岢岚县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岢岚县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .
π21 C .π121- D .π
2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
2. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
3. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .
15 B .16 C .314 D .1
3
4. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( ) A .f (a+1)≥f (b+2) B .f (a+1)>f (b+2)
C .f (a+1)≤f (b+2)
D .f (a+1)<f (b+2)
5. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( )
A .15,10,25
B .20,15,15
C .10,10,30
D .10,20,20
6. 对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g
(x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2
﹣3x+4
与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )
A .[3,4]
B .[2,4]
C .[1,4]
D .[2,3]
7. 函数y=|a|x
﹣
(a ≠0且a ≠1)的图象可能是( )
D
A
B
C
O
A .
B .
C .
D .
8. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分
别为( )
A .x=1,y=1
B .x=1,y=
C .x=,y=
D .x=,y=1
9. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣1
10.若复数z=
(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )
A .3
B .6
C .9
D .12
11.若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x
12.已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q
是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )
A .①④
B .②③
C .③④
D .②④
二、填空题
13.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:
①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k
,2
k+1
)”;其中所有正确
结论的序号是 .
14.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .
15.【南通中学2018届高三10月月考】已知函数()3
2f x x x =-,若曲线()f x 在点()()
1,1f 处的切线经
过圆()2
2
:2C x y a +-=的圆心,则实数a 的值为__________.
16.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则
k= . 17.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分
别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
18.已知函数
,则
__________;
的最小值为__________.
三、解答题
19.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且
AM FN =,求证://MN 平面BCE .
20.本小题满分12分如图,在边长为4的菱形ABCD 中,60BAD ∠=,点E 、F 分别在边CD 、CB 上.点
E 与点C 、D 不重合,E
F AC ⊥,EF
AC O =,沿EF 将CEF ∆翻折到PEF ∆的位置,使平面PEF ⊥
平面ABFED .
Ⅰ求证:BD ⊥平面P O A ;
Ⅱ记三棱锥P A B D -的体积为1V ,四棱锥P BDEF -的体积为2V ,且
124
3
V V =,
求此时线段PO 的长.
21.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;
(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.
P
A
C
D
O
E
F F
E
O D
C
A
22.已知直角梯形ABCD 中,AB ∥CD ,
,过A 作AE ⊥CD ,垂足为E ,
G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;
(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.
23.本小题满分12分 设函数()ln x f x e a x =- Ⅰ讨论()f x 的导函数'()f x 零点个数; Ⅱ证明:当0a >时,()2ln f x a a a ≥-
24.(本小题满分10分)选修4-1:几何证明选讲1111]
CP=. 如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16
EF=,求CE的长;
5
⊥于D,求CD的长. (2)若连接OP并延长交圆O于,A B两点,CD OP
岢岚县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 2. 【答案】B
【解析】解:∵(﹣4+5i )i=﹣5﹣4i ,
∴复数(﹣4+5i )i 的共轭复数为:﹣5+4i ,
∴在复平面内,复数(﹣4+5i )i 的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限. 故选:B .
3. 【答案】D 【解析】
考
点:等差数列.
4. 【答案】B
【解析】解:∵y=log a |x ﹣b|是偶函数 ∴log a |x ﹣b|=log a |﹣x ﹣b| ∴|x ﹣b|=|﹣x ﹣b|
∴x 2﹣2bx+b 2=x 2+2bx+b 2
整理得4bx=0,由于x 不恒为0,故b=0 由此函数变为y=log a |x|
当x ∈(﹣∞,0)时,由于内层函数是一个减函数, 又偶函数y=log a |x ﹣b|在区间(﹣∞,0)上递增 故外层函数是减函数,故可得0<a <1 综上得0<a <1,b=0
∴a+1<b+2,而函数f(x)=log a|x﹣b|在(0,+∞)上单调递减
∴f(a+1)>f(b+2)
故选B.
5.【答案】B
【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为
800×=20,600×=15,600×=15,
故选B.
【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.
6.【答案】D
【解析】解:∵m(x)=x2﹣3x+4与n(x)=2x﹣3,
∴m(x)﹣n(x)=(x2﹣3x+4)﹣(2x﹣3)=x2﹣5x+7.
令﹣1≤x2﹣5x+7≤1,
则有,
∴2≤x≤3.
故答案为D.
【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题.
7.【答案】D
【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B
当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.
故选:D.
8.【答案】C
【解析】解:如图,
++().
故选C.
9. 【答案】A
【解析】解:∵S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,
∴
,解得:﹣3<a <﹣1.
故选:A .
【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题.
10.【答案】A
【解析】解:复数z==
=
.
由条件复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,
解得a=3. 故选:A .
【点评】本题考查复数的代数形式的混合运算,考查计算能力.
11.【答案】A 【解析】
试题分析:∵函数)1(+=x f y 向右平移个单位得出)(x f y =的图象,又)1(+=x f y 是偶函数,对称轴方程为0=x ,∴)(x f y =的对称轴方程为1=x .故选A . 考点:函数的对称性.
12.【答案】D
【解析】解:∵命题p ;对任意x ∈R ,2x 2
﹣2x+1≤0是假命题, 命题q :存在x ∈R ,sinx+cosx=是真命题,
∴①不正确,②正确,③不正确,④正确.
故选D .
二、填空题
13.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.
…
一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.
故答案为:①②④.
14.【答案】.
【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角
设边长为1,则B
E=B1F=,EF=
1
∴cos∠EB1F=,
故答案为
【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
15.【答案】2-
【解析】结合函数的解析式可得:()3
11211f =-⨯=-, 对函数求导可得:()2'32f x x =-,故切线的斜率为()2
'13121k f ==⨯-=, 则切线方程为:()111y x +=⨯-,即2y x =-,
圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.
16.【答案】 ﹣1或0 .
【解析】解:满足约束条件的可行域如下图阴影部分所示:
kx ﹣y+1≥0表示地(0,1)点的直线kx ﹣y+1=0下方的所有点(包括直线上的点)
由关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,
可得直线kx ﹣y+1=0与y 轴垂直,此时k=0或直线kx ﹣y+1=0与y=x 垂直,此时k=﹣1
综上k=﹣1或0
故答案为:﹣1或0
【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.
17.【答案】
5 12
【解析】
18.【答案】
【解析】【知识点】分段函数,抽象函数与复合函数
【试题解析】
当时,
当时,
故的最小值为
故答案为:
三、解答题
19.【答案】证明见解析.
【解析】
考点:直线与平面平行的判定与证明.
20.【答案】
【解析】Ⅰ证明:在菱形ABCD 中,
∵BD AC ⊥,∴BD AO ⊥.
∵EF AC ⊥,∴PO EF ⊥,
∵平面PEF ⊥平面ABFED ,平面PEF
平面ABFED EF =,且PO ⊂平面PEF , ∴PO ⊥平面ABFED ,
∵BD ⊂平面ABFED ,∴PO BD ⊥.
∵AO
PO O =,∴BD ⊥平面POA . Ⅱ设AO BD H =.由Ⅰ知,PO ⊥平面ABFED , ∴PO 为三棱锥P A B D -及四棱锥P B D E F -的高,
∴1211,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形,∵1243
V V =, ∴3344ABD CBD BFED S S S ∆∆==梯形,∴14
CEF CBD S S ∆∆=, ∵,BD AC EF AC ⊥⊥,
∴//EF BD ,∴CEF ∆∽CBD ∆. ∴21()4
CEF
CBD S CO CH S ∆∆==,
∴111
222CO CH AH ===⨯
∴PO OC ==
21.【答案】(1)a =12(2)(-∞,-1-1e ].(3)8
27 【解析】
(
2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,
所以-(a +1)≥22ln x
x .
令g (x )=22ln x
x ,x >0,则g '(x )=()3212ln x x -.
令g '(x )=0,解得x
当x ∈(0
g '(x )>0,所以g (x )在(0
当x
∞)时,g '(x )<0,所以g (x
∞)上单调递减.
所以g (x )max =g
(1
e ,
所以-(a +1)≥1
e ,即a ≤-1-1
e ,
所以a 的取值范围为(-∞,-1-1
e ].
(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,
所以f′(x)=6x2-6(a+1)x+6a=6(x-1)(x-a),f(1)=3a-1,f(2)=4.令f′(x)=0,则x=1或a.
f(1)=3a-1,f(2)=4.
②当5
3
<a<2时,
当x∈(1,a)时,f '(x)<0,所以f(x)在(1,a)上单调递减;
当x∈(a,2)时,f '(x)>0,所以f(x)在(a,2)上单调递增.
又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.
因为h'(a)=3a2-6a+3=3(a-1)2≥0.
所以h(a)在(5
3
,2)上单调递增,
所以当a∈(5
3,2)时,h(a)>h(5
3
)=8
27
.
③当a≥2时,
当x∈(1,2)时,f '(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,
所以h(a)=M(a)-m(a)=3a-1-4=3a-5,
所以h (a )在[2,+∞)上的最小值为h (2)=1.
综上,h (a )的最小值为827
. 点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.
22.【答案】
【解析】解:
(1)证明:取AB 中点H ,连接GH ,FH ,
∴GH ∥BD ,FH ∥BC ,
∴GH ∥面BCD ,FH ∥面BCD
∴面FHG ∥面BCD ,
∴GF ∥面BCD
(2)V=
又外接球半径R=
∴V ′=
π
∴V :V ′= 【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E 点三条棱互相垂直,故棱锥的外接球半径与以AE ,CD ,DE 为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.
23.【答案】
【解析】:Ⅰ'()x a f x e x
=-,因为定义域为(0,)+∞, '()0x a f x e x
=⇒=
有解 即x xe a =有解. 令()x h x xe =,'()(1)x h x e x =+, 当0,'()0,(0)0()0x h x h h x >>=∴> 所以,当0a ≤时,'()0,f x >无零点; 当0a >时,有唯一零点.
Ⅱ由Ⅰ可知,当0a >时,设'()f x 在(0,)+∞上唯一零点为0x ,
当0(,),'()0x x f x ∈+∞>,()f x 在0(,)x +∞为增函数;
当0(0,)x x ∈,'()0,f x <()f x 在0(0,)x 为减函数.0000
x x a e e x a x =∴=
000000000
()ln ln (ln )ln 2ln x x a a a a f x e a x a a a x ax a a a a a x e x x ∴=-=-=--=+-≥-
24.【答案】(1)4CE =;(2)CD =
. 【解析】
试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;
(2)由切割线定理可得2(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:
(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,0
90CFE ∠=,所以ECP ∆∽EFC ∆,
设CE x =,EP =
,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,
所以2x =4x =.
考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.。