2014年中考数学压轴题精编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学压轴题精编—浙江篇
1.(浙江省杭州市)在平面直角坐标系xOy 中,抛物线的解析式是y =
4
1x
2
+1,点C 的坐标为(-4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.
(1)写出点M 的坐标;
(2)当四边形CMQP 是以MQ ,PC 为腰的梯形时. ①求t 关于x 的函数解析式和自变量x
②当梯形CMQP 的两底的长度之比为1 :
2时,求t
2.(浙江省台州市)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转,DE ,DF 分别交线段..AC 于点M ,K . (1)观察:①如图2、图3,当∠CDF =0°或60°时,AM +CK _______MK (填“>”,“<”或“=”).
②如图4,当∠CDF =30°时,AM +CK _______MK (只填“>”或“<”).
(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果MK 2+CK 2=AM 2,请直接写出∠CDF 的度数和AM MK
的值.
3.(浙江省台州市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP =AQ .点D ,E 分别是点A ,B 以Q ,
D
B C
A
F E
M K 图1
D
B
C A
(F ,K )
E
M 图2
D
B
C A F
E
K
图3 (M )
D
B
C
A
F E
M K
图4
P 为对称中心的对称点,HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y . (1)求证:△DHQ ∽△ABC ;
(2)求y 关于x 的函数解析式并求y 的最大值; (3)当x 为何值时,△HDE 为等腰三角形? 4.(浙江省温州市)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,过点B 作射线BB l ∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF 上AC 交射线BB 1于F ,G 是EF 中点,连结DG .设点D 运动的时间为t 秒.
(1)当t 为何值时,AD =AB ,并求出此时DE 的长度; (2)当△DEG 与△ACB 相似时,求t 的值;
(3)以DH 所在直线为对称轴,线段AC 经轴对称变换后
的图形为A ′C ′.
①当t >
5
3
时,连结C ′C ,设四边形ACC ′A ′
的面积为S , 求S 关于t 的函数关系式;
②当线段A ′C ′
与射线BB 1有公共点时,求t 的取值范围 (写出答案即可).
5.(浙江省湖州市)如图,已知在矩形ABCD 中,AB =2,BC =3,P 是线段AD 边上的任意一点(不
含端点A ,D ),连结PC ,过点P 作PE ⊥PC 交AB 于E .
(1)在线段AD 上是否存在不同于P 的点Q ,使得QC ⊥QE ?若存在,求线段AP 与AQ 之间的数量
D B H
A
E
G
F C
B 1
关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.
A P D
E
B C
6.(浙江省湖州市)如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.。