湘教版数学八年级上册1分式测试题1

合集下载

湘教版数学八年级上册第一章分式测试题

湘教版数学八年级上册第一章分式测试题

金戈铁骑整理制作八年级上数学第一章分式测试题 (时限:100分钟 总分:100分)班级 姓名 总分一、 选择题(本题共8小题,每小题4分,共32分)1. 计算23-的结果是( )A .9-B .6-C . 91- D . 91 2. 2011年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间较少了0.000 001 6秒,将0.000 001 6用科学记数法表示为( )A . 71016-⨯B . 6106.1-⨯C . 5106.1-⨯D .51610-⨯3. 已知53=-a b a ,那么b a等于 ( )A . 52B . 25C .52- D .25-4. 下列各式从左到右的变形,正确的是( )A .y x xy y x xy +-=+- B . yx xyy x xy --=---C .11---=-+-py y p py y p D . 111122+--=++-a xya xy 5. 如果把分式yx yx +-中的x 和y 都扩大了3倍,那么分式的值( ) A . 扩大3倍 B . 不变 C . 缩小3倍 D . 缩小6倍6. 化简2293mmm --的结果是( ) A . 3+-m m B . 3+m m C .3-m m D .mm-3 7. 43222)()()(xyx y y x -÷-⋅-的结果是( )A .38x yB .38xy - C .5x D .5x -8. 已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A . 12- B . 0 C . 8 D . 128或 二、填空题(本题共8小题,每小题4分,共32分) 9. 当x ________时,分式xx2121-+的值存在. 10. 当分式2545|x |x x ---的值为0时, x 的值为__ _.11. 用科学记数法表示0.00021=_______;用小数表示=⨯-61057.3___ __.12. 利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13. 计算:=+-+3932a a a __________. 14. 计算:abba b ab -÷-)(2= . 15. 方程04142=----xxx 的解是 . 16.已知311=-y x ,则分式yxy x yxy x ---+2232的值为 ___ . 三、解答题(本题共6小题,共36分) 17. (本小题满分10分)化简:(1)43239227bab a b a b ⋅÷-; (2)21211x x x -++;(3)3121421)()()(----⋅-⋅x y xy xy ;(4)122121222+--÷---+a a a a a a a a ; (5)⎪⎭⎫ ⎝⎛--++-y x x y x y x x 2121.18. (本小题满分6分) 解分式方程:(1)87176=-+--x x x ; (2)2127111x x x +=+--.19. (本小题满分4分)先化简,再求值. 4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x . 20. (本小题满分5分)已知实数a 满足a 2+2a -8=0,求34121311222+++-⨯-+-+a a a a a a a 的值. 21. (本小题满分5分)列方程解应用题雅安地震灾情牵动全国人民的心.某厂计划加工1500顶帐篷支援灾区,加工了300顶帐篷后,由于救灾需要,将工作效率提升到原计划的2倍,结果提前4天完成了任务.求原计划每天加工多少顶帐篷.22. (本小题满分6分)列方程解应用题小红到离家2100米的学校参加艺术节联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍.初中 数学 辅 导网(1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)八年级数学第一章分式测试题参考答案一、选择题:1.D ; 2. B ; 3.B ; 4.C ; 5.B ;6. A ;7.D ;8.C二、填空题:9. 12x ≠; 10.5-; 11. 2.1×10-4,0.00000357; 12. (1)26a , (2)2-a ;13. 3-a ; 14. 2ab ; 15. 3x =; 16. 53.三、解答题:17. (1)221ab -;(2)x -11;(3)21x ;(4)a a a a ++-221;(5)1.18. (1)原方程无解;(2)2x =. 19. (1)原式2212421x x x x -+-=⋅--12+=x . 当3=x 时,原式=2112=+x .20. 2)1(2+a ;当a 2+2a -8=0时,有9)1(2=+a ,所以原式=92. 21. 解:设原计划每天加工x 顶帐篷. 则1500300150030042x x---=. 解得 150x =.经检验,150x =是原方程的解,且符合题意.答:原计划每天加工150顶帐篷.22. 解:(1)设小红步行的平均速度为x 米/分,则骑自行车的平均速度为3x 米/分. 根据题意得:21002100203x x=+.得70x =.经检验70x =是原方程的解 .答:小红步行的平均速度是70米/分. (2)根据题意得:21002100404570370+=<⨯ . ∴小红能在联欢会开始前赶到.。

湘教版八年级数学上册《1.1分式》同步测试题带答案

湘教版八年级数学上册《1.1分式》同步测试题带答案

湘教版八年级数学上册《1.1分式》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1下列各式中的变形,错误的是() A .3-4b =-34b B .a b =a+2b+2C .a b =7a 7bD .-a -3b =a 3b2下列约分正确的是() A .x 6x 2=x 3 B .x+y x+y =0C .2xy 24x 2y =12D .x+y x 2+xy =1x3若分式2x 23x -2y 中的x ,y 同时扩大为原来的2倍,则分式的值()A .不变B .是原来的2倍C .是原来的4倍D .是原来的124当x ,y 满足 时3(x -y)5(x -y)=35.5约分:(1)5ab20a 2b ;(2)x 2-9x 2-6x+9.6若a=25,b=20,化简求值:a 2+2ab+b 2a 2-b 2.【能力巩固】7如果x<y<0,那么|x|x +|xy|xy 化简的结果为() A .0 B .-2 C .2 D .38如果a b =23,且a ≠2,那么a -b+1a+b -5= .9把下列分式化为最简分式:(1)10(m -1)2-15(1-m);(2)a 2-(b -c)2(a+b)2-c 2.10先化简分式3x -3x 2-2x+1,再判断:当整数x 取何值时,分式的值是正整数?【素养拓展】11已知1a -1b =1,则a+ab -b a -2ab -b的值等于 . 12有这样的一道题:分式2x+6x 2-9和2x -3是否是同一分式?为什么? 小明、小青是这样回答的:小明说:“因为2x+6x 2-9=2(x+3)(x+3)(x -3)=2x -3,所以2x+6x 2-9和2x -3是同一分式.”小青说:“因为2x -3=2(x+3)(x -3)(x+3)=2x+6x 2-9,所以2x+6x 2-9和2x -3是同一分式.” 你同意他们的说法吗?若不同意,请说出你的理由.参考答案基础达标作业1.B2.D3.B4.x ≠y5.解:(1)原式=5ab 5ab·4a =14a ;(2)原式=(x+3)(x -3)(x -3)2=x+3x -3. 6.解:原式=(a+b)2(a+b)(a -b)=a+b a -b ;当a=25,b=20时,原式=25+2025−20=9.能力巩固作业7.A8.-159.解:(1)原式=23(m -1);(2)原式=a -b+c a+b+c .10.解:3x -3x 2-2x+1=3(x -1)(x -1)2=3x -1当x=2时,原式=32−1=3当x=4时,原式=34−1=1所以当x=2或x=4时,分式的值是正整数.素养拓展作业11.012.解:不是同一分式,理由如下:因为分式2x+6x 2-9中的x 的取值范围是x ≠±3;分式2x -3中的x 的取值范围为x ≠3,所以分式2x+6x 2-9和2x -3不是同一分式.。

第1章 分式 单元测试卷 2022-2023学年湘教版数学八年级上册

第1章 分式 单元测试卷 2022-2023学年湘教版数学八年级上册

2022-2023学年湘教新版八年级上册数学《第1章 分式》单元测试卷一.选择题(共10小题,满分30分)1. 若分式2(1)(2)44x x x x +--+的值为0,则x 的值为( )A. 1-B. 2C. 2或1-D. 12. 在1x ,+m n m ,25ab ,23x π中,分式有( )A. 2个 B. 3个 C. 4个 D. 1个3. 如果把分式xy x y+中的x 和y 都扩大为原来的4倍,那么分式的值( )A. 扩大为原来的4倍B. 扩大为原来的2倍C. 不变D. 缩小为原来的124. 若将分式2223x x y -与分式2()x x y -通分后,分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y-的分子应变为( )A. 6x 2(x ﹣y )2 B. 2(x ﹣y ) C. 6x 2 D. 6x 2(x+y )5. 分式216x 与13xy -的最简公分母是( )A. 36x y B. 26x y C. 218x y D. 318x y6. 计算a b b ac⋅的结果是( )A. ab abcB. a cC. 1cD. 07. 计算:0(20)-=( )A. 0B. 20C. 1D. 20-8. 若m -n =2,则代数式222m n m m m n-⋅+的值是( )A. -2B. 2C. -4D. 49. 给出以下方程:314x -=,32x =,3152x x +=+,132x x -=,其中分式方程的个数是( )A. 1B. 2C. 3D. 410. 已知113a b +=,114b c+=,115c a +=,则abc ab bc ca =++( )A.13 B. 14C. 15 D. 16二.填空题(共10小题,满分30分)11. 关于x 的方程2312x x x --=-的解为______.12. 已知两分式221x x -+11x +中间阴影覆盖了运算符号.(1)若覆盖了“+”,其运算结果为______;(2)若覆盖了“÷”,并且运算结果为1,则x 的值为______.13. 已知分式5x n x m ++(m ,n 为常数)满足表格中的信息:x 的取值2-0.4q 分式的值无意义03则q 的值是 _____.14. 当x ___________时,分式12x -的值为正数.15. 若关于x 的方程1222x m x x++=--有增根,则m 的值是______________.16. 若0(99)a =,1(0.1)b -=-,25()3c -=-,那么a 、b 、c 三数的大小为 ______.(用“<”连接)17. 代数式12x M x+÷+化简的结果是2x +,则整数M =______.当<2x -时,12x x++______12(填“>”“<”“=”)18. 下列四个分式:22x y x y ++、22x y x y --、22x y x y -+、22x y x y +-,其中最简分式有__________个.19. 受疫情的影响,“84”消毒液需求量猛增,某商场用4000元购进一批“84”消毒液后,供不应求,商场又用6750元购进第二批这种消毒液,所购的瓶数是第一批瓶数的1.5倍,但每瓶单价贵了1元,则该商场第一批购进“84”清毒液每瓶的单价为______元.20. 化简:2222444x y x xy y--+=_____.三.解答题(共6小题,满分90分)21. 已知分式236x x x ---.(1)当x 为何值时,此分式有意义?(2)当x 为何值时,此分式的值为零?22. 计算(1)22346()2x xy y x⋅-;(2)2221221a a a a a a-⋅-++.23. 计算:(1)2301()(48)2-÷⨯; (2)2213(3)34ab ab a b ⋅-24. 先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =.25. 为做好新冠肺炎疫情防控,某学校购入了一批洗手液与消毒液.购买洗手液花费4000元,购买消毒液花费3000元,购买的洗手液瓶数是消毒液瓶数的2倍,每瓶消毒液的价格比每瓶洗手液的价格高5元.(1)求一瓶洗手液的价格与一瓶消毒液的价格分别是多少元?(2)由于疫情还未结束,学校决定再次购入一批相同质量品牌的洗手液与消毒液,洗手液和消毒液的瓶数分别都比第一次的购入量多100瓶.适逢经销商进行价格调整,每瓶洗手液的价格比第一次的价格降低5%4a,每瓶消毒液的价格比第一次的价格降低%a,最终第二次购买洗手液与消毒液的总费用只比第一次购买洗手液与消毒液的总费用多350元,求a的值.26. 已知A、B两地相距a km甲乙两人分别从A、B两地同时匀速出发,若相向而行,则经过a min后两人相遇,若同向而行,则经过b(b a>)min后甲追上乙.(1)试用含a,b的代数式表示甲、乙两人的速度v甲,v乙;(2)若73VV=甲乙,求ab的值;(3)若两人相向而行,第一次相遇后继续按原方向前进,其中甲到达B地后按原路返回.直接写出甲、乙从第一次相遇到再次相遇所需的时间.2022-2023学年湘教新版八年级上册数学《第1章 分式》单元测试卷一.选择题(共10小题,满分30分)【1题答案】【答案】A【解析】【分析】根据分式值为零且分式有意义的条件求解即可.【详解】解:∵分式2(1)(2)44x x x x +--+的值为0, ∴(x +1)(x -2)=0,且x 2-4x +4≠0,解得x =-1或x =2,且x ≠2,∴x =-1故选:A .【点睛】此题考查了分式值为零的条件,分式有意义的条件,熟记分式的知识是解题的关键.【2题答案】【答案】A【解析】【分析】根据一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式判断即可.【详解】解:在1x ,+m n m ,25ab ,23x π中,分式有:1x ,+m n m共2个,其余2个是整式,故选:A .【点睛】本题考查了分式的定义,注意π是数字,熟练掌握分式的定义是解题的关键.【3题答案】【答案】A【解析】【分析】根据分式的基本性质,进行计算即可解答.【详解】解:由题意得:44444x y xy x y x y⋅=++,∴如果把分式xy x y+中的x 和y 都扩大为原来的4倍,那么分式的值扩大为原来的4倍,故选:A .【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.【4题答案】【答案】C【解析】【分析】分式2223x x y -与分式 2()x x y -的公分母是2(x+y )(x ﹣y ),据此作出选择.【详解】解:因为分式2()x x y - 与分式2223x x y- 的公分母是2(x+y )(x ﹣y ),所以分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y- 的分子应变为6x 2故选:C .【点睛】本题考查了通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.【5题答案】【答案】B【解析】【分析】两个分母中系数的最小公倍数为6,所有字母因式x 与y 的最高次幂分别是x 2、y ,这三者的乘积则是最简公分母.【详解】分式216x 与13xy -的最简公分母是26x y ,故选:B .【点睛】本题考查了分式的最简公分母,知道如何找最简公分母是解题的关键.【6题答案】【答案】C【解析】【分析】根据分式的乘法运算法则来求解.【详解】解:1a b ab b ac abc c⋅==.故选:C .【点睛】本题主要考查了分式乘法的运算法则,理解约分是解答关键.【7题答案】【答案】C【解析】【分析】根据零指数幂的意义计算即可.【详解】解:0(20)1-= ,故选:C .【点睛】本题考查零指数幂的意义,掌握零指数幂公式01(0)a a =≠是解题的关键.【8题答案】【答案】D【解析】【分析】先因式分解,再约分得到原式=2(m -n ),然后利用整体代入的方法计算代数式的值.【详解】解:原式m n m n m +-=()()•2m m n+=2(m -n ),当m -n =2时,原式=2×2=4.故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【9题答案】【答案】B【解析】【分析】利用分式方程的定义:分母中含有未知数的方程,进行逐一判断即可.【详解】解:314x -=中分母不含未知数,不是分式方程;32x=中分母含有未知数,是分式方程;3152x x +=+中分母含有未知数,是分式方程;132x x -=中分母不含未知数,不是分式方程,共有两个是分式方程,故B 正确.故选:B .【点睛】本题主要考查的是分式方程的定义,掌握定义并进行准确判断是解题的关键.【10题答案】【答案】D【解析】【分析】先把原条件通分变形可得3,4,5,ac bc ab ac ab bc abc abc abc +++===再把三式相加,再取倒数即可得到答案.【详解】解:∵113a b +=,114b c +=,115c a +=,∴3,4,5,a b b c a c ab bc ac+++=== ∴3,4,5,ac bc ab ac ab bc abc abc abc+++===22212,ac bc ac abc++∴= 6,ac bc ab abc++∴= ∴ 1.6abc ab bc ca =++故选D【点睛】本题考查的是分式的求值,掌握“倒数法求解分式的值”是解本题的关键.二.填空题(共10小题,满分30分)【11题答案】【答案】45x =【解析】【分析】根据解分式方程的规则进行求解即可,最后必须检验.【详解】解:去分母得:2(2)(2)3x x x x ---=,整理得:54x =,解得:45x =,经检验:4424(2)(2)05525x x -=⨯-=-≠,∴45x =是原方程的解.故答案为:45x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题关键,注意一定要对求出来的未知数的值进行检验.【12题答案】【答案】①. 1x - ②. 【解析】【分析】根据分式的加法与解分式方程分别计算即可求解.【详解】(1)221x x -++11x +()()21121111x x x x x x +--+===-++;(2)221x x -+÷111x =+,221111x x x -+⨯=+;221x -=,x ∴=,经检验x =是原方程的解,故答案为:1x -,【点睛】本题考查了分式的混合运算,解分式方程,正确的计算是解题的关键.【13题答案】【答案】4【解析】【分析】由表格中的数据,结合分式值无意义及分式值为0的条件可求解m ,n 值,即可求解分式,利用x q =时,5232q q -=+,计算可求解.【详解】解:由表格可知:当2x =-时0x m +=,且当0.4x =时,50x n +=,解得2m =,2n =-,∴分式为522x x -+,当x q =时,5232q q -=+,解得4q =,经检验,4q =是分式的解,故答案为:4.【点睛】本题主要考查分式的值,分式有意义的条件及分式的值为零的条件,解分式方程,求解m ,n 值是解题的关键.【14题答案】【答案】2x >【解析】【分析】根据题意可知分子10>,只要分母20x ->即可求解.【详解】解:∵分式12x -的值为正数,∴20x ->,解得2x >.故答案为:2x >.【点睛】本题考查了分式的值,根据题意列出不等式是解题的关键.【15题答案】【答案】-1【解析】【分析】利用分式方程解法的一般步骤解分式方程,令方程的解为2得到关于m 的方程,解方程即可得出结果.【详解】解:去分母得:1−(x +m )=2(x −2),去括号得:1−x −m =2x −4,移项,合并同类项得:−3x =m −5,∴53m x -=.∵关于x 的方程1222x m x x ++=--有增根,∴x =2∴523m -=,∴m =−1.故答案为:−1.【点睛】本题主要考查了解分式方程,分式方程的增根,理解分式方程增根的意义解答是解题的关键.【16题答案】【答案】b<c<a【解析】【分析】利用零指数幂的意义,负整数指数幂的意义分别计算a ,b ,c 的值,再进行大小比较,即可得出答案.【详解】解:∵0(99)a =,1(0.1)b -=-,25()3c -=-,∴1a =,10b =-,925c =,又∵910125-<<,∴b<c<a ,故答案为:b<c<a .【点睛】本题考查零指数幂,负整数指数幂,解题的关键是熟练掌握:01a =,1-=m ma a .【17题答案】【答案】①. 1x +##1x + ②. >【解析】【分析】根据题意可得()122x M x x+=⋅++,即可求解;然后把12x x ++变形为112x-+,即可求解.【详解】解:根据题意得:()122x M x x +=⋅++1x =+;∵12111222x x x x x++-==-+++,∵<2x -,即20x +<∴102x<+,∴102x->+,∴1112x ->+,即112x x+>+,∴1122x x +>+.故答案为:1x +,>【点睛】本题主要考查了分式的乘法运算以及化简,熟练掌握分式的运算法则是解题的关键.【18题答案】【答案】2##两【解析】【分析】最简分式是分式的分子、分母没有非零的公因式,即不能再约分,据此判断即可解答.【详解】解:22x y x y ++是最简分式,22x y x y --()()x y x y x y -=+-1x y=+,不是最简分式,22x y +是最简分式,22x y x y +-()()x y x y x y +=+-1x y=-,不是最简分式,故最简分式有2个,故答案为:2.【点睛】本题考查最简最简分式,判断一个分式是最简分式,主要看分式的分子、分母是不是有公因式.【19题答案】【答案】8【解析】【分析】设该商场第一批购进“84”清毒液每瓶的单价为x 元,根据所购的瓶数是第一批瓶数的1.5倍列分式方程解答.【详解】解:设该商场第一批购进“84”清毒液每瓶的单价为x 元,由题意得400067501.51x x ⨯=+,解得x =8,经检验,x =8是原方程的解,故答案为:8.【点睛】此题考查了分式方程的实际应用,正确理解题意列得分式方程是解题的关键.【20题答案】【答案】22x y x y +-【解析】【分析】先根据平方差公式和完全平方公式把分子与分母进行整理,然后进行约分即可.【详解】解:原式()()()2222x y x y x y -+=-2x y=-,故答案为:22x y x y +-.【点睛】此题考查了约分,用到的知识点是平方差公式和完全平方公式,关键是把要求的式子进行变形.三.解答题(共6小题,满分90分)【21题答案】【答案】(1)x ≠3且x ≠﹣2 (2)x =﹣3【解析】【分析】(1)根据分式有意义的条件是分母不等于零列出不等式计算即可;(2)根据分式值为零的条件是分子等于零且分母不等于零列式计算.【详解】(1)由题意得:x 2﹣x ﹣6≠0,解得:x ≠3且x ≠﹣2;(2)由题意得:|x |﹣3=0且x 2﹣x =6≠0,解得:x =﹣3,则当x =﹣3时,此分式的值为零.【点睛】本题考查了是的是分式有意义和分式值为零的条件,掌握分式有意义的条件和分式值为零的条件是解题的关键.【22题答案】【答案】(1)334x y- (2)2a 1-【解析】【分析】(1)先计算乘方,再计算乘法并化简;(2)先将分子与分母分解因式,再计算乘法并化简即可.【小问1详解】原式=623468x xy y x-⋅ =334x y-;【小问2详解】原式=()()()()211211a a a a a a +-⋅+- =2a 1-.【点睛】此题考查了分式的计算,正确掌握分式的计算法则及运算顺序是解题的关键.【23题答案】【答案】(1)116;(2)233214a b a b -【解析】【分析】(1)先算乘方,再算括号,后算除法即可;(2)根据单项式与多项式的乘法法则计算即可;【详解】解:(1)原式=4(641)÷⨯=464÷=116;(2)原式=221313343ab ab ab a b ⨯⨯-=233214a b a b -.【点睛】本题考查了负整数指数幂、零指数幂的意义,以及单项式与多项式的乘法计算,熟练掌握运算法则是解答本题的关键.【24题答案】【答案】11a +,12【解析】【分析】根据分式的运算法则,先计算括号里的,再将除法转化为乘法,对分子分母因式分解后约分化简,再将1a =代入化简得代数式即可求解.【详解】解:211211a a a a ⎛⎫÷- ⎪+++⎝⎭2112111a a a a a a +⎛⎫=÷- ⎪++++⎝⎭ 2211a a a a a =÷+++()211aa aa +=⨯+11a =+,将1a =代入上式得:原式11112==+.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则及运算顺序是解决问题的关键.【25题答案】【答案】(1)一瓶洗手液的价格为 10元,一瓶消毒液的价格为15 元 (2)20【解析】【分析】(1)设一瓶洗手液的价格为x 元,则一瓶消毒液的价格为(x +5)元.根据题意可列出关于x 的分式方程,求出x 即可.(2)先求出第二次购入洗手液和消毒液各多少瓶,再结合题意列出关于a 的一元一次方程,解出a 即可.【小问1详解】解:设一瓶洗手液的价格为x 元,则一瓶消毒液的价格为(x +5)元.根据题意可列方程:4000300025x x =⨯+,解得:10x =,经检验8x =是原方程得解.∴一瓶洗手液的价格为10元,一瓶消毒液的价格为8+7=15元,答:一瓶洗手液的价格为10元,一瓶消毒液的价格为15元.【小问2详解】解:第二次购入洗手液400010050010+=瓶,购入消毒液300010030015+=瓶.根据题意可列等式:550010(1%)30015(1%)400030003504a a ⨯⨯-+⨯⨯-=++.解得:20a =.【点睛】本题考查一元一次方程和分式方程的实际应用.根据题意找准等量关系,列出相应方程是解答本题的关键.【26题答案】【答案】(1)v 甲=2a b b +,v 乙=2b a b - (2)25 (3)()b b a a b -+min【解析】【分析】(1)根据同向而行和相向而行分别列出方程,解之即可;(2)根据(1)中结果,得到73a b b a +=-,解之即可;(3)根据题意列出算式,再计算可得结果.【小问1详解】解:由已知可得()()a v v ab v v a ⎧+=⎪⎨-=⎪⎩甲乙甲乙,2a b v b +∴=甲,2b a v b-=乙;【小问2详解】73v a b v b a +==-甲乙,∴()()37a b b a +=-,∴3377a b b a +=-,∴104a b =,∴25a b =;【小问3详解】2()222b a a b b a a b a b b b-+-⋅⨯÷-=-.答:甲、乙从第一次相遇到再次相遇所需的时间为()min b a -.【点睛】本题考查了二元一次方程组,列分式及其计算,熟练运用路程公式是解题的关键.。

八年级数学上册《第一章 分式》练习题-含答案(湘教版)

八年级数学上册《第一章 分式》练习题-含答案(湘教版)

八年级数学上册《第一章 分式》练习题-含答案(湘教版)一、选择题1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3xD.1+x 2.下列各式:其中分式共有( )A.2个B.3个C.4个D.5个3.如果分式11 x 在实数范围内有意义,则x 的取值范围是( ) A.x ≠﹣1 B.x >﹣1 C.全体实数 D.x=﹣14.若分式x -2x +1无意义,则( ) A.x =2 B.x =-1 C.x =1 D.x ≠-1 5.若分式2x +63x -9 的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-36.已知5a=2b ,则值为( )A.25B.35C.23 D.1.47.已知a ﹣b ≠0,且2a ﹣3b =0,则代数式2a -b a -b的值是( ) A.﹣12 B.0 C.4 D.4或﹣128.已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是( ) A.-72 B.-112 C.92 D.34二、填空题9.某工厂计划a 天生产60件产品,则平均每天生产该产品 件.10.有游客m 人,若每n 个人住一个房间,结果还有一个人无房住,则客房的间数为.11.若分式2x+1的值不存在,则x的值为 .12.把分式a+13b34a-b的分子、分母中各项系数化为整数的结果为________.13.如果x=-1,那么分式x-2x2-4的值为________.14.若4x+1表示一个整数,则所有满足条件的整数x的值为___________.三、解答题15.下列各分式中,当x取何值时有意义?(1)1x-8;(2)3+x22x-3;(3)xx-3.16.当m为何值时,分式的值为0?(1)mm-1; (2)|m|-2m+2; (3)m2-1m+1.17.求下列各分式的值.(1)5x3x2-2,其中x=12;(2)x-12x2+1,其中x=-1;(3)x-yx+y2,其中x=2,y=-1.18.某公司有一种产品共300箱,将其分配给批发部和零售部销售,批发部经理对零售部经理说:“如果把你们分到的产品让我们卖,可卖得3 500元.”零售部经理对批发部经理说:“如果把你们分到的产品让我们卖,可卖得7 500元.”若假设零售部分到的产品是a箱,则:(1)该产品的零售价和批发价分别是每箱多少元?(2)若a=100,则这批产品一共能卖多少元?19.已知x,y满足xy=5,求分式x2-2xy+3y24x2+5xy-6y2的值.20.对于任意非零实数a,b,定义新运算“*”如下:a*b=a-bab,求2*1+3*2+…+10*9的值.参考答案1.C2.A3.A4.B5.C6.D7.C8.D.9.答案为:60a. 10.答案为:m -1n. 11.答案为:-1.12.答案为:12a +4b 9a -12b13.答案为:114.答案为:-2,-3,-5,0,1,3.15.解:(1)x ≠8 (2)x ≠32(3)x ≠3. 16.解:(1)∵⎩⎨⎧m =0,m -1≠0,∴m =0. (2)∵⎩⎨⎧|m|-2=0,m +2≠0,∴m =2. (3)∵⎩⎨⎧m 2-1=0,m +1≠0,∴m =1. 17.解:(1)把x =12 代入5x 3x 2-2,得原式=-2. (2)当x =-1时,x -12x 2+1 =-1-12×(-1)2+1 =-23. (3)当x =2,y =-1时,x -y x +y 2 =2-(-1)2+(-1)2 =33=1.18.解:(1)该产品的零售价是每箱7 500300-a 元,批发价是每箱3 500a元. (2)这批产品一共能卖10 750元.19.解:∵x y =5,∴x =5y ∴x 2-2xy +3y 24x 2+5xy -6y 2=(5y )2-2×5y ·y +3y 24×(5y )2+5×5y ·y -6y 2=18y 2119y 2=18119. 20.解:2*1+3*2+…+10*9=2-12×1+3-23×2+…+10-910×9=1﹣110=910.。

最新湘教版八年级数学上第一章《分式》测试卷含答案

最新湘教版八年级数学上第一章《分式》测试卷含答案

湘教版八年级数学(上)第一章《分式》测试卷一、选择题(30分)1、使分式131x -有意义的x 的取值范围是( ) A. 13x <; B. 13x ≠-; C. 13x ≠; D. 13x >; 2、0( 3.14)π-的相反数是( )A. 3.14π-;B. 0;C. 1;D. -1;3、下列分式:323a x ,22x y x y -+,2222m n m n +-,211m m +-,222222a ab b a ab b-+--中,最简分式有: A.2个; B. 3个; C. 4个; D. 5个;4、化简2111x x x+--的结果是( ) A.x +1; B.11x +; C. x -1; D. 1x x -; 5、已知1112a b -=,则ab a b-的值是( ) A. 12; B. 12-; C. 2; D. -2; 6、用换元法解分式方程13101x x x x --+=-时,设1x y x-=,将原方程化成关于y 的整式方程,那么这个整式方程是( ) A. 230y y +-=; B.2310y y -+=; C.2310y y -+=; D.2310y y --=;7、分式方程23122x x x+=--的解为( ) A. x =1; B. x =2; C. x =13; D. x =0; 8、关于x 的方程233x k x x =+--无解,则k 的值为( ) A. 3; B. 0; C. ±3; D. 无法确定;9、若22347x x ++的值为14,则21681x x +-的值是( ) A. 1; B. -1; C. 17- ; D. 15; 10、为迎接“六一”儿童节,某儿童品牌玩具专卖店购进A 、B 两类玩具,其中A 类玩具的进价比B 类玩具的进价每个多3元,经调查:用900元购进A 类玩具与用750购进B 类玩具的数量相同,设A 类玩具的进价为m 元/个,根据题意可列出方程是( )A.9007503m m =+;B. 9007503m m =+; C. 9007503m m =-; D. 9007503m m=-; 二、填空题:(24分)11、代数式13x -在实数范围内有意义,则x 的取值范围是 。

八年级数学上册第1章分式单元综合测试1含解析湘教版

八年级数学上册第1章分式单元综合测试1含解析湘教版

《第1章分式》一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个2.已知x≠y,下列各式与相等的是()A.B.C.D.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.06.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数10.已知=3,则的值为()A.B.C.D.﹣11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.412.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.8113.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.二、填空题:14.分式、、的最简公分母是.15.已知,用x的代数式表示y=.16.若5x﹣3y﹣2=0,则105x÷103y=.17.若ab=2,a+b=﹣1,则的值为.18.计算6x﹣2(2x﹣2y﹣1)﹣3=.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.20.使分式方程产生增根,m的值为.21.已知:=+,则A=,B=.22.当x=时,代数式和的值相等.23.用科学记数法表示:0.000000052=.24.计算=.三、解答题25.计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.26.解分式方程:(1)(2).27.有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3",但她的计算结果也是正确的,请你解释这是怎么回事?28.点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x的值.29.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?30.若,,求的值.湘教新版八年级数学上册《第1章分式》单元测试卷(1)参考答案与试题解析一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在,的分母中含有字母,属于分式.在x+y,﹣4xy,的分母中不含有字母,属于整式.故选:B.【点评】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.已知x≠y,下列各式与相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质可以得到答案.【解答】解:∵x≠y,∴x﹣y≠0,∴在分式中,分子和分母同时乘以x﹣y得到:,∴分式和分式是相等的,∴C选项是正确的,故选:C.【点评】本题主要考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质,此题基础题,比较简单.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④【考点】负整数指数幂;零指数幂.【分析】①、④根据同底数幂作答;②由幂的乘方计算法则解答;③由零指数幂的定义作答.【解答】解:①a m.a n=a m+n,同底数幂的乘法:底数不变,指数相加;正确;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn,根据幂的乘方计算法则,正确;③若a≠b且ab≠0,当a=﹣b即a+b=0时,(a+b)0=1不成立,任何非零有理数的零次幂都等于1,错误;④∵a是自然数,∴当a=0时,a﹣3.a2=a﹣1不成立,错误.故选B.【点评】本题主要考查的是同底数幂的乘法、幂的乘方、零指数幂等知识.5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.0【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.6.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【考点】分式的基本性质.【分析】把原式中的x、y分别换成3x、3y进行计算,再与原分式比较即可.【解答】解:把原式中的x、y分别换成3x、3y,那么=×,故选C.【点评】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个【考点】分式的值.【分析】由于x是整数,所以1+x也是整数,要使为正整数,那么1+x只能取6的正整数约数1,2,3,6,这样就可以求得相应x的值.【解答】解:由题意可知1+x为6的正整数约数,故1+x=1,2,3,6由1+x=1,得x=0;由1+x=2,得x=1;由1+x=3,得x=2;由1+x=6,得x=5.∴x为0,1,2,5,共4个,故选C.【点评】认真审题,抓住关键的字眼,是正确解题的出路.如本题“整数x”中的“整数”,“的值为正整数”中的“正整数”.8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.10.已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法中考题中常用,是热点.11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.4【考点】由实际问题抽象出分式方程.【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72﹣x=,故①②④正确,故正确的有3个,故选C.【点评】解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.12.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【考点】分式的混合运算.【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.13.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.【考点】列代数式(分式).【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水m千克,则其中含盐为m×=千克.故选:D.【点评】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.二、填空题:14.分式、、的最简公分母是6abc.【考点】最简公分母.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是6,a 的最高次幂是1,b的最高次幂是1,c的最高次幂是1,所以三分式的最简公分母是6abc.故答案为:6abc.【点评】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15.已知,用x的代数式表示y=.【考点】等式的性质.【分析】根据等式的基本性质可知:先在等式两边同乘(y﹣1),整理后再把x的系数化为1,即可得答案.【解答】解:根据等式性质2,等式两边同乘(y﹣1),得y+1=x (y﹣1)∴y+1=xy﹣x,∴y(x﹣1)=1+x∴y=.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.若5x﹣3y﹣2=0,则105x÷103y=100.【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x ﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.17.若ab=2,a+b=﹣1,则的值为.【考点】分式的加减法.【分析】先将分式通分,再将ab=2,a+b=﹣1代入其中即可得出结论.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了分式的加减运算.解决本题首先应通分,然后整体代值.18.计算6x﹣2(2x﹣2y﹣1)﹣3=x4y3.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】结合单项式乘单项式的运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.进行求解即可.【解答】解:原式=6x﹣2x6y3=x4y3.故答案为:x4y3.【点评】本题考查了单项式乘单项式的知识,解答本题的关键在于熟练掌握该知识点的概念和运算性质.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.【考点】规律型:数字的变化类.【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【解答】解:由数据,,,可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.故答案为:.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.使分式方程产生增根,m的值为±.【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.已知:=+,则A=1,B=2.【考点】分式的加减法.【分析】已知等式右边两项通分并利用同分母分式的加法法则计算,利用多项式相等的条件即可求出A与B的值.【解答】解:∵==,∴A+B=3,﹣2A﹣B=﹣4,解得:A=1,B=2,故答案为:1;2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.当x=9时,代数式和的值相等.【考点】解分式方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x+3=3x﹣6,解得:x=9,经检验x=9是分式方程的解,故答案为:9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.用科学记数法表示:0.000000052=5。

湘教版数学八年级上册1分式测试题1

湘教版数学八年级上册1分式测试题1

初中数学试卷分式测试题一、选择题(每题 3 分,共 30 分)1. 在以下各式 3a2, x2, 3a b, ( x 3) (x 1), m 2, a中,是分式的有( )2x 4 mA.2 个B.3 个个D.5 个2. 要使分式3x 存心义,则 x 的取值范围是( )3x 77 7 C.x< 77A.x=B.x>33333. x 2 4x 等于()若分式的值为零,则2x4C. 24. 假如分式6 x 的值的个数是()的值为正整数,则整数1 xA.2 个B.3 个C.4 个D.5 个5.有旅客 m 人,若果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为( )m 1m 1C.m 1 mA.nB.nD.1nn6.把 a 千克盐溶于 b 千克水中,获得一种盐水,如有这类盐水 x 千克,则此中含盐( )A.ax 千克 B.bx 千克 C.a x千克D.ax千克a ba ba bb7. 计算x ( x1 )1 ) 所得的正确结论为(x x11A. 1C.xx 18. 若11 1 ,则 ba 3 的值是( )a b a b a bA -2B 2C 3D -39.一轮船从 A 地到 B 地需 7天,而从 B 地到 A 地只要 5天,则一竹排从 B 地漂到 A 地需要的天数是()A . 1210. 某工地调来 72 人参加挖土和运土,已知 3 人挖出的土 1 人恰巧能所有运走。

如何分配劳动力才 能使挖出的土能实时运走且不窝工。

解决此问题,可设派x 人挖土,其余人运土,列方程为①72 x 1 x ④x)x② 72-x=③ x+3x=723 上述所列方程正确的有(3372 xA.1 个B.2 个C.3 个D.4 个二、填空题(每题3 分,共 30 分)11. a20,则 a=.若分式的值为(a 2)( a 3)12. 已知当 x=-2时,分式xb 无心义, x=4 时,此分式的值为 0 ,则 a+b= .x a 13.xm 无解,则 m 的值为 __________若对于 x 的分式方程32x x314. 3a9a 2b.化简 14b 得2b3a15. 使分式方程xm 2产生增根, m 的值为.3 23x x16. 已知xy z, 求x2 y z的值为 .2 342xy z17. 已知x 5 AB 1)( x 3) x 1x 3 ( x a 2b 9 ,则 a : b=18. 已知b 52a,整式 A 、 B 的值分别为..19. 若 x23x 1 0 ,求分式x 2 的值x 4 x 2 120. 若分式x 2 1 x 的取值范围是 __________3x 的值为负数,则2三、解答题(共 60 分)21. ( 5 分)计算(x x)4x 2 x 2x ;x2a 2b 2 a 2 b 2 22. ( 5 分)化简b2;aab2 x x 1323. ( 5 分)化简:1。

(黄金题型)湘教版八年级上册数学第1章 分式含答案

(黄金题型)湘教版八年级上册数学第1章 分式含答案

湘教版八年级上册数学第1章分式含答案一、单选题(共15题,共计45分)1、分式方程的解是 ( )A. B. C. D.2、下列运算中,计算结果正确的是()A.a 2•a 3=a 6B.(a 2)3=a 5C.(a 2b)2=a 2b 2D.(﹣a)6÷a=a 53、若分式的值为0,则x的值为()A.x=1B.x=-1C.x=1或x=-1D.x≠14、下列运算正确的是()A.x 2+x 4=x 6B.x 6÷x 3=x 2C.D.5、下列分式中,是最简分式的是()① ,② ,③ ,④ ,⑤A.1个B.2个C.3个D.4个6、要使分式有意义,则的取值应满足( )A. B. C. D.7、若分式的值等于0,则x的值为().A.-1B.1C.0D.28、若代数式有意义,则实数的取值范围是()A. B. C. D.9、某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球的2倍,购买足球用了4000元,购买篮球用了2800元,篮球单价比足球贵16元.若可列方程表示题中的等量关系,则方程中x表示的是()A.足球的单价B.篮球的单价C.足球的数量D.篮球的数量10、下列四个数中最大的数是()A. B. C. D.11、用换元法解方程,设,那么换元后,方程可化为整式方程正确的是()A. B. C. D.12、如果把分式中的x,y都扩大7倍,那么分式的值()。

A.扩大7倍B.扩大14倍C.扩大21倍D.不变13、分式的值为零,则x的值为A.﹣1B.0C.±1D.114、若关于x的分式方程无解,则m的值为( )A.1B.2C.3D.415、若分式有意义,则x的取值范围是()A. B. C. 且 D.二、填空题(共10题,共计30分)16、则m=________17、若分式的值为正数,则的取值范围为________.18、计算:________.19、甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为________.20、计算:________.21、计算:﹣22+|﹣4|+()﹣1=________ .22、如图①是一个边长为的正方形剪去一个边长为1的小正方形,图②是一个边长为的正方形,设图①,图②中阴影部分的面积分别为,,则可化简为________.23、计算:=________.24、﹣22﹣+|1﹣4sin60°|+()0=________ .25、分式方程=1的解为________三、解答题(共5题,共计25分)26、计算:|﹣|﹣+(3﹣π)0.27、解方程:28、一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.29、计算:(﹣1)2016+2sin60°﹣|﹣|+π0.30、计算:.参考答案一、单选题(共15题,共计45分)1、A2、D3、A4、C5、A6、D7、A8、A9、D10、C11、D13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
分式测试题
一、选择题(每小题3分,共30分)
1.在下列各式m a
m x x b a x x a ,),1()3(,43
,2,322
2
--÷++π中,是分式的有( )
A.2个
B.3个
C.4个
D.5个
2.要使分式733-x x
有意义,则x 的取值范围是( ) A.x=37 B.x>37 C.x<37 D.x ≠37
3.若分式424
2
--x x 的值为零,则x 等于( )
A.2
B.-2
C.2±
D.0
4.如果分式x +16
的值为正整数,则整数x 的值的个数是( )
A.2个
B.3个
C.4个
D.5个
5.有游客m 人,若果每n 个人住一个房间,结果还有一个人无房住,这客房的间数为(
) A.n m 1
- B.1-n m C.n m 1
+ D.1+n m
6.把a 千克盐溶于b 千克水中,得到一种盐水,若有这种盐水x 千克,则其中含盐( )
A.b a ax
+千克 B.b a bx
+千克 C.b a x
a ++千克 D.
b ax
千克
7.计算)1
(1x x x x
-÷-所得的正确结论为( ) A.11-x B.1 C.11
+x D.-1
8.若3,1
11--+=-b a
a b
b a b a 则的值是( )
A -2
B 2
C 3
D -3
9.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )
A .12 B.35 C.24 D.4
10.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走。

怎样调配劳动力才能使挖出的土能及时运走且不窝工。

解决此问题,可设派x 人挖土,其他人运土,列方程为①3172=-x x ②72-x=3x ③x+3x=72 ④372=-x
x 上述所列方程正确的有( ) A.1个 B.2个 C.3个 D.4个
二、填空题(每小题3分,共30分)
11.若分式)3)(2(2
+--a a a 的值为0,则a= .
12.已知当x=-2时,分式a
x b x -- 无意义,x=4时,此分式的值为0,则a+b= . 13. 若关于x 的分式方程
323-=--x m x x 无解,则m 的值为__________ 14.化简1⎪⎭
⎫ ⎝⎛⋅÷÷a b b a b a 324923得 . 15.使分式方程3
232
-=--x m x x 产生增根,m 的值为 . 16. 已知4
32z y x ==,z y x z y x +--+22求的值为 . 17. 已知3
1)3)(1(5-++=-++x B x A x x x ,整式A 、B 的值分别为 . 18.已知5
922=-+b a b a ,则a :b= . 19. 若0132=+-x x ,求分式的值1
242
++x x x 20.若分式2
312-+x x 的值为负数,则x 的取值范围是__________
三、解答题(共60分)
21.(5分)计算(
22+--x x x x )2
4-÷x x ;
22.(5分)化简⎪⎪⎭
⎫ ⎝⎛++÷--ab b a b a b a 22222;
23.(5分)化简:⎪⎭
⎫ ⎝⎛--+÷--13112x x x x 。

24.(5分)化简 ()
2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+
;
25.(5分)先化简代数式()()n m n m mn n m n m n m n m -+÷⎪⎪⎭
⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代
入求值。

26.(5分)若关于x 的方程
x
x x k --=+-3423有增根,试求k 的值。

27.解分式方程(10分) 1. 13)1(251+=++-
x x x x 2. 2
641313-=--x x
27.(10分)A,B 两地相距80千米,一辆公共汽车从A 地出发开往B 地,2小时后,又从A 地开来
一辆小汽车,小汽车的速度是公共汽车的3倍。

结果小汽车比公共汽车早到40分钟到达B 地。

求两种车的速度。

28. (10分)某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然
供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。

相关文档
最新文档