数y=sin2x的图象与y=cos x的图象的交点个数是▲ .10.如图,在平面直角坐标系xOy中,F是椭圆的右焦点,直线与椭圆交于B,C两点,且 ,则该椭圆的离心率是▲ .(第10题)11.设f(x)是定义在R上且周期为2的函数,在区间[ −1,1)上,其中若,则f(5a)的值是▲ .12. 已知实数x,y满足,则x2+y2的取值范围是▲ .13.如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,,,则的值是▲ .14.在锐角三角形ABC中,若sin A=2sin B sin C,则tan A tan B tan C的最小值是▲ .二、解答题(本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)在中,AC=6,(1)求AB的长;(2)求的值.16.(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且,.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的四倍.(1)若则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当为多少时,仓库的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:及其上一点A(2,4)(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
2016文科数学高考真题
2016文科数学高考真题2016年文科数学高考真题如下:一、选择题部分1. 2016年山西省高考数学文科试卷选择题第3题:若集合\( A = \{ x | x^2 - 1 = 0 \} \), 则\( A \)中元素的个数为()A. 0B. 1C. 2D. 32. 2016年四川省高考数学文科试卷选择题第5题:直线\( y = x - 5 \)与曲线\( y = x^2 + 2 \)的交点个数是()A. 0B. 1C. 2D. 33. 2016年北京市高考数学文科试卷选择题第8题:已知集合\( A = \{ x|x \in Z, -3 \leq x \leq 4 \} \), 集合 \( B = \{ x|2x-3 \geq 5 \} \), 那么\( A \cap B = \)()A. \(-3, -2, -1, 0, 1, 2, 3\)B. \(-2, -1, 0, 1, 2, 3, 4\)C. \(-2, -1, 0, 2, 3, 4\)D. \(-3, -2, -1, 1, 2, 3, 4\)4. 2016年上海市高考数学文科试卷选择题第11题:设函数\( y =\sqrt{4 - x^2} \), 那么使\( y = 0 \)的\( x \)的值是()A. -2B. 0C. 2D. 45. 2016年湖南省高考数学文科试卷选择题第15题:若\( x > 0 \),则不等式\( (1 + x)(1 + \frac{1}{x}) \geq 4 \)的解集是()A. \(- \infty < x \leq \frac{1}{3} \)B. \(x \geq 3 \)C. \(- \infty < x\leq \frac{1}{2} \) D. \(x > 2\)二、填空题部分6. 2016年江苏省高考数学文科试卷填空题第17题:曲线\( y = 2x^3 - 3x \)在点\( (1, -1) \)处的切线斜率为()7. 2016年浙江省高考数学文科试卷填空题第20题:若\( A =\begin{bmatrix} 1 & -1 & 0 \\ 3 & 2 & 5 \\ 2 & -1 & 1 \end{bmatrix} \), 则\( |4A| = \)()8. 2016年安徽省高考数学文科试卷填空题第23题:已知函数\( f(x) = 2x^2 - 3x + 1 \)的最大值为2,则实数\( k \)使得函数\( g(x) = f(x) + kx \)的最小值为1,是()9. 2016年湖北省高考数学文科试卷填空题第26题:曲线\( y = x^3 \)与曲线\( y = 9 - x^3 \)围成的图形的面积为()10. 2016年山东省高考数学文科试卷填空题第30题:已知\( D =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), 则\( |2D| = \)()三、解答题部分11. 2016年广东省高考数学文科试卷解答题第一题:设点\( C \)位于线段\( AB \)上,点\( A (-4, 2) \), 点\( B (2, -4) \), 且点\( C \)满足\( AC =2BC \), 求点\( C \)的坐标。
2016-2017海淀高三期中练习数学文科试题及答案
2016-2017海淀高三期中练习数学文科试题及答案海淀区高三年级第一学期期中练习数学(文科)2016.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{2}B x x x=--<,则A B=A x x=>,{(1)(3)0}IA. {1}x x<<x x<< C. {13} x x> B. {23}D. {2x x>或1}x<2. 已知向量(1,),(2,4)=-=-a b. 若ab P,则x的值为xA. 2-B. 1- C. 122D. 23. 已知命题p:0x∀>,1x+≥2命题q:若a b>,则ac bc>.x下列命题为真命题的是A. qB.p⌝ C.p q∨ D.p q∧4. 若角θ的终边过点(3,4)P -,则tan(π)θ+=A. 34B.34-C. 43 D.43-5. 已知函数,log aby x y x ==A. 1b a>> B. b >C.1a b >> D.1a b >>6. 设,a b 是两个向量,则“+>-a b a b ”是“0⋅>a b ”的 A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 给定条件:①0x ∃∈R ,0()()f x f x -=-;②x ∀∈R ,(1)(1)f x f x -=+ 的函数个数是 下列三个函数:3,|1|,cos πy x y x y x ==-=中,同时满足条件①②的函数个数是A .0B .1C .2D .3 8.已知定义在R上的函数若方程1()2f x =有两个不相等的实数根,则a 的取值范围是A. 1122a -≤≤B. 102a ≤< C. 01a ≤<D.102a -<≤第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2016年高考山东文科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(山东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年山东,文1,5分】设集合{}{}1,2,3,4,5,6,1,3,5,{3,4,5}U A B ===,则()U A B =U ð( )(A ){}2,6 (B ){}3,6 (C ){}1,3,4,5 (D ){}1,2,4,6 【答案】A【解析】={1,34,5}A B U ,,()={2,6}U A B U ð,故选A . 【点评】考查集合的并集及补集运算,难度较小.(2)【2016年山东,文2,5分】若复数21iz =-,其中i 为虚数单位,则z =( )(A )2i - (B )2i (C )2- (D )2 【答案】B【解析】22(1i)=1i 1i 2z -==+-,1i z =-,故选B .【点评】复数的运算题目,考察复数的除法及共轭复数,难度较小. (3)【2016年山东,文3,5分】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56 (B )60 (C )120 (D )140 【答案】D【解析】由图可知组距为2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于22.5小时的人数是()20010.30140⨯-=人,故选D . 【点评】频率分布直方图题目,注意纵坐标为频率/组距,难度较小.(4)【2016年山东,文4,5分】若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是( )(A )4(B )9 (C )10 (D )12【答案】C 【解析】由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .(5)【2016年山东,文5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π【答案】C【解析】由三视图可知,此几何体是一个正三棱锥和半球构成的,体积为3142112111+=+3323ππ⨯⨯⨯⨯(),故选C .【点评】考察三视图以及几何体的体积公式,题面已知是半球和四棱锥,由三视图可看出是正四棱锥,难度较小. (6)【2016年山东,文6,5分】已知直线,a b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】若直线相交,一定有一个交点,该点一定同时属于两个平面,即两平面相交,所以是充分条件;两平面相交,平面内两条直线关系任意(平行、相交、异面),即充分不必要条件,故选A .(7)【2016年山东,文7,5分】已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)+(1)=1N x y --的位置关系是( )(A )内切 (B )相交 (C )外切 (D )相离 【答案】B【解析】圆()22:200M x y ay a +-=>化成标准形式222()(0)x y a a a +-=>解法1:圆心(0, )a 到直线0x y +=的距离为2ad =,由勾股定理得2222a a ⎛⎫+= ⎪⎝⎭, 解得2,0,2a a a =±>∴=Q ,圆M 与圆22:(1)+(1)=1N x y --的圆心距为22(10)(12)2-+-=,圆M 半 径12R =,圆N 半径212121,2,R R R R R =-<<+∴Q 圆M 与圆N 相交,故选B .解法2:直线0x y +=斜率为1-,倾斜角为135︒,可知2,2BM OB OM a ==∴==,B 点坐标为()1,1-,即为圆N 的圆心.圆心在圆M 中,且半径为1,即两圆相交,故选B .(8)【2016年山东,文8,5分】ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知b c =,222(1sin )a b A =-,则A=( )(A )34π (B )3π (C )4π (D )6π【答案】C【解析】222222(1sinA),2cos 2(1sinA),a b b c bc A b =-∴+-=-Q 又b c =Q ,2222cos b b A ∴-22(1sin )b A =-,cos sin A A ∴=,在ABC ∆中,(0,),A 4A ππ∈∴=,故选C .(9)【2016年山东,文9,5分】已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =( )(A )2- (B )1- (C )0 (D )2 【答案】D【解析】由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .(10)【2016年山东,文10,5分】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数具有T 性质的是( )(A )sin y x = (B )ln y x = (C )x y e = (D )3y x = 【答案】A【解析】因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分. (11)【2016年山东,文11,5分】执行右边的程序框图,若输入n 的值为3,则输出的S 的值为 . 【答案】1【解析】根据题目所给框图,当输入3n =时,依次执行程序为:1,0i S ==,021=21S =+--,13i =≥不成立,12i i =+=,213231S =-+-=-,23i =≥不成立,13i i =+=,3143211S =-+-=-=,33i =≥成立,故输出的S 的值为1.(12)【2016年山东,文12,5分】观察下列等式:2224sin sin 12333ππ--⎛⎫⎛⎫+=⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 22222344sin sin sin sin 2355553ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222364sin sin sin sin 3477773ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222384sin sin sin sin 4599993ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……2222232sin sin sin sin 21212121n n n n n ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭ . 【答案】()413n n+【解析】由题干中各等式左端各项分母的特点及等式右端所表现出来的规律经过归纳推理即得.(13)【2016年山东,文13,5分】已知向量()1,1a =-r ,()6,4b =-r .若()a tab ⊥+r r r,则实数t 的值为 .【答案】5-【解析】由已知条件可得()6,4ta b t t +=+--r r,又因()a ta+b ⊥r r r 可得()=a ta+b ⋅r r r 0,即()()()6141642100t t t t t +⨯+--⨯-=+++=+=,即得5t =-.(14)【2016年山东,文14,5分】已知双曲线()2222:10,0x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,,AB CD的中点为E 的两个焦点,且23AB BC =,则E 的离心率为 .【答案】2【解析】由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.(15)【2016年山东,文15,5分】在已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 .【答案】()3,+∞【解析】因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. 三、解答题:本大题共6题,共75分.(16)【2016年山东,文16,12分】某儿童乐园在“六一”儿童节推出了一项趣味活动,参加活动的儿 童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设 两次记录的数分别为x ,y .奖励规矩如下:①若3xy ≤,则奖励玩具一个;②若8xy ≥,则奖 励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此活动.(1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:(1)设获得玩具记为事件A ,获得水杯记为事件B ,获得一瓶饮料记为事件C ,转盘转动两次后获得的数据记为(),x y ,则基本事件空间为()()()()()()()()1,11,21,31,42,12,22,32,4、、、、、、、、()()()()()()()()3,13,23,33,44,14,24,34,4、、、、、、、共16种,事件A 为()()()()()1,11,21,32,13,1、、、、,共5种, 故小亮获得玩具的概率()516A P =. (2)事件B 为()()()()()()2,43,33,44,24,34,4、、、、、共6种,故小亮获得水杯的概率()63168B P ==,获得饮料的指针2431A概率()()()5116C A B P P P =--=.因为()()B C P P >,所以小亮获得水杯比获得饮料的概率大. (17)【2016年山东,文17,12分】设2())sin (sin cos )f x x x x x π=---.(1)求()f x 的单调递增区间;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求6y g π⎛⎫= ⎪⎝⎭的值.解:(1)()()()2sin sin sin cos 2sin sin cos 2sin cos ()2sin 21f x x x x x x x x x x x x π=---=-+-+-sin 2212sin 2212sin 12213x x x x x π⎛⎫⎛⎫=-=-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭ ()222232k x k k Z πππππ-+≤-≤+∈,()51212k x k k Z ππππ-+≤≤+∈, 所以单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)经变换()2sin1g x x =,6g π⎛⎫= ⎪⎝⎭(18)【2016年山东,文18,12分】在如图所示的几何体中,D 是AC 的中点,//EF DB .(1)已知AB BC =,AE EC =.求证:AC FB ⊥;(2)已知G ,H 分别是EC 和FB 的中点.求证://GH ABC 平面. 解:(1)连接ED ,AB BC =Q ,AE EC =.AEC ∴∆和ABC ∆为等腰三角形.又D Q 是AC 的中点,ED AC ∴⊥,BD AC ⊥;AC ∴⊥平面EDB .又//EF DB Q , ∴平面EDB 与平面EFBD 为相同平面;AC ∴⊥平面EFBD .FB ⊆Q 平面EFBD ;AC FB ∴⊥. (2)取ED 中点I ,连接IG 和IH .在EDC ∆中I 和G 为中点;//IG CD ∴.//EF DB Q ;∴四边形EFBD 为梯形.I Q 和H 分别 为ED 和FB 中点;//IH BD ∴.又IH Q 和IG 交与I 点,CD 与BD 交与D 点;∴平面//GIH 平面BDC .又GH ⊆Q 平面GIH ; //GH ∴平面ABC .(19)【2016年山东,文19,12分】已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(1)求数列{}n b 的通项公式;(2)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:(1)因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. (2)由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅L , 两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅L ,两式相减,得 2341262323232(33)2n n n T n ++-=⋅+⋅+⋅++⋅-+⋅L 22232(12)32(33)212n n n +⋅-=⋅+-+⋅-2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.(20)【2016年山东,文20,13分】设2()ln (21)f x x x ax a x =-+-,a R ∈.AA(1)令()'()g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 取值范围. 解:(1)定义域()0+∞,,()()ln 1221g x f x x ax a '==+-+-,()12g x a x'=-. ①当0a ≤时,()0g x '>恒成立,()g x 在()0+∞,上单调递增; ②当0a >时,令()0g x '=,得12x a =.()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上所述,当0a ≤时,单调递增区间为()0+∞,,当0a >时,单调递增区间为10,2a ⎛⎫⎪⎝⎭, 单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)∵()f x 在1x =处取得极大值,∴()10g =,ln112210a a +-+-=在a 取任何值时恒成立.①当0a ≤时,()g x 在()0+∞,上单调递增,即()0,1x ∈时,()0g x <;()1,x ∈+∞时,()0g x >, 此时()f x 在1x =处取得极小值,不符合题意;②当0a >时,()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增, 在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减.只需令112a <,即12a >.综上所述,a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭.(21)【2016年山东,文21,14分】已知椭圆2222:1x y C a b+=()0a b >>的长轴长为4,焦距为(1)求椭圆C 的方程; (2)过动点()()0,0M m m >的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M是线段PN 的中点,过点P 做x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .(i )设直线PM ,QM 的斜率分别为k ,'k ,证明'k k为定值;(ii )求直线AB 的斜率的最小值.解:(1)由题意得222242a c a b c =⎧⎪=⎨⎪=+⎩,解得2a b c =⎧⎪=⎨⎪=⎩22142x y +=.(2)(i )设(,0),(,),N P P N x P x y 直线:+PA y kx m =,因为点N 为直线PA 与x 轴的交点,所以N mx k=-, 因为点()0,M m 为线段PN 的中点,所以00,22N P P x x y m ++==,得,2P P mx y m k==, 所以点,2m Q m k ⎛⎫- ⎪⎝⎭,所以()2=30m m k k m k--=--’,故3k k =-’为定值.(ii )直线:+PA y kx m =与椭圆方程联立22142y kx m x y =+⎧⎪⎨+=⎪⎩,得:222(21)4240k x kmx m +++-=,所以222222164(21)(24)328160k m k m k m ∆=-+-=-+>① 12122242,2121kmx mx x y y k k -+=+=++, 所以222264,(21)21k m m k m A k k k ⎛⎫+-- ⎪++⎝⎭,直线:3+QM y kx m =-与椭圆方程联立223142y kx mx y =-+⎧⎪⎨+=⎪⎩, 得()22218112240k x kmx m +-+-=,所以121222122,181181km mx x y y k k +=+=++,所以()()22224916,181181m k k m m B k k k ⎛⎫++ ⎪- ⎪++⎝⎭,26131424B A ABB A y y k k k x x k k -+===+-, 因为点P 在椭圆上,所以2224142m m k +=,得2224k m =② 将②代入①得()2240k >+1恒成立, 所以20k ≥,所以0k ≥,所以3124AB k k k =+≥k =时取“=”), 所以当k 时,AB k .。
2016年天津市高考数学试卷(文科)
2016年天津市高考数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)(2016•天津)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}2.(5分)(2016•天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)(2016•天津)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)(2016•天津)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1B.x2﹣=1C.﹣=1D.﹣=15.(5分)(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)(2016•天津)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC 的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)(2016•天津)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)(2016•天津)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)(2016•天津)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)(2016•天津)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)(2016•天津)已知圆C的圆心在x轴正半轴上,点M(0,)在圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)(2016•天津)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)(2016•天津)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)(2016•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B =b sin A.(1)求B;(2)已知cos A=,求sin C的值.16.(13分)(2016•天津)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料A B C甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)(2016•天津)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF ∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.18.(13分)(2016•天津)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n}的前2n项和.19.(14分)(2016•天津)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)(2016•天津)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.2016年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)(2016•天津)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)(2016•天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)(2016•天津)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)(2016•天津)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1B.x2﹣=1C.﹣=1D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)(2016•天津)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC 的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)(2016•天津)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)(2016•天津)i是虚数单位,复数z满足(1+i)z=2,则z的实部为1.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)(2016•天津)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为3.【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)(2016•天津)阅读如图所示的程序框图,运行相应的程序,则输出S的值为4.【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)(2016•天津)已知圆C的圆心在x轴正半轴上,点M(0,)在圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9.【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)(2016•天津)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)(2016•天津)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=log a(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)(2016•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B =b sin A.(1)求B;(2)已知cos A=,求sin C的值.【分析】(1)利用正弦定理将边化角即可得出cos B;(2)求出sin A,利用两角和的正弦函数公式计算.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)(2016•天津)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料A B C甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)(2016•天津)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF ∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)(2016•天津)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出b n,使用分项求和法和平方差公式计算.【解答】解:(1)设{a n}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.(2)∵b n是log2a n和log2a n+1的等差中项,∴b n=(log2a n+log2a n+1)=(log22n﹣1+log22n)=n﹣.∴b n+1﹣b n=1.∴{b n}是以为首项,以1为公差的等差数列.设{(﹣1)n b n2}的前2n项和为T n,则T n=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)(2016•天津)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M 的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,y H),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得y H=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1y H=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)(2016•天津)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a >0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f(x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.。
2016年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
2016年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}2.(5分)若z=4+3i,则=()A.1B.﹣1C.+i D.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.B.C.D.6.(5分)若tanθ=,则cos2θ=()A.B.C.D.7.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.69.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.10.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.8111.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.12.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C 的离心率为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设x,y满足约束条件,则z=2x+3y﹣5的最小值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B 分别作l的垂线与x轴交于C,D两点.则|CD|=.16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f (x)在点(1,2)处的切线方程是.三、解答题(共5小题,满分60分)17.(12分)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2016年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}【考点】1H:交、并、补集的混合运算.【专题】11:计算题;29:规律型;5J:集合.【分析】根据全集A求出B的补集即可.【解答】解:集合A={0,2,4,6,8,10},B={4,8},则∁A B={0,2,6,10}.故选:C.【点评】本题考查集合的基本运算,是基础题.2.(5分)若z=4+3i,则=()A.1B.﹣1C.+i D.﹣i【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的除法以及复数的模化简求解即可.【解答】解:z=4+3i,则===﹣i.故选:D.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【考点】9S:数量积表示两个向量的夹角.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【考点】F4:进行简单的合情推理.【专题】31:数形结合;4A:数学模型法;5M:推理和证明.【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.5.(5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【专题】11:计算题;38:对应思想;4B:试验法;5I:概率与统计.【分析】列举出从M,I,N中任取一个字母,再从1,2,3,4,5中任取一个数字的基本事件数,然后由随机事件发生的概率得答案.【解答】解:从M,I,N中任取一个字母,再从1,2,3,4,5中任取一个数字,取法总数为:(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)共15种.其中只有一个是小敏的密码前两位.由随机事件发生的概率可得,小敏输入一次密码能够成功开机的概率是.故选:C.【点评】本题考查随机事件发生的概率,关键是列举基本事件总数时不重不漏,是基础题.6.(5分)若tanθ=,则cos2θ=()A.B.C.D.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;56:三角函数的求值.【分析】原式利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,将tanθ的值代入计算即可求出值.【解答】解:∵tanθ=,∴cos2θ=2cos2θ﹣1=﹣1=﹣1=.故选:D.【点评】此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.7.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【考点】4Y:幂函数的单调性、奇偶性及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.8.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.6【考点】EF:程序框图.【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.9.(5分)在△ABC中,B=,BC边上的高等于BC,则sinA=()A.B.C.D.【考点】HT:三角形中的几何计算;HU:解三角形.【专题】11:计算题;35:转化思想;58:解三角形.【分析】由已知,结合勾股定理和余弦定理,求出AB,AC,再由三角形面积公式,可得sinA.【解答】解:∵在△ABC中,B=,BC边上的高等于BC,∴AB=BC,由余弦定理得:AC===BC,故BC•BC=AB•AC•sinA=•BC•BC•sinA,∴sinA=,故选:D.【点评】本题考查的知识点是三角形中的几何计算,熟练掌握正弦定理和余弦定理,是解答的关键.10.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.81【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.11.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B.【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.12.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C 的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.另解:由△AMF∽△AEO,可得=,由△BOH∽△BFM,可得==,即有=即a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设x,y满足约束条件,则z=2x+3y﹣5的最小值为﹣10.【考点】7C:简单线性规划.【专题】11:计算题;35:转化思想;44:数形结合法;59:不等式的解法及应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得,即A(﹣1,﹣1).化目标函数z=2x+3y﹣5为.由图可知,当直线过A时,直线在y轴上的截距最小,z有最小值为2×(﹣1)+3×(﹣1)﹣5=﹣10.故答案为:﹣10.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.(5分)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】39:运动思想;49:综合法;57:三角函数的图像与性质.【分析】令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ),依题意可得2sin(x﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.【点评】本题考查函数y=sin x的图象变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,属于中档题.15.(5分)已知直线l:x﹣y+6=0与圆x2+y2=12交于A,B两点,过A,B 分别作l的垂线与x轴交于C,D两点.则|CD|=4.【考点】J8:直线与圆相交的性质.【专题】11:计算题;34:方程思想;49:综合法;5B:直线与圆.【分析】先求出|AB|,再利用三角函数求出|CD|即可.【解答】解:由题意,圆心到直线的距离d==3,∴|AB|=2=2,∵直线l:x﹣y+6=0∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.16.(5分)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f (x)在点(1,2)处的切线方程是y=2x.【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;33:函数思想;4A:数学模型法;53:导数的综合应用.【分析】由已知函数的奇偶性结合x≤0时的解析式求出x>0时的解析式,求出导函数,得到f′(1),然后代入直线方程的点斜式得答案.【解答】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,设x>0,则﹣x<0,∴f(x)=f(﹣x)=e x﹣1+x,则f′(x)=e x﹣1+1,f′(1)=e0+1=2.∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).即y=2x.故答案为:y=2x.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查了函数解析式的求解及常用方法,是中档题.三、解答题(共5小题,满分60分)17.(12分)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.【考点】8H:数列递推式.【专题】11:计算题;35:转化思想;49:综合法;54:等差数列与等比数列.【分析】(1)根据题意,由数列的递推公式,令n=1可得a12﹣(2a2﹣1)a1﹣2a2=0,将a1=1代入可得a2的值,进而令n=2可得a22﹣(2a3﹣1)a2﹣2a3=0,将a2=代入计算可得a3的值,即可得答案;(2)根据题意,将a n2﹣(2a n+1﹣1)a n﹣2a n+1=0变形可得(a n﹣2a n+1)(a n+a n+1)=0,进而分析可得a n=2a n+1或a n=﹣a n+1,结合数列各项为正可得a n=2a n+1,结合等比数列的性质可得{a n}是首项为a1=1,公比为的等比数列,由等比数列的通项公式计算可得答案.【解答】解:(1)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;(2)根据题意,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0,变形可得(a n﹣2a n+1)(a n+1)=0,即有a n=2a n+1或a n=﹣1,又由数列{a n}各项都为正数,则有a n=2a n+1,故数列{a n}是首项为a1=1,公比为的等比数列,则a n=1×()n﹣1=()n﹣1,故a n=()n﹣1.【点评】本题考查数列的递推公式,关键是转化思路,分析得到a n与a n+1的关系.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;35:转化思想;5I:概率与统计.【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈0.993,∵0.993>0.75,故y与t之间存在较强的正相关关系;(2)==≈≈0.103,=﹣≈1.331﹣0.103×4≈0.92,∴y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.10×9+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨.【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行.【专题】14:证明题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】(Ⅰ)取BC中点E,连结EN,EM,得NE是△PBC的中位线,推导出四边形ABEM是平行四边形,由此能证明MN∥平面PAB.(Ⅱ)取AC中点F,连结NF,NF是△PAC的中位线,推导出NF⊥面ABCD,延长BC至G,使得CG=AM,连结GM,则四边形AGCM是平行四边形,由此能求出四面体N﹣BCM的体积.【解答】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线∴NE∥PB,又∵AD∥BC,∴BE∥AD,∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,∴BE=BC=AM=2,∴四边形ABEM是平行四边形,∴EM∥AB,∴平面NEM∥平面PAB,∵MN⊂平面NEM,∴MN∥平面PAB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△PAC的中位线,∴NF∥PA,NF==2,又∵PA⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=,∴S△BCM===2,∴四面体N﹣BCM的体积V N﹣BCM===.【点评】本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【考点】J3:轨迹方程;K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF=|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.21.(12分)设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】35:转化思想;48:分析法;53:导数的综合应用;59:不等式的解法及应用.【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证lnx<x﹣1<xlnx.运用(1)的单调性可得lnx<x﹣1,设F(x)=xlnx﹣x+1,x>1,求出单调性,即可得到x﹣1<xlnx成立;(3)设G(x)=1+(c﹣1)x﹣c x,求G(x)的二次导数,判断G′(x)的单调性,进而证明原不等式.【解答】解:(1)函数f(x)=lnx﹣x+1的导数为f′(x)=﹣1,由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.即有f(x)的增区间为(0,1);减区间为(1,+∞);(2)证明:当x∈(1,+∞)时,1<<x,即为lnx<x﹣1<xlnx.由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,可得f(x)<f(1)=0,即有lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,即有xlnx>x﹣1,则原不等式成立;(3)证明:设G(x)=1+(c﹣1)x﹣c x,则需要证明:当x∈(0,1)时,G(x)>0(c>1);G′(x)=c﹣1﹣c x lnc,G′′(x)=﹣(lnc)2c x<0,∴G′(x)在(0,1)单调递减,而G′(0)=c﹣1﹣lnc,G′(1)=c﹣1﹣clnc,由(1)中f(x)的单调性,可得G′(0)=c﹣1﹣lnc>0,由(2)可得G′(1)=c﹣1﹣clnc=c(1﹣lnc)﹣1<0,∴∃t∈(0,1),使得G′(t)=0,即x∈(0,t)时,G′(x)>0,x∈(t,1)时,G′(x)<0;即G(x)在(0,t)递增,在(t,1)递减;又因为:G(0)=G(1)=0,∴x∈(0,1)时G(x)>0成立,不等式得证;即c>1,当x∈(0,1)时,1+(c﹣1)x>c x.【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.【考点】NC:与圆有关的比例线段.【专题】35:转化思想;49:综合法;5M:推理和证明.【分析】(1)连接PA,PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,运用圆的性质和四点共圆的判断,可得E,C,D,F共圆,再由圆内接四边形的性质,即可得到所求∠PCD的度数;(2)运用圆的定义和E,C,D,F共圆,可得G为圆心,G在CD的中垂线上,即可得证.【解答】(1)解:连接PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,由⊙O中的中点为P,可得∠4=∠5,在△EBC中,∠1=∠2+∠3,又∠D=∠3+∠4,∠2=∠5,即有∠2=∠4,则∠D=∠1,则四点E,C,D,F共圆,可得∠EFD+∠PCD=180°,由∠PFB=∠EFD=2∠PCD,即有3∠PCD=180°,可得∠PCD=60°;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G 可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OG⊥CD.【点评】本题考查圆内接四边形的性质和四点共圆的判断,以及圆的垂径定理的运用,考查推理能力,属于中档题.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程;5S:坐标系和参数方程.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】11:计算题;35:转化思想;49:综合法;59:不等式的解法及应用.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.。
2016年安徽高考文科数学试卷及答案
绝密★启封并使用完毕前试题类型:2016年普通高等校招生全国统一考试文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=(AB(C )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A )32(B )22(C )33(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =. (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。
2016年四川省高考文科数学试卷及参考答案与试题解析
2016年四川省高考文科数学试卷及参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i为虚数单位,则复数(1+i)2=( )A.0B.2C.2iD.2+2i2.(5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是( )A.6B.5C.4D.33.(5分)抛物线y2=4x的焦点坐标是( )A.(0,2)B.(0,1)C.(2,0)D.(1,0)4.(5分)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点( )A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度5.(5分)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.27.(5分)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年8.(5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.35B.20C.18D.99.(5分)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是( )A. B. C. D.10.(5分)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是( )A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)sin750°=.12.(5分)已知某三棱锥的三视图如图所示,则该三棱锥的体积是.13.(5分)从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是.14.(5分)若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(-)+f(2)=.15.(5分)在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,),当P是原点时,定义“伴随点”为它自身,现有下列命题:①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是.三、解答题(共6小题,满分75分)16.(12分)我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)估计居民月均水量的中位数.17.(12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.18.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2-a2=bc,求tanB.19.(12分)已知数列{an }的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(Ⅱ)设双曲线x2-=1的离心率为en ,且e2=2,求e12+e22+…+en2.20.(13分)已知椭圆E:+=1(a>b>0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:︳MA︳•︳MB︳=︳MC︳•︳MD︳21.(14分)设函数f(x)=ax2-a-ln x,g(x)=-,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.2016年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i为虚数单位,则复数(1+i)2=( )A.0B.2C.2iD.2+2i【分析】利用复数的运算法则即可得出.【解答】解:(1+i)2=1+i2+2i=1-1+2i=2i,故选:C.【点评】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.2.(5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是( )A.6B.5C.4D.3【分析】利用交集的运算性质即可得出.【解答】解:∵集合A={x|1≤x≤5},Z为整数集,则集合A∩Z={1,2,3,4,5}.∴集合A∩Z中元素的个数是5.故选:B.【点评】本题考查了集合的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)抛物线y2=4x的焦点坐标是( )A.(0,2)B.(0,1)C.(2,0)D.(1,0)【分析】根据抛物线的标准方程及简单性质,可得答案.【解答】解:抛物线y2=4x的焦点坐标是(1,0),故选:D.【点评】本题考查的知识点是抛物线的简单性质,难度不大,属于基础题.4.(5分)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点( )A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度【分析】根据函数图象平移“左加右减“的原则,结合平移前后函数的解析式,可得答案. 【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A.【点评】本题考查的知识点是函数图象的平移变换法则,熟练掌握图象平移“左加右减“的原则,是解答的关键.5.(5分)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由x>1且y>1,可得:x+y>2,反之不成立,例如取x=3,y=.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.(5分)已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.2【分析】可求导数得到f′(x)=3x2-12,可通过判断导数符号从而得出f(x)的极小值点,从而得出a的值.【解答】解:f′(x)=3x2-12;∴x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选:D.【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象.7.(5分)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年【分析】设第n年开始超过200万元,可得130×(1+12%)n-2015>200,两边取对数即可得出. 【解答】解:设第n年开始超过200万元,则130×(1+12%)n-2015>200,化为:(n-2015)lg1.12>lg2-lg1.3,n-2015>=3.8.取n=2019.因此开始超过200万元的年份是2019年.故选:B.【点评】本题考查了等比数列的通项公式、不等式的性质,考查了推理能力与计算能力,属于中档题.8.(5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.35B.20C.18D.9【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=3,故v=1,i=2,满足进行循环的条件,v=4,i=1,满足进行循环的条件,v=9,i=0,满足进行循环的条件,v=18,i=-1不满足进行循环的条件,故输出的v值为:故选:C.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.9.(5分)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是( )A. B. C. D.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.【点评】本题考查了数量积运算性质、圆的参数方程、三角函数求值,考查了推理能力与计算能力,属于中档题.10.(5分)设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是( )A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)【分析】设出点P1,P2的坐标,求出原分段函数的导函数,得到直线l1与l2的斜率,由两直线垂直求得P1,P2的横坐标的乘积为1,再分别写出两直线的点斜式方程,求得A,B两点的纵坐标,得到|AB|,联立两直线方程求得P的横坐标,然后代入三角形面积公式,利用基本不等式求得△PAB的面积的取值范围.【解答】解:设P1(x1,y1),P2(x2,y2)(0<x1<1<x2),当0<x<1时,f′(x)=,当x>1时,f′(x)=,∴l1的斜率,l2的斜率,∵l1与l2垂直,且x2>x1>0,∴,即x1x2=1.直线l1:,l2:.取x=0分别得到A(0,1-lnx1),B(0,-1+lnx2),|AB|=|1-lnx1-(-1+lnx2)|=|2-(lnx1+lnx2)|=|2-lnx1x2|=2.联立两直线方程可得交点P的横坐标为x=,∴|AB|•|xP|==.∵函数y=x+在(0,1)上为减函数,且0<x1<1,∴,则,∴.∴△PAB的面积的取值范围是(0,1).故选:A.【点评】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用基本不等式求函数的最值,考查了数学转化思想方法,属中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)sin750°=.【分析】利用终边相同角的诱导公式及特殊角的三角函数值即可得答案.【解答】解:sin750°=sin(2×360°+30°)=sin30°=,故答案为:.【点评】本题考查运用诱导公式化简求值,着重考查终边相同角的诱导公式及特殊角的三角函数值,属于基础题.12.(5分)已知某三棱锥的三视图如图所示,则该三棱锥的体积是.【分析】几何体为三棱锥,底面为俯视图三角形,棱锥的高为1,代入体积公式计算即可.【解答】解:由三视图可知几何体为三棱锥,底面为俯视图三角形,底面积S==,棱锥的高为h=1,∴棱锥的体积V=Sh==.故答案为:.【点评】本题考查了棱锥的三视图和体积计算,是基础题.b为整数的概率是.13.(5分)从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数满足的基本事件个【分析】由已知条件先求出基本事件总数,再利用列举法求出logab为整数的概率.数,由此能求出loga【解答】解:从2,3,8,9中任取两个不同的数字,分别记为a,b,基本事件总数n==12,logb为整数满足的基本事件个数为(2,8),(3,9),共2个,ab为整数的概率p=.∴loga故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.14.(5分)若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f(-)+f(2)=-2 .【分析】根据函数奇偶性和周期性的性质将条件进行转化求解即可.【解答】解:∵函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=4x,∴f(2)=f(0)=0,f(-)=f(-+2)=f(-)=-f()=-=-=-2,则f(-)+f(2)=-2+0=-2,故答案为:-2.【点评】本题主要考查函数值的计算,根据函数奇偶性和周期性的性质将条件进行转化是解决本题的关键.15.(5分)在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,),当P是原点时,定义“伴随点”为它自身,现有下列命题:①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是②③.【分析】根据“伴随点”的定义,分别进行判断即可,对应不成立的命题,利用特殊值法进行排除即可.【解答】解:①设A(0,1),则A的“伴随点”为A′(1,0),而A′(1,0)的“伴随点”为(0,-1),不是A,故①错误,②若点在单位圆上,则x2+y2=1,即P(x,y)不是原点时,定义P的“伴随点”为P(y,-x),满足y2+(-x)2=1,即P′也在单位圆上,故②正确,③若两点关于x轴对称,设P(x,y),对称点为Q(x,-y),则Q(x,-y)的“伴随点”为Q′(-,),则Q′(-,)与P′(,)关于y轴对称,故③正确,④∵(-1,1),(0,1),(1,1)三点在直线y=1上,∴(-1,1)的“伴随点”为(,),即(,),(0,1)的“伴随点”为(1,0),(1,1的“伴随点”为(,-),即(,-),则(,),(1,0),(,-)三点不在同一直线上,故④错误,故答案为:②③【点评】本题主要考查命题的真假判断,正确理解“伴随点”的定义是解决本题的关键.考查学生的推理能力.三、解答题(共6小题,满分75分)16.(12分)我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)估计居民月均水量的中位数.【分析】(I)先根据频率分布直方图中的频率等于纵坐标乘以组距求出9个矩形的面积即频率,再根据直方图的总频率为1求出a的值;(II)根据已知中的频率分布直方图先求出月均用水量不低于3吨的频率,结合样本容量为30万,进而得解.(Ⅲ)根据频率分布直方图,求出使直方图中左右两边频率相等对应的横坐标的值.【解答】解:(I)∵1=(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a,∴解得:a=0.3.(II)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万,则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.(Ⅲ)根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5=0.48<0.5,0.48+0.5×0.52=0.74>0.5,∴中位数应在(2,2.5]组内,设出未知数x,令0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5+0.52×x=0.5,解得x=0.04;∴中位数是2+0.04=2.04.【点评】本题用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.17.(12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.【分析】(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,证明平面CME∥平面PAB,即可证明直线CM∥平面PAB;(II)证明:BD⊥平面PAB,即可证明平面PAB⊥平面PBD.【解答】证明:(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,∵ME⊄平面PAB,PA⊂平面PAB,∴ME∥平面PAB.∵AD∥BC,BC=AE,∴ABCE是平行四边形,∴CE∥AB.∵CE⊄平面PAB,AB⊂平面PAB,∴CE∥平面PAB.∵ME∩CE=E,∴平面CME∥平面PAB,∵CM⊂平面CME,∴CM∥平面PAB若M为AD的中点,连接CM,由四边形ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.可得四边形ABCM为平行四边形,即有CM∥AB,CM⊄平面PAB,AB⊂平面PAB,∴CM∥平面PAB;(II)∵PA⊥CD,∠PAB=90°,AB与CD相交,∴PA⊥平面ABCD,∵BD⊂平面ABCD,∴PA⊥BD,由(I)及BC=CD=AD,可得∠BAD=∠BDA=45°,∴∠ABD=90°,∴BD⊥AB,∵PA∩AB=A,∴BD⊥平面PAB,∵BD⊂平面PBD,∴平面PAB⊥平面PBD.【点评】本题主要考查了直线与平面平行的判定,平面与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,属于中档题.18.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2-a2=bc,求tanB.【分析】(Ⅰ)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明. (Ⅱ)由余弦定理求出A的余弦函数值,利用(Ⅰ)的条件,求解B的正切函数值即可.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2-a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.【点评】本题主要考查了正弦定理,余弦定理,两角和的正弦函数公式,三角形内角和定理,三角形面积公式的应用,考查了转化思想,属于中档题.19.(12分)已知数列{an }的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;(Ⅱ)设双曲线x2-=1的离心率为en ,且e2=2,求e12+e22+…+en2.【分析】(Ⅰ)根据题意,由数列的递推公式可得a2与a3的值,又由a2,a3,a2+a3成等差数列,可得2a3=a2+(a2+a3),代入a2与a3的值可得q2=2q,解可得q的值,进而可得Sn+1=2Sn+1,进而可得Sn =2Sn-1+1,将两式相减可得an=2an-1,即可得数列{an}是以1为首项,公比为2的等比数列,由等比数列的通项公式计算可得答案;(Ⅱ)根据题意Sn+1=qSn+1,同理有Sn=qSn-1+1,将两式相减可得an=qan-1,分析可得an=q n-1;又由双曲线x2-=1的离心率为en ,且e2=2,分析可得e2==2,解可得a2的值,由an=q n-1可得q的值,进而可得数列{an}的通项公式,再次由双曲线的几何性质可得en 2=1+an2=1+3n-1,运用分组求和法计算可得答案.【解答】解:(Ⅰ)根据题意,数列{a n }的首项为1,即a 1=1, 又由S n +1=qS n +1,则S 2=qa 1+1,则a 2=q, 又有S 3=qS 2+1,则有a 3=q 2,若a 2,a 3,a 2+a 3成等差数列,即2a 3=a 2+(a 2+a 3), 则可得q 2=2q,(q >0), 解可得q =2,则有S n +1=2S n +1,① 进而有S n =2S n -1+1,② ①-②可得a n =2a n -1,则数列{a n }是以1为首项,公比为2的等比数列, 则a n =1×2n -1=2n -1;(Ⅱ)根据题意,有S n +1=qS n +1,③ 同理可得S n =qS n -1+1,④ ③-④可得:a n =qa n -1, 又由q >0,则数列{a n }是以1为首项,公比为q 的等比数列,则a n =1×q n -1=q n -1; 若e 2=2,则e 2==2,解可得a 2=, 则a 2=q =,即q =, a n =1×q n -1=q n -1=()n -1, 则e n 2=1+a n 2=1+3n -1,故e 12+e 22+…+e n 2=n +(1+3+32+…+3n -1)=n +.【点评】本题考查数列的递推公式以及数列的求和,涉及双曲线的简单几何性质,注意题目中q >0这一条件.20.(13分)已知椭圆E :+=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为的直线l 与椭圆E 交于不同的两点A,B,线段AB 的中点为M,直线OM 与椭圆E 交于C,D,证明:︳MA ︳•︳MB ︳=︳MC ︳•︳MD ︳【分析】(Ⅰ)由题意可得a =2b,再把已知点的坐标代入椭圆方程,结合隐含条件求得a,b 得答案;(Ⅱ)设出直线方程,与椭圆方程联立,求出弦长及AB 中点坐标,得到OM 所在直线方程,再与椭圆方程联立,求出C,D 的坐标,把︳MA ︳•︳MB ︳化为(|AB|)2,再由两点间的距离公式求得︳MC︳•︳MD︳的值得答案.【解答】(Ⅰ)解:如图,由题意可得,解得a2=4,b2=1,∴椭圆E的方程为;(Ⅱ)证明:设AB所在直线方程为y=,联立,得x2+2mx+2m2-2=0.∴△=4m2-4(2m2-2)=8-4m2>0,即.设A(x1,y1),B(x2,y2),M(x,y),则,|AB|==.∴x=-m,,即M(),则OM所在直线方程为y=-,联立,得或.∴C(-,),D(,-).则︳MC︳•︳MD︳===.而︳MA︳•︳MB︳=(10-5m2)=.∴︳MA︳•︳MB︳=︳MC︳•︳MD︳.【点评】本题考查椭圆的标准方程,考查了直线与圆锥曲线位置关系的应用,训练了弦长公式的应用,考查数学转化思想方法,训练了计算能力,是中档题.21.(14分)设函数f(x)=ax2-a-ln x,g(x)=-,其中a∈R,e=2.718…为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【分析】(Ⅰ)求导数,分类讨论,即可讨论f(x)的单调性;(Ⅱ)要证g(x)>0(x>1),即->0,即证,也就是证;(Ⅲ)由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,再构造函数,求导数,即可确定a的取值范围.【解答】(Ⅰ)解:由f(x)=ax2-a-lnx,得f′(x)=2ax-=(x>0),当a≤0时,f′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;当a>0时,由f′(x)=0,得x==,∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,则f(x)在(0,)上为减函数,在(,+∞)上为增函数;综上,当a≤0时,f(x)为(0,+∞)上的减函数,当a>0时,f(x)在(0,)上为减函数,在(,+∞)上为增函数;(Ⅱ)证明:要证g(x)>0(x>1),即->0,即证,也就是证,令h(x)=,则h′(x)=,=h(1)=e,∴h(x)在(1,+∞)上单调递增,则h(x)min即当x>1时,h(x)>e,∴当x>1时,g(x)>0;(Ⅲ)解:由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,∵t(1)=0,∴有t′(x)=2ax=≥0在(1,+∞)内恒成立,令φ(x)=,则φ′(x)=2a=,当x≥2时,φ′(x)>0,令h(x)=,h′(x)=,函数在[1,2)上单调递增,∴h(x)=h(1)=-1.mine1-x>0,∴1<x<2,φ′(x)>0,综上所述,x>1,φ′(x)>0,φ(x)在区间(1,+∞)单调递增,∴t′(x)>t′(1)≥0,即t(x)在区间(1,+∞)单调递增,由2a-1≥0,∴a≥.【点评】本题考查导数知识的综合运用,考查函数的单调性,不等式的证明,考查恒成立成立问题,正确构造函数,求导数是关键.。
2016年高考文科数学试题及答案(全国3卷)
线性回归模型拟合 y 与 t 的关系.
............6 分
7
(Ⅱ)由 y
9.32 7
1.331 及(Ⅰ)得 bˆ
(ti
i 1 7
t)( yi (ti t)2
y)
2.89 28
0.103 ,
i 1
aˆ y bˆt 1.331 0.103 4 0.92 .
所以, y 关于 t 的回归方程为: yˆ 0.92 0.10t . ..........10 分
(Ⅰ)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明;
(Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处
理量.
附注:
7
7
7
参考数据: yi 9.32 , ti yi 40.17 , ( yi y)2 0.55 ,≈2.646.
因为 an的各项都为正数,所以
an1 an
1 2
.
故 an是首项为1,公比为
1 2
的等比数列,因此 an
1 2n1
.
......12 分
(18)(本小题满分 12 分)
解:(Ⅰ)由折线图中数据和附注中参考数据得
7
7
t 4 , (ti t)2 28 , ( yi y)2 0.55 ,
i 1
2016 年全国卷 3 高考文数试题
(1)设集合 A {0, 2, 4, 6,8,10}, B {4,8} ,则 ðAB =
(A) {4,8}
(B) {0,2,6}
(C) {0,2,6,10}
(D) {0,2,4,6,8,10}
(2)若 z 4 3i ,则 z = |z|
2016年高考数学文科考试试题
2016年普通高等学校招生全国统一考试文科数学一、选择题(1)已知集合{}3,2,1=A ,{}9|2≤=x x B ,则=B A (A){}3,2,1,0,1,2-- (B){}2,1,0,1,2-- (C){}3,2,1 (D){}2,1 (2)设复数z 满足i i z -=+3,则=z(A)i 21+- (B)i 21- (C)i 23+ (D)i 23- (3)函数)sin(ϕω+=x A y 的部分图像如图所示,则(A))62sin(2π-=x y (B))32sin(2π-=x y (C))62sin(2π+=x y (D))32sin(2π+=x y(4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为 (A)π12 (B)332π(C)π8 (D)π4 (5)设F 为抛物线x y C 4:2=的焦点,曲线xky =)0(>k 与C 交于点P ,x PF ⊥轴,则=k (A)21 (B)1 (C)23(D)2 (6)圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a(A)34-(B)43- (C)3 (D)2 (7)右图是由圆柱与圆锥组合而成的几何体的三视图则该几何体的表面积为 (A)π20(B)π24(C)π28(D)π32(8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A)107 (B)85 (C)83 (D)103 (9)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s (A)7(B)12(C)17(D)34(10)下列函数中,其定义域和值域分别与函数xy lg 10=的定义域和值域相同的是(A)x y = (B)x y lg = (C)xy 2= (D)xy 1=(11)函数)2cos(62cos )(x x x f -+=π的最大值为(A)4 (B)5 (C)6 (D)7(12)已知函数)(x f )(R x ∈满足)2()(x f x f -=,若函数322--=x x y 与)(x f y =图像的交点为),(11y x ,),(22y x ,...,),(m m y x ,则=∑=mi ix1(A)0 (B)m (C)m 2 (D)m 4二、填空题(13)已知向量a )4,(m =,b=)2,3(,且a ∥b ,则=m .(14)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥-+≥+-,03,03,01x y x y x 则y x z 2-=的最小值为 .(15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若54cos =A ,135cos =C , 1=a ,则=b .(16)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲 看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡 片上的数字是 . 三、解答题(17)(本小题满分12分)等差数列{}n a 中,443=+a a ,675=+a a . (Ⅰ)求{}n a 的通项公式;(Ⅱ)设[]n n a b =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]26.2=.(18)(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的名续保人在一年内的出险情况,得到如下的统计表:(Ⅰ)记A 为事件:“一续保人本年度的保费不高于基本保费”.求)(A P 的估计值; (Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求)(B P 的估计值; (Ⅲ)求续保人本年度平均保费的估计值.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,CF AE =,EF 交BD 于点H .将△DEF 沿EF 折到△EF D /的位置.(Ⅰ)证明:/HD AC ⊥(Ⅱ)若5=AB ,6=AC ,45=AE ,22/=OD ,求五棱锥ABCFE D -/的体积.(20)(本小题满分12分)已知函数)1(ln )1()(--+=x a x x x f .(Ⅰ)当4=a 时,求曲线)(x f y =在))1(,1(f 处的切线方程.(Ⅱ)若当),1(+∞∈x 时,0)(>x f ,求a 的取值范围. (21)(本小题满分12分)已知A 是椭圆134:22=+y x E 的左顶点,斜率为k )0(>k 的直线E 于A ,M 两点,点N 在E 上,NA MA ⊥.(Ⅰ)当AN AM =时,求△AMN 的面积.(Ⅱ)当AN AM =2时,证明:23<<k . (22)(本小题满分10分) (23)(本小题满分10分)在直角坐标系xoy 中,圆C 的方程为25)6(22=++y x .(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是⎩⎨⎧==,sin ,cos ααt y t x (t 为参数),l 与C 交于A ,B 两点,10=AB ,求l 的斜率.(24)(本小题满分10分)。
2016年山东省高考数学试卷及解析(文科)
2016年山东省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.1、(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U (A∪B)=()A、{2,6}B、{3,6}C、{1,3,4,5}D、{1,2,4,6}2、(5分)若复数z=,其中i为虚数单位,则=()A、1+iB、1﹣iC、﹣1+iD、﹣1﹣i3、(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]、根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A、56B、60C、120D、1404、(5分)若变量x,y满足,则x2+y2的最大值是()A、4B、9C、10D、125、(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示、则该几何体的体积为()A、+πB、+πC、+πD、1+π6、(5分)已知直线a,b分别在两个不同的平面α,β内、则“直线a和直线b 相交”是“平面α和平面β相交”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件7、(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A、内切B、相交C、外切D、相离8、(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A、 B、C、D、9、(5分)已知函数f(x)的定义域为R、当x<0时,f(x)=x3﹣1;当﹣1≤x ≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣)、则f(6)=()A、﹣2B、1C、0D、210、(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质、下列函数中具有T性质的是()A、y=sinx B、y=lnx C、y=e x D、y=x3二、填空题:本大题共5小题,每小题5分,共25分.11、(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为、12、(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=、13、(5分)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为、14、(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是、15、(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是、三、解答题:本大题共6小题,共75分16、(12分)某儿童节在“六一”儿童节推出了一项趣味活动、参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数、记两次记录的数分别为x,y、奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶、假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动、(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由、17、(12分)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2、(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值、18、(12分)在如图所示的几何体中,D是AC的中点,EF∥DB、(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC、19、(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1、(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n、20、(13分)设f(x)=xln x﹣ax2+(2a﹣1)x,a∈R、(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围、21、(14分)已知椭圆的长轴长为4,焦距为、(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点、过点P作x轴的垂线交C于另一点Q,延长QM交C于点B、(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;(ⅱ)求直线AB的斜率的最小值、参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.1、(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U (A∪B)=()A、{2,6}B、{3,6}C、{1,3,4,5}D、{1,2,4,6}题目分析:求出A与B的并集,然后求解补集即可、试题解答解:集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则A∪B={1,3,4,5}、∁U(A∪B)={2,6}、故选:A、点评:本题考查集合的交、并、补的运算,考查计算能力、2、(5分)若复数z=,其中i为虚数单位,则=()A、1+iB、1﹣iC、﹣1+iD、﹣1﹣i题目分析:根据复数的四则运算先求出z,然后根据共轭复数的定义进行求解即可、试题解答解:∵z===1+i,∴=1﹣i,故选:B、点评:本题主要考查复数的计算,根据复数的四则运算以及共轭复数的定义是解决本题的关键、比较基础、3、(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]、根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A、56B、60C、120D、140题目分析:根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数、试题解答解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D、点评:本题考查的知识点是频率分布直方图,难度不大,属于基础题目、4、(5分)若变量x,y满足,则x2+y2的最大值是()A、4B、9C、10D、12题目分析:由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值、试题解答解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1)、∵,∴x2+y2的最大值是10、故选:C、点评:本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题、5、(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示、则该几何体的体积为()A、+πB、+πC、+πD、1+π题目分析:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案、试题解答解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=、故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C、点评:本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键、6、(5分)已知直线a,b分别在两个不同的平面α,β内、则“直线a和直线b 相交”是“平面α和平面β相交”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件题目分析:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立、试题解答解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立、∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件、故选:A、点评:本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题、7、(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A、内切B、相交C、外切D、相离题目分析:根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可、试题解答解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交、故选:B、点评:本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键、8、(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A、 B、C、D、题目分析:利用余弦定理,建立方程关系得到1﹣cosA=1﹣sinA,即sinA=cosA,进行求解即可、试题解答解:∵b=c,∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA),∵a2=2b2(1﹣sinA),∴1﹣cosA=1﹣sinA,则sinA=cosA,即tanA=1,即A=,故选:C、点评:本题主要考查解三角形的应用,根据余弦定理建立方程关系是解决本题的关键、9、(5分)已知函数f(x)的定义域为R、当x<0时,f(x)=x3﹣1;当﹣1≤x ≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣)、则f(6)=()A、﹣2 B、1 C、0 D、2题目分析:求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论、试题解答解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1、∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2、故选:D、点评:本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题、10、(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质、下列函数中具有T性质的是()A、y=sinx B、y=lnx C、y=e x D、y=x3题目分析:若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案、试题解答解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A、点评:本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档、二、填空题:本大题共5小题,每小题5分,共25分.11、(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为1、题目分析:根据程序框图进行模拟计算即可、试题解答解:若输入n的值为3,则第一次循环,S=0+﹣1=﹣1,1≥3不成立,第二次循环,S=﹣1+=﹣1,2≥3不成立,第三次循环,S=﹣1+﹣=﹣1=2﹣1=1,3≥3成立,程序终止,输出S=1,故答案为:1点评:本题主要考查程序框图的识别和判断,进行模拟运算是解决本题的关键、12、(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=n(n+1)、题目分析:由题意可以直接得到答案、试题解答解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n (n+1),故答案为:n(n+1)点评:本题考查了归纳推理的问题,关键是找到相对应的规律,属于基础题、13、(5分)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为﹣5、题目分析:根据向量的坐标运算和向量的数量积计算即可、试题解答解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5、点评:本题考查了向量的数量积的运算以及向量垂直的条件,属于基础题、14、(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2、题目分析:可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值、试题解答解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去)、故答案为:2、点评:本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题、15、(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞)、题目分析:作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可、试题解答解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞)、点评:本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到4m﹣m2<m是难点,属于中档题、三、解答题:本大题共6小题,共75分16、(12分)某儿童节在“六一”儿童节推出了一项趣味活动、参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数、记两次记录的数分别为x,y、奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶、假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动、(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由、题目分析:(Ⅰ)确定基本事件的概率,利用古典概型的概率公式求小亮获得玩具的概率;(Ⅱ)求出小亮获得水杯与获得饮料的概率,即可得出结论、试题解答解:(Ⅰ)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(3,3),(4,2),(4,3),(4,4),共16个,满足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,∴小亮获得玩具的概率为;(Ⅱ)满足xy≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个,∴小亮获得水杯的概率为;小亮获得饮料的概率为1﹣﹣=,∴小亮获得水杯大于获得饮料的概率、点评:本题考查概率的计算,考查古典概型,确定基本事件的个数是关键、17、(12分)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2、(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值、题目分析:(Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间、(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g()的值、试题解答解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z、(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=、点评:本题主要考查三角恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,求函数的值,属于基础题、18、(12分)在如图所示的几何体中,D是AC的中点,EF∥DB、(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC、题目分析:(Ⅰ)由条件利用等腰三角形的性质,证得BD⊥AC,ED⊥AC,再利用直线和平面垂直的判定定理证得AC⊥平面EFBD,从而证得AC⊥FB、(Ⅱ)再取CF的中点O,利用直线和平面平行的判定定理证明OG∥平面ABC,OH∥平面ABC,可得平面OGH∥平面ABC,从而证得GH∥平面ABC、试题解答(Ⅰ)证明:如图所示,∵D是AC的中点,AB=BC,AE=EC,∴△BAC、△EAC都是等腰三角形,∴BD⊥AC,ED⊥AC、∵EF∥DB,∴E、F、B、D四点共面,这样,AC垂直于平面EFBD内的两条相交直线ED、BD,∴AC⊥平面EFBD、显然,FB⊂平面EFBD,∴AC⊥FB、(Ⅱ)已知G,H分别是EC和FB的中点,再取CF的中点O,则OG∥EF,又∵EF∥DB,故有OG∥BD,而BD⊂平面ABC,∴OG∥平面ABC、同理,OH∥BC,而BC⊂平面ABC,∴OH∥平面ABC、∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC、点评:本题主要考查直线和平面垂直的判定和性质,直线和平面平行的判定与性质,属于中档题、19、(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1、(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n、题目分析:(Ⅰ)求出数列{a n}的通项公式,再求数列{b n}的通项公式;(Ⅱ)求出数列{c n}的通项,利用错位相减法求数列{c n}的前n项和T n、试题解答解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,=b n﹣1+b n,∴a n﹣1∴a n﹣a n﹣1=b n+1﹣b n﹣1、∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n========6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2、点评:本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题、20、(13分)设f(x)=xln x﹣ax2+(2a﹣1)x,a∈R、(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围、题目分析:(1)求出函数的导数,通过讨论a的范围,求出函数g(x)的单调区间即可;(2)通过讨论a的范围,得到函数f(x)的单调区间,结合函数的极大值,求出a的范围即可、试题解答解:(1)由f′(x)=ln x﹣2ax+2a,可得g(x)=ln x﹣2ax+2a,x∈(0,+∞),所以g′(x)=﹣2a=,当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x∈(0,)时,g′(x)>0,函数g(x)单调递增,x∈(,+∞)时,g′(x)<0,函数g(x)单调递减、所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)的单调增区间为(0,),单调减区间为(,+∞)、…(6分)(2)由(1)知,f′(1)=0、①当0<a<时,>1,由(1)知f′(x)在(0,)内单调递增,可得当x∈(0,1)时,f′(x)<0,当x∈(1,)时,f′(x)>0、所以f(x)在(0,1)内单调递减,在(1,)内单调递增,所以f(x)在x=1处取得极小值,不合题意、②当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意、③当a>时,0<<1,当x∈(,1)时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减、所以f(x)在x=1处取极大值,符合题意、综上可知,正实数a的取值范围为(,+∞)、…(12分)点评:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题、21、(14分)已知椭圆的长轴长为4,焦距为、(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点、过点P作x轴的垂线交C于另一点Q,延长QM交C于点B、(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;(ⅱ)求直线AB的斜率的最小值、题目分析:(Ⅰ)结合题意分别求出a,c的值,再求出b的值,求出椭圆方程即可;(Ⅱ)(i)设出P的坐标,表示出直线PM,QM的斜率,作比即可;(ii)设出A,B的坐标,分别求出PA,QB的方程,联立方程组,求出直线AB 的斜率的解析式,根据不等式的性质计算即可、试题解答解:(Ⅰ)设椭圆的半焦距为c、由题意知,所以、所以椭圆C的方程为、(Ⅱ)证明:(ⅰ)设P(x0,y0)(x0>0,y0>0),由M(0,m),可得P(x0,2m),Q(x0,﹣2m)所以直线PM的斜率k1==,直线QM的斜率k2==﹣,此时=﹣3、所以为定值﹣3(ⅱ)设A(x1,y1),B(x2,y2)、直线PA的方程为y=kx+m,直线QB的方程为y=﹣3kx+m联立整理得(2k2+1)x2+4mkx+2m2﹣4=0、由,可得,所以、同理所以,,所以、由m>0,x0>0,可知k>0,所以,等号当且仅当时取得,此时,即,所以直线AB 的斜率的最小值为点评:本题考查了椭圆的方程问题,考查直线的斜率以及椭圆的性质,考查函数求最值问题,是一道综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016届高三文科数学试题(45)本试卷第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间:120分钟第I 卷(选择题)一.选择题(本大题共12小题,每小题5分,共60分)1. 已知集合P={x|y=lg (2﹣x )},Q={x|x 2﹣5x+4≤0},则P∩Q=( ) A .{x|1≤x <2}B .{x|1<x <2}C .{x|0<x <4}D .{x|0≤x≤4}2. 已知α,β角的终边均在第一象限,则“α>β”是“sinα>sinβ”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 函数f (x )=ln (x 2+1)的图象大致是( )A .B .C .D .4. 己知,则m 等于( )A .B .C .D .5. 函数()20.5log (4)f x x =-的单调递增区间是( )A .(),0-∞B .(,2)-∞-C .()0,+∞D .(2,)+∞ 6. 已知()f x 是定义在R 上的奇函数,对任意x R ∈,都有()()2f x f x +=-,若()12f =,则(2015)f =( )A .-2B .2C .2013D .2012 7. 设7log 3=a,1.12=b ,1.38.0=c ,则( )A .c a b <<B .b c a <<C .a b c <<D .b a c <<8. 已知函数f (x )=131()2xx -, 那么在下列区间中含有函数f (x )零点的是( )A .(23,1) B .(12,23) C .(13,12) D .(0,13) 9. 若将函数()sin 2cos2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是( )A.8π B.4π C.38π D.34π10. 向量=(﹣2,﹣1),=(λ,1),若与夹角为钝角,则λ取值范围是( ) A . (,2)∪(2,+∞) B . (2,+∞)C . (﹣,+∞)D . (﹣∞,﹣)11. 如图,甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则乙楼的高是( ) A .3340 B .320 C .40 D .21012. 己知定义在R 上的函数()f x 的导函数为()f x ',满足()()f x f x '<,()()22f x f x +=-,()41f =,则不等式()x f x e <的解集为( )A ()2,-+∞B ()1,+∞C ()4,+∞D ()0,+∞第II 卷(非选择题)二.填空题(本大题共4小题,每小题5分,共20分)13.已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在CD →上的投影为________. 14.双曲线1y x=上任一点的切线与坐标轴围成的面积为_____. 15.已知α为第二象限的角,sin α=35,则tan 2α=________.16. 已知函数⎪⎩⎪⎨⎧<≥⎪⎭⎫⎝⎛-=,1,,1,41)(x a x x a x f x 在R 上为减函数,则实数a 的取值范围是________. 三、解答题(本大题共6小题, 共70分)17(10分)已知向量a =(sin x ,32),b =(cos x ,-1).(1)当a ∥b 时,求2cos 2x -sin 2x 的值;(2)求f (x )=(a +b )·b 在[-π2,0]上的最大值.18.(12分)已知命题p : x R ∃∈,2+20x x m -=;命题q :2,10x mx mx ∀∈++>R .(1)若命题p 为真命题,求实数m 的取值范围; (2)若命题q 为假命题,求实数m 的取值范围;(3)若命题p q ∨为真命题,且p q ∧为假命题,求实数m 的取值范围.19.(12分)已知偶函数()f x 的定义域为[1,1]-,且f(-1)=1,若对任意[]1212,1,0,,x x x x ∈-≠都有()()12210f x f x x x ->-成立.(1)解不等式1()(1)2f x f x +<-;(2)若2(x)t 21f at ≤-+对[]1,1x ∈-和[]1,1a ∈-恒成立,求实数t 的取值范围.20.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足.(1)求角A 的大小; (2)若,求△ABC 面积的最大值.21.(12分)已知R a ∈,函数x ax x f ln 21)(2-=. (1) 当1=a 时,求曲线)(x f y =在点))1(1(f ,处的切线的斜率; (2) 讨论)(x f 的单调性;(3) 是否存在实数a ,使得方程2)(=x f 有两个不等的实数根?若存在,求出a 的取值范围;若不存在,说明理由.22.(12分)已知函数f (x )=x•lnx (e 为无理数,e≈2.718)(1)求函数f(x)在点(e,f(e))处的切线方程;(2)设实数a>,求函数f(x)在[a,2a]上的最小值;(3)若k为正数,且f(x)>(k﹣1)x﹣k对任意x>1恒成立,求k的最大整数值.文数参考答案一、选择题:1-6 ADAABA 7-12 DCCAAD 二、填空题: 13. 2105 14. 2 15. -24716. ⎪⎭⎫⎝⎛41,0 三、解答题:17. 解: (1)∵a ∥b ,∴32cos x +sin x =0,∴tan x =-32,2cos2x -sin 2x =2cos2x -2sin xcos x sin2x +cos2x =2-2tan x 1+tan2x =2013. ……………………5分(2)f(x)=(a +b)·b =22sin(2x +π4). ……………………7分 ∵-π2≤x≤0,∴-3π4≤2x +π4≤π4,∴-1≤sin(2x +π4)≤22, ……………………9分∴-22≤f(x)≤12, ∴f(x)max =12. ……………………………10分18.解:(I )若命题p 为真命题,则22040,1x x m m m +-=∴∆+≥∴≥-有实根,=4 即m 的取值范围为[1,)-+∞ ……………………………………4分 (II )若命题q 为假命题,则(1)0m =时,不合题意 ;(2)2040,4m m m m >∆-≥≥时,=得 ; (3)0m <时,合题意。
综上:实数m 的取值范围为(,0)[4,)-∞⋃+∞ ……………………………8分 (III )由(I )得p 为真命题时,1m ≥-;p 为假命题时,1m <-,………9分 由(II )得q 为真命题时,04m ≤<;q 为假命题时,04m m <≥或,……10分p q ∨为真命题,且p q ∧为假命题,∴ “p q 真,且假”或“p q 假,且真”∴ 11{{0404m m m m m ≥-<-≤<<≥或或解得实数m 的取值范围为[1,0)[4,)-⋃+∞ . …………………………12分 19.解:(1)由对任意[]1212,1,0,,x x x x ∈-≠都有()()12210f x f x x x ->-成立知,()f x 在[]1,0- 上单调递减,又()f x 是偶函数,则()()f x f x =-,所以11()(1)()(1)22f x f x f x f x +<-⇔-+<--1112111112x x x x ⎧-≤+≤⎪⎪⎪⇔-≤-≤⎨⎪⎪-+>--⎪⎩,⇔410<≤x 故不等式1()(1)2f x f x +<-的解集为10,4⎡⎫⎪⎢⎣⎭. ……………………………6分(2)由已知max ()(1)1f x f =-=,又2(x)t 21f at ≤-+对[]1,1x ∈-和[]1,1a ∈-恒成立, 所以2212120t at at t ≤-+⇔-≤,在[]1,1a ∈-上恒成立,只需222020t t t t ⎧--≤⎪⎨-≤⎪⎩,即t=0或2t ≤-或2t ≥,所以实数t 的取值范围是(]{}[),202,-∞-+∞ . ……………………………12分20.解:(Ⅰ)∵,所以(2c ﹣b )•cosA=a•cosB由正弦定理,得(2sinC ﹣sinB )•cosA=sinA•c osB .…………………………2分 整理得2sinC•cosA ﹣sinB•cosA=sinA•cos B .∴2sinC•cosA=sin (A+B )=sinC . …………………………4分 在△ABC 中,sinC≠0. ∴,. …………………………6分(Ⅱ)由余弦定理,.…………………………8分∴b 2+c 2﹣20=bc≥2bc ﹣20∴bc≤20,当且仅当b=c 时取“=”. …………………………10分∴三角形的面积.∴三角形面积的最大值为. …………………………12分21.解:(1)当1=a 时,01)(>-='x xx x f , 0)1(='=∴f k 所以曲线y=f (x)在点))1(1(f ,处的切线的斜率为0. …………………………3分(2)011)(2>-=-='x xax x ax x f , …………………………………………4分① 当)0()(,0)(0∞+<'≤,在时,x f x f a 上单调递减; ………………………5分② 当aax x f a =='>解得时,令,0)(0. 0)()(0)()0(>'∞+∈<'∈x f aax x f a a x 时,,;当时,,当.内单调递增,内单调递减;在,在函数)()0()(∞+∴aaa a x f ………………7分(3)存在)0(3e a ,∈,使得方程2)(=xf 有两个不等的实数根. ………………8分 理由如下:由(1)可知当)0()(,0)(0∞+<'≤,在时,x f x f a 上单调递减,方程2)(=x f 不可能有两个不等的实数根; ………………………10分 由(2)得,内单调递增,,内单调递减,在,在函数)()0()(∞+aaa a x f 使得方程2)(=x f 有两个不等的实数根,等价于函数)(x f 的极小值2)(<aaf ,即2ln 2121)(<+=a a a f ,解得30e a << 所以a 的取值范围是)0(3e , ………………………………12分 22.解:⑴∵()(0,)()ln 1,()()2f x f x x f e e f e ''+∞=+==定义域为又():2(),2y f x e y x e e y x e ∴==-+=-函数在点(,f(e))处的切线方程为即………4分(2)∵()ln 1f x x '=+()0f x '=令1x e =得10,x e ⎛⎫∈ ⎪⎝⎭当时,()0F x '<,()f x 单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0F x '>,()f x 单调递增. 当min 1,()[,2],[()]()ln ,a f x a a f x f a a a e≥==时在单调递增min 111112,[()]2a a a f x f e e e e e ⎛⎫<<<<==- ⎪⎝⎭当时,得 ………………8分 (3)()(1)f x k x k >--对任意1x >恒成立, 即ln x x x +(1)k x >-对任意1x >恒成立, 即ln 1x x xk x +>-对任意1x >恒成立令2ln ln 2()(1)'()(1)1(1)x x x x x g x x g x x x x +--=>⇒=>--令1()ln 2(1)'()0()x h x x x x h x h x x-=-->⇒=>⇒在(1,)+∞上单调递增。