平面直角坐标系经典题(难)含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 平面直角坐标系水平测试题(一)
一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.某同学的座位号为(4,2),那么该同学的位置是( )
(A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( ) (A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3) 3.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )
(A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3) 4.点M (1m +,3m +)在x 轴上,则点M 坐标为( ).
(A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2)
5.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3)
6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1
的坐标分别为( )
(A )A 1(0,5-),B 1(3,8--) (B )A 1(7,3), B 1(0,5) (C )A 1(4,5-) B 1(-8,1) (D )A 1(4,3) B 1(1,0) 7、点P (m+3,m+1)在x 轴上,则P 点坐标为( )
A .(0,-2)
B .(2,0)
C .(4,0)
D .(0,-4)
8、点P (x,y )位于x 轴下方,y 轴左侧,且x =2 ,y =4,点P 的坐标是( )
A .(4,2)
B .(-2,-4)
C .(-4,-2)
D .(2,4) 9、点P (0,-3),以P 为圆心,5为半径画圆交y 轴负半轴的坐标是 ( )
A .(8,0)
B .( 0,-8)
C .(0,8)
D .(-8,0) 10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形 ( )
A .向右平移2个单位
B .向左平移2 个单位
C .向上平移2 个单位
D .向下平移2 个单位 11、点
E (a,b )到x 轴的距离是4,到y 轴距离是3,则有 ( )
A .a=3, b=4
B .a=±3,b=±4
C .a=4, b=3
D .a=±4,b=±3 12、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( )
A .相等
B .互为相反数
C .互为倒数
D .相等或互为相反数 13、已知P(0,a)在y 轴的负半轴上,则Q(2
1,1a a ---+)在( )
A 、y 轴的左边,x 轴的上方
B 、y 轴的右边,x 轴的上方
14.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5
排第2列,则小华的座位可记作__________.
15. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第_______象限. 16. 若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________.
17.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后猫眼的坐标为_________. 18. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走
一步,试写出下一步它可能走到的位置的坐标________.
三、认真答一答:
19. 如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.
20. 适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点。
⑴作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?
21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼, 从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10 米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.
22、在直角坐标系中,已知点A (-5,0),点B (3,0),C 点在y 轴上,且△ABC 的面积为12, 试确定点C 的坐标。
23、写出如图中△ABC 各顶点的坐标且求出此三角形的面积。
24、如图,△AOB 中,A 、B 两点的坐标分别为(-4,-6),(-6,-3),求△AOB 的面积。
25、如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变成三角形OA 2B 2,第三次将三角形
OA 2B 2变成三角形
OA 3B 3,已知123(1,3),(2,3),(4,3),(8,3)A A A A ,
123(2,0),(4,0),(8,0),(16,0)B B B B 。
(1)、观察每次变换前后的三角形有何变化,找出规律,按此规律再将三角形OA 3B 3变换成三角形44OA B ,则3B 的坐标是 ,
4B 的坐标是 。
(2)若按第(1)题找到的规律将三角形OAB
进行了n 次变换,得到三角形OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测n A 的坐标是 ,n B 的坐标是 。
26、如图,在△ABC 中,三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC 沿x 轴正方向平移2个单位长度,再沿y 轴沿负方向平移1个单位长度得到△EFG 。
(1)求△EFG 的三个顶点坐标。
(2)求△EFG 的面积。
27、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0), (3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移 1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)、求点C ,D 的坐标及平行四边形ABDC 的面积ABDC S 四边形
(2)、在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=2ABDC S 四边形,
若存在这样一点,求出点P 的坐标,若不存在,试说明理由.
(3)、点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:
①
DCP BOP CPO ∠+∠∠的值不变,②DCP CPO
BOP
∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个
结论并求其值.
28. 已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.
29、如图所示的直角坐标系中,三角形ABC 的顶点坐标分别是A (0,0)、B (6,0)、C (5,5)。
求: (1)求三角形ABC 的面积;
(2)如果将三角形ABC 向上平移3个单位长度,得三角形A 1B 1C 1
再向右平移2个单位长度,得到三角形A 2B 2C 2。
分别画出三角形A 1B 1C 1和三角形A 2B 2C 2。
并试求出A 2、B 2、C 2的坐标?
30、已知点P (a+1,2a-1)关于x 轴的对称点在第一象限,求a 的取值范围.
31、在如图所示的平面直角坐标系中表示下面各点:
A (0,3);
B (1,-3);
C (3,-5);
D (-3,-5);
E (3,5);
F (5,7);
G (5,0)
(1)A 点到原点O 的距离是 。
(2)将点C 向x 轴的负方向平移6个单位,它与
点 重合。
(3)连接CE ,则直线CE 与y 轴是什么关系? (4)点F 分别到x 、y 轴的距离是多少?
32、在直角坐标系中,已知点A (-5,0),点B (3,0),C 点在y 轴上,且△ABC 的面积为12,
A
试确定点C 的坐标。
33、写出如图中△ABC 各顶点的坐标且求出此三角形的面积。
34、如图,△AOB 中,A 、B 两点的坐标分别为(-4,-6),(-6,-3),求△AOB 的面积。
35、如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变成三角形OA 2B 2,第三次将三角形
OA 2B 2变成三角形
OA 3B 3,已知123(1,3),(2,3),(4,3),(8,3)A A A A ,
123(2,0),(4,0),(8,0),(16,0)B B B B 。
(1)、观察每次变换前后的三角形有何变化,找出规律,按此规律再将三角形OA 3B 3变换成三角形44OA B ,则3B 的坐标是 ,
4B 的坐标是 。
(2)若按第(1)题找到的规律将三角形OAB
进行了n 次变换,得到三角形OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测n A 的坐标是 ,n B 的坐标是 。
11、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm ,整点P 从原点O
出发,速度为1cm/s ,且整点P 作向上或向右运动(如图1所示).运动时间(s)与整点个数的关系如下表:
根据上表中的规律,回答下列问题:
(1)、当整点P 从点O 出发4s 时,可以得到的整点的个数为________个.
(2)、当整点P 从点O 出发8s 时,在直角坐标系(图2)中描出可以得到的所有整点,并顺次连结这些整点. (3)、当整点P 从点O 出发________s 时,可以得到整点(16,4)的位置.
图1(试验图) 图2
30、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0), (3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移 1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)、求点C ,D 的坐标及平行四边形ABDC 的面积ABDC S 四边形
(2)、在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=2ABDC S 四边形,
若存在这样一点,求出点P 的坐标,若不存在,试说明理由.
(3)、点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上
移
动时(不与B ,D 重合)给出下列结论:①
DCP BOP
CPO
∠+∠∠的
值不变,②DCP CPO
BOP
∠+∠∠的值不变,其中有且只有一个是正确
的,
请你找出这个结论并求其值.
31.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.
32、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm,整点P从原点O
出发,速度为1cm/s,且整点P作向上或向右运动(如图1所示).运动时间(s)与整点个数的关系如下表:
根据上表中的规律,回答下列问题:
(1)、当整点P从点O出发4s时,可以得到的整点的个数为________个.
(2)、当整点P从点O出发8s时,在直角坐标系(图2)中描出可以得到的所有整点,并顺次连结这些整点.
(3)、当整点P从点O出发________s时,可以得到整点(16,4)的位置.
图1(试验图)图
参考答案
1.D;
2.D;
3.C;
4.C;
5.C;
6.A;
7.B;
8.B;
9.C;
11.(5,2);
12.三;
13.(15,12)或(15,-12)或(-15,12)或(-15,-12);
14.(-1,3),(1,3);
15.(3,-5);
16.(3,2),(3,-2),(-1,2),(-1,-2);
17.(-1,7);
18.(3,3)或(6,-6);
19.答案不唯一.如图:
火车站(0,0),宾馆(2,2),市场(4,3),超市(2,-3),医院(-2,-2),文化宫(-3,1),体育场(-4,3).
20.(1)“鱼”;(2)向左平移2个单位.
21.略;
22.解:如答图所示,过A,B分别作y轴,x轴的垂线,垂足为C,E,两线交于点D,
则C (0,3),D (3,3),E (3,0).
又因为O (0,0),A (1,3),B (3,1), 所以OC=3,AC=1,OE=3,BE=1. AD=DC-AC=3-1=2, BD=DE-BE=3-1=2.
则四边形OCDE 的面积为3×3=9, △ACO 和△BEO 的面积都为12×3×1=3
2
, △ABD 的面积为
1
2
×2×2=2, 所以△ABO 的面积为9-2×3
2
-2=4.
23.这些点在同一直线上,在二四象限的角平分线上,举例略. 24.答案不唯一,略.。