初中数学58种模型之一线三等角模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学58种模型之
一线三等角模型
“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形。

这个角可以是直角,也可以是锐角或者钝角。

对于“一线三等角”,有的地区叫“K型图”,也有的地区叫“M型图”。

“一线三等角”的起源
DE 绕A 点旋转,从外到内,从一般位置到特殊位置.
下面分几种类型讨论:
一、直角形“一线三等角”——“一线三直角”
结论:△ADB ∽△CEA
二、锐角形“一线三等角
结论:△ADB∽△CEA∽△CAB
三、钝角形“一线三等角
结论:△ADB∽△CEA∽△CAB
下面总结几种常考类型:
类型一三角齐见,模型自现
类型一概述
以上两例都是典型的“一线三等角”试题,由于模型的框架已搭建,因此降低了试题的起点.两道题虽涉及不同的图形变换,但
解法本质一致,均为利用模型构建比例式解决问题.两道题都着重考查学生在图形变换过程中的观察理解、直观感知、推理转化等数学能力和思想.
类型二隐藏局部,小修小补
类型二概述
上述两道题虽分别以四边形和一次函数为命题背景,但图形的共性较明显: 均将原有“一线三等角”模型中的一角进行了隐藏,而这就要求学生理性地从图形的角度进行思考与联想,发现其中最本质的特征,挖掘蕴含在图中的几何模型.两道题均较好地体现了对“四基”的综合考查,提升了学生思维的层次性和灵活性.
类型三一角独处,两侧添补
类型三概述
上述几道题虽呈现的背景不同,但都蕴知识技能、思想方法、数学模型于图形之中.题中的“特殊角”是解题的关键,也是搭建模型框架的基础,更是学生解题思路的来源与“脚手架”.这几道题实质上都是考查学生利用模型进行数学思考的能力,同时也有效地检测了学生对数学本质属性的把握情况.
类型四线角齐藏,经验来帮
类型四概述
本题实质上以图形的旋转为问题的切入点,较好地激发学生探索的意愿,促使学生在模拟图形运动的同时,自发地利用题中所蕴含的特殊角,展开适当的联想,寻找图形间的联系,利用数学解题经验,搭建模型框架。

本题意在寻求突破,体现分层考查,有着较好的考试信度与效度.
通过上述四种应用类型的后三种,我们不难发现:对于有些中考试题,“一线三等角”并非直观、完整地呈现,而是在原图中隐藏了局部或全部结构,因此思维层次随之提升。

若我们能充分利用题中所给的已知角或挖掘图中隐藏的特殊角,通过“找角,定线,搭框架”,让模型“现出原形”,则解题思路便会油然而生,豁然开朗。

在近几年的各地中考试卷中,逐渐涌现出由同一类基本模型延伸而来的试题,这些试题虽呈现的背景不尽相同,但解决问题的方法和思想相通,这就要求教师在平时的解题教学中,充分挖掘习题的内在价值,
鼓励学生对问题进行深入研究,引导并总结出一般化的方法,同时要让学生尝试利用在解题过程中所积累的经验,对试题中所蕴藏的基本模型进行挖掘与提炼.只有让学生学会自主地反思、推进、提炼,才能做到“掌握模型,举一反三,通一类题”,同时通过对一些基本模型和结论的挖掘,能更好地弄清问题的本质,为解决问题搭建好思维的“脚手架”,进而切实有效地提升学生的解题能力,发展学生的思维水平.。

相关文档
最新文档