浙教版七年级上数学第一章全套教案
浙教版七年级数学上册全册教案
1.1从自然数到分数一、教学内容义务教育课程标准实验教科书《数学》(浙江版)七年级上册二、教学目标1、知识目标:使学生了解自然数的意义和用处;了解分数(小数)的意义和形式;了解分数产生的必然性和合理性;2、能力目标:通过自然数和分数的运算,解决一些简单实际问题。
3、情感目标:初步体验数的发展过程,体验数学来源于实践,又服务于实践,增强学生用数学的意识。
三、教学重点使学生了解自然数和分数的意义和应用。
四、教学难点合作学习中的第2题的第⑵小题。
五、教学准备多媒体课件六、教学过程㈠创设情境出示材料:(多媒体显示)请阅读下面这段报道:2004年8月13日到8月29日,第28届奥运会在雅典召开,我国体育代表团以32枚金牌,17枚银牌,14枚铜牌,获得奖牌榜的第二名,为国家争得了荣誉。
我国金牌数约占总金牌数的110。
跨栏运动员刘翔在男子100米栏决赛中以12秒91的成绩获得冠军,并打破奥运会纪录,平了世界纪录,刘翔是我国运动员在世界大赛中短距离竞赛项目获得冠军的第一人。
提问:你在这篇报道中看到了哪些数?请你把它们写下来,并指出它们分别属于哪一类数?如果将12秒91写成12.91秒,12.91又属于什么数?(由雅典奥运会有关报道引入,既合时事形势,又具有爱国主义教育,并使学生体验到生活中处处有数学)提出课题:今天我们复习自然数、分数和小数及它们的应用 [板书课题]第1节从自然数到分数㈡提问复习问题1:先请同学们回忆小学里学过的自然数,哪一些数属于自然数?你了解自然数最初是怎样出现的吗?注意:自然数从0开始。
问题2:你知道自然数有哪些作用?(让学生思考、讨论后来回答,教师提示补充)自然数的作用:①计数如:32枚金牌,是自然数最初的作用;②测量如:小明身高是168厘米;③标号和排序如:2004年,金牌榜第二。
注意:基数和序数的区别。
(因为自然数在小学里已经非常熟悉,因此教师以提问的形式,帮助学生回忆有关知识)㈢做一做(多媒体显示,学生独立思考完成后,请学生回答)下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?⑴ 2002年全国共有高等学校2003所;⑵小明哥哥乘1425次列车从北京到天津;⑶香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼;⑷信封上的邮政编码325608⑸刘翔在雅典奥运会中的号码1363;⑹.今天的最高气温是35℃(补充3小题,加强巩固自然数的作用)㈣小组讨论问题1:我们知道小学里先学自然数再学分数,但你了解分数是怎样产生的吗?你能用自然数表示四人均分一个西瓜,每人可得多少西瓜吗?(用分配等实际问题说明自然数还不能满足实际需要,使学生了解分数产生的必要性和必然性)问题2:在解答下列问题时,你会选用分数和小数中的哪一类数?为什么?⑴小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?⑵小明的身高是168厘米,如果改用米作单位,应怎样表示?(让学生说说为什么,使学生理解什么时候用分数,什么时候用小数,关键是怎样方便简单)问题3:分数可以转化为小数吗?怎样转化?如18= ;415= ;23= 。
浙教版七年级上册数学第一章有理数教案(全章)
1.1 从自然数到分数【教学目标】知识目标:1.理解自然数、分数的产生和发展的实际背景。
2.通过身边的例子体验自然数与分数的意义和在计数、测量、标号和排序等方面的应用。
能力目标:会运用自然数、分数(小数)的计算解决简单的实际问题,并从实际中体验由于需要而再次将数进行扩充的必要性。
情感目标:1.通过同学之间的交流、讨论,以面对面互动的形式,完成合作交流,培养良好的与人合作的精神,感受集体的力量,体验成功的喜悦。
2.从具体的例子使学生感受数学来源于生活,生活离不开数学,从而增加学习数学的兴趣。
【教学重点、难点】重点:自然数和分数的意义及运用自然数、分数的计算解决简单的实际问题。
难点:用自然数、分数(小数)的计算解决简单的实际问题。
【教学过程】一、新课引入小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。
二、新课过程用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥——杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。
师问:你在这段报道中看到了哪些数?它们都属于哪一类数?学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:⑴属于计数如8万辆、5年后、6车道 ⑵表示测量结果如全长36千米 ⑶表示标号和排序如2003年6月8日、第一座等显示以下练习让学生口答下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所。
(标号和排序 计数)(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。
(标号和排序 标号和排序)(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。
(测量结果,计数,标号和排序,标号和排序)做完练习之后师:随着生活和生产的需要,自然数已经不能满足实际需要了。
浙教版七年级数学上册第一章教案设计(新版)
当的位置 . 你能说出这 两个圈的重叠部分表示什么数的集合吗?
作业 布置 (自 学指 导)
作业本 1
【思维导图 】
第 4 页 共 18 页
正有理数
零
自然数
1.1从自 然数到有 理数
正整数 零
负整数
负有理数
分 数
整 数
正分数
负 分 数
【教学反思 】学后反思
有理数的分类(除下面的分类外你还有其它的分类方法吗?)
知识性考试水平
a
b
c
√
√
√
√ √
学习目标
技能性考试水平
a
b
c
√
√
体验性考试水平
ab c √ √
√
√ √
√
√ √
【 教学目标 】
知识与技能目标: 1.通过温度计的类比认识数轴,会用数轴上的点表示有理数
2.借助数轴理解相反数的概念 ,知道互为相反数的一对数在数轴上的位置关系 3.会求一个有理数的相反数。 过程与方法目标: 经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形 来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。 情感与态度目标: 从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;体会数学充满 探索性 。
√
√
√
ab c能目标: 借助数轴,理解绝对值的概念及绝对值的几何意义,会求一个数的绝对值及求绝对值等 于某一正数的有理数,了解绝对值的简单应用。
过程与方法目标: 通过从数形的两侧面,理解绝对值的意义,初步了解数形结合的思想方法。 情感与态度目标: 通过观察、思考、比较、归纳等数学活动,让学生体验数学活动是充满探索性的。
七年级数学上册第1章有理数1.2数轴教学设计新版浙教版
七年级数学上册第1章有理数1.2数轴教学设计新版浙教版一. 教材分析本节课的教学内容是浙教版七年级数学上册第1章有理数1.2数轴。
数轴是数学中的一种重要工具,用于表示实数的大小和相对位置。
通过数轴,学生可以更好地理解有理数的概念,掌握有理数的加减法运算。
教材通过生动的例题和练习,引导学生掌握数轴的画法,理解数轴上的点和实数之间的关系。
二. 学情分析七年级的学生已经学习了有理数的基本概念,对加减法运算有一定的了解。
但学生在理解有理数的大小比较和绝对值概念时,还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,通过具体实例和练习,让学生在数轴上表示有理数,从而更好地理解有理数的大小关系和绝对值。
三. 教学目标1.知识与技能:使学生掌握数轴的定义和画法,能够正确地在数轴上表示有理数,理解数轴上的点和实数之间的关系。
2.过程与方法:通过数轴,让学生学会比较有理数的大小,掌握有理数的加减法运算。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的观察能力、思维能力和动手能力。
四. 教学重难点1.数轴的画法2.在数轴上表示有理数3.利用数轴比较有理数的大小4.利用数轴解决有理数的加减法问题五. 教学方法1.情境教学法:通过生活实例,引导学生理解数轴的实际意义。
2.直观教学法:利用数轴模型,让学生直观地理解有理数的大小关系。
3.引导发现法:教师引导学生发现数轴上的点和实数之间的关系,培养学生独立思考的能力。
4.练习法:通过大量的练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教学课件:制作课件,展示数轴的定义、画法和应用。
2.数轴模型:准备数轴模型,方便学生直观地理解数轴。
3.练习题:准备适量的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如温度计,引导学生思考实数的大小关系。
通过提问,引出数轴的概念。
2.呈现(10分钟)展示数轴的定义、画法和特点。
让学生观察数轴,理解数轴上的点和实数之间的关系。
七年级数学上册第1章有理数1.2数轴说课稿(新版浙教版)
七年级数学上册第1章有理数1.2数轴说课稿(新版浙教版)一. 教材分析《浙教版七年级数学上册》第1章主要介绍有理数的概念和运算。
1.2节数轴是研究有理数的重要工具,通过数轴可以直观地表示有理数的大小和相对位置。
本节内容主要包括数轴的定义、特点、表示方法以及数轴上的基本运算。
通过学习数轴,学生可以更好地理解和掌握有理数的概念和运算。
二. 学情分析七年级的学生已经掌握了实数的概念,对数的大小和相对位置有一定的认识。
但部分学生可能对数轴的表示方法和运算规则不够熟悉,需要通过实例和练习来加深理解。
此外,学生可能对数轴的直观表示和实际应用场景之间的联系不够明确,需要通过实际操作和问题解决来加深理解。
三. 说教学目标1.知识与技能:学生能够理解数轴的定义和特点,掌握数轴上的表示方法,能够熟练运用数轴进行有理数的比较和运算。
2.过程与方法:学生能够通过数轴来表示和解决实际问题,培养数形结合的思维方式。
3.情感态度与价值观:学生能够体验到数轴在数学和实际生活中的重要作用,增强对数学的兴趣和信心。
四. 说教学重难点1.数轴的定义和特点,数轴上的表示方法。
2.数轴上的基本运算,包括距离、角度、比例等。
3.数轴在实际问题中的应用,数形结合的思维方式。
五. 说教学方法与手段1.采用问题驱动的教学方法,通过实际问题和练习来引导学生理解和运用数轴。
2.利用多媒体课件和实物模型辅助教学,提供直观的数轴图像和实际操作机会。
3.分组讨论和合作交流,鼓励学生相互学习和分享解题经验。
六. 说教学过程1.引入:通过一个实际问题,如判断两个数的大小关系,引出数轴的概念和作用。
2.讲解:介绍数轴的定义、特点和表示方法,通过示例和讲解来说明数轴上的基本运算。
3.练习:学生进行数轴上的练习,包括距离、角度、比例等运算,巩固对数轴的理解和运用。
4.应用:学生分组讨论和解决实际问题,如购物时找零、测量长度等,将数轴应用于实际情境中。
5.总结:教师引导学生总结数轴的重要性和运用方法,强调数形结合的思维方式。
浙教版七年级上第一章有理数教案
1.1从自然数到有理数【教学目标】1.了解自然数到有理数的发展过程2.借助生活中的实例引入负数,会用正数、负数表示具有相反意义的量3.理解有理数的概念,并能对有理数进行分类【教学重点、难点】重点:会应用正负数表示生活中具有相反意义的量;有理数的分类。
难点:负数的理解。
【教学过程】一、提出问题、创设情景教:首先我们来回顾下,在小学数学中我们学过哪些数?像0、1、2、3、4…..等这些我们叫做自然数,而且我们都知道自然数都是整数,0也是整数。
在日常生活中,自然数常常用来计数和测量,如教室现在有2个人(这是计数),这面墙有3米高,这是测量。
教:但是仅仅有自然数还是不能解决生活中的问题,怎么理解呢?打个比方1)小华和她的7位朋友一起过生日,要平均分享一块蛋糕,每人可得多少蛋糕?2)小明的身高是168厘米,如果改用米做单位,应怎么表示?预设:每人可得1/8蛋糕,小明身高1.68米教:这就是我们学习过的分数和小数,方便我们进行测量和分配,是不是还学习了分数和小数的转化,这个大家应该都会,如0.5=1/2 1/3=0.33333等等转化。
二、合作讨论、探究新知教:那么初中阶段,我们来学习新的数。
我们常常在日常生活和生产实践中遇到这样几组数字,+6℃和-3℃,你们知道他们的含义吗?是不是表示气温零上6℃和零下3℃,大家可以发现他们是相互对立的,大家还能举出这一类数吗?教:地上3层和地下-1层,收入1000元和支出-3000元,加10分和扣10分等等.这些量是不是都是相互对立的?因此我们把这些称为具有相反意义的量,那么如何用数来把这些具有相反意义的量表示出来呢?这个就是我们初中要学到的-正数和负数的概念。
教:为了表示具有相反意义的量,我们把一种意义的量规定为正,用大于0的数,比如123,15,2/3等来表示,这样的数叫做正数,正数前面放上正号“+”来表示(正号往往省略);把另一种与之意义相反的量规定为负,用大于0的数前面放上负号“-”,如-123,-15,-2/3等来表示,这样的数叫做负数,(负数符号不能省略)。
浙教版七年级数学上册课本教案
浙教版七年级数学上册课本教案浙教版七年级数学上册课本教案第一章有理数1.1正数和负数第1课时正数和负数教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高例1举出几对具有相反意义的量,并分别用正、负数表示.提示具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.例2在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?例3某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.45点拨读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元)+16+5.0-1.2-2.1-0.9+10-2.6(1)本周小张一共用掉了多少钱?存进了多少钱?(2)储蓄罐中的钱与原来相比是多了还是少了?(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容?2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)第2课时正数和负数的应用教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.[问题1]:“零”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义?归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0m.[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?(二)深化理解,解决问题[问题3]:(课本P3例题)例1(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;例2(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.巩固练习1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.2.让学生再举出一些常见的具有相反意义的量.3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:中国减少866,印度增长72,韩国减少130,新西兰增长434,泰国减少3247,孟加拉减少88.(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;(2)如何表示森林面积减少量,所得结果与增长量有什么关系?(3)哪个国家森林面积减少最多?(4)通过对这些数据的分析,你想到了什么?阅读与思考(课本P6)用正数和负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97mm的零件是否合格?2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.(三)应用迁移,巩固提高1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:星期一二三四增减-5+7-3+4根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?类比例题,要求学生注意书写格式,体会正负数的应用.(四)课时小结(师生共同完成)1.2有理数第1课时有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1把下列各数填入相应的集合内:,3.1416,0,2004,-,-0.23456,10%,10.1,0.67,-89例2以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125,,-3,3,0,50%,-0.3(1)整数集合{};(2)分数集合{};(3)负分数集合{};(4)非负数集合{};(5)有理数集合{}.2.下列说法中正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?第2课时数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.点拨(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.(三)应用迁移,巩固提高例1下列所画数轴对不对?如果不对,指出错在哪里?例2试一试:用你画的数轴上的点表示4,1.5,-3,-,0.例3下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个例4在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.例5数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()A.1998个或1999个B.1999个或2000个C.2000个或2001个D.2001个或2002个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P 点所表示的数是.3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是()A.-1B.1C.-3D.3第3课时相反数教学目标:1.借助数轴了解相反数的概念,知道互为相反数的位置关系.2.给一个数,能求出它的相反数.教学重点:理解相反数的意义.教学难点:理解和掌握双重符号简化的规律.教与学互动设计:(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,2和-2,7和-7,和-,并把它们在数轴上标出.想一想(1)上述各对数有什么特点?(2)表示这四对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的n组数吗?观察像这样只有符号不同的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁移,巩固提高例1填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它本身.例2下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个例3化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)}…}(共n个负号).归纳化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.例4数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?(四)总结反思,拓展升华归纳(1)相反数的概念及表示方法.(2)相反数的代数意义和几何意义.(3)符号的化简.(五)课堂跟踪反馈夯实基础1.判断题(1)-3是相反数.()(2)-7和7是相反数.()(3)-a的相反数是a,它们互为相反数.()(4)符号不同的两个数互为相反数.()2.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或0C.负数D.负数或04.一个数比它的相反数小,这个数是()A.正数B.负数C.非负数D.非正数5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.提升能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.。
(浙教版)七年级数学上册第1章第1节《从自然数到有理数》优秀教学案例(第2课时)
1.生活情境导入:通过天气预报中的温度变化,让学生感受有理数的大小比较,使学生认识到数学与生活的紧密联系,激发学生学习数学的兴趣和积极性。
2.问题导向:教师提出引导性问题,引导学生思考有理数的分类依据及其意义,设置疑问,让学生探讨有理数大小比较的方法和规律,激发学生的思考和探究欲望。
3.小组合作:组织学生进行小组讨论,共同探究有理数的分类、大小比较和减法运算规律,鼓励小组成员相互评价、交流心得,提高学生的合作能力和沟通能力。
根据新课程标准,本节课旨在让学生通过自主探究、合作交流的方式,掌握有理数的分类、大小比较方法和减法运算规律,培养学生的逻辑思维能力和解决实际问题的能力。同时,通过本节课的学习,使学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和积极性。
在教学设计上,我将以学生为主体,注重启发式教学,引导学生主动发现问题、解决问题,并通过典型例题和实际问题,使学生充分理解和掌握有理数的相关知识。同时,我将关注学生的个体差异,给予不同程度的学生有针对性的指导和帮助,确保每个学生都能在课堂上得到有效的学习。
(二)讲授新知
1.讲解有理数的分类,包括整数和分数,让学生了解各类数的特征和意义。
2.引导学生通过观察、分析、归纳有理数的大小比较方法,让学生在实践中掌握该方法。
3.讲解有理数的减法运算规律,并通过例题使学生理解和掌握有理数减法。
4.结合数轴讲解有理数的大小关系,提高学生的数形结合能力。
(三)学生小组讨论
四、教学内容与过程
(一)导入新课
1.利用生活情境导入新课,例如,通过讲解天气预报中的温度变化,让学生感受有理数的大小比较。
2.设计有趣的数学故事,如“数学家的小故事”,让学生了解有理数分类、减法运算的使用优惠券后需支付多少元?”引导学生运用有理数知识解决实际问题。
数学(浙教版)七年级上册 第1章 第4节:绝对值
《§1.4 绝对值》教学设计浙教版《义务教育课程标准实验教科书·数学》七年级上册第1章第4节嘉善县泗洲中学陈红梅陈世文【教学目标】1、知识与技能目标:借助数轴,理解绝对值的概念,会求一个数的绝对值,并且会简单的绝对值计算.2、过程与方法目标:通过从数形的两侧面,理解绝对值的意义,初步了解数形结合的思想方法.3、情感与态度目标:通过教学过程的安排,使学生能积极参与数学学习活动,能培养学生独立思考的习惯.【教学重点与难点】1、教学重点:正确理解绝对值的含义,进行简单的绝对值计算.2、教学难点:正确理解绝对值的含义.【教学准备】ppt文件.【教学设计思路】本节课是一节概念教学课,我摒弃了传统的教法,由生活情景引入,贴近了学生的生活实际,让学生感觉亲切、熟悉,能充分相信日常生活中确实有一些量与方向无关.同时,也使学生产生疑问:到底什么是绝对值呢?绝对值和所举的例子有什么关系呢?使学生在“愤悱” 状态下激发起强烈的探求欲望.从而得出什么是绝对值。
例1的编排以及通过4人一组的合作交流探究,从而得出绝对值的意义.练习和例2的编排,使得绝对值的知识得到充分的应用.【教学过程】一、创设情境引入新课1、一天,小雨同学去参加同学的生日聚会,期间她打电话给她妈妈,她九点钟回家,让她爸爸妈妈在离家5公里的公路旁接她(小雨家在公路旁,公路是东西朝向的).小雨父母走出家门准备打的的时候犹豫了……为了尽快接到小雨,她父母决定分头向东西两个方向打的去A点与B点(出示ppt文件情景演示1 2 3 )师:小雨的爸爸妈妈所付的出租车钱一样吗?为什么?生1:一样生2:因为出租车行驶的里程数一样师:所付的出租车费用与行驶方向有没有关系?生:没有2、若规定向东为正,则A处记做__________,B处记做__________。
(请学生口答)以O为原点,取适当的单位长度画数轴,并标出A、B的位置.(请学生作图,再出示出示ppt文件4)3、这两辆出租车在行驶的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(学生观察思考交流后答).4、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示- 1.5和1.5的点呢?(出示ppt 文件 5)小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算出租车行驶的路程中,与出租车行驶的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值.【设计说明:生活情景的引入,活跃了课堂气氛,点燃了学生智慧的火花,调动了学生学习的积极性,能深切地感受到数学来源于生活,生活中无处不存在数学. 同时让学生初步体会数形结合这一数学思想方法.】板书:1.4 绝对值二、数学建模 得出新知1、 绝对值的概念我们发现,一对相反数虽然分别在原点两边,但它们到原点的距离是相等的. 如果我们不考虑这两点在原点的那一边,只考虑它们离开原点的距离,这个距离叫这两个数的绝对值.(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义(出示ppt 文件6):一个数在数轴上对应的点到原点的距离叫做这个数的绝对值. 比如:数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系 ②是个距离的概念板书:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
七年级上册第一章数学教案
七年级上册第一章数学教案
标题:七年级上册第一章——有理数
一、教学目标
1. 理解并掌握有理数的概念,能识别正数、负数和零。
2. 掌握有理数的加法、减法、乘法和除法运算规则。
3. 能够运用所学知识解决实际问题。
二、教学内容
1. 有理数的基本概念
2. 有理数的加法、减法、乘法和除法运算法则
3. 有理数的实际应用
三、教学方法
采用引导式教学法,通过实例引出新知识,让学生在实践中理解和掌握。
四、教学过程
1. 导入新课:通过生活中的实例引入有理数的概念,如温度计上的读数,账单上的数字等。
2. 新知讲解:
(1) 介绍有理数的概念,包括正数、负数和零。
(2) 讲解有理数的加法、减法、乘法和除法运算法则,强调符号法则的重要性。
3. 实践操作:设计一些有理数的运算题目,让学生进行练习,教师进行指导。
4. 课堂小结:回顾本节课的主要知识点,强调有理数在生活中的应用。
五、作业布置
设计一些有理数的计算题和实际应用题,让学生在家完成。
六、教学反思
根据学生的学习情况和反馈,对教学方法和教学内容进行调整和改进。
浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计
浙教版数学七年级上册第一章《从自然数到有理数》复习教学设计一. 教材分析《从自然数到有理数》是浙教版数学七年级上册第一章的内容,主要包括有理数的概念、分类、运算以及应用。
本章内容是学生初步接触数学符号和运算规则的阶段,对于培养学生对数学的兴趣和基本运算能力具有重要意义。
二. 学情分析七年级的学生刚刚从小学升入初中,对于数学的概念和运算规则有一定的了解,但还需要进一步的巩固和提高。
他们在学习过程中需要直观、生动的实例来帮助理解抽象的概念,同时也需要通过大量的练习来熟练掌握运算规则。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的运算规则,包括加、减、乘、除、乘方等。
3.能够运用有理数解决实际问题,提高学生的应用能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则。
3.有理数在实际问题中的应用。
五. 教学方法1.采用直观、生动的实例讲解有理数的概念和分类,帮助学生理解抽象的概念。
2.通过大量的练习,让学生熟练掌握有理数的运算规则。
3.结合实际问题,让学生运用有理数解决问题,提高学生的应用能力。
六. 教学准备1.准备相关的基础知识PPT,用于导入和呈现。
2.准备相关练习题,用于操练和巩固。
3.准备实际问题,用于拓展和应用。
七. 教学过程1.导入(5分钟)通过复习自然数的概念,引导学生思考自然数的局限性,从而引出有理数的概念。
利用PPT展示有理数的概念,让学生初步了解有理数。
2.呈现(10分钟)利用PPT呈现有理数的分类,包括整数、分数、正数、负数等。
通过实例讲解,让学生理解有理数的分类,并能够正确判断一个数属于哪种分类。
3.操练(10分钟)让学生进行有理数的加减乘除乘方等运算练习,通过练习让学生熟练掌握有理数的运算规则。
4.巩固(10分钟)利用PPT展示一些实际问题,让学生运用有理数解决问题。
通过解决实际问题,让学生巩固有理数的概念和运算规则。
5.拓展(10分钟)让学生思考有理数在实际生活中的应用,例如购物、计算费用等。
(浙教版)七年级数学上册第1章第1节《从自然数到有理数》优秀教学案例(第1课时)
(三)情感态度与价值观
1.培养学生对数学的兴趣和热爱,激发学生的学习热情,树立学好数学的信心。
2.引导学生体验数学的简洁美、逻辑美,提高审美能力,培养良好的审美情趣。
3.培养学生严谨、认真的学习态度,养成独立思考、自主学习的好习惯。
(二)问题导向
在教学过程中,我将运用问题导向法,设计富有启发性和挑战性的问题,引导学生层层递进地思考。通过引导学生提出问题、分析问题、解决问题,培养学生的问题意识,提高学生的思维品质。同时,注重问题的多样化,使学生在解决问题的过程中,全面掌握有理数的概念和运算规则。
(三)小组合作
小组合作是培养学生合作能力、提高课堂效果的重要手段。我将根据学生的学习基础、能力水平、性格特点等因素,合理划分学习小组,确保每个学生都能在小组中发挥自己的优势。在小组合作过程中,引导学生相互交流、相互启发,共同完成学习任务。同时,注重培养小组长的组织协调能力,提高小组合作的质量。
四、教学内容与过程
(一)导入新课
1.利用数轴引起学生的兴趣,让学生观察数轴上的点表示的数,引导学生发现数轴上的点不仅能表示正数,还可以表示负数。
2.提问:“在数轴上,0是正数还是负数?0的意义是什么?”通过这个问题,让学生思考0的特殊性,为新课的学习做好铺垫。
(二)讲授新知
1.介绍有理数的概念,包括整数、分数以及正数、负数,通过具体例子让学生理解这些概念。
(二)过程与方法
1.通过问题驱动,激发学生探究欲望,培养学生主动学习的习惯。
2.采用小组合作、讨论交流等形式,引导学生互相启发、共同进步,提高合作能力。
3.设计丰富多样的教学活动,如数学故事、实际问题等,让学生在实际操作中体验数学,培养动手动脑的能力。
浙教版七年级上数学教案全集
1.1从自然数到有理数一、教学目标1 .理解有理数产生的必然性、合理性及有理数的分类;2 .能辨别正、负数,感受规定正、负的相对性;3 .体验中国古代在数的发展方面的贡献。
二、教学重点和难点重点:有理数的概念难点:建立正数、负数的概念对学生来说是数学抽象思维一次重大飞跃。
三、教学手段现代课堂教学手段四、教学方法启发式教学五、教学过程(一)从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二)师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.“运进”和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.(三)介绍有理数的有关概念。
浙教版七年级数学上册第一章教案设计(新版)
【课题】1.1从自然数到有理数【课时序】第一课时【课型】新授课【双向细目表】【教学目标】:知识目标:了解自然数和有理数是由于人们生活和生产实践的需要而产生的技能目标:自然数和有理数的应用情感目标:了解中国古代在数的发展方面的贡献【教学重难点】教学重点:本节教学的重点是认识数的发展过程,感受由于生活与生产实践的需要,数还要作进一步的扩展教学难点:建立正负数的概念对学生来说是数学抽象思维的一次重大飞跃,是本节的难点。
【教学方法】三学循环。
【学习方法】小组合作【教学准备】课件。
【教学过程】【思维导图】【教学反思】学后反思有理数的分类(除下面的分类外你还有其它的分类方法吗?)有理数【课题】1.2数轴 【课时序】第一课时 【课型】新授课。
【双向细目表】——本节课学生达到的知识能力水平等级,如:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧分数零整数【教学目标】知识与技能目标:1.通过温度计的类比认识数轴,会用数轴上的点表示有理数2.借助数轴理解相反数的概念,知道互为相反数的一对数在数轴上的位置关系3.会求一个有理数的相反数。
过程与方法目标:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。
情感与态度目标:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;体会数学充满探索性。
【教学重难点】教学重点:能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
教学难点:了解数形结合与转化的思想。
【教学方法】三学循环、图解法等【学习方法】小组合作、实验探究、讨论,归纳小结等【教学准备】课件PPt【教学过程】【思维导图】【教学反思】【课题】1.3绝对值【课时序】第一课时【课型】新授课。
【双向细目表】——本节课学生达到的知识能力水平等级,如:【教学目标】知识与技能目标:借助数轴,理解绝对值的概念及绝对值的几何意义,会求一个数的绝对值及求绝对值等于某一正数的有理数,了解绝对值的简单应用。
七年级上册数学课本教案浙教版
七年级上册数学课本教案浙教版【教案】七年级上册数学课本教案浙教版一、教学目标:1. 理解并掌握本单元的重点概念和基本知识;2. 能够灵便运用所学知识解决实际问题;3. 培养学生的数学思维和解决问题的能力;4. 培养学生的合作意识和团队精神。
二、教学内容:本教案主要环绕七年级上册数学课本的内容展开,包括以下单元:1. 第一单元:有理数的认识与比较;2. 第二单元:有理数的加减运算;3. 第三单元:有理数的乘法运算;4. 第四单元:有理数的除法运算;5. 第五单元:平方根与立方根;6. 第六单元:平方与立方;7. 第七单元:正比例与反比例;8. 第八单元:图形的认识与初步作图;9. 第九单元:图形的相似与全等;10. 第十单元:统计与概率。
1. 导入环节:通过与学生的互动,引导学生回顾上节课的内容,激发学生对本节课的兴趣。
2. 知识讲解:根据教材内容,逐步讲解本节课的重点知识和概念,结合具体例子进行说明,确保学生能够理解。
3. 实例演练:给学生提供一些实例问题,让学生尝试运用所学知识解决问题,引导学生思量和讨论,并及时赋予指导和匡助。
4. 练习巩固:给学生一些练习题,让学生巩固所学知识,培养学生的运算能力和解决问题的能力。
可以设计不同难度的题目,以满足不同层次学生的需求。
5. 拓展延伸:对于学习较快的学生,可以提供一些拓展性的问题,让他们深入思量和探索,拓宽数学思维。
6. 总结归纳:对本节课的重点知识和解题方法进行总结归纳,匡助学生理清思路,加深记忆。
7. 作业布置:布置适量的作业,让学生在课后巩固所学知识,并及时检查和批改学生的作业。
1. 教材:七年级上册数学教材(浙教版);2. 板书:根据教材内容,编写清晰简洁的板书,方便学生复习。
五、教学评估:1. 课堂表现评估:观察学生的课堂参预情况、回答问题的准确性和思维活跃度等;2. 作业评估:检查学生的作业完成情况,评价学生对所学知识的掌握程度;3. 测验评估:定期进行小测验,检验学生对本单元知识的理解和掌握程度。
浙教版七上数学单元教案
教学目标达成情况
存在问题与
矫正措施
单元教案
单元名称
第三章实数
计划
课时
单元
教学
目标
1、了解平方根、算数平方根、立方根的概念,会用根号表示数的平方根和立方根。
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。
3、了解无理数和实数的概念,知道实数和数轴上的点一一对应。
4、列方程解应用题的过程比较完整地体现了问题解决的四个基本步骤,在教学中要突出关于问题解决的策略、思想和方法的引导。
教学效果分析
教学目标达成情况
存在问题与
矫正措施
单元教案
单元名称
第六章数据与图表
计划
课时
单元
教学
目标
1、从事收集、整理、描述和分析数据的活动。
2、能根据实际问题设计调查表和统计表。
3、通过实例进一步理解条形统计图、折线统计图和扇形统计图的特点和作用,会根据需要选择合理的统计图,直观有效地表示数据。体会统计图表在现实生活中的应用。
4、能从各种媒体中,有意识地去获取一些数据信息,并能根据统计表分析数据。
5、运用计算机软件制作统计图表。
单元
教学
设想
1、要充分让学生经历收集、整理数据的数学活动。从中体验数据在现实生活中的作用。学会收集、整理数据的基本方法。
2、虽然在小学学生已经学过条形统计图、折线统计图、扇形统计图,但在本章涉及的问题情境更为丰富,也较过去复杂。不要把本章教学看做对旧知识的复习,要突出统计的思想方法,加强实际操作。
单元
教学
设想
1、点、线、面、体这些几何图形都是从客观实际中抽象出来的,人们在运用几何知识解决各种实际问题时又要把实际中的图形抽象成几何图形。在本章教学中,要让学生充分经历从客观实际到几何图形的抽象过程,教学内容要密切联系生活实际。
浙教版七年级上册第一章有理数章节复习教案课件
知1-讲
数轴:规定了原点、单位长度和正方向的直线叫做数轴。 相反数:如果两个数只有符号不同,那么称其中一个数 为另一个数的相反数,也称这两个数互为相反数。0的 相反数是0。
【难点】相反数性质的运用
【例题】相反数性质的运用。
知1-讲
温故知新
知识点 2 绝对值
知1-讲
绝对值:一个数在数轴上对应的点到原点的距离叫做
知1-讲
要求:
1.必须通过自己思考完成,网上搜答案还不如不 写,浪费时间; 2.确实不会的可以请教老师、学生,要求必须知 道解题过程。第二节课老师会选2~3个题让学生 讲解题思路,说不出来作业等同于没做。
二、正数和负数
1、相反意义的量与正数和负数的产生 2、正数和负数的概念(大于0的数叫正数; 小于0的数叫负数;0既不是正数也不是负
有
理
数
整
数
正
零
负
整 整
数 数
数) 三、有理数的概念及分类
分
数
正
负ቤተ መጻሕፍቲ ባይዱ
分 分
数 数
1、概念:整数和分数统称为有理数
2、分类:按性质分类;按定义分类
温故知新
这个数的绝对值。
在数轴上,表示互为相反数(0除外)的两个点,位于
原点的两侧,并且到原点的距离相等,绝对值相等。
任何数的绝对值都为非负数:
a(a0) a
a(a0)
【难点】 去绝对值符号 绝对值的几何意义的运用
知1-讲
【例题】去绝对值。
知1-讲
【例题】绝对值的几何意义。
知1-讲
归纳
【难点汇总】 相反数性质在代数题型里面的运用 去绝对值 绝对值的几何意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教育精品资料浙教版七年级上第一章《从自然数到有理数》全章教案1.1从自然数到分数一、教学目标:1 .回顾小学中关于“数”的知识;2 .理解自然数、分数的产生和发展的实际背景和必然性;3 .体验自然数与分数的意义和在计数、测量、排序、编号等方面的应用。
二、教学重点和难点重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数作进一步的扩展。
难点:本节的“合作学习”中的第2题学生不易理解。
三、教学手段:现代课堂教学手段四、教学方法:启发式教学五、教学过程(一)自然数的由来和作用。
请阅读下面这段报道:世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,计划在5年后建成通车,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,将是中国大陆的第一座跨海大桥。
你在这段报道中看到了哪些数?它们都属于哪一类数?在小学里我们已经学过自然数0,1,3,4,5…自然数是人类历史上最早出现的数。
自然数在计数和测量中有着广泛的应用,如5年后建成通车,日通车量为8万辆,全长36千米等。
人们还常常用自然数来给事物标号和排序,如城市的公共汽车路线,门牌号码,邮政编码,上述报道中的2003年,第一座跨海大桥等。
计数简单的理解,可以看成用来统计的结果的自然数。
而测量的结果的自然数是用工具测量。
让学生举出一些实际生活的例子,并说明这些自然数起的作用。
练习,并有学生回答,及时校对。
做一做:下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所;(2)小明哥哥乘1425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。
练一练:(二)讲解分数的由来及应用。
在小学里,我们还学习了分数和小数,它们是由于测量和分配等实际需要而产生的。
在解答下列问题时,你会选用哪一类数?为什么?(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?分数可以看作两个整数相除,例如,«Skip Record If...»=3/5=0.6,«Skip Record If...»=0.3,1.31=«Skip Record If...»,0.0062=«Skip Record If...»=«Skip Record If...»。
伴随着数的概念而来的是数的运算,数的运算是人们分析、判断和解决实际问题的重要手段。
完成“合作学习”(见课本)你能帮小慧列出算式吗?如果利用自然数怎样列算式?用分数呢?例、某市民政局举行一次福利彩票销售活动,销售总额度为4000万元。
其中发行成本占总额度的15%,1400万元作为社会福利资金,其余作为中奖着奖金。
(1)你能算出奖金总额是多少吗?你是怎样算的?(2)为了使福利资金提高10%,而发行的成本保持不变,有人提出把奖金总额减小6%。
你认为这个方案可行吗?你是怎样获得结论的?上面问题2中的第(2)题可以用如下算式求解:2000×6%-1400×10%=120-140算式中被减数小于减数,在这种情况下,能否进行运算?能否用我们已经学过的自然数和分数来表示结果?看来数还需作进一步的扩展。
目的:一是让学生进一步体验数的运算是人们分析、判断、解决实际问题的重要工具;二是从解决实际问题的过程中让学生感受到,光有自然数和分数仍是不够的,数需作进一步的扩展。
(三)课堂小结让学生谈谈学了本节课后,对数的认识和了解。
(1)自然数在实际应用中,有计数,测量结果,标号,排序的作用。
(2)分数在实际应用中,起着分配和测量结果的作用。
(四)布置作业:见作业本课后反思:1.2有理数教学目标:1.了解从自然数、分数到有理数的扩展过程.2.理解有理数的概念.3.会用正数、负数、零表示具有相反意义的量.4.理解有理数的分类.体会数的分类、归纳思想方法.教学重点:有理数的概念.教学难点:建立正数、负数的概念对学生来说是数学抽象思维的一次重大飞跃,是难点.教学过程一.情境引入资料视频:人类首次登月/video/2004-04/02/content_1398587.htm科学家测得:月球表面白天气温可高达123°C,夜晚可低至—233°C.图中阿波罗11号”的宇航员登上月球后不得不穿着既防寒又御热的太空服.二、合作学习:刚才资料中,123°C,-233°C这两个量分别表示什么?你还在哪些地方见到过用带“—”号的数来表示某一种量?三、知识传授1.讲授正数(positive number)、负数(negative number)的意义2.思考:零表示什么意义呢?指出:零既不是正数,也不是负数.3.小试牛刀(做一做)(P7)⑴.(口答)读出下列各数,它们各是哪一类数?7,-7.65,0,«Skip Record If...»,«Skip Record If...».⑵.填空:①规定盈利为正,某公司去年亏损了2.5万元,记做万元,今年盈利了3.2万元,记做万元②规定海平面以上的海拔高度为正.新疆乌鲁木齐市高于海平面918米,记做海拔米;吐鲁番盆地最低点低于海平面155米,记做海拔米.四、活动与讨论1.活动1:举例已学过的数,分析说明数的分类及特征方法.学生活动举出已学过的数,同学间交流数的特征,教师沟通学生从整数、分数、符号、特征分析的方法归类.学过的数有:正整数:如1,26,30 …;零:0;负整数:如-1,-29,-53 …正分数:如«Skip Record If...»,0.1,5.3…负分数:如-0.5,«Skip Record If...»,«Skip Record If...»,-0.1,-150.25…2.活动2:学习有理数概念、整数的分数统称为有理数.概括有理数包括整数和分数两大类数、使学生把握住有理数的两种分类。
3.活动3:有理数概念应用:小数为什么被列为分数?学生可写成两个整数的比的数如:0.1=«Skip Record If...», 5.3=«Skip Record If...»,«Skip Record If...», 教师与学生分析、讨论得结果,如果要求两个整数互质,则分数答案唯一.4.说出二个正整数,二个负整数,三个正分数,四个负分数.5.活动4:有理数概念的深化、有理数的分类.例⑴下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,0,«Skip Record If...»,«Skip Record If...».⑵把上题中各数填入相应的括号内:正整数{};负整数{};正分数{};负分数{};正有理数{};负有理数{}.五、回顾与总结教师与同学一起进行总结:1.为什么要引入新的数?(使学生感到数的扩充势在必行,扩充的理由是社会生产,生活的需要及数学自生发展的需要.)2.会用正、负数表示具有相反意义的量.理解正、负数及零表示的量的意义.3.什么叫有理数?4.有理数的分类,它是以什么为标准的?可以制定不同的标准吗?六、巩固练习问题展示1.记录帐目时,通常用正数表示收入款额,负数表示支出款额.则收入254元可记为元,支出56元可记为少元?2.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的增长值.3.天气预报2003年12月某天北京的温度为―3~3℃,它的确切含义是什么?这一天北京的温差是多少?4.在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0).通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.珠穆朗玛峰的海拔高度为8848米,它表示的什么含义?吐鲁番盆地的海拔高度为–155米.它表示什么含义?5.判断表中各数分别是什么数,在相应的空格中打“√”.正整数整数分数正数负数有理数2008 √√√√«SkipRecordIf...»«SkipRecordIf...»«SkipRecordIf...»七、作业1.浙教版P8作业题1-5题;2.设计题(长作业)P9课后反思:1.3 数轴教学目标:1.理解数轴的概念,会读出数轴上点表示的数,会画数轴,会在数轴上表示有理数。
2.理解相反数的概念,会要数轴上表示两个相反数,理解互为相反数在数轴上的位置关系,会求一个数的相反数。
3.经历数轴的发生和应用,体验数形结合等数学思想。
教学重点:初步理解数形结合的方法,正确掌握数轴的画法和如何用数轴上的点表示有理数。
教学难点:正确理解数轴上的点与有理数的对应关系,理解数形结合的数学思想。
教学过程:一、温故知新引入新课:1.问题1:有理数包括哪些数?生答:正有理数、零、负有理数2.讨论:在生活中你能找到用刻度来表示数的实例吗?(听取学生的回答,并稍作点评)3.幻灯片展示:观察下列三个温度计,你能读出此时的刻度值吗?(5℃-10℃0℃)4.问题2:在一条东西向的马路上,有一个汽车站。
汽车站3m和7.5m处分别有一颗柳树和一棵杨树;汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。
试画图表示这一情境。
5.思考:你能否设计一条合理的线来表示我们所学习的有理数呢?(引发学生思考,让数轴在学生的头脑中慢慢成形。
这样使得数轴的出现很自然,让学生真切的感受数形结合的思想)二、得出定义揭示内涵:在数学中,通常用一条直线上的点表示数,这条直线叫做数轴。
它是这样构成的:1画一条直线,在直线上取一点作为原点表示02 规定直线的一个方向(一般取从左到右的方向)为正方向,用箭头表示。
3取适当的长度为单位长度。
这样就得到了一条数轴。
三、强化概念深入理解:1.讨论下列图形是否为数轴,并说明理由。
2.你认为画数轴应该注意哪些事项?(由此让学生自己意识到画数轴的三要素:原点、正方向和单位长度)3.请在你的练习本上准确迅速的画出一条数轴。
(画好后小组同学之间互评,再次加深对数轴的认识。