最新人教版七年级数学上册第四章复习导学案1
人教版七年级数学上册导学案 第四章几何图形初步 4.1.1立体图形与平面图形
人教版七年级数学上册导学案第四章几何图形初步 4.1.1立体图形与平面图形【学习目标】1.认识以生活中的事物为原型的几何图形;2.认识一些简单几何体的基本特性,能识别这些简单几何体.3.能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解立体图形与平面图形.【课前预习】1.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体2.按组成面的平或曲划分,与圆柱为同一类的几何体是()A.长方体B.正方体C.棱柱D.圆锥3.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利4.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥5.乐乐玩橡皮泥时,将一个底面直径为4cm,高为4cm的圆柱,捏成底面直径为3.2cm的圆柱,则圆柱的高变成了()A.7.5cm B.6.25cm C.5cm D.4.75cm6.一个无盖的正方体盒子的平面展开图可以是下列图形中的()A.图2B.图1或图2C.图2或图3D.图1或图37.如图,点D,E,F分别是等边三角形ABC的边AB,BC,CA的中点,现沿着虚线折起,使A,B,C三点重合,折起后得到的立体图形是( )A.正方体B.圆锥C.棱柱D.棱锥8.下列几何体中,属于棱柱的有()A.6个B.5个C.4个D.3个9.下列所述物体中,与球的形状最类似的是()A.电视机B.铅笔C.西瓜D.烟囱冒10.奥运会的标志是五环,这五环的每一个环的形状与下列图形中类似的是()A.三角形B.正方形C.圆D.长方体【学习探究】自主学习阅读课本,完成下列问题1、观察下列几何图形(1)图中的长方体、正方体都有六个面,它们的各部分不都在__________内。
初一数学上册第四章复习教案
初一数学上册第四章复习教案:基本平面图形七年级(上)第四章复习平面图形及其位置关系基本概念:一、线段、射线、直线1.直线:表示为:直线AB ,(或)直线BA.表示为:直线c2.射线:表示为:射线OM,注意端点字母一定要写在前边.表示为: 射线m3.线段:表示为:线段AB ,(或)线段BA.表示为: 线段m4.直线的性质:经过两点只有一条直线.5.线段的性质: 在两点的所有连接的线中,线段最段.两点之间线段的长度叫两点间的距离.6.线段的中点: 把一条线段分成两条相等的两条线段的点叫作线段的中点.例如: M是线段AB的中点,则AM = MB =二、角7.角的定义:具有公共端点的两条射线所组成的图形叫做角.8.角的表示:(1). 三个大写字母表示:∠AOB, ∠ABD, ∠ABC, ∠DBC(2). 一个大写字母表示:∠A, ∠B, ∠C(3).希腊字母表示:∠α∠β∠γ(4). 数字表示:∠1 ∠2 ∠39.角也可以看做是一条射线绕端点旋转得到的.10、锐角、直角、钝角、平角、周角的概念和大小(1)平角:角的两边成一条直线时,这个角叫平角。
(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。
(3)0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。
11.角的度量: 1°= 60′, 1′= 60″12. 角平分线意义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角平分线∵∠AOC=∠BOC= ∠AOB13.点方位:∠1.北偏东60°,∠2.北偏西30°,∠3.西偏南60°∠4.南偏东45°,∠5.东偏南45°三、平行线和垂线14.同一平面内两直线的位置:相交或平行.15. 平行线的表示:直线a∥b或直线AB∥CD直线m与直线相n交于O.16.平行线的性质:(1).经过直线外一点,有且只有一条直线与这条直线平行.(2).如果两条直线都与第三条直线平行,那么这两条直线互相平行.∵ l1∥l2, l2∥l3 ∴l1∥l317.垂直的定义:如果两条直线相交成直角,那么这两条直线互相垂直.18.垂直的表示:直线AB垂直于直线CD表示为:AB⊥CD或a⊥b19.垂线的性质:(1).平面内经过一点有且只有一条直线和已知直线垂直.(2).直线外一点与直线上各点的连线中,垂线段最短.垂线段的长度叫做点到直线的距离.如图:PA>PB>PC>PD, 线段PD的长度就是P点到直线AB的距离.四、七巧板七巧板的制作:七巧板由5块三角形,1块正方形,一块平行四边形组成。
部编RJ人教版 初一七年级数学 上册第一学期秋季(导学案)第四章 几何图形初步(全章 分课时)
第四章 几何图形初步. .根据已有的数学经验,我们能否把它们进行分类?你的标准是什么?要点归纳2. 观察小茗的房间,说说你能看到哪些立体图形.探究点3:平面图形观察与思考:说一说下面这些几何图形又有什么共同特点?画一画A. ①⑤①B. ①C. ①⑤⑥D. ⑤⑥4. 月球、西瓜、易拉罐、篮球、热水瓶胆、书本等物体中,形状类似圆柱的有6. 图中的各立体图形的表面包含哪些平面图形?试指出这些平面图形在立体图形中的 位置.第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第2课时 从不同的方向看立体图形和立体图形的展开图学习目标:1. 了解立体图形与平面图形之间的联系.2. 能画出简单立体图形从不同方向看得到的平面图形.3. 了解研究立体图形的方法,体会一个立体图形按照不同方式展开可得到不 同的平面展开图.4. 通过展开与折叠,了解棱柱、棱锥、圆柱、圆锥、长方体、正方体的表面 展开图或根据展开图判断立体图形.重点:了解立体图形从不同方向看能够得到平面图形,了解基本几何体与其展开图的关 系,体会一个立体图形可以有多种展开图.难点:会画简单立体图形从不同方向看得到的平面图形,能够画出简单立体图形的展开 图,或根据展开图判断立体图形.二、要点探究探究点1:从不同的方向看立体图形 合作探究:画出正方体、长方体、圆柱体、圆锥、四棱锥、三棱柱从正面、左面、上面看得到的平面图形.这些展开图有没有什么规律?哪些展开图可以分为一类,为什么?2. “坚”在下,“就”在后,“胜”和“利”在哪里?3. 下面图形是一些多面体的表面展开图二、课堂小结常见几何体的展开图:1. 下图所示的从正面、上面看到的图形对应的是 ( )2. 下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )3. 下图是由一些相同的小正方体构成的几何体的从正面、左面、上面看得到的三个平面图形,这些相同的小正方体的个数是 ( ) A .4个B .5个C .6个D .7个4. 下列的三幅平面图是三棱柱的表面展开图的有(多选) ( )5. 如图是一个立方体纸盒的展开图,使展开图沿虚线折叠成正方体后相对面上的两个数互为相反数,求:a= ;b= ;c= .第四章几何图形初步..包,线和线相交的地方是.这可以说成点动成线. 类如下图,围成这些立体图形的各个面中,哪些面是平的?哪些面是曲的?请把下图中的平面图形与其绕轴旋转一周后得到的立体图形连接起来.,宽为2cm的长方形,绕其一边进行旋转得到一几何体.这个几何体是什么?4.2 直线、射线、线段第1课时 直线、射线、线段.. ..将你联想到的图形填在图形下边的横线上(填._________________ _______________ ________________ 2.自己动手,分别画一条直线、射线和线段. A ,B 可以画几条直线? .简称:两点确定一条直线.. 并使其不能转动,至少需要几个钉子?你知道这样做 .A.B相交于点O4.2 直线、射线、线段第1课时 直线、射线、线段... ....AB )等于已知线段(a )的作法: AC 上截取AB=a.,CD 的长短.AB 、CD 的长度,再进行比较:几何语言:∵ M 是线段 AB第3题图第1题图第2题图要点归纳:1.两点的所有连线中,_____最短.简称:两点之间,2.连接两点间的线段的,叫做这两点的距离.两个村庄,如图,现在要在公路l上建一个汽两村庄的距离之和最小,请在图中画出汽车站的位置第2题图4.3 角4.3.1 角.... ._______组成的图形,叫做角.这个公共端点叫做角的叫做角的两条边.四、我的疑惑______________________________________________________________________________________________________________________________________________________六、要点探究探究点1:角的概念及表示方法问题1 有哪些方式可以表示如图所示的角?问题2 下图中有哪些角?如何表示?还能用∠O 表示∠AOB 吗?要点归纳:角的表示方法:①用一个大写字母表示,该大写字母表示的点为顶点;②用三个大写字母表示;③用一个数字或一个小写希腊字母表示.注意:①当两个或两个以上的角共同一个顶点时,不能用一个大写字母表示;②当用三个大写字母表示角时,必须把顶点字母放在中间;③用数字或希腊字母表示角时,一定要在图形中用角弧标出.思考:角也可以看做由一条射线绕着它的端点旋转所形成的图形. 如图,射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,形成什么角?继续旋转,OB 和OA 重合时,又形成什么角?1.用一个大写字母表示:∠_____2.用三个大写字母表示:∠_____或∠_____3.用一个小写希腊字母或数字表示:∠_____图中的角有___________________________________ ____________________________________________. ___________(填“能”或不能)用∠O 表示∠AOB.下列说法正确的是平角是一条直线填写下表,将图中的角用不同方法表示出来.°.1°=′;针对训练1.计算:(1)5°=(3)36″=当堂检测5.如图所示:-1) 条呢?4.3 角4.3.2 角的比较与运算....针对训练如图所示:(1) ∠AOC是哪两个角的和?(2) ∠AOB是哪两个角的差?(3) 如果∠AOB=∠COD,则∠AOC与∠BOD的大小关系如何?(1) 如图①,若∠AOC=35°,∠BOC=40°,则∠AOB=度.(2) 如图②,若∠AOB= 60°,∠BOC=40°,则∠AOC=度.(3) 若∠AOB=60°,∠AOC=30°,则∠BOC=度.易错提醒:在计算角的度数时,若无图,一定要注意分类讨论.试一试:如图,借助一副三角尺可以画出15°和75°的角,你还能画出哪些度数的角?例2计算(1)120°-38°41′;(2)67°31′+48°49′.的角的射线,叫做这个角的平分线..4.3.3 余角和补角... . 1+∠2= °, 图① 90°(直角),就说这两个角互为______ (简称为两个角______ ). 是∠2的余角,或∠2是∠1的余角,或∠1和∠2互余.180°(平角),就说这两个角互为______ (简称为两个角______). 是∠4的补角,或∠4是∠3的补角,或∠3和∠4互补.的补角探究点3:方位角八大方位 正东: 正南: 正西: 正北: 西北方向: 西南方向: 东北方向: 东南方向:例4 如图,货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上. 同时,在它北偏东40°,南偏西10°,西北 (即北偏西45°)方向上又分别发现了客轮B ,货轮C 和海岛D . 仿照表示灯塔方位的方法画出表示客轮B ,货轮C 和海岛D 方向的射线.针对训练1. 如图,说出下列方位(1) 射线 OA 表示的方向为 . (2) 射线 OB 表示的方向为 .(3) 射线 OC 表示的方向为 . . (4) 射线 OD 表示的方向为 .2.费俊龙、聂海胜乘坐“神舟”六号遨游太空时,我国当时派出远望一号~四号船队,跟踪检测. 其中远望一、二号停在太平洋洋面上,某一时刻,分别测得神舟六号在北偏东60°和北偏东30°的方向,你能在下图中画出当时神舟六号所处的位置吗?的北偏东60°的方向上,那么点A在点C。
新人教版七年级上数学第四章导学案(1)
第四章 图形认识初步4.1.1认识几何图形(1)编号:7SX042 主备人:王亚玲 审核: 时间:班级: 第 小组 姓名: 等级:导学目标:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。
重点难点:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。
导学指导一、改变旧世界同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。
图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。
二、知识新天地1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学导学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。
2.立体图形(1)纸盒(1)长方体 (2)长方形(3)正方形(4)线段 点思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。
想一想生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。
(完整版)新人教版七年级上册数学导学案(全册)
七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
七年级数学第四章复习
第四章代数式班级 姓名(一)概念:1.由数、表示数的字母和运算符号组成的数学表达式称为 。
这里的运算是指 、 、 、 、 、 。
单独的一个数或者一个字母也称代数式。
用数代替代数式里的字母,计算后所得的结果叫做 。
练习:用代数式表示:(1)的差与的3131a(2)的差的立方根与b a(3)倍的差的倍与的3y 2x(4)乘积的差,两数的平方和与,b a b a2.由数与字母或字母与字母相乘组成的代数式叫做 。
单项式中数字因数叫做这个单项式的 。
所有字母的指数和叫做这个单项式的 。
由几个 相加组成的代数式叫做多项式。
在多项式中,每个单项式叫做多项式的 ,不含字母的项叫做 , 就是这个多项式的次数。
单项式、多项式统称为 。
练习:(1)代数式xy ab a a b a a a -+--,5,12,,2,3,32中,哪些是单项式?哪些是多项式?哪些是整式?单项式:多项式:整式:3.多项式中,所含 相同,并且 也相同的项,叫做同类项。
主要运算法则:合并同类项:把同类项的 相加,所得的结果作为系数 不变。
练习:合并同类项:(1)x x 52+- (2)222ba ab b a --(3)22r r π+ (4)12352222---+y x xy y x xy4.整式的加减:(1)去括号法则:括号前面是“+”号,把 去掉,括号里各项 ;括号前面是“-”号,把 去掉,括号里各项 。
(2)整式的加减运算可归结为 和 。
练习:将下列各式去括号(1)+(2a-3b ) (2))2132(+--x(3))32(32x x -- (4))21(2y x --2、化简 (1))3(21---x x (2)())36(316421x x -+--3.2b 21a )(2)ab b a 22=-=---,,其中化简并求值:(ba ab4.某企业有A,B 两类经营收入,今年A 类年收入是B 类年收入的2倍,预计明年A 类年收入将减少10%,B 类年收入将增加18%。
人教版七年级上册第四章《图形初步认识》复习导学案
⎧⎨⎩⎧⎨⎩七级上数学NO :4 主备人:银 波 审核人: 授课人:第 周 星期 第 组 学生 预习评价: 整理评价第四章《图形初步认识》期末复习一、知识回顾(一)几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形 平面图形:三角形、四边形、圆等。
主(正)视图---------从正面看2、几何体的三视图 侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段 1、基本概念经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段: (1)度量法(2)用尺规作图法 4、线段的大小比较方法: (1)度量法(2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。
图形:符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM 。
6、线段的性质: 两点的所有连线中,线段最短。
简单地:两点之间,线段最短。
7、两点的距离: 连接两点的线段长度叫做两点的距离。
8、点与直线的位置关系:(1)点在直线上 (2)点在直线外。
(三)角1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):3、角的度量单位及换算4、角的分类:5、角的比较方法:(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
七年级数学上册第四章几何图形初步章末复习导学案人教版.doc
章末复习一、复习导入1.导入课题:同学们,通过对本章的学习后,你对本章的知识结构和知识要点、知识应用等方面是否有个清醒的认识呢?为了加强同学们对本章的知识的理解和应用,下面我们一起来对本章进行小结复习.2.三维目标:(1)知识与技能①认识一些简单的几何体的平面展开图及会画从不同方向看立体图形的平面图形.②掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法,会进行线段、角的基本运算.(2)过程与方法①通过引导学生共同回顾本章知识点,建立知识间联系.②结合图形,指导学生进行线段与角的计算,形成识图和解题能力.(3)情感态度逐步培养学生读图能力,体会数形结合的数学思想.3.学习重、难点:重点:知识要点及简单应用.难点:运用几何知识进行简单推理和计算.二、分层复习1.复习指导:(1)复习内容:教材第146页至第147页第二行.(2)复习时间:5~8分钟.(3)复习方法:边看书、边回顾、边交流总结归纳,将知识结构和概念性质、解题方法技巧、简单的几何应用,整理记录笔记并相互展示交流.(4)复习参考提纲:①②点、线、面之间有什么联系?直线、线段、射线之间有什么联系和区别?点动成线,线动成面.联系:射线、线段都是直线的一部分,线段是直线的有限部分.区别:直线无端点,长度无限,向两方无限延伸.射线只有一个端点,长度无限,向一方无限延伸.线段有两个端点,长度有限.③线段、角的大小如何度量?角度单位间如何换算?线段的长度用刻度尺来度量,角的大小用量角器度量.1°=60′,1′=60″.④如果∠α与∠β互余,那么∠α+∠β=90°,反过来成立吗?成立⑤如果∠α与∠β互补,那么∠α+∠β=180°,反过来成立吗?成立⑥如图,点M、N分别是AC、BC的中点,AB=10 cm,求MN的长.由题意,MC=12AC,CN=12CB,所以MN=MC+CN=12AC+12CB=12AB=5 cm⑦如图,∠AOB=90°,∠BOC=30°,OM、ON分别平分∠AOB和∠BOC,求∠MON的度数.由题意:∠MOB=12∠AOB,∠BON=12∠BOC,所以∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=60°⑧在本章知识中,直线、线段和角有哪些重要结论?相互交流一下.2.自主复习:学生可参照复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师深入课堂巡视,了解学生对本章知识的掌握情况,倾听交流学习中的问题以及学生们反馈的疑难信息.②差异指导:教师对学习中的共性问题或突出的个性问题适时点拨引导.(2)生助生:学生进行小组内的交流,疑点在生与生之间交流互助解决.4.强化复习:(1)知识结构.(2)知识要点.(3)重要结论.(4)研究问题的方法.(5)知识运用.1.复习指导:(1)复习内容:典例剖析.(2)复习时间:8分钟.(3)复习方法:按例题的分析引领,积极思考,并予以解答.(4)复习参考提纲:例1:如图,是一个建筑材料从三个不同方向看的图形,根据图中提供的数据(单位:cm),请你求出这个几何体的体积.分析:根据三个不同方向看的图形想象出几何体的形状,再依据它的体积计算方法和图中数据进行计算.这个几何体的体积为2×1×1=2 (cm 3).例2:①如图,已知点C 在线段AB 上,且AC=6 cm ,BC=14 cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度.②在①中,如果AC=a cm ,BC=b cm ,你能猜测出MN 的长度吗?请用一个代数式表述你发现的结果,并说明理由.③如果第①题叙述改为:“已知线段AC=6 cm ,BC=14 cm ,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求MN 的长度.结果会有变化吗?如果有,求出结果.分析:①根据中点的概念易求出MN 的长;②按①中的思路写出含a 、b 的代数式;③分析“点C 在直线AB 上”和“点C 在线段AB 上”的区别,想一想,点C 与点A 、B 的位置关系确定吗?若不确定,该如何考虑解决?③ MN=10 cm ;②2a b +; ③Ⅰ.C 在AB 中间,此时MN=AC+BC2=10 cm;Ⅱ.C 在A 左边,此时MN=2BC AC +=4 cm. 2.自主复习:同学们在复习指导下进行复习,力求独立求解,若有困难,可请教他人或相互协作完成.3.互助复习:(1)师助生:①明了学情:教师深入课堂了解学生的学习进度,遇到的困难和出现的问题,尤其关注例2的第③小题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流研讨,互帮互学.4.强化复习:(1)各小组展示学习成果,得出例题的规范解答.(2)练习:①一个角的补角与这个角的余角的和比平角少10°,求这个角的度数.②已知∠AOC=86°,∠BOC=42°,射线OD、OE分别是∠AOC、∠BOC的平分线,求∠DOE 的度数.解:①50°;②第一种情况:,∠DOE=64°;第二种情况:,∠DOE=22°三、评价1.学生的自我评价:让各组学生代表交流自己在本节课中如何复习,如何交流探讨,有哪些新收获、新发现和悬而未决的问题.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度,方法和成效进行归纳点评.(2)纸笔评价:课堂检测题.3.教师的自我评价(教学反思):本课时的复习目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合应用数学知识,灵活地分析和解决问题的能力.本章关键是要抓住基本概念,并通过图形将全章知识串联起来,利用知识间的联系加强理解,便于实际应用,提高计算能力.一、基础巩固1.(10分)下列图形不是立体图形的是(C)A.圆柱体B.球C.圆D.三棱锥2.(10分)若∠1=35°12′,∠2=35.1°,∠3=35.2°,则下列结论正确的是(B)A.∠1=∠2B.∠1=∠3C.∠2=∠3D.∠1=∠2=∠33.(10分)下列用几何语言叙述图形的含义正确的有(D)点A在直线l外直线l经过点O 直线a、b交于点O 点A,B,C在直线l上A.1个B.2个C.3个D.4个4.(10分)如图所示,点C是线段AB上的一点,且AC=2BC,下列说法中正确的是(C)A.BC=12AB B.AC=12ABC.BC=13AB D.BC=13AC5.(10分)如图是一个立体图形从下列不同方向看到的平面图形,则这个立体图形是圆锥.A.从正面看B.从左面看C.从上向下看6.(10分)时钟显示为7:30时,时针与分针所夹的角是45°.7.(10分)如图所示,已知点O是直线AB上一点,∠AOC=90°,∠EOD=90°,那么图中互余的角的对数有4对.二、综合应用8.(10分)设∠α,∠β度数分别为(2n-1)°和(68-n)°,且∠α,∠β都是∠ν的补角.(1)试求n的值;(2)∠α与∠β能否互为余角,为什么?解:(1)n=23;(2)能,当n=23时,∠α=∠β=45°,此时∠α+∠β=90°,所以∠α与∠β互余.9.(10分)计算:(1)133°15′16″×4(2)31°42′÷5(精确到1″)解:133°15′16″×4=532°60′64″=533°1′4″解:31°42′÷5=6°+1°42′÷5=6°+102′÷5=6°+20′+2′÷5=6°20′+120″÷5=6°20′24″三、拓展延伸10.(10分)如图,∠AOB=90°,在∠AOB外部作锐角∠AOC,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠AOC=β(β为锐角),其他条件不变,求∠MON的度数.从(1)、(2)、(3)中的结果,你能得出什么规律?解:(1)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°.(2)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=2α.(3)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°得出规律:∠MON的度数与∠AOC的度数无关,与∠BOA的度数有关,且等于∠BOA度数的一半.。
新人教版七年级数学上册第四章导学案
新人教版七年级数学上册第四章导学案教学目标:知识目标:1、对所学的知识能准确应用来解决具体的问题 ;2、明确每一个知识具体在什么时侯进行应用。
情感与能力目标:对相近似知识点能进行区别,并准确地应用。
教学重点:对每一个知识点能进行准确、熟练应用。
教学难点:相近似知识点能进行区别。
学法指导:学生自主学习,培养学生独立思考的学习习惯。
1、等式的两条性质在应用时,何时应用加减性质?何时应用乘除性质?请你说出你的判定原则。
2、一元一次方程求解的基本步骤有五步。
是不是在解一元一次方程时五步全部出现呢?有些步骤可否重复出现吗?3、列一元一次方程解应用题的关键所在是什么?1、主要是学生回忆前面的作业中出错的题目中,自已存在的知识差异在什么地方。
2、进一步理解教材中的知识点。
1、下列变形中,正确的是 ( )A 若x x 52=,则5=x ;B 若y a x a 22=,则y x =;C 若823=-k ,则12-=k ; D 若ay a x =,则y x =。
2、 由y x =+1变形为525)1(2-=-+y x ,变形的过程中所用等式的性质及顺序是( )。
A 先性质2,再性质1; B 先性质1,再性质2; C 仅用性质1; D 仅用性质2.3、解下列方程:⑴、)6()2(3)12(2+--=+y y y ; ⑵、13126823-+=--+m m m 。
4、水池有一进水管,6小时可注满空池;它底部有一个出水管,8小时可放完满池的水;若同时打开进水管和出水管,问多少小时可以把空水池注满?(知识准备中的三个问题 )(一)基础知识探究例题1:选择或填空:⑴、下列结论正确的是 ( )A 等式5363+=-n m 两边都除以3,可得等式52+=-n m ;B 等式357+=y y 两边都减去3-x ,可得等式6436+=-y y ;C 等式t 1.05-=,可得5.0-=t ;D 等式k =-23,则有23-=k 。
七年级数学 第四章复习建议教案 新人教版 教案
第四章复习建议教案对本章知识的再认识1.本章主要内容概率意义的理解和计算概率方法是本章的主要内容而对它们的认识应从三个方面展开:(1)了解必然事件和不可能事件发生的概率,体会概率的取值在0,1之间。
(2)了解事件发生的等可能性,运用概率的语言说明游戏的公平性。
(3)体会概率的意义,能对两类概率模型进行简单计算;能设计符合要求的简单概率模型。
我们知道在七年级上册中,学生已经接触了不确定事件,初步体会了不确定事件发生的可能性有大有小。
因而在本单元中,学生进一步了解不确定现象的特点,通过具体情境去体会概率的意义,同时学习一些计算概率的方法,并通过概率帮助自己作出合理的决策。
事实上在以后的学习中,还将重点放在对不确定现象特点及概率意义的理解2.本章教学目标1.经历“猜测——试验并收集试验数据——分析试验结果”的活动过程。
2.了解必然事件、不可能事件和不确定事件发生的可能性,了解事件发生的等可能性以及游戏规则的公平性。
3.在具体情境中了解概率的意义,体会概率是描述不确定现象的数学模型。
4.对两类事件(古典概型和几何概型)发生的概率进行简单的计算,并能设计符合要求的简单概率模型。
3.本章对学生的要求1.随机观念的培养认识到概率和确定性数学一样,是科学的方法,能够有效地解决现实世界中的众多问题,同时认识到概率的思维方式与确定性思维的差异,这就是随机观念。
使学生具备随机观念,从而能明智地应付变化和不确定性,构成概率教学的主要目标。
2.培养随机观念的途径(1)使学生经历原始的随机环境,体会随机现象的特点.缺乏对随机现象的丰富体验,学生往往较难建立随机观念。
要让学生建立随机观念,必须通过熟悉而感兴趣的实际问题或游戏,让学生亲临原始的随机环境,亲自试验和收集随机数据,使他们在活动中逐步丰富对概率的认识,积累大量的活动经验,体会随机现象的特点。
(2)使学生了解概率的广泛应用,体会概率的作用。
(3)经历“提出猜测——收集和组织数据——分析实验结果——建立理论的概率模型”的过程,建立正确的概率直觉。
【导学案】七年级数学上册 第四章 章末复习
章末复习一、复习导入1.导入课题:同学们,通过对本章的学习后,你对本章的知识结构和知识要点、知识应用等方面是否有个清醒的认识呢?为了加强同学们对本章的知识的理解和应用,下面我们一起来对本章进行小结复习.2.三维目标:(1)知识与技能①认识一些简单的几何体的平面展开图及会画从不同方向看立体图形的平面图形.②掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法,会进行线段、角的基本运算.(2)过程与方法①通过引导学生共同回顾本章知识点,建立知识间联系.②结合图形,指导学生进行线段与角的计算,形成识图和解题能力.(3)情感态度逐步培养学生读图能力,体会数形结合的数学思想.3.学习重、难点:重点:知识要点及简单应用.难点:运用几何知识进行简单推理和计算.二、分层复习1.复习指导:(1)复习内容:教材第146页至第147页第二行.(2)复习时间:5~8分钟.(3)复习方法:边看书、边回顾、边交流总结归纳,将知识结构和概念性质、解题方法技巧、简单的几何应用,整理记录笔记并相互展示交流.(4)复习参考提纲:①②点、线、面之间有什么联系?直线、线段、射线之间有什么联系和区别?点动成线,线动成面.联系:射线、线段都是直线的一部分,线段是直线的有限部分.区别:直线无端点,长度无限,向两方无限延伸.射线只有一个端点,长度无限,向一方无限延伸.线段有两个端点,长度有限.③线段、角的大小如何度量?角度单位间如何换算?线段的长度用刻度尺来度量,角的大小用量角器度量.1°=60′,1′=60″.④如果∠α与∠β互余,那么∠α+∠β=90°,反过来成立吗?成立⑤如果∠α与∠β互补,那么∠α+∠β=180°,反过来成立吗?成立⑥如图,点M、N分别是AC、BC的中点,AB=10 cm,求MN 的长.由题意,MC=12AC,CN=12CB,所以MN=MC+CN=12AC+12CB=12AB=5 cm⑦如图,∠AOB=90°,∠BOC=30°,OM、ON分别平分∠AOB 和∠BOC,求∠MON的度数.由题意:∠MOB=12∠AOB,∠BON=12∠BOC,所以∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=60°⑧在本章知识中,直线、线段和角有哪些重要结论?相互交流一下.2.自主复习:学生可参照复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师深入课堂巡视,了解学生对本章知识的掌握情况,倾听交流学习中的问题以及学生们反馈的疑难信息.②差异指导:教师对学习中的共性问题或突出的个性问题适时点拨引导.(2)生助生:学生进行小组内的交流,疑点在生与生之间交流互助解决.4.强化复习:(1)知识结构.(2)知识要点.(3)重要结论.(4)研究问题的方法.(5)知识运用.1.复习指导:(1)复习内容:典例剖析.(2)复习时间:8分钟.(3)复习方法:按例题的分析引领,积极思考,并予以解答.(4)复习参考提纲:例1:如图,是一个建筑材料从三个不同方向看的图形,根据图中提供的数据(单位:cm),请你求出这个几何体的体积.分析:根据三个不同方向看的图形想象出几何体的形状,再依据它的体积计算方法和图中数据进行计算.这个几何体的体积为2×1×1=2 (cm3).例2:①如图,已知点C在线段AB上,且AC=6 cm,BC=14 cm,点M、N分别是AC、BC的中点,求线段MN的长度.②在①中,如果AC=a cm,BC=b cm,你能猜测出MN的长度吗?请用一个代数式表述你发现的结果,并说明理由.③如果第①题叙述改为:“已知线段AC=6 cm,BC=14 cm,点C 在直线AB上,点M、N分别是AC、BC的中点,求MN的长度.结果会有变化吗?如果有,求出结果.分析:①根据中点的概念易求出MN的长;②按①中的思路写出含a 、b 的代数式;③分析“点C 在直线AB 上”和“点C 在线段AB 上”的区别,想一想,点C 与点A 、B 的位置关系确定吗?若不确定,该如何考虑解决?③ MN=10 cm ;②2a b+; ③Ⅰ.C 在AB 中间,此时MN=AC+BC2=10 cm;Ⅱ.C 在A 左边,此时MN=2BC AC+=4 cm. 2.自主复习:同学们在复习指导下进行复习,力求独立求解,若有困难,可请教他人或相互协作完成.3.互助复习: (1)师助生:①明了学情:教师深入课堂了解学生的学习进度,遇到的困难和出现的问题,尤其关注例2的第③小题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流研讨,互帮互学. 4.强化复习:(1)各小组展示学习成果,得出例题的规范解答.(2)练习:①一个角的补角与这个角的余角的和比平角少10°,求这个角的度数.②已知∠AOC=86°,∠BOC=42°,射线OD 、OE 分别是∠AOC 、∠BOC 的平分线,求∠DOE 的度数.解:①50°;②第一种情况:,∠DOE=64°;第二种情况:,∠DOE=22°三、评价1.学生的自我评价:让各组学生代表交流自己在本节课中如何复习,如何交流探讨,有哪些新收获、新发现和悬而未决的问题.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度,方法和成效进行归纳点评.(2)纸笔评价:课堂检测题.3.教师的自我评价(教学反思):本课时的复习目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合应用数学知识,灵活地分析和解决问题的能力.本章关键是要抓住基本概念,并通过图形将全章知识串联起来,利用知识间的联系加强理解,便于实际应用,提高计算能力.一、基础巩固1.(10分)下列图形不是立体图形的是(C)A.圆柱体B.球C.圆D.三棱锥2.(10分)若∠1=35°12′,∠2=35.1°,∠3=35.2°,则下列结论正确的是(B )A.∠1=∠2B.∠1=∠3C.∠2=∠3D.∠1=∠2=∠3 3.(10分)下列用几何语言叙述图形的含义正确的有(D )点A 在直线l 外 直线l 经过点O 直线a 、b 交于点O 点A ,B ,C 在直线l 上A.1个B.2个C.3个D.4个4.(10分)如图所示,点C 是线段AB 上的一点,且AC =2BC ,下列说法中正确的是(C )A.BC =12AB B.AC =12AB C.BC =13AB D.BC =13AC5.(10分)如图是一个立体图形从下列不同方向看到的平面图形,则这个立体图形是圆锥.A.从正面看B.从左面看C.从上向下看 6.(10分)时钟显示为7:30时,时针与分针所夹的角是45°. 7.(10分)如图所示,已知点O 是直线AB 上一点,∠AOC=90°,∠EOD =90°,那么图中互余的角的对数有4对.二、综合应用8.(10分)设∠α,∠β度数分别为(2n -1)°和(68-n )°,且∠α,∠β都是∠ν的补角.(1)试求n的值;(2)∠α与∠β能否互为余角,为什么?解:(1)n=23;(2)能,当n=23时,∠α=∠β=45°,此时∠α+∠β=90°,所以∠α与∠β互余.9.(10分)计算:(1)133°15′16″×4(2)31°42′÷5(精确到1″)解:133°15′16″×4=532°60′64″=533°1′4″解:31°42′÷5=6°+1°42′÷5=6°+102′÷5=6°+20′+2′÷5=6°20′+120″÷5=6°20′24″三、拓展延伸10.(10分)如图,∠AOB=90°,在∠AOB外部作锐角∠AOC,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠AOC=β(β为锐角),其他条件不变,求∠MON的度数.从(1)、(2)、(3)中的结果,你能得出什么规律?解:(1)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°.(2)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=2α.(3)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°得出规律:∠MON的度数与∠AOC的度数无关,与∠BOA的度数有关,且等于∠BOA度数的一半.。
新人教七年级上册第四章第四章复习导学案
新人教七年级上册第四章章末复习一、复习导入1.导入课题:同学们,通过对本章的学习后,你对本章的知识结构和知识要点、知识应用等方面是否有个清醒的认识呢?为了加强同学们对本章的知识的理解和应用,下面我们一起来对本章进行小结复习.2.三维目标:(1)知识与技能①认识一些简单的几何体的平面展开图及会画从不同方向看立体图形的平面图形.②掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法,会进行线段、角的基本运算.(2)过程与方法①通过引导学生共同回顾本章知识点,建立知识间联系.②结合图形,指导学生进行线段与角的计算,形成识图和解题能力.(3)情感态度逐步培养学生读图能力,体会数形结合的数学思想.3.学习重、难点:重点:知识要点及简单应用.难点:运用几何知识进行简单推理和计算.二、分层复习1.复习指导:(1)复习内容:教材第146页至第147页第二行.(2)复习时间:5~8分钟.(3)复习方法:边看书、边回顾、边交流总结归纳,将知识结构和概念性质、解题方法技巧、简单的几何应用,整理记录笔记并相互展示交流.(4)复习参考提纲:①②点、线、面之间有什么联系?直线、线段、射线之间有什么联系和区别?点动成线,线动成面.联系:射线、线段都是直线的一部分,线段是直线的有限部分.区别:直线无端点,长度无限,向两方无限延伸.射线只有一个端点,长度无限,向一方无限延伸.线段有两个端点,长度有限.③线段、角的大小如何度量?角度单位间如何换算?线段的长度用刻度尺来度量,角的大小用量角器度量.1°=60′,1′=60″.④如果∠α与∠β互余,那么∠α+∠β=90°,反过来成立吗?成立⑤如果∠α与∠β互补,那么∠α+∠β=180°,反过来成立吗?成立⑥如图,点M、N分别是AC、BC的中点,AB=10 cm,求MN 的长.由题意,MC=12AC,CN=12CB,所以MN=MC+CN=12AC+12CB=12AB=5 cm⑦如图,∠AOB=90°,∠BOC=30°,OM、ON分别平分∠AOB 和∠BOC,求∠MON的度数.由题意:∠MOB=12∠AOB,∠BON=12∠BOC,所以∠MON=∠MOB+∠BON=12∠AOB+12∠BOC=60°⑧在本章知识中,直线、线段和角有哪些重要结论?相互交流一下.2.自主复习:学生可参照复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师深入课堂巡视,了解学生对本章知识的掌握情况,倾听交流学习中的问题以及学生们反馈的疑难信息.②差异指导:教师对学习中的共性问题或突出的个性问题适时点拨引导.(2)生助生:学生进行小组内的交流,疑点在生与生之间交流互助解决.4.强化复习:(1)知识结构.(2)知识要点.(3)重要结论.(4)研究问题的方法.(5)知识运用.1.复习指导:(1)复习内容:典例剖析.(2)复习时间:8分钟.(3)复习方法:按例题的分析引领,积极思考,并予以解答.(4)复习参考提纲:例1:如图,是一个建筑材料从三个不同方向看的图形,根据图中提供的数据(单位:cm),请你求出这个几何体的体积.分析:根据三个不同方向看的图形想象出几何体的形状,再依据它的体积计算方法和图中数据进行计算.这个几何体的体积为2×1×1=2 (cm3).例2:①如图,已知点C在线段AB上,且AC=6 cm,BC=14 cm,点M、N分别是AC、BC的中点,求线段MN的长度.②在①中,如果AC=a cm,BC=b cm,你能猜测出MN的长度吗?请用一个代数式表述你发现的结果,并说明理由.③如果第①题叙述改为:“已知线段AC=6 cm,BC=14 cm,点C 在直线AB上,点M、N分别是AC、BC的中点,求MN的长度.结果会有变化吗?如果有,求出结果.分析:①根据中点的概念易求出MN的长;②按①中的思路写出含a 、b 的代数式;③分析“点C 在直线AB 上”和“点C 在线段AB 上”的区别,想一想,点C 与点A 、B 的位置关系确定吗?若不确定,该如何考虑解决?③ MN=10 cm ;②2a b+; ③Ⅰ.C 在AB 中间,此时MN=AC+BC2=10 cm;Ⅱ.C 在A 左边,此时MN=2BC AC+=4 cm. 2.自主复习:同学们在复习指导下进行复习,力求独立求解,若有困难,可请教他人或相互协作完成.3.互助复习: (1)师助生:①明了学情:教师深入课堂了解学生的学习进度,遇到的困难和出现的问题,尤其关注例2的第③小题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流研讨,互帮互学. 4.强化复习:(1)各小组展示学习成果,得出例题的规范解答.(2)练习:①一个角的补角与这个角的余角的和比平角少10°,求这个角的度数.②已知∠AOC=86°,∠BOC=42°,射线OD 、OE 分别是∠AOC 、∠BOC 的平分线,求∠DOE 的度数.解:①50°;②第一种情况:,∠DOE=64°;第二种情况:,∠DOE=22°三、评价1.学生的自我评价:让各组学生代表交流自己在本节课中如何复习,如何交流探讨,有哪些新收获、新发现和悬而未决的问题.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度,方法和成效进行归纳点评.(2)纸笔评价:课堂检测题.3.教师的自我评价(教学反思):本课时的复习目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合应用数学知识,灵活地分析和解决问题的能力.本章关键是要抓住基本概念,并通过图形将全章知识串联起来,利用知识间的联系加强理解,便于实际应用,提高计算能力.一、基础巩固1.(10分)下列图形不是立体图形的是(C)A.圆柱体B.球C.圆D.三棱锥2.(10分)若∠1=35°12′,∠2=35.1°,∠3=35.2°,则下列结论正确的是(B )A.∠1=∠2B.∠1=∠3C.∠2=∠3D.∠1=∠2=∠3 3.(10分)下列用几何语言叙述图形的含义正确的有(D )点A 在直线l 外 直线l 经过点O 直线a 、b 交于点O 点A ,B ,C 在直线l 上A.1个B.2个C.3个D.4个4.(10分)如图所示,点C 是线段AB 上的一点,且AC =2BC ,下列说法中正确的是(C )A.BC =12AB B.AC =12AB C.BC =13AB D.BC =13AC5.(10分)如图是一个立体图形从下列不同方向看到的平面图形,则这个立体图形是圆锥.A.从正面看B.从左面看C.从上向下看 6.(10分)时钟显示为7:30时,时针与分针所夹的角是45°. 7.(10分)如图所示,已知点O 是直线AB 上一点,∠AOC=90°,∠EOD =90°,那么图中互余的角的对数有4对.二、综合应用8.(10分)设∠α,∠β度数分别为(2n -1)°和(68-n )°,且∠α,∠β都是∠ν的补角.(1)试求n的值;(2)∠α与∠β能否互为余角,为什么?解:(1)n=23;(2)能,当n=23时,∠α=∠β=45°,此时∠α+∠β=90°,所以∠α与∠β互余.9.(10分)计算:(1)133°15′16″×4(2)31°42′÷5(精确到1″)解:133°15′16″×4=532°60′64″=533°1′4″解:31°42′÷5=6°+1°42′÷5=6°+102′÷5=6°+20′+2′÷5=6°20′+120″÷5=6°20′24″三、拓展延伸10.(10分)如图,∠AOB=90°,在∠AOB外部作锐角∠AOC,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠AOC=β(β为锐角),其他条件不变,求∠MON的度数.从(1)、(2)、(3)中的结果,你能得出什么规律?解:(1)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°.(2)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=2α.(3)∠MON=∠MOC-∠NOC=12∠BOC-∠AOC=45°得出规律:∠MON的度数与∠AOC的度数无关,与∠BOA的度数有关,且等于∠BOA度数的一半.。
新人教版七年级上册数学导学案:第四章角的平分线及计算
新人教版七年级上册数学导学案:第四章角的平分线及计算学习目标:1 掌握角的概念及角的表示方法,并能进行角度的互换;2、会利用角平分线的意义进行有关表示或计算;3、激情投入,阳光展示,高效学习,享受学习的乐趣。
学习重难点:角的表示和角度的计算是重点;角的适当表示是难点。
教学过程:一、温故知新1下列语句正确的是()A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.2、判断下列说法是否正确(1)两条射线组成的图形叫做角()(2)平角是一条直线()(3)周角是一条射线()3、 (1)把25.72°分别用度、分、秒表示(2)把45°12′30″化成度二、自主导学阅读数学书136页例1和例2三、合作探究(两个或三个)例1、如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD的度数.例2、计算:4时15分时针与分针的夹角.四、学以致用1、已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80 ,求:∠MON.2、2时48分时针与分针的夹角.3、计算下列各题:(1)152°49′12″+20.18°;(2)82°-36°42′15″;(3)35°36′47″×9;(4)41°37′÷3.五、自主作业1.如图,已知O是直线AC上一点,OD平分∠AOB,OE在∠BOC内,且∠BOE=12∠EOC,∠DOE=70°,求∠EOC的度数.2.在7时到7时10分之间的什么时刻,时针与分针成一条直线?3、某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点多回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间?4、如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若∠AOC=x°,∠EOF=y°.则请用x的代数式来表示y;(3)如果∠AOC+∠EOF=156°,则∠EOF是多少度?5、如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的式子是()A.2α-βB.α-βC.α+βD.以上都不正确6、如图,∠AOB是直角,∠CO D也是直角,若∠AOC=α,则∠BOD等于()A.90°+αB.90°-αC.180°+αD.180°-αDAB CO8.已知9.如图,∠AO B=90º,∠AOC=30º,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数.(2)若∠AOB=α其他条件不变,求∠MON的度数.(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数Array(4)从上面结果中看出有什么规律?。
新人教版七年级数学上册导学案-第四章小结一
第四章小结(一)【学习目标】:1.通过对本章知识的小结、复习,全面系统地了解和掌握已学的知识、技能.2.学会全面系统地看问题,丰富自己的数学经验,进一步提高数学的研究能力.3.经历复习课学习的数学活动过程,了解自己所掌握知识的不足之处,认识自己的努力方向,体验数学学习的成功经验.一、学前准备1.本章我们都学习了哪些数学知识?你能用适当的方法把所学知识之间的联系表达出来吗?本章知识网:二、检测评估(一)填空题.1.如下图所示的几何体所对应的立体图形的名称分别是________,•从正面看这些立体图形可得到的平面图形分别是__________.2.如下图,其中平面图形折叠后所成的立体图形分别是________.3.长方体有______个顶点,有______条棱,有_______个面.4.如下图,用小正方体搭成一个几何体,使得从正面和上面看可以得到如下图所示的两个平面图形,则它最少需要______个小正方体,最多需要______个小正方体.(二)选择题.5.如下图,经过折叠能围成一个正方体的是().A B C D6.如下图,把左边的图形折叠起来,变成的正方体是().(三)解答题.7.如右图是一个正方体,沿着它的一些棱剪开后展成一个平面图形,•你能得到什么样的平面图形?画出这个图形.8.如下图所示,画出从正面看、从左面看、•从上面看这个立体图形得到的平面图形.9. 从图中所示方向看图中立体图形,可以得到什么平面图形,画出这三种平面图形.10.下面的五幅图分别是从左图的什么方向看到的?11.如下图,把它折成立体图形,能得到什么样的图形?它有几个面?•几条棱?几个顶点?12.如下图,是一个蒙古包模型,画出从正面看,从左面看,•从上面看到的平面图形.13.如下图,画出从正面看,从左面看,从上面看得到的平面图形.14.如下图是一个生日蛋糕,与同伴讨论如何做这样的盒子.15.下图是由几个小正方体所搭的几何体从上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请画出从正面看、从左面看得到的平面图形.。
七年级数学上册第四章几何图形初步复习导学案新版新人教版
第四章 几何图形初步复习1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题.重点:线段、射线、直线、角的性质和运用;难点:角的运算与应用、空间观念的建立和发展、几何语言的认识与运用.一、知识结构几何图形⎩⎪⎪⎨⎪⎪⎧立体图形⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫从不同方向看立体图形展开立体图形平面图形平面图形⎩⎪⎨⎪⎧直线、射线、线段⎩⎪⎨⎪⎧线段长短的比较两点确定一条直线两点之间,线段最短角⎩⎪⎨⎪⎧角的度量角的比较与运算——角的平分线余角和补角⎩⎪⎨⎪⎧等角的补角相等等角的余角相等二、回顾与思考1.下面是我们学习过的一些数学名词,你能用自己的语言简短地描述它们吗? 立体图形 平面图形 展开图 两点间的距离 余角 补角2.与以前相比,你对直线、射线、线段和角有什么新的认识? 3.直线的性质经过两点有一条直线,并且只有一条直线.即:两点确定一条直线. 4.线段的性质和两点间的距离(1)线段的性质:两点之间,线段最短.(2)两点的距离:连接两点的线段的长度,叫做两点的距离. 5.线段的中点及等分点的意义(1)若点C 把线段AB 分为相等的两条线段AC 和BC ,则点C 叫做线段AB 的中点. 角的概念1.角的定义和表示(1)有公共端点的两条射线组成的图形叫做角.这是从静止的角度来定义的.由一条射线绕着它的端点旋转而形成的图形叫做角.这是从运动的角度来定义的. (2)角的表示:①用三个大写字母表示;②用一个大写字母表示;③用阿拉伯数字或希腊字母表示. 2.角的度量1°=60′;1′=60′′. 3.角的比较比较角的方法:度量法和叠合法.4.角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线. 表示为∠AOC =∠COB 或∠AOC =∠COB =12∠AOB 或2∠AOC =2∠COB =∠AOB5.余角和补角(1)定义:如果两个角的和等于__90°__,就说这两个角互为余角.如果两个角的和等于__180°__,就说这两个角互为补角.注意:余角和补角是两个角之间的关系,只与数量有关,而与位置无关.(2)余角和补角的性质: 同角(等角)的余角相等. 同角(等角)的补角相等. 6.方位角 三、例题导引1.如右图是由几个小立方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,画出从不同方向看到的平面图形.2.(1)如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M ,N 分别是AC ,BC 的中点,求线段MN 的长;MN =7 cm.(2)若C 为线段AB 上任一点,满足AC +CB =a cm ,其他条件不变,你能猜想MN 的长度吗?并说明理由.MN =12a .(3)若C 在线段AB 的延长线上,且满足AC -BC =b cm ,M ,N 分别为AC ,BC 的中点,你能猜想MN 的长度吗?请画出图形,并说明理由.MN =12b .3.如图,∠AOB 是直角,∠AOC =50°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)求∠MON 的大小;(2)当∠AOC =α时,∠MON 等于多少度?(3)当锐角∠AOC 的大小发生改变时,∠MON 的大小也会发生改变吗?为什么? 解:(1)∠MON =45°.(2)∠MON =45°.(3)不发生变化,∠MON =12∠AOB =45°.一、选择题1.下列说法正确的是( D )A .射线AB 与射线BA 表示同一条射线 B .连接两点的线段叫做两点之间的距离C .平角是一条直线D .若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3 2.5点整时,时钟上时针与分针之间的夹角是( C ) A .210° B .30° C .150° D .60° 3.如图,射线OA 表示( B )A .南偏东70°B .北偏东30°C .南偏东30°D .北偏东70°4.下列图形不是正方体展开图的是( C )5.若∠A =20°18′,∠B =20°15′30″,∠C =20.25°,则( A ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B 二、填空题6.38°41′的余角等于51°19′,123°59′的补角等于56°1′. 7.根据下列多面体的平面展开图,填写多面体的名称. (1)长方体 (2)三棱柱 (3)三棱锥8.互为余角的两个角之差为35°,则较大角的补角是117.5°.9.45°52′48″=45.88°,126.31°=126°18′36″;25°18′÷3=8°26′.10.如图,已知CB=4,DB=7,D是AC的中点,求AC的长度.解:AC=6.11.如图,直线l表示一条笔直的公路,在公路两旁有两个村庄A和B,要在公路边修建一个车站C,使车站C到村庄A和B的距离之和最小,请找出村庄C点的位置,并说明理由.解:连接AB交l于C,点C即为所求,理由:两点之间,线段最短.。
最新人教版七年级数学上册第四章复习导学案
最新人教版七年级数学上册第四章复习导学案学习目标:1.进一步熟悉常见几何体的基本特征,能正确识别常见的几何体.2.熟悉和了解常见几何体的平面展开图以及简单几何体的三视图.3.进一步认识点、线、面、体及其相互关系.学习重点:能正确识别常见的几何体及其平面展开图.学习难点:正确作出简单几何体的三视图.使用要求:1.阅读课本P151小结2.完成教材P152复习题4第1、2、3题;3.限时25分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、知识回顾:1.什么是几何图形?几何图形可分为_______和________两大类.2.常见的立体图形:常.见.的立体图形大致可分为:柱体、锥体和球体三类.(1)下面的几何体都我们生活中常见的,你能不能找到生活中的实例图形.长方体、正方体、球、圆柱、圆锥、棱柱、棱锥、棱台、圆台等.(2)完成教材P152复习题4第1题.3.常见的平面图形:试写几个常见的平面图形,找一找生活中的实例,想一想其图形的形状. 4.点、线、面、体及其相互间的关系.5.简单几何体的三视图.从正面看从左面看从上面看按要求画出这个几何体从正面、左面、上面观察所得到的三视图.二、合作探究:1.如图,左边这个几何体的展开图可以是()A B C D【老师提示】当我们不能正确判断时,最好动手折一折.2.如图,把左边的图形折叠起来,它会变为 ( )A B C D3.下面是水平放置的四个几何体,从正面观察不是长方形的是()A B C D4.如图,5个边长都为1㎝的正方体摆在桌子上,则露在表面的部分的面积是_______.5.P152复习题4第2、4题.二、学习小结:三、作业:P152复习题3第3、10、11题.。
人教版七年级上册第四章 几何图形初步《复习课》导学案
第四章 复 习 课1.知道立体图形与平面图形,能说出二者的关系,能通过从不同方向看的平面图或展开图来认识立体图形.2.能说出直线、线段和射线的区别,知道线段中点的定义,会计算线段的和与差.3.能进行角度的换算,知道角平分线的定义,并会计算角度的和与差.4.能用方位角描述物体的位置,知道互余和互补的概念,能根据余角、补角的性质进行计算和说理.5.重点:线段、角的表示与计算,余角、补角的性质及应用.【体系构建】【核心梳理】1.观察立体图形主要是从 正面 、 左面 、 上面 三个方向观察,得到三种平面图形.2.常见几何体从不同方向看到的平面图形:几何体视图从正面看从左面看从上面看3.常见几何体的平面展开图.名称几何体平面展开图正方体五棱柱三棱锥圆锥圆柱4.几何图形都是由 点 、 线 、 面 、 体 组成的, 点 是构成图形的基本元素.5.经过两点 有 一条直线,并且只有 一 条直线;两点的所有连线中, 线段 最短.6.若两个角的和等于 90° ,则这两个角互为余角;若两个角的和等于 180° ,则这两个角互为补角.7.同角(等角)的余角 相等 ,同角(等角)的补角 相等 . 8.线段、角的有关知识.线段角定义直线上两点之间的部分.(1)有 公共 端点的两条射线组成的图形叫角;(2)角也可以看成是一条射线绕着 端点 从起始位置旋转到终止位置所组成的图形.表示 两种: 两 个大写英文字母、 一 个小写英文字母. 四种: 三 个大写英文字母; 一 个大写英文字母; 一 个阿拉伯数字; 一 个小写希腊字母.比较 (1)叠合法;(2)度量法. (1)叠合法;(2)度量法. 度量测量工具: 刻度尺 . 测量工具: 量角器 , 1周角= 2 平角= 4 直角,1°= 60' ,1'= 60″ . 和差的表示(1)和:AC+BC=AB ;(2)差:AB-AC= BC ,AB-BC= AC .(1)和:∠AOC+∠BOC=∠AOB ;(2)差:∠AOB-∠AOC= ∠BOC .(续表)线段 角等分点(线)因为点M是线段AB的中点,所以AM=MB=12AB(或2AM=2BM=AB).类似地,把线段分成相等的三条线段的两个点,叫线段的三等分点,把线段分成相等的n条线段的(n-1)个点,叫线段的n 等分点. 如图,射线OB是∠AOC的平分线,用符号语言表示就是:因为OB平分∠AOC,所以∠AOB=∠BOC=12∠AOC(或2∠AOB=2∠COB=∠AOC).专题一:立体图形与平面图形的相互转化1.下图的几何体是由三个同样大小的立方体搭成的,从左面看到的图形是(A)2.下列四幅图中,经过折叠不能围成一个立方体的是(D)[变式训练]小丽制作了一个对面图案均相同的正方体礼品盒(如左图所示),则这个正方体礼品盒的平面展开图可能是(A)【方法归纳交流】利用空间想象或动手操作进行立体图形的展开和折叠.专题二:线段的有关计算3.已知线段AB,反向延长AB到点C,使AC=12AB.若点D是BC中点,CD=3 cm,求AB、AD的长.解:因为D是BC中点,CD=3 cm,所以CD=BD=12BC=3 cm,BC=6 cm,因为AC=12AB,BC=6 cm,所以AC=13BC=2 cm,所以AB=4 cm,所以AD=CD-AC=3-2=1 cm.【方法归纳交流】“反向延长线段AB”还可以怎样叙述?延长线段BA.4.如图,已知点C在线段AB上,且AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点,求线段MN的长度.解:MN=12(AC+BC)=12(6+4)=5 cm.[变式训练1]如果AC=a cm,BC=b cm,其他条件不变,你能猜出MN 的长度吗?请你用一句简洁的话表述你发现的规律.解:规律:MN=12(AC+BC )=a+b2cm . 直线上相邻两线段中点间的距离为两线段长度和的一半.[变式训练2]对于上题,如果去掉图形我们这么叙述它:“已知线段AC=6 cm,BC=4 cm,点C 在直线AB 上,点M ,N 分别是AC ,BC 的中点,求MN 的长度.”结果会有变化吗?如果有,求出结果.(提示:点C 在直线AB 上,则点C 可能在线段AB 上,也可能在线段AB 外)解:有变化.当点C 在线段AB 上时,MN=12(AC+BC )=12(6+4)=5 cm .当点C 在AB 的延长线上时,MN=12(AC-BC )=12(6-4)=1 cm .专题三:角的有关计算5.如图,∠AOB ,∠COD 都是直角,试猜想∠AOD 和∠BOC 的关系?请简单说明.解:互补.因为∠AOB ,∠COD 都是直角,所以∠AOB+∠COD=180°,即∠AOC+∠BOC+∠BOD+∠BOC=∠AOD+∠BOC=180°,所以∠AOD 和∠BOC 互补.6.时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合?解:设时针转过的度数为x 时,与分针第一次重合,则12x=90°+x ,解得x=(8211)°,即时针转过(8211)°时,与分针第一次重合.【方法归纳交流】时针的旋转角度∶分针的旋转角度= 1∶12 . 专题四:实际问题中的线段和角7. 如图,在运河m (不记河的宽度)的两岸有A 、B 两个村庄,现在要在运河上修建一座跨河的大桥,为方便交通要使桥到两个村庄的距离之和最短,应在运河的哪一点修建才能满足要求?请在图中画出这一点,并简单说明理由.解:如图:连接AB 与直线m 相交于P 点,因为两点之间线段最短,则应在运河的P 点修建才能满足要求.8.小明从点A 出发向北偏西50°方向走了3米,到达点B ,小林从点A 出发向南偏西40°方向走了4米,到达点C ,试画图确定出A 、B 、C 三点的位置(用图上距离1厘米表示实际距离3米),并从图上求出点B 到点C 的实际距离. 解:如下图所示:测量可得BC=5米.[变式训练]小淘气有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30度,在B地的南偏东45度,你能帮小淘气确定C地的位置吗?解:如图所示.见《导学测评》P53。
人教版七年级上册数学第四章 复习导学案
第四章 复习导学案(一)一、课前准备:1、经过两点有___________,并且_______一条直线。
2、两点之间,________最短。
3、____________________余角,________________________补角。
4、_____________________________________________叫角平分线。
二、自学交流:1.如图,D 是AB 的中点, E 是BC 的中点,BE=51AC=2cm, 求线段DE 的长 D A C三、合作探究:56695376)1('︒+'︒ 757123180)2('''︒-︒9627319)3(⨯'''︒四、巩固提高:1、如图,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC 、∠AOB 的度数.O C AD B五、拓展延伸:如图,点A 、O 、E 在同一直线上,∠AOB=40°,∠EOD=28°,OD 平分∠COE , 求∠COB 的度数六、学后反思:第四章 复习导学案(二)一、课前准备:1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 .二、自学交流:1.如图,该图中不同的线段共有_______条.2.如图,数一数,图中共有_____________个三角形.A O EBCD 第1题图 第2题图三、合作探究;如图,有一个几何体,请画出从不同方向看它的平面图形(1)从正面看:(2)从左面看(3)从上面看四、巩固提高:如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,OF⊥AB.则(1)∠AOC的补角是;(2)是∠AOC的余角;(3)∠DOC的余角是;(4)∠COF的补角是.五、拓展延伸:如图,(1)已知∠AOB为直角,∠AOC为锐角,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数;(2)若将(1)中的条件“∠AOB为直角”改为“∠AOB为任意一个角”,则∠AOB与∠EOF的大小关系如何?发现结论并说明理由.六、学后反思:。
人教版数学七年级上册第四章《几何图形初步》复习教学设计
1.教学内容:回顾并巩固点、线、面的基本概念,讲解三角形、四边形、圆等基本图形的分类和性质。在此基础上,引入几何图形的绘制方法和计算技巧。
2.教学方法:采用直观演示法、启发式教学法和讲解法,结合多媒体课件和实物模型,帮助学生理解几何图形的性质和特点。
3.目标:使学生掌握几何图形的基本知识和操作方法,为解决实际问题奠定基础。
(2)运用直观演示法,通过实物、教具等展示几何图形的性质和特点,增强学生的直观感知。
(3)实施启发式教学,引导学生主动探究几何图形的性质和规律,培养学生的逻辑思维能力。
(4)开展小组合作学习,促进学生之间的交流与分享,提高学生的团队协作能力。
2.教学策略:
(1)注重分层教学,针对不同学生的学习需求,设计不同难度的教学任务和练习题。
3.强化几何图形在实际生活中的应用,帮助学生建立几何知识与现实生活的联系,提高学生的几何应用能力。
4.通过小组合作、讨论交流等形式,培养学生的团队协作能力和沟通能力。
5.注重情感教育,关注学生的心理需求,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中学习几何知识。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握几何图形的基本概念、性质和判定方法,以及几何图形的绘制和计算。
2.难点:
(1)空间想象能力的培养和提高;
(2)几何图形性质与判定方法的灵活运用;
(3)解决实际问题时,将几何知识与生活情境相结合的能力。
(二)教学设想
1.教学方法:
(1)采用情境教学法,创设生活情境,让学生在情境中感受几何图形的美,激发学习兴趣。
4.理解并运用几何图形的性质和判定方法,提高解决问题的能力。
(二)过程与方法
2021人教版七年级数学上册 第四章 几何图形初步导学案(全章汇总) (1)
点.线.面.体【学习目标】一步认识点、线、面、体的概念 .2.明确点、线、面、体之间的关系 .通过实例使学生认识点线面体的几何特征3通过学习点、线、面、体之间的关系 ,进一步开展概括能力和形象思维的能力,能准确识别几何体的点线 (棱 )面 .【自主学习】认真阅读课本119页至|120页 ,完成下面学习内容包着体的是_____________,面有两种:________和___________线有两种:________和___________立体图形又叫几何体 ,简称为______点动成_____ ,线动成_______ ,________动成体 .面与面相交的地方形成__________ ,线与线相交成_____________几何图形是由_______、____ 、________、________组成的 , 是构成图形的根本元素 .【合作探究】究:正方体:个顶点 .五棱柱:个顶点 .六棱柱:个顶点 .n棱柱:个顶点 .三棱锥:个顶点 .四棱锥:个顶点 .五棱锥:个顶点 .n棱锥:个顶点 .2.线的研究:正方体:条棱 .五棱柱:条棱 .n棱柱:面;三棱锥:条棱 .四棱锥:条棱 .五棱锥:条棱 .n棱锥:棱 .面的研究:3.包围着体的是面 .正方体:个面 ,均为正方形 .长方体:个面 ,相对的两个面 ,为形 .圆柱体:个面 ,上下底面为 ,侧面为 .圆锥体:个面 ,底面为 ,侧面为 .球体:个面 ,为曲面 .一般棱柱和棱锥的面有棱数来决定 .n棱柱有各面 ,侧面有个 ,是行 ,底面有个 ,是行 .n棱锥有各面 ,侧面有个 ,是行 ,底面有个 ,是4.旋转体:三角形的旋转体:长方形的旋转体::直角梯形的旋转体:圆的旋转体:【经典题例】5、一个正方体缺了一个 "角〞后 ,增加了两个顶点 ,那么这个几何图形是 ( )笔尖在纸上快速滑动写出了一个又一个的英文字母 ,这说明了____;车轮旋转时看起来像一个整体的圆面 ,这说明了____;直角三角形绕它的直角边旋转一周 ,形成一个圆锥体 ,这说明了____.【达标测试】1.长方体共有个面 , 个顶点 , 条棱 .2.五棱柱共有个顶点 , 条棱 , 个面 ,它的侧面展开图是形 ,两个底面是形 .3.按组成面的平与曲来分类 ,与圆锥不属于同一类的几何体是 ( )A 球B 圆柱C 棱柱D 圆台4.正方体的顶点数、棱数、面数分别是 ( )A 6 ,8 ,10B 8 ,12 ,6C 8 ,10 ,6D 6 ,12 ,85.把下面第|一行的平面图形绕线旋转一周 ,便能形成第二行的某个几何体 ,请用虚线连一连:3-1-2 -14中该正方体A、B、C三种状态所显示的数字 ,可推出 " ?〞处的数字是____.图17.飞机飞行表演在空中留下漂亮的 "彩带〞 ,用数学知识解释为_______.8.长方体有____个顶点 ,____条棱 ,____个面;圆锥是由____个面围成的 ,其中____个面是平的 ,____个面是曲的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版七年级数学上册第四章复习导学案1
学习目标:1.进一步理解直线、射线、线段的特征及有关性质.
2.进一步理解角的有关概念和性质.
3.能正确应用几何符号、几何语言描述几何图形.
学习重点:线段、角的概念及其相关性质.
学习难点:运用线段与角的相关知识解决问题.
使用要求:1.尝试完成教材P152复习题4第5、8题;
2.限时25分钟完成本导学案(合作或独立完成均可);
3.课前在小组内交流展示.
一、知识回顾:
1.直线、射线、线段的特征(端点与延伸性);区别与联系;生活中的实例.画直线AB、射线CD、线段EF.
2.直线公理、线段公理及其在生活中的应用.
3.任意画线段AB,作出其中点M;
任意画线段CD,作出其三等点P、Q.
用式子表示中点、三等分点的性质.
4.什么叫做角?角度的单位有哪些?.
计算:25°28′×4=_________ 125°28′÷4=________.
23.23°=_____°_____′_____″ 25°19′48″=_________度.
5.任意画∠AOB,作出∠AOB的平分线OC,并用式子表示角平分线的性质. 6.画出能表示∠1+∠2的图形;画出能表示∠3-∠4的图形.
7.怎样的两个角互为余角?怎样的两个互为补角?
余角与补角有怎样的性质?
二、合作探究:
1.已知点C 是线段AB 上一点,AC =6㎝,BC =4㎝,若M 、N 分别是线段AC 、BC 的中点,求线段MN 的长.
2.已知线段AB =10㎝,点C 是线段AB 上任意一点,若M 、N 分别是线段AC 、BC 的中点,是否还能够求出线段MN 的长?试试看.
3.如图,点O 是直线AB 上一点,∠AOC =50°,
OM 、ON 分别是∠AOC 、∠BOC 的平分线,求∠MON
的度数.
4.在上面第3题中去掉“∠AOC =50°”这个条件,是否还能够求出∠MON 的度数?试试看.
5.如图,点O 是直线AB 上一点,∠1:∠2:∠3=1:
2:3, N O M C B
A A B
O 12
3
求:∠2的度数.
6.一个角的余角的3倍,比它的补角少20°,求这个角三、作业:P152复习题4第5、6、7、8、9题。