中考数学培优易错试卷(含解析)之圆与相似及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学培优易错试卷(含解析)之圆与相似及详细答案
一、相似
1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.
(1)求抛物线的解析式和对称轴;
(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)设四边形DECO的面积为s,求s关于t的函数表达式.
【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入
得:,解得:,
∴抛物线的解析式为:,
对称轴为:直线x=﹣;
(2)解:存在,∵AD=2t,
∴DF=AD=2t,
∴OF=4﹣4t,
∴D(2t﹣4,0),
∵直线AC的解析式为:,∴E(2t﹣4,t),
∵△EFC为直角三角形,分三种情况讨论:
①当∠EFC=90°,则△DEF∽△OFC,
∴,即,解得:t= ;
②当∠FEC=90°,
∴∠AEF=90°,
∴△AEF是等腰直角三角形,
∴DE= AF,即t=2t,
∴t=0,(舍去),
③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;
(3)解:∵B(1,0),C(0,2),
∴直线BC的解析式为:y=﹣2x+2,
当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);
当D在y轴的右侧时,如图2,
∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即
(2<t<).
综上所述:
【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。
(2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可;
②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。
(3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。
2.如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,
AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题:
(1)如图(2),当AC过点E时,求t的值;
(2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长;(3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t的取值范围.
【答案】(1)解:如图(2),当AC过点E时,
在Rt△ABC中,BC=3,AC=6,
∴BC所对锐角∠A=30°,
∴∠ACB=60°,
依题意可知∠ABC=∠EDC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EDC,
∴,即,
∴CD= ,
∴t=CD= ;
(2)解:如图(3),∵∠EDG=90°,DE=3,EG=6,
∴DG= =3 ,
在Rt△EDG中,sin∠EGD= ,
∴∠EGD=30°,
∵∠NCB=∠CNG+∠EGD,
∴∠CNG=∠NCB﹣∠EGD=60°﹣30°=30°,
∴∠CNG=∠EGD,
∴NC=CG=DG﹣BC=3 ﹣3;
(3)解:由(1)可知,当x>时,△ABC与△EFG有重叠部分.
分两种情况:①当<t≤3时,如图(4),
△ABC与△EFG有重叠部分为△EMN,设AC与EF、EG分别交于点M、N,过点N作直线NP⊥EF于P,交DG于Q,
则∠EPN=∠CQN=90°,
∵NC=CG,
∴NC=DG﹣DC=3 ﹣t,
在Rt△NQC中,NQ=sin∠NCQ×NC=sin60°×(3 ﹣t)= ,
∴PN=PQ﹣NQ=3﹣ = ,
∵∠PMN=∠NCQ=60°,
∴sin∠PMN= ,MN= =t﹣,
在矩形DEFG中,EF∥DG,
∴∠MEN=∠CGN,
∵∠MNE=∠CNG,∠CNG=∠CGN,
∴∠EMN=∠MNE,
∴EM=MN,
∴EM=MN=t﹣,
∴y=S△EMN= EM•PN= × ;
②当3<t≤3 时,如图(5),
△ABC与△EFG重叠部分为四边形PQNM,设AB与EF、EG分别交于点P、Q,AC与EF、EG分别交于点M、N,则∠EPQ=90°,
∵CG=3 ﹣t,
∴S△EMN= ,
∵EP=DB=t﹣3,∠PEQ=30°,
∴在Rt△EPQ中,PQ=tan∠PEQ×EP=tan30°×(t﹣3)= ,
∴S△EPQ= EP•PQ= (t﹣3)× = ,
∴y=S△EMN﹣S△EPQ=()﹣()= +(﹣,
综上所述,y与t的函数关系式:y= .
【解析】【分析】(1)证△ABC∽△EDC,由相似三角形的性质可求出CD的值,即可求t;
(2)利用勾股定理求出DG的值,则由三角函数可∠EGD=30°,进而可证得∠CNG=∠EGD,则NC=CG=DG﹣BC,可求出答案;
(3)根据重叠部分可确定x的取值范围,再由三角形的面积公式可求出函数解析式.
3.如图,在Rt△ABC中,∠C=90°,顶点A、C的坐标分别为(﹣1,2),(3,2),点B 在x轴上,点B的坐标为(3,0),抛物线y=﹣x2+bx+c经过A、C两点.
(1)求该抛物线所对应的函数关系式;
(2)点P是抛物线上的一点,当S△PAB= S△ABC时,求点P的坐标;
(3)若点N由点B出发,以每秒个单位的速度沿边BC、CA向点A移动,秒后,点M 也由点B出发,以每秒1个单位的速度沿线段BO向点O移动,当其中一个点到达终点时另一个点也停止移动,点N的移动时间为t秒,当MN⊥AB时,请直接写出t的值,不必写出解答过程.
【答案】(1)解:将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,
得,解得
∴抛物线y=﹣x2+2x+5.
(2)解:∵点A(-1,2),B(3,0),C(3,2),
∴BC⊥x轴,AC=4,BC=2,
∴,
∴
设直线AB为y=mx+n,
将点A(-1,2),B(3,0),代入可得,解得,∴直线AB为y=
,
设点P(x,),过点P作PN⊥x轴,交直线AB于点M,则M(x,),
∴PM= ,
∴
即,
∴或,
解得,
则点P .
(3)解:当时,如图1,点N在BC的线段上,BN= ,BM= ,
∵MN⊥AB,∴,
又∵A(-1,2),B(3,0),C(3,2),
∴AC∥x轴,BC∥y轴,
∴∠ACB=90°,
∴,
∴
又∵∠MBN=∠ACB=90°,
∴△BNM~△CAB,
∴,则,
解得t= .
当时,点N在线段AC上,如图2,MN与AB交于点D,BM= ,
由A(-1,2),B(3,0),得AB= ,设AD=a,则BD= ,
∵∠ADN=∠ACB=90°, ∠DAN=∠CAB,
∴△ADN~△ACB,
∴;
则 = ,则a=
∵∠BDM=∠ACB=90°, ∠DBM=∠CAB,
∴△BDM~△ACB,
∴ =
,
则
解得 .
综上, .
【解析】【分析】(1)将点A(﹣1,2),C(3,2),代入抛物线y=﹣x2+bx+c中,联立方程组解答即可求出b和c的值;(2)由A(-1,2),B(3,0),C(3,2)可求出直线AB 的解析式和,从而求出 .设PP(x,),过点P作PN⊥x
轴,交直线AB于点M,则M(x,),可得
代入求出P的横坐标x的值,再代入抛物线的解析式求出点P的纵坐标;(3)首先要明确时间t表示点N运动的时间,由点M,N的速度可求出它们当到达终点时的时间t,取其中的较小值为t所能取到的最大值;由点M只在线段OB上运动,点N在线段BC和线段AC上运动,则要分成两部分进行讨论,当点N在线段BC上时和当点N在线段AC上时,并分别求出相应时间t的取值范围;结合相似三角形的判定和性质得到相应边成比例,列方程解答即可.
4.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.
(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.
【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,
∵∠A=∠A,∠ACB=∠ABD=90°,
∴△ABC∽△ADB,
∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,
∴△ABC∽△BDC,
∴
∵A(﹣3,0),C(1,0),
∴AC=4,
∵BC=AC.
∴BC=3,
∴AB===5,
∵,
∴,
∴CD=,
∴AD=AC+CD=4+ =,
∴OD=AD﹣AO=,
∴点D的坐标为:(,0);
(2)解:如图2,当∠APC=∠ABD=90°时,
∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,
∴,
∴
∴m=,
如图3,当∠AQP=∠ABD=90°时,
∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,
∴△APQ∽△ADB,
∴,
∴
∴m=;
综上所述:当m=或时,△APQ与△ADB相似.
【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证
△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.
5.已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B出发,沿BC 向点C匀速运动,速度为lcm/s;同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动连接PQ,设运动时间为t(s)(0<t <2.5),解答下列问题:
(1)①BQ=________,BP=________;(用含t的代数式表示)
②设△PBQ的面积为y(cm2),试确定y与t的函数关系式________;
(2)在运动过程中,是否存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一?如果存在,求出t的值;不存在,请说明理由;
(3)在运动过程中,是否存在某一时刻t,使△BPQ为等腰三角形?如果存在,求出t的值;不存在,请说明理由.
【答案】(1)5﹣2t;t;y=﹣ t2+ t
(2)解:不存在,
理由:∵AC=3,BC=4,
∴S△ABC= ×3×4=6,
由(1)知,S△PBQ=﹣ t2+ t,
∵△PBQ的面积为△ABC面积的二分之一,
∴﹣ t2+ t=3,
∴2t2﹣5t+10=0,
∵△=25﹣4×2×10<0,
∴此方程无解,
即:不存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一
(3)解:由(1)知,AQ=2t,BQ=5﹣2t,BP=t,
∵△BPQ是等腰三角形,
∴①当BP=BQ时,
∴t=5﹣2t,
∴t=,
②当BP=PQ时,如图2过点P作PE⊥AB于E,
∴BE= BQ=(5﹣2t),
∵∠BEP=90°=∠C,∠B=∠B,
∴△BEP∽△BCA,
∴,
∴,
∴t=
③当BQ=PQ时,如图3,过点Q作QF⊥BC于F,
∴BF= BP= t,
∵∠BFQ=90°=∠C,∠B=∠B,
∴△BFQ∽△BCA,
∴,
∴,
∴t=,
即:t为秒或秒或秒时,△BPQ为等腰三角形.
【解析】【解答】(1)①在Rt△ABC中,AC=3cm,BC=4cm,根据勾股定理得,AB=5cm,
由运动知,BP=t,AQ=2t,
∴BQ=AB﹣AQ=5﹣2t,
故答案为:5﹣2t,t;
②如图1,过点Q作QD⊥BC于D,
∴∠BDQ=∠C=90°,
∵∠B=∠B,
∴△BDQ∽△BCA,
∴,
∴,
∴DQ=(5﹣2t)
∴y=S△PBQ=BP•DQ= ×t× (5﹣2t)=﹣ t2+ t;
【分析】(1)①先利用勾股定理求出AB,即可得出结论;②过点Q作QD⊥BC于D,进而得出△BDQ∽△BCA,用t表示出DQ,最后用三角形的面积公式即可得出结论;(2)先求出△ABC的面积,再利用△PBQ的面积为△ABC面积的二分之一,建立关于t的方程,进而判断出此方程无解,即可得出结论;(3)分三种情况,利用等腰三角形的性质和相似三角形的性质,得出比例式建立关于t的方程求解,即可得出结论.
6.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC
画图操作:
(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)
(2)在(1)的条件下,
①若tan∠APB ,求点P的坐标。
________
②当点P的坐标为 ________ 时,∠APB最大
(3)若在直线y x+4上存在点P,使得∠APB最大,求点P的坐标
【答案】(1)解:∠APB如图所示;
理解应用:
(2)解:如图2中,
∵∠APB=∠ACB,∴tan∠ACB=tan∠APB= = .∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).;(0,2 )
拓展延伸:
(3)解:如图3中,
当经过AB的园与直线相切时,∠APB最大.∵直线y= x+4交x轴于M(﹣3,0),交y 轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP=3 ,作PK⊥OA于
K.∵ON∥PK,∴ = = ,∴ = = ,∴PK= ,MK= ,∴OK= ﹣
3,∴P(﹣3,).
【解析】【解答】解:(1)②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC= =4 ,∴C(6,4 ),∴K(4,2 ),∴P(0,2 ).
【分析】(1)因为CB⊥x轴于点B,所以∠ABC=。
要使∠APB=∠ACB,只需这两个角是同弧所对的圆周角。
所以用尺规左三角形ABC的外接圆,与y轴相交,其交点即为所求作的点P;
(2)①由(1)知,∠APB=∠ACB,所以tan∠ACB=tan∠APB==,已知A(2,0),B (6,0),所以AB=4,BC=8,则C(6,8),AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易得P(0,2),P′(0,6);
②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,在直角三角形ABC中,由勾股定理可得BC==,则C(6,),K(4,2 ),而P在y轴上,所以P(0,2 );
(3)由(2)知,当经过AB两点的圆与直线相切时,∠APB最大。
设直线y=x+4交x轴于M交y轴于N,则可得M(﹣3,0),N(0,4),因为MP是切线,所以由切割线定理可得MP2=MA•MB,可求得MP=3,作PK⊥OA于K.所以ON∥PK,由相似三角形的
判定定理可得比例式;,即,解得PK= ,MK=,所以可得OK=-3,则P(-3,)。
7.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
【答案】(1)解:当x=0,y=3,
所以C(0,3)
设抛物线的解析式为y=a(x+1)(x- ).
将C(0,3)代入得- a=3,解得a=-2
所以抛物线的解析式为y=-2x2+x+3
(2)解:过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N,如图1,
∵OC=3,AO=1,
∴tan∠CAO=3.
∴直线AC的解析式为y=3x+3.
∵AC⊥BM,
∴BM的一次项系数为- .
设BM的解析式为y=- x+b,将点B的坐标代入得:- × +b=0,解得b= .
∴BM的解析式为y=- x+ .
将y=3x+3与y=- x+ 联立解得:x=- ,y= .
∴MC=BM= = .
∴∆MCB为等腰三角形.
∴∠ACB=45°.
(3)解:如图2所示,延长CD,交x轴于点F.
∵∠ACB=45°,点D是第一象限抛物线上一点,
∴∠ECD>45°.
又∵∆DCE与∆AOC相似,∠AOC=∠DEC=90°,
∴∠CAO=∠ECD.
∴CF=AF.
设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.
∴F(4,0).
设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得k=- .
∴CF的解析式为y=- x+3.
将y=- x+3与y=-2x2+x+3联立,解得x=0(舍去)或x= .
将x= 代入y=- x+3得y=
∴D(,).
【解析】【分析】(1)结合已知抛物线与x轴的交点AB,设抛物线的解析式为顶点式,代入点C的坐标求出系数,在回代化成抛物线解析式的一般形式。
(2)作垂线转化到直角三角形中利用锐角函数关系解出直线南AC的解析式,再利用待定系数法求出系数得出直线BC的解析式,联立方程得出点M的坐标,根据勾股定理求出MC,BM的长判断出是等腰直角三角形,得出角的度数 .
(3)根据相似三角形的性质的出两角相等,再利用待定系数法求出系数得出直线CF的解析式,再联立方程得出点D的坐标。
8.如图1,图形ABCD是由两个二次函数与的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接写出这两个二次函数的表达式;
(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C 与点E是对应顶点)的点E的坐标.
【答案】(1)解:
(2)解:存在,
理由:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y轴时,设M(x,-x2+1)为第一象限内的图形ABCD上一点,M'(x,3x2-3)为第四象限内的图形上一点,∴MM'=(1-x2)-3(3x2-3)=4-4x2,由抛物线的对称性知,若有内接正方形,则2x=4-
4x2,即2x2+x-2=0,x= 或(舍),
∵0< ,∴存在内接正方形,此时其边长为
(3)解:解:在Rt△AOD中,OA=1,OD=3,∴AD= ,同理CD= .在Rt△BOC中,OB=OC=1,∴BC= .
①如图(1)
当△DBC~△DAE时,因∠CDB=∠ADO,∴在y轴上存在一点E,由得
,得DE= ,因D(0,-3),∴E();
由对称性知在直线DA右侧还存在一点E'使得△DBC~△DAE',连接EE'交DA于F点,作E'M⊥OD,垂足为M,连接E'D,
∵E、E'关于DA对称,∴DF垂直平分EE',∴△DEF~△DAO,
∴,有,∴, .
因,∴,
又,在Rt△DE'M中,DM= ,
∴OM=1,得
∴,使得△DBC~△DAE的点E的坐标为(0, ,)或;
如图(2)
当△DBC~△ADE时,有∠BDC=∠DAE,,
即,得AE= .
当E在直线DA左侧时,设AE交y轴于P点,作EQ⊥AC,垂足为Q.
由∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=x,则PO=3-x,PA=x,
在Rt△AOP中,由得,解得,则有PA= ,PO= ,
因AE= ,∴PE= ,
在△AEQ中,OP∥EQ,
∴,得,又,
∴QE=2,∴E(),
当E'在直线DA右侧时,
因∠DAE'=∠BDC,又∠BDC=∠BDA,∴∠BDA=∠DAE',
则AE'∥OD,∴E'(1,),
则使得△DBC~△ADE的点E的坐标为或 .
综上,使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标有4个,
即(0, ,)或或或
【解析】【解答】(1)∵二次函数经过点A(1,0),B(0,1)代入得
解得∴二次函数;
∵二次函数经过点A(1,0),D(0,-3)代入得
解得∴二次函数 .
【分析】(1)由A(1,0),B(0,1)代入二次函数解出k,m的值可得二次函数y1的表达式;由A(1,0),D(0,-3)代入二次函数解出k,m的值可得二次函数y1的表达式;(2)判断是否存在,可以列举出一种特殊情况:当该内接正方形的中心是原点O,且一组邻边分别平行于x轴、y 轴时,则可设点M(x,-x2+1)在y1图象上,则该正方形存在另一点M'(x,3x2-3)在y2图象上,由邻边相等构造方程解答即可;(3)对于△BDC与△ADE相似,且C于D对应,那么就存在两种情况:①当点B对应点A,即△DBC~△DAE,此时点E的位置有两处,一处在y轴上,另一处在线段AD的右侧;②当点B对应点DA时,即△DBC~△ADE,些时点E 有两处,分别处于线段AD的左右两侧;结果两种情况所有的条件解出答案即可.
二、圆的综合
9.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G.
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AF·AB;
(3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积.
【答案】(1)PA与⊙O相切,理由见解析;(2)证明见解析;(3)3.
【解析】
试题分析:(1)连接CD,由AD为⊙O的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切.
(2)连接BG,易证得△AFG∽△AGB,由相似三角形的对应边成比例,证得结论.
(3)连接BD,由AG2=AF•AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案.
试题解析:解:(1)PA与⊙O相切.理由如下:
如答图1,连接CD,
∵AD为⊙O的直径,∴∠ACD=90°.
∴∠D+∠CAD=90°.
∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D.
∴∠PAC+∠CAD=90°,即DA⊥PA.
∵点A在圆上,
∴PA与⊙O相切.
(2)证明:如答图2,连接BG,
∵AD为⊙O的直径,CG⊥AD,∴»»
.∴∠AGF=∠ABG.
AC AD
∵∠GAF=∠BAG,∴△AGF∽△ABG.
∴AG:AB=AF:AG. ∴AG2=AF•AB.
(3)如答图3,连接BD,
∵AD是直径,∴∠ABD=90°.
∵AG2=AF•AB,55∴5
∵CG⊥AD,∴∠AEF=∠ABD=90°.
∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴AE AF AB AD =,即5
45
=,解得:AE=2. ∴221EF AF AE =-=.
∵224EG AG AE =-=,∴413FG EG EF =-=-=.
∴11
32322
AFG S FG AE ∆=
⋅⋅=⨯⨯=.
考点:1. 圆周角定理;2.直角三角形两锐角的关系;3. 相切的判定;4.垂径定理;5.相似三角形的判定和性质;6.勾股定理;7.三角形的面积.
10.如图AB 是△ABC 的外接圆⊙O 的直径,过点C 作⊙O 的切线CM ,延长BC 到点D ,使CD=BC ,连接AD 交CM 于点E ,若⊙OD 半径为3,AE=5, (1)求证:CM ⊥AD ; (2)求线段CE 的长.
【答案】(1)见解析;(25【解析】
分析:(1)连接OC ,根据切线的性质和圆周角定理证得AC 垂直平分BD ,然后根据平行线的判定与性质证得结论;
(2)根据相似三角形的判定与性质证明求解即可. 详解:证明:(1)连接OC
∵CM 切⊙O 于点C , ∴∠OCE=90°, ∵AB 是⊙O 的直径, ∴∠ACB=90°, ∵CD=BC , ∴AC 垂直平分BD , ∴AB=AD , ∴∠B=∠D ∵∠B=∠OCB ∴∠D=∠OCB ∴OC ∥AD ∴∠CED=∠OCE=90° ∴CM ⊥AD.
(2)∵OA=OB ,BC=CD
∴OC=12AD ∴AD=6
∴DE=AD-AE=1 易证△CDE ~△ACE
∴CE DE
AE CE = ∴CE 2=AE×DE
∴5点睛:此题主要考查了切线的性质和相似三角形的判定与性质的应用,灵活判断边角之间的关系是解题关键,是中档题.
11.如图,Rt ABC ∆内接于⊙O ,AC BC =,BAC ∠的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD ,G 是CD 的中点,连接OG .
(1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE BF =;
(3)若3(22)OG DE =g ,求⊙O 的面积.
【答案】(1)OG ⊥CD (2)证明见解析(3)6π 【解析】
试题分析:(1)根据G 是CD 的中点,利用垂径定理证明即可; (2)先证明△ACE 与△BCF 全等,再利用全等三角形的性质即可证明; (3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解. 试题解析:(1)解:猜想OG ⊥CD .证明如下:
如图1,连接OC 、OD .∵OC =OD ,G 是CD 的中点,∴由等腰三角形的性质,有OG ⊥CD .
(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,而∠CAE =∠CBF (同弧所对的圆周角相等).在Rt △ACE 和Rt △BCF 中,∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ,∴Rt △ACE ≌Rt △BCF (ASA ),∴AE =BF .
(3)解:如图2,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点,∴OH =1
2
AD ,即AD =2OH ,又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中,∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB ,∴
BD DE
AD DB
=,即BD 2=AD •DE ,∴22622BD AD DE OG DE =⋅=⋅=()
.又BD =FD ,∴BF =2BD ,∴2242422BF BD ==()①,设AC =x ,则BC =x ,AB 2x .∵AD 是∠BAC 的平分线,∴∠FAD =∠BAD .在Rt △ABD 和Rt △AFD 中,∵∠ADB =∠ADF =90°,AD =AD ,∠FAD =∠BAD ,∴Rt △ABD ≌Rt △AFD (ASA ),∴AF =AB 2x ,BD =FD ,∴CF =AF ﹣AC 221x x x -=().在Rt △BCF 中,由勾股定理,得:
222222[21]222BF BC CF x x x =+=+=()()②,由①、②,得
22222422x =()(),∴x 2=12,解得:23x =23-∴222326AB x =
==∴⊙O 6,∴S ⊙O =π•6)2=6π.
点睛:本题是圆的综合题.解题的关键是熟练运用垂径定理、勾股定理、相似三角形的判定与性质.
12.如图,△ABC 是⊙O 的内接三角形,点D ,E 在⊙O 上,连接AE ,DE ,CD ,BE ,CE ,∠EAC+∠BAE=180°,»»AB CD =.
(1)判断BE 与CE 之间的数量关系,并说明理由; (2)求证:△ABE ≌△DCE ;
(3)若∠EAC=60°,BC=8,求⊙O 的半径.
【答案】(1)BE=CE ,理由见解析;(2)证明见解析;(383
. 【解析】
分析:(1)由A 、B 、C 、E 四点共圆的性质得:∠BCE+∠BAE=180°,则∠BCE=∠EAC ,所以»»BE
CE =,则弦相等;(2)根据SSS 证明△ABE ≌△DCE ; (3)作BC 和BE 两弦的弦心距,证明Rt △GBO ≌Rt △HBO (HL ),则∠OBH=30°,设OH=x ,则OB=2x ,根据勾股定理列方程求出x 的值,可得半径的长. 本题解析: (1)解:BE=CE ,
理由:∵∠EAC+∠BAE=180°,∠BCE+∠BAE=180°, ∴∠BCE=∠EAC , ∴»»BE
CE =, ∴BE=CE ;
(2)证明:∵»»AB CD =,∴AB=CD , ∵»»BE CE =,»»AE ED
=,∴AE=ED , 由(1)得:BE=CE ,
在△ABE和△DCE中,
∵
AE DE AB CD BE CE
=
⎧
⎪
=
⎨
⎪=
⎩
,
∴△ABE≌△DCE(SSS);
(3)解:如图,∵过O作OG⊥BE于G,OH⊥BC于H,
∴BH=1
2BC=
1
2
×8=4,BG=
1
2
BE,
∵BE=CE,∠EBC=∠EAC=60°,
∴△BEC是等边三角形,∴BE=BC,∴BH=BG,
∵OB=OB,∴Rt△GBO≌Rt△HBO(HL),
∴∠OBH=∠GBO=1
2
∠EBC=30°,
设OH=x,则OB=2x,
由勾股定理得:(2x)2=x2+42,x=
43
,
∴OB=2x=83,∴⊙O的半径为83.
点睛:本题是圆的综合题,考查了四点共圆的性质、三角形全等的性质和判定、勾股定理、直角三角形30°的性质,难度适中,第一问还可以利用三角形全等得出对应边相等的结论;第三问作辅助线,利用勾股定理列方程是关键.
13.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.
(2)探究证明
将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
(3)拓展延伸
在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写
BD 的长.
【答案】(1)2;(2)AD ﹣DC=2BD ;(3)BD=AD=2+1. 【解析】 【分析】
(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系 (2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O , 证明CDB AEB ∆∆≌,得到CD AE =,EB BD =, 根据BED ∆为等腰直角三角形,得到2DE BD =
,
再根据DE AD AE AD CD =-=-,即可解出答案.
(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.
在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,
由BD AD =即可得出答案. 【详解】
解:(1)如图1中,
由题意:BAE BCD ∆∆≌, ∴AE=CD ,BE=BD , ∴CD+AD=AD+AE=DE , ∵BDE ∆是等腰直角三角形, ∴2BD , ∴2BD , 2.
(2)2AD DC BD -=.
证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .
∵90ABC DBE ∠=∠=︒,
∴ABE EBC CBD EBC ∠+∠=∠+∠, ∴ABE CBD ∠=∠.
∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠, ∴BAE BCD ∠=∠,
∴ABE DBC ∠=∠.又∵AB CB =, ∴CDB AEB ∆∆≌, ∴CD AE =,EB BD =, ∴BD ∆为等腰直角三角形,2DE BD =.
∵DE AD AE AD CD =-=-, ∴2AD DC BD -=
.
(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.
此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==
∴21BD AD ==+.
【点睛】
本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.
14.在直角坐标系中,O 为坐标原点,点A 坐标为(2,0),以OA 为边在第一象限内作
等边△OAB ,C 为x 轴正半轴上的一个动点(OC >2),连接BC ,以BC 为边在第一象限内作等边△BCD ,直线DA 交y 轴于E 点.
(1)求证:△OBC ≌△ABD
(2)随着C 点的变化,直线AE 的位置变化吗?若变化,请说明理由;若不变,请求出直线AE 的解析式.
(3)以线段BC 为直径作圆,圆心为点F ,当C 点运动到何处时,直线EF ∥直线BO ;这时⊙F 和直线BO 的位置关系如何?请给予说明.
【答案】(1)见解析;(2)直线AE 的位置不变,AE 的解析式为:33y x =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由见解析.
【解析】
【分析】
(1)由等边三角形的性质可得到OB=AB ,BC=BD ,∠OBA=∠DBC ,等号两边都加上∠ABC ,得到∠OBC=∠ABD ,根据“SAS”得到△OBC ≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD ,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE 中,由OA 的长,根据tan60°的定义求出OE 的长,确定出点E 的坐标,设出直线AE 的方程,把点A 和E 的坐标代入即可确定出解析式.(3)由EA ∥OB ,EF ∥OB ,根据过直线外一点作已知直线的平行线有且只有一条,得到EF 与EA 重合,所以F 为BC 与AE 的交点,又F 为BC 的中点,得到A 为OC 中点,由A 的坐标即可求出C 的坐标;相切理由是由F 为等边三角形BC 边的中点,根据“三线合一”得到DF 与BC 垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.
【详解】
(1)证明:∵△OAB 和△BCD 都为等边三角形,
∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,
∴∠OBA+∠ABC=∠DBC+∠ABC ,
即∠OBC=∠ABD ,
在△OBC 和△ABD 中,
OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩
, ∴△OBC ≌△ABD.
(2)随着C 点的变化,直线AE 的位置不变,
∵△OBC ≌△ABD ,
∴∠BAD=∠BOC=60°,
又∵∠BAO=60°,
∴∠DAC=60°,
∴∠OAE=60°,又OA=2,
在Rt △AOE 中,tan60°=OE OA , 则
OE=23,
∴点E 坐标为(0,-23),
设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得: 0223k b b
=+⎧⎪⎨-=⎪⎩ , 解得,323
k b ⎧=⎪⎨=-⎪⎩ , ∴直线AE 的解析式为:323y x =-.
(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下: ∵∠BOA=∠DAC=60°,EA ∥OB ,又EF ∥OB ,
则EF 与EA 所在的直线重合,
∴点F 为DE 与BC 的交点,
又F 为BC 中点,
∴A 为OC 中点,又AO=2,则OC=4,
∴当C 的坐标为(4,0)时,EF ∥OB ,
这时直线BO 与⊙F 相切,理由如下:
∵△BCD 为等边三角形,F 为BC 中点,
∴DF ⊥BC ,又EF ∥OB ,
∴FB ⊥OB ,
∴直线BO 与⊙F 相切,
【点睛】
本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.
15.如图,AB为⊙O的直径,DA、DC分别切⊙O于点A,C,且AB=AD.(1)求tan∠AOD的值.
(2)AC,OD交于点E,连结BE.
①求∠AEB的度数;
②连结BD交⊙O于点H,若BC=1,求CH的长.
【答案】(1)2;(2)①∠AEB=135°;②
2 CH=
【解析】
【分析】
(1)根据切线的性质可得∠BAD=90°,由题意可得AD=2AO,即可求tan∠AOD的值;(2)①根据切线长定理可得AD=CD,OD平分∠ADC,根据等腰三角形的性质可得
DO⊥AC,AE=CE,根据圆周角定理可求∠ACB=90°,即可证∠ABC=∠CAD,根据“AAS”可证△ABC≌△DAE,可得AE=BC=EC,可求∠BEC=45°,即可求∠AEB的度数;
②由BC=1,可求AE=EC=1,BE2
=,根据等腰直角三角形的性质可求∠ABE=∠HBC,可证△ABE∽△HBC,可求CH的长.
【详解】
(1)∵DA是⊙O切线,∴∠BAD=90°.
∵AB=AD,AB=2AO,∴AD=2AO,∴tan∠AOD
AD
AO
==2;
(2)①∵DA、DC分别切⊙O于点A,C,∴AD=CD,OD平分∠ADC,∴DO⊥AC,
AE=CE.
∵AB是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,且∠BAC+∠CAD=90°,
∴∠ABC=∠CAD,且AB=AD,∠ACB=∠AED=90°,∴△ABC≌△DAE(AAS),∴CB=AE,∴CE=CB,且∠ACB=90°,∴∠BEC=45°=∠EBC,∴∠AEB=135°.
②如图,∵BC=1,且BC=AE=CE,∴AE=EC=BC=1,∴BE2
=.
∵AD=AB,∠BAD=90°,∴∠ABD=45°,且∠EBC=45°,∴∠ABE=∠HBC,且∠BAC=∠CHB,
∴△ABE∽△HBC,∴BC CH
EB AE
=,即
1
2
CH
=,∴CH2
2
=.
【点睛】
本题考查了切线的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
16.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=1
2
AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.
【答案】(1)26;(2)①证明见解析;②33﹣3.
【解析】
试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;
(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;
②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.
试题解析:(1)如图2,连接OD,
∵OP⊥PD,PD∥AB,
∴∠POB=90°,
∵⊙O的直径AB=12,
∴OB=OD=6,
在Rt△POB中,∠ABC=30°,
∴OP=OB•tan30°=6×=2,
在Rt△POD中,
PD===;
(2)①如图3,连接OD,交CB于点F,连接BD,
∵,
∴∠DBC=∠ABC=30°,
∴∠ABD=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴OD⊥FB,
∵BE=AB,
∴OB=BE,
∴BF∥ED,
∴∠ODE=∠OFB=90°,
∴DE是⊙O的切线;
②由①知,OD⊥BC,
∴CF=FB=OB•cos30°=6×=3,
在Rt△POD中,OF=DF,
∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.
考点:圆的综合题。