第5章、静电学

合集下载

《大学物理》课后解答题 第五章静电场

《大学物理》课后解答题  第五章静电场

第五章 真空中的静电场一、思考讨论题1、电场强度与电势有什么关系?试回答下列问题,并举例说明: (1)场强为零的地方,电势是否一定为零? (2)电势高的地方,场强是否一定大? (3)电势相等处,场强是否一定相等?(4)已知某一点的电势,可否求出该点的场强?反之如何? 解:(1)不一定。

比如两同种点电荷连线中点,场强为零,电势不为零。

(2)不一定。

匀强电场,场强处处相等,而电势不等。

(3)不一定。

点电荷产生的电场线中,电势相等的地方场强方向不一样。

(4)都不可以求。

2、已知某一高斯面所包围的空间内0=∑q ,能否说明穿过高斯面上每一部分的电通量都是0?能否说明高斯面上的场强处处为0?解:由高斯定理∑⎰=⋅=q S d E S1εψ ,0=∑q 仅指通过高斯面的电通量为零,并非场强一定在高斯面处处为零(高斯面外的电荷也在高斯面上各点产生场强)。

3、已知某高斯面上处处E =0,可否肯定高斯面内0=∑q ,可否肯定高斯面处处无电荷?解:可以肯定。

高斯面上处处E =0,0=⋅⎰S d E S,由高斯定理必有0=∑q 。

4、如图1.1所示,真空中有A 、B 两均匀带电平板相互平行并靠近放置,间距为d (d 很小),面积均为S ,带电分别为+Q 和-Q 。

关于两板间的相互作用力,有人说,根据库仑定律应有:2024dQ f πε=; 又有人说,根据f QE =,应有:SQ f 02ε=。

他们说得对吗?你认为f 应等于多少?解:(1)2024dQ f πε=是错误的,因为库仑定律只适用于点电荷,两个带电平板不能直接用库仑定律计算。

(2)SQ f 02ε=也错误。

因为用sqE 0ε=计算的场强是两带电平板产生的合场强,而Eq F =中的场强是一个带电板的电荷量乘以另一个所产生的场强,而不是合场强。

电荷与图1.1自身产生的场强作用力恒为零。

正确答案是:Sq q S qEdq F 02022εε=⋅==⎰ 5、在无限大带电平面和无限长带电直线的电场中,确定各点电荷时,可否选无穷远处为0势点?为什么?解:不能。

大学物理学(上册)第5章 静电场

大学物理学(上册)第5章 静电场
q ne (n 1,2,3, )
e 1.6021019C 量子性
电荷量e的数值最早由美国 科学家密立根用实验测得.
量子性始终不变
强子理论研究中提出所谓夸克模型,以四味夸克为例
夸克 U quark (上)
带电量 2/3 |e|
D quark(下) S quark(奇) C quark(粲)
-1/3 |e| -1/3 |e|
电量为Q
电量为Q
+
v
X′
X
⑵ 库仑定律
库仑(1736~1806)
库仑扭秤
① 库仑定律的内容主要内容 在真空中处于静止状态的两个点电荷的相互作用力的大 小,与每个点电荷的电量成正比,与两个点电荷间距离的 平方成反比,作用力的方向沿着两个点电荷的连线. 当 两个点电荷带同号电荷时,它们之间是排斥力,带异号 电荷时,它们之间是吸引力.
例1 长为L的均匀带电直杆,电荷线密度为 ,求它在空
解 d间q一点dPx产生d的E电场4强1度0 (rd2Px点到杆的垂直dy距Ey离为dEa).
dEx dE cos dEy dE sin
P
dEx
由图上的几何关系
x a tan(θ ) acotθ 2
r
1
a
2
dq O
x
dx a csc2θ dθ
dq
讨论
E
qx
q
4 0 (x2 R2 )3/ 2
R
1)环心处:x=0 E=0 表明环心处的电场强度为零
o
xP
Ex
2)当 x >> R,则
(x2 R2 )3/2 x3
E
1
4 0
q x2
dq '

大学物理学 第五章 真空中的静电场

大学物理学 第五章 真空中的静电场

q
l 2
O
l 2
q
E
r
E
r
q
l 2
1
O
l 2
q
E
r
P
E
r
q E 2 4 0 ( r l / 2)
E E E
q E 2 4 0 ( r l / 2)
1
E E E
r l
q 2rl 4 0 ( r 2 l 2 / 4)2 1 2ql 1 2p E E 3 3 4 0 r 4 0 r
与 r2 成反比,r , E 0
思考: r 0
E ?
二、点电荷系的电场
E Ei
i i
1 qi e 2 ri 4 π 0 ri
dE
er q0
三、连续带电体的电场
E dE 1 dq e 2 r q 4 π 0 r
电荷密度
二.恒定电流与稳恒磁场的基本性质及规律
(第七章)
三.电磁感应现象及规律(第八章)
第五章
主要内容
§ 1 库仑定律 § 2 静电场 § 3 高斯定律 § 4 电势 电场强度
教学基本要求
一 了解电荷及性质;掌握库仑定律. 二 理解电场的概念;明确电场的矢量性和可 叠加性;会利用电场叠加原理求解简单带电体的电 场分布. 三 理解高斯定理的物理意义;能够利用高斯 定理求解特殊场分布.
q1q2 F12 k 2 e12 F21 r12
1 令 k ( 0 为真空电容率) 4 π0 1 0 8.8542 1012 C2 N 1 m 2 4πk 12 1 8.8542 10 F m

大学物理静电学五

大学物理静电学五

D 0 r E
D
0 r 1
0 r 1
0 r 2
0 r 2
E1 0 r 1 0 r 1
D

E2 0 r 2 0 r 2
D
在介质中电场仍然是匀强场 方向都指向右侧
r1 r 2


S
D
d1 d 2
0

0 E0 0 E 0
E E0 E 0 0 0
0 E E0 E 0 o
Pn
联立
0 r 1E
0 0
E0
r
0 E0 E 0 r r
其它介质
称作相对介电常数,可由实验测定 真空
r 1
r 1
例 平行板电容器
自由电荷面密度为
0
充满相对介电常数为 r 的均匀各向 同性线性电介质 求:板内的场强 解:介质均匀极化,表面出现束缚电荷
0 0
E0
rHale Waihona Puke E内部的场由自由电荷和束缚电荷共同产生
r1 r 2 r
S
D
d1 d 2
S 0 r C d1 d 2
记作
P
V
定义:
单位体积内,分子电偶极矩的矢量和
pi qli
P

i
pi
V
2. 极化强度 与极化电荷的关系 均匀电介质极化时,其表面有极化电荷出现, 极化程度愈高,极化电荷愈多, 所以极化电荷面密度反映电介质极化程度。 只讨论处在真空中的均匀电介质被极化的情况。
dq 极化面电荷密度: dS

大学物理第五章静电场单元测验(带答案)

大学物理第五章静电场单元测验(带答案)

2014-2015学年第二学期电学单元测试――――――――――――――――――――――――――――――――――――――――――――――――― —、选择题 (每题2分,共30分) 1、以下说法哪一种是正确的A) 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向 (B)电场中某点电场强度的方向可由E =确定,试验电荷0q 可正可负,F 为试验电荷所受的电场力(C) 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D) 以上说法都不正确 2、如图所示,一个点电荷q 位于立方体一顶点A 上,则通过abcd 面上的电通量为A 06q εB 012q ε C 024q ε D 036q ε3、1056:点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q(A) 曲面S 的电通量不变,曲面上各点场强不变 (B) 曲面S (C) 曲面S 的电通量变化,曲面上各点场强变化 (D) 曲面S 4、如图所示,两个“无限长”的、半径分别为R 1和R 2荷分别为1λ和2λ,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r 0212ελλπ+ (B) ()()20210122R r R r -π+-πελελ (C)()20212R r-π+ελλ (D) 20210122R R ελελπ+π 5、设无穷远处电势为零,则半径为R 的均匀带电球体产生的电场的电势分布规律为(图中的U 0和b 皆为常量):6、如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ。

在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接。

以大地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为:(A) E =0,U =r a ln 20ελπ (B) E =0,U =a bln20ελπ(C) E =r 02ελπ,U =r b ln 20ελπ (D) E =r 02ελπ,U =a b ln20ελπ7、如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带电荷Q 2 .设无穷远处为电势零点,则在两个球面之间、距离球心为r 处的P 点的电势U 为:(A)r Q Q 0214επ+ (B) 20210144R Q R Q εεπ+π (C) 2020144R Q r Q εεπ+π (D) r Q R Q 0210144εεπ+π 8、在电荷为-Q 的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点。

5大学物理讲稿第5章真空中的静电场

5大学物理讲稿第5章真空中的静电场

第5章 真空中的静电场§ 物质的电结构实验证明,自然界中存在两种电荷,分别称为正电荷和负电荷.它们之间存在相互作用力,同种电荷相互排斥,异种电荷相互吸引.物体所带电荷的多少称为电量,用q 或Q 表示,电量的单位取库仑(C ).实验还表明,在自然界中,存在着最小的电荷基本单元e,任何带电体所带的电量只能是这个基本单元的整数倍,即),,( 21 n ne Q电荷的这一特性称为电荷的量子性.实验测得这基本单元的电量为).()(.C C e 19191060211049602177331 近似为由于e 的量值非常小,在宏观现象中不易观察到电荷的量子性,常将电量Q 看成是可以连续变化的物理量,它在带电体上的分布也看成是连续的.由物质的电结构可知,原子中一个电子带一个单位负电荷,一个质子带一个单位正电荷,其量值就是C e 19106021 .,原子失去电子带正电,原子得到电子带负电.随着人们对物质结构的认识,1964年盖尔曼(M ·Gell-Mann )等人提出了夸克模型,认为夸克粒子是物质结构的基本单元,强子(质子、中子等)是由夸克组成的,而不同类型的夸克带有不同的电量,分别为e 31 或e 32 .截止1995年,核子的6个夸克已全部被实验发现,可靠的依据也证明了分数电荷的存在.但到目前为止还没有发现自由状态存在的夸克 .我们已经知道,在正常情况下物体不带电,呈电中性,即物体上正、负电荷的代数和为零.当物体呈带电状态时,是由于电子转移或电子重新分配的结果,在电子转移或重新分配的过程中,正、负电荷的代数和并不改变.大量实验表明,把参与相互作用的几个物体或粒子作为一个系统,若整个系统与外界没有电荷交换,则不管在系统中发生什么变化过程,整个系统电荷量的代数和将始终保持不变.这一结论称为电荷守恒定律,它是自然界中一条基本定律.实验还发现,一切宏观的、微观的,物理的、化学的、生物的等过程都遵守电荷守恒定律.§ 库仑定律实验表明,带电体之间的相互作用与带电体之间的距离和所带电量有关,也与带电体的大小、形状、电荷在带电体上的分布情形以及周围介质的性质有关.所以在通常情况下,两个带电体之间的相互作用表现出与多种因素有关的复杂情形.当带电体的线度与带电体之间的距离相比小得多时,带电体的大小、形状对所研究问题的影响可以忽略,这样的带电体称为点电荷.显然,点电荷的概念与质点、刚体等概念一样,是对实际情况的抽象,是一种理想化的物理模型.一个带电体能否看成点电荷,必须根据具体情况来决定.一般的带电体不能看成点电荷,但总可以把它看成是许多点电荷的集合体,从而能由点电荷所遵从的规律出发,得出我们所要寻找的结论.本节我们讨论真空中点电荷间的相互作用.两点电荷之间的相互作用是库仑—1806)通过扭称实验于1785年总结出来的,其内容为:真空中两静止点电荷之间的相互作用力的大小与它们所带电量的乘积成正比 ,与它们之间距离的平方成反比;作用力的方向沿着两电荷的连线,同号电荷相斥(为正),异号电荷相吸(为负),这一结论称为库仑定律.其数学表达式为 r r q q k F ˆ221( ) k 为比例系数,在SI 单位制中,实验测得其数值为2222C m N C m N 991091098755188.k为使由库仑定律导出的其它公式具有较简单的形式,通常将库仑定律中的比例系数写为41 k ( ) 其中ε0为真空的电容率(或真空中的介电常数),于是库仑定律又可写为r r q q F ˆ20214 图(a)表示两个同号电荷的作用力是排斥力;图(b)表示两个异号电荷的作用力是吸引力.值得指出的是,库仑定律只适用于描述两个相对于观察者为静止的点电荷之的相互作用,这种静止电荷的作用力称为静电力(或库仑力).空气对电荷之间的作用影响较小,可看成是真空.例题 三个点电荷21q q 、和 Q 所处的位置如图 所示,它们所带的电量分别为C q q 6211002 . ,C Q 61004 ..求21q q 和对Q 的作用力.解:本问题一般是先利用库仑定律求出21q q 、分别对 Q 的作用力 F 和F ',然后求出它们的合力.由本问题的对称性可知 F 和 F '的 y 分量大小相等,方向相反,因而互相抵消.Q 所受21q q 、之合力方向沿 x轴正向.由库仑定律得1q 对Q 的作用力大小为N 290403010041002109984226692101...... r Q q F N 2305040290....cos F F x 所以Q 所受21q q 、之合力大小为N 46023022..cos ' F F F F f x x x作业(P120):§ 电场和电场强度一、静电场关于电荷之间如何进行相互作用,历史上曾经有过两种不同的观点.一种观点认为这种相互作用不需要媒质,也不需要时间,而是直接从一个带电体作用到另一个带电体上的.即电荷之间的的相互作用是一种“超距作用”.这种作用方式可表示为电荷电荷另一种观点认为,任一电荷都在自己的周围空间产生电场,并通过电场对其它电荷施加作用力,这种作用方式可表示为电荷电场电荷大量事实证明,电场的观点是正确的.电场是一种客观存在的特殊物质,与由分子、原子组成的物质一样,它也具有能量、质量和动量.二、电场强度不同的带电体系具有不同的电场,同一电荷体系的电场在空间具有一定的分布.为了定量的描述电场中各点电场的性质,引入一新的物理量——电场强度. 电场的一个重要性质,就是对置于其中的电荷施加作用力.为此,在电场中引入电量为0q 的试探电荷来研究电场的性质.所谓试探电荷是这样一种电荷,首先它所带的电量要非常小,一致由于它的引入使原电场发生的改变可以忽略;其次它的几何尺寸亦必须非常小,一致可以看作点电荷.实验证明,在给定的场点处,试探电荷0q 所受的电场力F 与0q 之比为一常矢量,与0q 的大小无关;不同的场点,比值不同.可见比值F/0q 揭示了电场的性质,所以我们可将这一比值定义为电场强度,简称电场,用E 表示,即q F E 上式说明,静电场中任意一点的电场强度其大小等于单位试探电荷在该点所受到的电场力,其方向与正电荷在该点的受力方向相同.通常E 是空间坐标的函数.若E 的大小和方向均与空间坐标无关,这种电场称为匀强电场.在SI 单位制中.电场强度的单位为牛顿/库仑(N ·C -1),或伏特/米(V ·m -1)三、叠加原理和电场强度的计算1. 单个点电荷产生的电场考虑真空中的静电场是由电量为 q 的点电荷产生的,试探电荷0q 在其中的P 点所受的电场力可由库仑定律式()得r rq q F ˆ2004 式中r 是点P 相对于点电荷的位置矢量,r 是这位置矢量的大小,由电场强度的定义式()则得P 点处的电场强度为r rq r r q q F E 3020044 ˆ 上式表示,点电荷在空间任一点P 所产生的电场强度E 的大小,决定于这个点电荷的电量和点P 到该点电荷的距离.电场强度E 的方向与这个点电荷的符号有关,q 为正,电场强度E 的方向与位置矢量r 的方向相同;q 为负,电场强度E 的方向与位置矢量r 的方向相反.电场强度在空间呈球对称分布.2. 场强的叠加原理 多个点电荷的电场强度考虑空间存在n 个点电荷.实验证明,在它们的电场中任一点P 处,试探电荷0q 所受的电场力F 等于各点电荷分别单独存在时0q 所受电场力的矢量和,并利用电场强度的定义得:i q F E i E E F F 0/定义上式表明,在点电荷系的电场中,任意一点的电场强度等于每个点电荷单独存在时在该点所产生的电场强度的矢量和,这一结论称为场强的叠加原理.i i ii r r q E 3041进一步可表示为 3. 任意带电体产生的电场任意带电体的电荷可以看成是很多极小的电荷元dq 的集合,每一个电荷元dq 在空间任意一点P 所产生的电场强度,与点电荷在同一点产生的电场强度相同.整个带电体在P 点产生的电场强度就等于带电体上所有电荷元在P 点场强的矢量和.如果点P 相对于电荷元dq 的位置矢量为r ,则电荷元dq 在P 点产生的电场强度,进而整个带电体在P 点产生的电场强度为:r r dq E r r dq E d 30304141求积分 ).().().(135411254111541303030线分布面分布体分布r rdl r r dS r r dV E 应该注意,式— 都为矢量式.实际应用中多用标量式(投影式) ,如E 沿X 轴的投影式为cos 204r dq dE E x x 式中 表示r 与X 轴的夹角.例题 如图所示,有两个电量相等而符号相反的点电荷 + q 和 - q,相距l . 求在两点电荷的中垂面上任一点P 的电场强度.解:以l 的中点为原点建立坐标系,如图设点P 到点O 的距离为r .电荷 + q 和- q在点P 产生的电场强度分别用 E E 和表示 ,它们的大小相等为441220/l r q E E它们的方向如图所示.点P 的电场强度E 为 E E 和的矢量和,即 E E E E 的x 分量为23220x x x x 441cos cos /)/(l r ql E E E E EE 的y 分量为0sin sin y y y E E E E E所以,点P 的电场强度大小为负方向方向沿X l r ql E E x 23220441/)/(当l r 时,这样一对电量相等、符号相反的点电荷所组成的系统,称为电偶极子.从负电荷到正电荷所引的有向线段 l 称为电偶极子的轴 .电量q 与电偶极子的轴 l 的乘积,定义为电偶极子的电矩,用表示,即l q p由于l r ,故有323224r l r /)/(,所以在电偶极子轴的中垂面上任意一点的电场强度可表示为304rp E 电偶极子是一个很重要的物理模型,在研究电介质极化,电磁波的发射和吸收等问题中都要用到该模型.例题 有一均匀带电细直棒,长为L,所带总电量为q .直棒外一点P 到直棒的距离为a ,求点P 的电场强度.解:如图所示,设直棒两端至点P 的连线与x 轴正向间的夹角分别为21 和,考虑棒上x 处的元段dx ,其带电量dx Lq dx dq ,它在P 点产生的电场强度大小为204d ldx E 其中 l 是微元dx 到P 点的距离, d E 的方向如图所示.计算其沿x 轴和y 轴的分量分别积分得:cos 204l dx dE E x x )sin (sin 1204 aLq2104d a cos )cos (cos sin 21004421 aLq d a E y 讨论 1) 对于半无限长均匀带电细棒( 2121220,//,或)则有a E x 04 ;aE y 04 2) 对于无限长均匀带电细棒( 210,)则有aE E y x 020 , 作业(P120):,§ 高斯定理一、电力线(电场线)为了对电场有一个比较直观的了解,可用图示的方法形象地描绘电场中的电场强度分布状况.为此在电场中作一系列有向曲线,使曲线上每一点的切线方向与该点的场强方向一致,这些有向曲线称为电力线(又称电场线),简称E 线. 为了使电力线不仅能表示出电场中各点场强的方向,而且还能表示出场强的大小,我们规定:电场中任一点场强的大小等于在该点附近垂直通过单位面积的电力线数,即)(电场线密度EdS dN 按此规定,电场强度的大小E 就等于电力线密度,电力线的疏密描述了电场强度的大小分布,电力线稠密处电场强,电力线稀疏处电场弱.匀强电场的电力线是一些方向一致,距离相等的平行线.静电场的电力线具有以下特点:(1)电力线起自正电荷(或来自无穷远),终止负电荷(或伸向无穷远),但不会在无电荷的地方中断,也不会形成闭合线.(2)因为静电场中的任一点,只有一个确定的场强方向,所以任何两条电力线都不可能相交.二、电通量通过电场中某一个曲面的电力线数称为通过该曲面的电通量。

大学物理一复习 第五章 静电场和习题小结

大学物理一复习  第五章  静电场和习题小结
r
q 4 π
0


dr r
2
r
q
1 q ( ) 4 r r 4 r q
0 0
r
E
V
q 4 π 0r
q 0, V 0 q 0, V 0
三、电势叠加原理
点电荷系
Va
q1
q2

a
E dl
V1 V 2 V n
第 五 章 静电场
Nothing in life is to be feared. It is only to be understood. ----(Marie Curie)
本章参考作业:P190
5-1,5-2、5-9①、5-14、5-21、 5-23、5-26、5-27、5-30。
学 习 要 点
的大小处处相等,且有
cos 1
cos 0
(目的是把“ E ”从积分号里拿出来)
计算高斯面内的电荷,由高斯定理求 E。
高斯定理运用举例: ---计算有对称性分布的场强
掌握所有 例题
1、球对称——球体、球面、球壳等。 2、轴对称——无限长直线、圆柱体、圆柱面。 3、面对称——无限大均匀带电平面。
E
0
R
r
三、面对称——无限大均匀带电平面。
例6、求无限大均匀带电平面的场 分布。已知面电荷密度为
o
p
dE
dE
解:对称性分析: 垂直平面 E
选取闭合的柱形高斯面
左底 侧
右底
侧 0

左底
E S
S'
E S

右底
2 ES

大学物理讲稿(第5章真空中的静电场)第四节

大学物理讲稿(第5章真空中的静电场)第四节

§5.5 静电场的功 电势一、静电场力的功 静电场的环路定理将试探电荷0q 引入点电荷q 的电场中,现在来考察如图5.10所示, 把0q 由a 点沿任意路径 L 移至b 点,电场力所做的功.路径上任一点c 到q 的距离为r ,此处的电场强度为r r q E 304 如果将试探电荷0q 在点c 附近沿L 移动了位移元dl ,那么电场力所做的元功为cos Edl q l d E q dA 00dr rq q Edr q 20004 式中θ是电场强度E 与位移元dl 间的夹角,dr 是位移元dl 沿电场强度E 方向的分量.试探电荷由a 点沿L 移到b 点电场力所做的功为)(ba r r r r q q dr r q q dA Ab a 114400200 (5.22) 其中b a r r 和分别表示电荷q 到点a 和点b 的距离.上式表明在点电荷的电场中,移动试探电荷时,电场力所做的功除与试探电荷成正比外,还与试探电荷的始、末位置有关,而与路径无关.利用场的叠加原理可得在点电荷系的电场中,试探电荷0q 从点a 沿L 移到点b 电场力所做的总功为ii A A上式中的的每一项都表示试探电荷0q 在各个点电荷单独产生的电场中从点a 沿L 移到点b 电场力所做的功.由此可见点电荷系的电场力对试探电荷所做的功也只与试探电荷的电量以及它的始末位置有关,而与移动的路径无关.任何一个带电体都可以看成由许多很小的电荷元组成的集合体,每一个电荷元都可以认为是点电荷.整个带电体在空间产生的电场强度E 等于各个电荷元产生的电场强度的矢量和.于是我们得到这样的结论:在任何静电场中,电荷运动时电场力所做的功只与始末位置有关,而与电荷运动的路径无关.即静电场是保守力场.若使试探电荷在静电场中沿任一闭合回路L 绕行一周,则静电场力所做的功为零,电场强度的环量为零,即 00000Lq L l d E l d E q (5.23) 静电场的这一特性称为静电场的环路定理,它连同高斯定理是描述静电场的两个基本定理.二、电势能和电势1 电势能在力学中已经知道,对于保守力场,总可以引入一个与位置有关的势能函数,当物体从一个位置移到另一个位置时,保守力所做的功等于这个势能函数增量的负值.静电场是保守力场,所以在静电场中也可以引入势能的概念,称为电势能 .设b a W W 、分别表示试探电荷0q 在起点a 、终点b 的电势能,当0q 由a 点移至b 点时,据功能原理便可得电场力所做的功为)(a b b aab W W l d E q A 0 (5.25) 当电场力做正功时,电荷与静电场间的电势能减小;做负功时,电势能增加.可见,电场力的功是电势能改变的量度.电势能与其它势能一样,是空间坐标的函数,其量值具有相对性,但电荷在静电场中两点的电势能差却有确定的值.为确定电荷在静电场中某点的电势能,应事先选择某一点作为电势能的零点.电势能的零点选择是任意的,一般以方便合理为前提.若选c 点为电势能零点,即0 c W ,则场中任一点a 的电势能为c aa l d E q W 0 (5.26) 2 电势与电势差电势能(差)是电荷与电场间的相互作用能,是电荷与电场所组成的系统共有的,与试探电荷的电量有关.因此,电势能(差)不能用来描述电场的性质.但比值0q W a /却与0q 无关,仅由电场的性质及a 点的位置来确定,为此我们定义此比值为电场中a 点的电势,用a V 表示,即c a a a ld E q W V 0(5.27) 这表明,电场中任一点a 的电势 ,在数值上等于单位正电荷在该点所具有的电势能;或等于单位正电荷从该点沿任意路径移至电势能零点处的过程中,电场力所做的功.式(5.27)就是电势的定义式,它是电势与电场强度的积分关系式.静电场中任意两点a 、b 的电势之差,称为这两点间的电势差,也称为电压,用V 或U 表示,则有b ac b c a b a ld E l d E l d E V V U (5.28) 该式反映了电势差与场强的关系.它表明,静电场中任意两点的电势差,其数值等于将单位正电荷由一点移到另一点的过程中,静电场力所做的功.若将电量为0q 的试探电荷由a 点移至b 点,静电场力做的功用电势差可表示为)(b a b a ab V V q W W A 0 (5.29)由于电势能是相对的,电势也是相对的,其值与电势的零点选择有关,定义式(5.27)中是选c 点为电势零点的.但静电场中任意两点的电势差与电势的零点选择无关.在国际单位制中,电势和电势差的单位都是伏特(V ).等势面 在电场中电势相等的点所构成的面称为等势面.不同电场的等势面的形状不同.电场的强弱也可以通过等势面的疏密来形象的描述,等势面密集处的场强数值大,等势面稀疏处场强数值小.电力线与等势面处处正交并指向电势降低的方向.电荷沿着等势面运动,电场力不做功.等势面概念的用处在于实际遇到的很多问题中等势面的分布容易通过实验条件描绘出来,并由此可以分析电场的分布.三、电势的计算1 点电荷的电势在点电荷q 的电场中,若选无限远处为电势零点,由电势的定义式(5.27)可得在与点电荷q 相距为 r 的任一场点P 上的电势为rq l d E V r P 04 (5.30) 上式是点电荷电势的计算公式,它表示,在点电荷的电场中任意一点的电势,与点电荷的电量q 成正比,与该点到点电荷的距离成反比.2 多个点电荷的电势在真空中有N 个点电荷,由场强叠加原理及电势的定义式得场中任一点P 的电势为ii i r i r i i r P V l d E l d E l d E V (5.31) 上式表示,在多个点电荷产生的电场中,任意一点的电势等于各个点电荷在该点产生的电势的代数和.电势的这一性质,称为电势的叠加原理.设第i 个点电荷到点P 的距离为i r ,P 点的电势可表示为N i i i i i P r q V V 1041 (5.32) 3 任意带电体的电势对电荷连续分布的带电体,可看成为由许多电荷元组成,而每一个电荷元都可按点电荷对待.所以,整个带电体在空间某点产生的电势,等于各个电荷元在同一点产生电势的代数和.所以将式(5.32)中的求和用积分代替就得到带电体产生的电势,即线分布面分布体分布L S V P rdl rdS r dV r dq V 00004444 (5.33) 讨论:1)在上述所给的电势表式中,都选无限远作为电势参考零点;2)在计算电势时,如果已知电荷的分布而尚不知电场强度的分布时,总可以利用(5.33)直接计算电势.对于电荷分布具有一定对称性的问题,往往先利用高斯定理求出电场的分布,然后通过式(5.27)来计算电势.例题5.6 求电偶极子电场中的电势分布,已知电偶极子的电偶极矩P = q l . 解:如图5.11所示,P 点的电势为电偶极子正负电荷分别在该点产生电势的叠加(求代数和),即r q r q V P 004141 因而有因此由于,cos ,, l r r r r r l r 230204141r r p r ql V P cos由此可见,在轴线上的电势为2041r p V P ;在中垂面上一点的电势为0 P V 。

大学物理第5章 静电场

大学物理第5章 静电场
55. 关于电荷仅在电场力作用下运动的下列几种说法中, 错误的是 [ ] (A) 正电荷总是从高电势处向低电势处运动
(B) 正电荷总是从电势能高的地方向电势能低的地方运动 (C) 正电荷总是从电场强的地方向电场弱的地方运动 (D) 正电荷加速的地方总是与等势面垂直
二、填空题
2. 半径为 R 的均匀带电球面, 若其面电荷密度为 , 则在球面外距离球面 R 处的电场强
3. 正方形的两对角处, 各置点电荷 Q, 其余两角处各置点电荷 Q
q
q,如图 5-1-3 所示.若某一 Q 所受合力为零, 则 Q 与 q 的关系为
[ ] (A) Q=-2.8q
(B) Q=2.8q
(C) Q=-2q
(D) Q=2q
q
Q
图 5-1-3
5. 关于静电场, 下列说法中正确的是
[ ] (A) 电场和检验电荷同时存在, 同时消失
(D) 已知 R→∞积分路径上的场强分布, 便可由此计算出 R 点的电势
43. 在电场中有 a、b 两点, 在下述情况中 b 点电势较高的是 [ ] (A) 正电荷由 a 移到 b 时, 外力克服电场力做正功
(B) 正电荷由 a 移到 b 时, 电场力做正功 (C) 负电荷由 a 移到 b 时, 外力克服电场力做正功 (D) 负电荷由 a 移到 b 时, 电场力做负功
(B) 不一定为零
(C) 一定不为零
(D) 是一常数
图 5-1-15
19. 两个点电荷相距一定距离, 若在这两个点电荷连线的中点处场强为零, 则这两个点
电荷的带电情况为
[ ] (A) 电荷量相等, 符号相同
(B) 电荷量相等, 符号不同
(C) 电荷量不等, 符号相同
(D) 电荷量不等, 符号不同

大学物理静电场理论及习题

大学物理静电场理论及习题

qn
电场强度的计算 点电荷电场的场强
F
v v v F qq0 F= r E= 2 q0 4πε0r
v E=
q 4πε0r
r 2
q
r
qo
电场具有球对称性. 电场具有球对称性
NIZQ
第11页
大学物理学 静电场
点电荷系电场中的场强 由场强叠加原理: 由场强叠加原理 点电荷系的场强: 点电荷系的场强
电场 ─ 早期 电磁理论是超距作用理论 早期: 电磁理论是超距作用理论. 超距作用理论 ─ 后来: 法拉第提出场的概念. 后来 法拉第提出场的概念 电场的特点 1. 对位于其中的带电体有力的作用 对位于其中的带电体有力的作用——力学性质 力学性质. 力学性质 2. 带电体在电场中运动 电场力要作功 带电体在电场中运动, 电场力要作功——能量性质 能量性质. 能量性质 电荷 电场 电荷 场的物质性 电场具有做功本领, 表明电场具有能量; 电场具有做功本领 表明电场具有能量 变化的电场以 光速在空间传播, 表明电场具有动量. 光速在空间传播 表明电场具有动量 电场与实物之间的不同在于它具有叠加性. 电场与实物之间的不同在于它具有叠加性
NIZQ
第8页
大学物理学 静电场
电场强度 1. 在电场的不同点上放同样的正试验电荷 0 在电场的不同点上放同样的正试验电荷q 结论: 电场中各处的力学性质 结论 不同. 不同 2. 在电场的同一点上放不同的试 验电荷
F3 F1
q3
q1
v v v Q F0 F F2 1 Q 1 = =L= = r q2 2 q1 q2 q0 4πε0 r v F 结论: 结论 定义为电场 = 恒矢量 q0
//
大学物理学 静电场

大学物理课件——第五章 静电场

大学物理课件——第五章 静电场

作业: 5.2
3.电场强度
3.1 电场的概念 电场间相互作用的场的观点:
电荷
电场
电荷
电场:电荷周围空间存在的一种场,叫电场。静 止电荷产生的电场,叫静电场。
电场的基本性质:对电荷产生作用力
3.2.电场强度
Q
E F q0
q0
F

E
为矢量:
大 方
小 向
: :
E F / q0 沿F 方向
德国数学家和物理学家。1777年4月30日生于德国布伦瑞克,幼时家境贫困, 聪敏异常,受一贵族资助才进学校受教育。1795~1789年在哥廷根大学学习, 1799年获博士学位。1870年任哥廷根大学数学教授和哥廷根天文台台长,一直 到逝世。1833年和物理学家W.E.韦伯共同建立地磁观测台,组织磁学学会以联 系全世界的地磁台站网。1855年2月23日在哥廷根逝世。
谢水奋 副教授 厦门大学物理系 sfxie@
1-16周 星期一 第3-4节 1号楼(学武楼)C206 1-16周 星期四 第5-6节 1号楼(学武楼)A206
教学内容:
电磁学篇(课本上册第5-8章) 振动与波动(课本上册第4章) 波动光学篇(课本下册第12章)
考核方式:
玻璃棒与丝绸摩擦后所带 的电荷为正电荷。
摩擦起电
物体所带电荷量,符号Q (q),单位库伦 C。
1.2 电荷的基本性质 a. 电荷间有力的相互作用,同性相斥,异性相吸。
b.电的中和;
1.3 物质的电结构 物体因得失电子而带电荷。得到电子带负电;
失去电子带正电。电荷是物质的一种基本属性, 就象质量是物质一种基本属性一样。
32
4
E
P
E- r

《电学》课件-第5章静电场中的电介质

《电学》课件-第5章静电场中的电介质

ε πQ
=4 0
RB dr
r RA
2
Q
B
ε ++Q +
R+ 1+A
+
0 + ++
R2
=
Q
4π ε0
(
1 RA
1) RB
ε Q
C = UA U B
=

R AR B
R 0 B
RA
讨论: 1. 电容计算之步骤:
E
UA UB
C
2. 电容器之电容和电容器之结构,几何
形状、尺寸有关。
3. 电容器是构成各种电子电路的重要器 件,也是电力工业中的一个重要设备。它的作 用有整流、隔直、延时、滤波、分频及提高
q
U外
=
q1 q
4pe0 r2
外球的电势改变为:
ΔU = U外
U2
=
r1q
4pe0
r2 2
=
(r1 2r2 ) q
4pe0
r2 2
2r2q
4pe0
r2 2
2. 点电荷q =4.0×10-10C,处在导体球 壳的中心,壳的内外半径分别为R1=2.0cm 和R2=3.0cm ,求:
(1)导体球壳的电势; (2)离球心r =1.0cm处的电势;
d
ε = ε0 εr
称ε为介电常数,或电容率。
有介质时电容器的电容不仅和电容器的 结构,几何形状、尺寸有关,还和极板间介 质的介电常数有关。
电介质的相对电容率和击穿场强
电介质
相对电容率 击穿场强
真空 空气 纯水 云母
1 1.00059
80 3.7~7.5

大学物理精第五章真空中的静电场ppt课件

大学物理精第五章真空中的静电场ppt课件

三、高斯定理
1.表述:在真空中的任何静电场中,通过任一闭 合曲面的电场强度通量等于该闭合曲面内所包 围电荷的代数和除以ε0。
ppt精选版
39
S
• Q
2.数学表达式:
Φ e E d S E c o sd S
n Q i
i 1 0
其中:E为高斯面内、外场源电荷的电场矢量和。
*高斯面为封闭曲面;
q1
Fi
1
4π 0
qiq0 ri3
ri
q2
q3
由力的叠加原理得 q 所0 受合力
F Fi
i
故 q 处0 E总F电 场强Fi度
q0
q i 0
i
Ei
ppt精选版
r1 r2
r3
q0
F3 F2 F1
17
1.电场强度的叠加原理:
点电荷系在某点产生的场强,等于各点电荷单 独存在时在该点分别产生的场强的矢量和。
过球面的电通量
Φe
Q 0
• Q
由图可知从曲面一侧穿入的
电场线必定从另一侧穿出,所
以通过曲面的电通量为0
ppt精选版
38
*如点电荷为负,则通过闭合曲面的电通量为负。
*点电荷发出的通过闭合球面的电通量与球面半径 无关,任意形状的闭合曲面也如此。
*如果闭合曲面没有包含点电荷则进入曲面和穿 出曲面的电场线相同,总电通量为零。
解:选择如图所示的高斯面(电场球对称)
E Φe E cosdS
r
EdSE4r2
R
由高斯定理
Φe
Q 0
E 4 r2 Q 0
1Q
pEpt精选版40 r2
43
例题10 两同心均匀带电球壳,内球球壳半径R1 、 带电量+Q,外球球壳半径R2 、带电量-Q ,不计 球壳厚度,试求电场强度的空间分布。

基础物理学第五章(静电场)课后习题答案

基础物理学第五章(静电场)课后习题答案
解:(1)并联
因为并联后每个电容器两端的电势差相等,且不能超过每个电容器的耐压值,所以耐压值取较小值。
(2) 串联 因为串联后每个电容器所带的电量都等于等效电容器的电量,根据公式,则
分别计算两电容器可带电量的最大值,取其中较小值作为q。
5-18 C1、C2两个电容器,分别标明为"200pF 500V"和"300pF 900V",把它们串联起来后,等值电容多大?如果两端加上1000V的电压,是否会击穿?
(2)取坐标如图所示,设Q点到原点的距离为y,在距原点O为l处取长dl 的线元,则相应的电荷元为,以dq作为电荷元,则它在Q点的电势为:
能从电势致。
5-14 已知半径为R的均匀带电球体,带电q ,处于真空中。
(1)用高斯定理求空间电场强度的分布;
****(要用到的不定积分公式
)****************
若棒为无限长时,则上式变为:
结果与无限长带电直线的场强相同
5-3 一半径为R的半细圆环,均匀地分布+Q电荷。求环心的电场强度大小和方向。
解:在圆周上任取电荷元,它的场强大小为 由于电荷相对于y轴对称,知合场强应沿y方向,故
5-5 电场强度的环流表示什么物理意义?表示静电场具有怎样的性质?
答:电场强度的环流说明静电力是保守力,静电场是保守力场。表示静电场的电场线不能闭合。如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点 沿环路切向,得,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。
5-6 在高斯定理中,对高斯面的形状有无特殊要求? 在应用高斯定理求场强时,对高斯面的形状有无特殊要求?如何选取合适的高斯面?高斯定理表示静电场具有怎么的性质?

医用物理学第05章 课后习题解答

医用物理学第05章 课后习题解答

其方向垂直向下。 ②求电势: 电荷元 dq 在圆心产生的电势 dU 为
θ
O dE⊥
dE∥ X dE
dq q dU k k 2 dl R r
将上式积分即得圆心处的电势
习题 5-7 附图
U dU k
q R 2

R
0
dl k
q R
5-8 长度为 L 的直线段上均匀分布有正电荷,电荷线密度为 λ,求该直线的延长线上, 且与线段较近一端的距离为 d 处的场强和电势。 解: ①求场强:在直线段 l 处取一线元 dl,其带电量为 dq=λdl,它在 P 处产生的场强方 向沿直线的延长线,大小为
(因为 E2 =E3 )
3Q 2 0 a 2
E Ey
3Q 2 0 a 2
其方向垂直向上。 由点电荷电势公式可得三个点电荷在重心的电势分别为
U
Q 3Q , 4 0 r 4 0 a
U2 U3
3Q 4 0 a
根据电势叠加原理,重心处的电势为
U U1 U 2 U 3
1 2 2
V 6.36 10 2 V
②求场强:根据场强与电势的关系 E=-dU/dn,对(c)式求关于 x 的导数,则场强 E 的 大小为
E
9 dU qx 9 5.0 10 0.05 k 2 9 . 0 10 V m 1 6.36 10 3V m 1 3 dx (R x 2 )3 / 2 (0.05 2 0.05 2 ) 2
5-2 两个点电荷分别带有+10C 和+40C 的电量,相距 40cm,求场强为零的点的位置及 该点处的电势。 解: ①求场强为零的位置: 只有在两电荷的连线中的某点 P,才能使该处场强为零,即 q1 、q2 在该点的场强 E1、E2 大小相等,方向相反,已知 q1 =10C,q2 =40C,则根据点电荷 r1 r2 ,有 k q1 k q2 场强公式 E k q 2 2 2 r r1 r2 由上式可得 r1 r2

大学物理第05章 静电场习题解答

大学物理第05章 静电场习题解答

第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( C ) (A )电荷必须呈球形分布。

(B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。

(D )电量很小。

5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( B ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( d )(C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( d )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。

5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( c ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( c )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

5.7 下面说法正确的是 [ D ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ C ] (A )高斯面上各点场强均为零。

静电学基础

静电学基础

电容器的定义:由 两个平行、靠近且 互相绝缘的导体构 成,可以存储电荷 的物理量。
电容的计算公式: C=εS/d,其中ε 为介电常数,S为 两极板正对面积, d为两极板间距。
电容器的单位:法 拉(F), 1F=1000000μF= 1000000000nF。
电容器的分类:根 据电容器结构可分 为固定电容器和可 变电容器两大类。
电介质的导电性能:电介质的导电性能取决于其内部的电子结构和电场强度等因素,不同 的电介质具有不同的导电性能。
静电场的计算方法
高斯定理
定义:通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空电容 率。
公式:∮E·dS = 4πk∑q/ε0
应用场景:计算电场分布、电场强度、电势等物理量。
静电场能量守恒:与电荷的静 电能相对应
静电场的电介质
电介质的定义:指 在静电场中能够保 持静电荷的物质。
电介质的特点:在 静电场中,电介质 内部的电荷分布与 外部电场无关,即 电介质具有绝缘性。
电介质的分类:根 据其导电性质,电 介质可分为绝缘体、 半导体和导体。
电介质在静电场中 的作用:电介质在 静电场中可以存储 电荷,从而产生电 场。
电势差的测量
测量方法:使用 静电计或电势差 计进行测量
测量原理:根据 静电感应原理, 当带电体接近金 属球时,金属球 会出现感应电荷, 通过测量感应电 荷的数量可以计 算出电势差
测量步骤:将带 电体靠近金属球, 记录感应电荷的 数量,根据电势 差计的刻度读出 相应的电势差值
注意事项:在测 量时需要保持带 电体和金属球的 相对位置不变, 以减小误差
静电场的实验测量
电场强度的测量
直接测量法:使用电场测量仪器直接测量电场中某点的电场强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作 业
习题 5.1
§5.2 静电场
电场强度E
教学目的:了解电场的概念。 主要内容:静电场,电场强度,电 场强度叠加原理,电场线,电通量。 重点:电场强度。 难点:电场强度的计算。 教具:多媒体教室,电子教案。
一. 静电场
早期:电磁理论是超距作用理论 后来: 法拉第提出场的概念 电场的特点 (1) 对位于其中的带电体有力的作用 (2) 带电体在电场中运动,电场力要作功
x
dE
P
r
O R
dr
讨论 (1) 当R >> x ,圆板可视为无限大薄板
E 2 0
(2)
E1
E1 E2
x p
E1 E2
EI E1 E2 0 EII E1 E2 0 EIII E1 E2 0
E2
(3) 补偿法
E ER 2 ER1 x 1 1 [ 2 2 ]i 2 1/ 2 2 1/ 2 2 0 ( R1 x ) ( R2 x )
第五章 静 电 学
研究内容
静电场
从电荷在电场中受力 电场强度E
从电荷运动时电场力做功 电势U
高斯定理
环流定理
最后讨论E与 U的微分关系
基本要求
1.了解电荷、电量、电荷守恒定律及其量子化概念。 2.掌握电场强度的概念及叠加原理,会计算典型带电 体形成的电场分布。 3.理解静电场的环路定理的意义。 4.掌握电势、电势能的概念及叠加原理,能计算典型 带电体形成的电势分布。 5.了解电场强度和电势梯度的关系。 6.了解电容器、静电场的能量概念。
1 e 3 2 e 3
• e=1.60210-19库仑,为电子电量 •盖尔—曼提出夸克模型
• 宏观带电体的带电量qe,准连续
二、仑定律
点电荷:可以简化为点电荷的条件:
Q d << r d
1
r
P
观察点
库仑定律:真空中,两个静止点电荷间相互作用力与其电荷量q1和q2 的乘积成正比,而与这两点电荷之间的距离r12(或r21)的平方成反比 ,作用力的方向沿两个点电荷的连线,同号相斥,异号相吸。
x rdr 2 0 (r 2 x 2 )3 / 2 x R rdr E dE 2 0 0 (r 2 x 2 )3 / 2 x [1 2 ] 2 1/ 2 2 0 (R x ) q x E [1 2 ]i 2 2 1/ 2 2 0 R (R x )
§5.1 电荷
库仑定律
教学目的:了解电荷的概念,理解 库仑定律意义。 主要内容:电荷、电量、电荷守恒 定律及其量子化;库仑定律,静电 力叠加原理。 重点:库仑定律。 难点:静电力叠加原理。 教具:多媒体教室,电子教案。
一、 电荷
1、电荷 摩擦起电和雷电,物体具有吸引轻物体的能力,就称 它为带电体,并说他带有电荷
定义
n
E
EdS dS dSn de E dS
de E dS
dS
dS
2. 非均匀场中
n
dS
E E
e d e E dS
S
作 业
思考 5.1 5.3 习题 5.4 5.6
§5.3 静电场的环路定理 电势
b
a( L)
b
b F dl q0 E dl
a( L)
b •

a( L) n
q0 ( Ei ) dl
n i 1 b
L
a


i 1
a( L)
q0 Ei dl
q1 qi
q2
qn1 qn
qi q0 1 1 ( ) rbi i 4 0 rai
e 1.60 10 N=8.22 108 N 9 F 8 2= .89 10 10 2 4 r 0.529 10 0 1
2
19 2
解: 按库仑定律计算,电子和质子之间的静电力为
应用万有引力定律, 电子和质子之间的万有引力为 m1 m 2 F G r2 9.11 10 31 1.67 10 27 11 6.67 10 N 10 2 0.529 10 3.63 10 47 N Fe 2.26 10 39 由此得静电力与万有引力的比值为 F g
结论 电场力作功只与始末位置有关,与路径无关,所以静电力 是保守力,静电场是保守力场。
二.静电场的环路定理
在静电场中,沿闭合路径移动q0,电场力作功
Aab F dl q0 E dl

b
a ( L1 )
b
a q0 E dl
b ( L2 )
教学目的:了解静电场电势的概念。 主要内容:静电力作功的特点,静 电场的环路定理,电势能,电势, 电势叠加原理。 重点:电势。 难点:电势的计算。 教具:多媒体教室,电子教案。
一.静电力作功的特点
• 单个点电荷产生的电场中
A
b
a( L) b
F dl q0 E dl
q0 E dl cos
O
rb
b
dl q0 E L dr


a( L)
b
q
r
ra
a
a( L)
qq0 1 1 qq0 rb 1 ra r 2 dr 4 0 ( ra rb ) 4 0
(与路径无关)
• 任意带电体系产生的电场中 电荷系q1、q2、…的电场中,移动q0,有
Aab
1 dq 0 dE r 2 4 0 r dq 0 r 2 4 0 r
(线分布 )
dE
r
dq
P
E
dq
dl dS dV
(面分布) (体分布)
: 线密度 : 面密度 : 体密度


求电偶极子在延长线上和中垂线上一点产生的电场强度。
q i E E 2 l 4 0 ( x l 2) q O q q P x E i 4 0 ( x l 2) 2 令:电偶极矩 q 2 xl p ql i E E E 2 2 2 4 0 ( x l 4) 2 xp E 2 2 2 P 4 0 ( x l 4) E q E 在中垂线上 E E 4 0 (r 2 l 2 4) r P E 2 E cos E 3 q l q 4 0 r
F
说明:
q1q2 r0 2 40 r 1
q1
r q
1
q2
库仑
q
r01
F2
r02
2
(1)1785年,法国库仑(C.A.Coulomb) (2)适用于点电荷, 0 =8.8510-12C2· -2 · -1 m N
q0
F1 F
(3)叠加性
F
i
q0 qi r0i 2 40 r0i 1
讨论
x (1) 当 x = 0(即P点在圆环中心处)时, P
E0
(2) 当 x>>R 时
1 q E 4 0 x 2
dq
r
R

O
可以把带电圆环视为一个点电荷
例 面密度为 的圆板在轴线上任一点的电场强度 解
dq 2rdr 1 xdq dE 4 0 (r 2 x 2 )3 / 2
点电荷系的电场
F 1 q 0 E r 2 q0 4 0 r
E Fk
k
q0
1 qk 0 Ek r 2 k k k 4 0 rk
点电荷系在某点P 产生的电场强度等于各点电荷单独在该 点产生的电场强度的矢量和。这称为电场强度叠加原理。
连续分布带电体
解:两个质子之间的静电力是斥力,它的大小按库仑定律计算为
Fe
1 4 0
q1q2 9 1.6 10 9.0 10 2 r 4.0 10 15

19 2 2

14 N
可见,在原子核内质子间的斥力是很大的。 质子之所以能结合在一起 组成原子核,是由于核内除了有这种斥力外还存在着远比斥力为强的引力 _____ 核力的缘故。上述两个例题,说明了原子核的结合力远大于原子的结合 力, 原子的结合力又远大于相同条件下的万有引力。
圆环上电荷分布关于x 轴对称
dEx dE cosθ
O
E 0
dq
1 dq 1 q 1 cosθ Ex r 2 cosθ 4 r 2 dq 4 r 2 cosθ 4 0 0 0
x cosθ r
r (R x )
2
2 1/ 2
1 qx E 4 0 ( R 2 x 2 )3 / 2


可见在原子中,电子和质子之间的静电力远比万有引力大,故在处理电 子和质子之间的相互作用时,只需考虑静电力,万有引力可以略去不计. 而 在原子结合成分子,原子或分子组成液体或固体时,它们的结合力在本质上 也都属于电性力. 例2 设原子核中的两个质子相距4.0×10-15m,求此两个质子之间的静电力.
2
x
dx a csc 2 θ dθ
r 2 a 2 x 2 a 2 csc 2
dEx cos d 4 0 a
dE y sin d 4 0 a
Ex dEx cosθ dθ (sin θ 2 sin θ 1 ) θ 4 a 4 0 a 0 θ E y dE y sin θ dθ (cosθ 1 cosθ 2 ) θ 4 a 4 0 a 0
两种电荷:正电荷和负电荷
电性力:同号相斥、异号相吸
电荷量:物体带电的多少
相关文档
最新文档