【现代控制理论与方法概述-各章节习题及答案】op_ti10
现代控制原理习题答案
第一章自动控制的一般概念一.是非题1.开环控制是一种反馈控制(×)2.开环控制的稳定性比闭环控制的稳定性要好(×)3.线形系统的主要特点是具有齐次性和叠加性(√)4.线性定常系统的各项系数是与时间有关的(×)5.闭环控制的控制精度在很大程度上由形成反馈的测量元件的精度决定的(√)6.自动控制就是采用控制装置使被控对象自动的按给定的规律运行,使被控对象的一个或数个物理量能够在一定的精度范围内按给定的规律变化(√)7.自动控制系统有两种最基本的控制形式即开环控制,闭环控制(√)二.选择题1.下述(D)不属于对闭环控制系统的基本要求。
(A)稳定性(B)准确性(C)快速性(D)节能性2.自动控制系统一般由(D)组成(A)输入和输出(B)偏差和反馈(C)控制量和扰动(D)控制器和被控对象3.在组成系统的元件中,(A),即为非线形系统(A)只要有一个元、器件的特性是非线形的(B)有且只有一个元、器件的特性是非线形的(C)两个及两个以上的元、器件的特性是非线形的(D)所有的元器件的特性都是非线形的4.古典控制理论形成于(D)(A)2000年前(B)1000年前(C)100年前(D)20 世纪20-40年代5.对于一个自动控制、系统的性能要求可以该概括为三个方面:(A)快速性和准确性(A)稳定性(B)定常性(C)振荡性(D)抗干扰性6.传递函数的概念除了适用于定常系统之外,还可以描述(A)系统(A)线形时变(B)非线性定常(C)非线形时变( D )以上都不是7.在控制系统中被控制的物理量是被控量,直接改变被变量的元件称为(A)(A)执行元件(B)控制元件(C)调节器(D)测量元件8.在通常的闭环控制系统结构中,系统的控制器和控制对象共同构成了(B)(A)开环传递函数(B)前向通道(C)反馈通道(D)闭环传递函数9.下面数学模型中(D)是线形定常系统的外部描述(A)传递函数(B)微分方程(C)频率特性(D)前面三种都是三.填空题1.自动控制系统的两种最基本形式即开环控制,闭环控制。
《现代控制理论》课后习题答案(完整版)
1-1
解:系统的模拟结构图如下:
系统的状态方程如下:
阿
令 ,则
所以,系统的状态空间表达式及输出方程表达式为
1-2
解:由图,令 ,输出量
有电路原理可知:既得
写成矢量矩阵形式为:
1-3
1-4 两输入 , ,两输出 , 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
当时,
解之得 令 得
当时,
解之得 令 得
当 时,
解之得令得
约旦标准型
1-10
试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结
(2)并联联结
1-11
求系统的闭环传递函数解:
求系统的闭环传递函数解:
1-12已知差分方程为
试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为
(1)
解法1:
解法2:
求T,使得得所以
解:系统的状态空间表达式如下所示:
1-5
列写其相应的状态空间表达式,并画出相应的模拟结构图。解:令 ,则有
相应的模拟结构图如下:
1-6
解:
1-7
‘
(1)画出其模拟结构图
(2) 求系统的传递函数解:
(2)
1-8
(3)(3)
解:A的特征方程
解得: 令得
(或-9
(2)
解:A的特征方程
【现代控制理论与方法概述-各章节习题及答案】op_ti2d
习 题2-1 如题图2-1所示的网络系统,设输入控制变量为i i ,输出变量为R u 。
取c v 和L i 为状态变量。
试求系统的状态空间表达。
题图2-1 网络系统解:根据基尔霍夫定律,有i c L c c L c L R Li i idv i C dtdi v i R L dtu i R =+⎧⎪⎪=⎪⎨⎪=+⎪⎪=⎩⇒c i LL c L R L dv i i C dt di v L i R dt u i R ⎧=+⎪⎪⎪=+⎨⎪=⎪⎪⎩⇒ci L c L L dv i i dt C C v di i R dt L L ⎧=-+⎪⎪⎨⎪=-⎪⎩, R L u i R =整理,得2-2 试求题图2-2系统的状态空间表达式。
解:依题意,有111212222()[()()]()()()()[()()]()()()i A A A o o o T t k t t T t T t J t T t k t t T t J t f t θθθθθθθ=-⎧⎪-=⎪⎨=-⎪⎪=+⎩ cL c L c iC i v L R LC i v ⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡01110 []0c R L v u R i ⎡⎤=⎢⎥⎣⎦设1o y x θ==,2o x θ=,3A x θ=,4A x θ=,i u θ=,则将上述方程组化简可得:12222123222342121413111x x k k f x x x x J J J x x k k k k x x x u J J J =⎧⎪⎪=--+⎪⎨=⎪⎪+=-+⎪⎩于是得:112222222331442121111000000000100x x k k f JJ J x x u x x k x xk k k J J J ⎡⎤⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦⎣⎦[]12341000x x y x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦这就是所求系统的状态空间表达式。
《现代控制理论》课后习题答案1.pdf
《现代控制理论》第一章习题解答1.1 线性定常系统和线性时变系统的区别何在? 答:线性系统的状态空间模型为:xAx Bu y Cx Du=+=+线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和中的各分量均为常数,而对线性时变系统,其系数矩阵D A ,B ,C 和中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。
D 1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别? 答: 传递函数模型与状态空间模型的主要区别如下:传递函数模型(经典控制理论)状态空间模型(现代控制理论) 仅适用于线性定常系统 适用于线性、非线性和时变系统用于系统的外部描述 用于系统的内部描述基于频域分析基于时域分析1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。
对于阶传递函数n 1212101110()n n n n n n n b s b s b s b G s d s a s a s a −−−−−−++++=+++++"",分别有[]012101210100000100000101n n n xx ua a a a yb b b b x du−−−⎧⎡⎤⎪⎢⎥⎪⎢⎥⎪⎢⎥=+⎪⎢⎥⎨⎢⎥⎪⎢⎥⎪−−−−⎣⎦⎪=+⎪⎩"" ###%##"""⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⑴ 能控标准型:[]0011221100010********001n n n b a b a xa x ub a b y xdu −−−⎧−⎡⎤⎡⎤⎪⎢⎥⎢⎥−⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=−+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥⎪⎢⎥⎢⎥⎪−⎣⎦⎣⎦⎪=+⎪⎩"" "######""⑵ 能观标准型:[]1212001001001n n p p x x up y c c c x du⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥⎪⎣⎦⎣⎦⎪⎪=+⎩"" ##%##""⑶ 对角线标准型: 式中的和可由下式给出,12,,,n p p p "12,,,n c c c "12121012111012()n n n n n n n n nb s b s b s bc c c G sd d s a s a s a s p s p s p −−−−−−++++=+=++++++−−−"""++能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。
现代控制理论课后习题答案
现代控制理论课后习题答案第⼀章习题1.2求下列多项式矩阵()s D 和()s N 的两个不同的gcrd:()2223(),()1232s s s s s s s s s ??++== ? ?+-??D N 解:()()22232321s s s s s s s++ =++ ? ?D S N S ; ()3r 2,1,2E -:223381s s s s s s ??++ ?-- ? ???;()3r 2,3,3E :223051s s s s s ??++ ?- ? ???;()3r 1,3,2E s --:01051s s ?? ?- ? ;()3r 2,1,5E s -:01001s ?? ?;()3r 3,1,1E -:01000s ?? ? ? ???;()1r 2,3E :01000s ?? ? ? ???;()1r 1,2E :00100s ?? ?;所以⼀个gcrd 为001s ??;取任⼀单模矩阵预制相乘即可得另⼀个gcrd 。
1.9 求转移矩阵t A e (1)已知1141??=A ,根据拉⽒反变换求解转移矩阵tA e 。
(2) 已知412102113-?? ?= ? ?-??A ,根据C-H 有限项展开法求解转移矩阵t A e 。
解:(1)11()41s s s --??-= ?--??I A1110.50.50.250.2511(3)(1)(3)(1)13131()4141110.50.5(3)(1)(3)(1)(3)(1)3131s s s s s s s s s s s s s s s s s s s s s s s --+---+-+??-+-+ ? ?-=== ? ?---+ ?-+ ? ?-+-+-+-+?I A 3311330.5e 0.5e 0.25e 0.25e e ()e e 0.5e 0.5e t t t t t t tt t s ------??+-??=-= ??? ?-+?A L I A (2)由2412()12(1)(3)0113λλλλλλ--?? ?=--=--= ? ?--??A I -,得1,233,1λλ== 对1,23λ=,可以计算1,2()2rank λ=A I -,所以该特征值的⼏何重数为1。
现代控制理论习题及答案
现代控制理论习题及答案现代控制理论习题及答案现代控制理论是控制工程领域的重要分支,它研究如何设计和分析控制系统,以实现对动态系统的稳定性、响应速度、精度等方面的要求。
在学习现代控制理论过程中,习题是一个非常重要的环节,通过解答习题可以帮助我们巩固理论知识,提高问题解决能力。
本文将介绍一些常见的现代控制理论习题及其答案,希望对读者有所帮助。
1. 题目:给定一个开环传递函数 G(s) = 10/(s+5),求其闭环传递函数 T(s) 和稳定性判断。
解答:闭环传递函数 T(s) 可以通过公式 T(s) = G(s) / (1 + G(s)) 计算得到。
代入G(s) 的表达式,得到 T(s) = 10/(s+15)。
稳定性判断可以通过判断开环传递函数G(s) 的极点是否在左半平面来进行。
由于 G(s) 的极点为 -5,位于左半平面,因此系统是稳定的。
2. 题目:给定一个系统的状态空间表达式为 dx/dt = Ax + Bu,其中 A = [[-1, 2], [0, -3]],B = [[1], [1]],求系统的传递函数表达式。
解答:系统的传递函数表达式可以通过状态空间表达式进行求解。
首先,计算系统的特征值,即矩阵 A 的特征值。
通过求解 det(sI - A) = 0,可以得到系统的特征值为 -1 和 -3。
然后,将特征值代入传递函数表达式的分母,得到传递函数的分母为 (s+1)(s+3)。
接下来,计算传递函数的分子,可以通过求解 C = D(sI - A)^(-1)B 得到,其中 C 和 D 分别为输出矩阵和输入矩阵。
代入给定的 A、B 矩阵,计算得到 C = [1, 0] 和 D = [0]。
因此,系统的传递函数表达式为 G(s) = C(sI - A)^(-1)B = [1, 0] * [(s+1)^(-1), -2(s+3)^(-1); 0, (s+3)^(-1)] * [1; 1] =(s+1)^(-1) + 2(s+3)^(-1)。
现代控制理论习题解答(第一章)
g
题 1-3 图 2
Y2 (s)
3
U (s)
K1
x6
x6
T1 1
T1
K2
x4
x4
T2 1
K3 x2
x2 1 T4
T2
x3
x3
x5
x5
K5
T5
1 T5
写成矩阵的形式得:
题 1-3 图 3
x 1
=− 1 T4
x1
+
1 T4
x2
x2 = K 3 (x4 − x3 )
x3 = x2
x 4
1⎤
R 2 C1 −1
R2C2
⎥ ⎥ ⎥
⎡ ⎢ ⎣
x1 x2
⎥⎦
⎤ ⎥ ⎦
+
⎡ ⎢ ⎢ ⎣
1
R1C1 0
⎤ ⎥⎥u i ⎦
y = u0 = [0
1]⎢⎡
⎣
x1 x2
⎤ ⎥ ⎦
(2)
设状态变量: x1 = iL 、 x2 = uc 而
1
根据基尔霍夫定律得: 整理得
•
iL = C uc
•
ui = R ⋅ iL + LiL + uc
(4) G(s)
=
s3
s2 + 2s + 3 + 3s 2 + 3s + 1
【解】: 此题多解,一般可以写成能控标准型、能观标准型或对角标准型,以下解法供参考。 (1)
⎡0 1
x
=
⎢ ⎢
0
0
⎢⎣− 6 −11
y = [1 1 1]x
0 ⎤ ⎡0⎤
1
⎥ ⎥
x
现代控制理论习题附答案
现代控制理论习题附答案现代控制理论习题附答案现代控制理论是控制工程领域中的重要分支,它研究如何利用数学模型来描述和分析控制系统的行为,并设计出相应的控制算法。
掌握现代控制理论对于提高控制系统的性能和稳定性至关重要。
在这篇文章中,我们将介绍一些现代控制理论的习题,并附上相应的答案,希望能够帮助读者更好地理解和应用这一理论。
1. 问题:给定一个连续时间域的线性时不变系统,其传递函数为G(s) = (s + 1)/(s^2 + 3s + 2),试求该系统的单位阶跃响应。
答案:单位阶跃响应是指当输入信号为单位阶跃函数时,系统的输出响应。
对于连续时间域的系统,单位阶跃函数可以表示为u(t) = 1,其中t >= 0。
根据系统的传递函数,我们可以使用拉普拉斯变换来求解单位阶跃响应。
首先,将传递函数G(s)进行部分分式分解,得到G(s) = 1/(s + 1) - 1/(s + 2)。
然后,对每一项进行拉普拉斯反变换,得到g(t) = e^(-t) - e^(-2t)。
因此,该系统的单位阶跃响应为g(t) = e^(-t) - e^(-2t)。
2. 问题:给定一个离散时间域的线性时不变系统,其传递函数为G(z) = (0.5z + 0.3)/(z^2 - 0.7z + 0.1),试求该系统的单位脉冲响应。
答案:单位脉冲响应是指当输入信号为单位脉冲函数时,系统的输出响应。
对于离散时间域的系统,单位脉冲函数可以表示为δ(n),其中n为整数。
根据系统的传递函数,我们可以使用z变换来求解单位脉冲响应。
首先,将传递函数G(z)进行部分分式分解,得到G(z) = 0.3/(z - 0.5) + 0.2/(z - 0.1)。
然后,对每一项进行z反变换,得到g(n) = 0.5^n - 0.1^n。
因此,该系统的单位脉冲响应为g(n) = 0.5^n - 0.1^n。
3. 问题:给定一个连续时间域的线性时不变系统,其状态空间表示为dx/dt =Ax + Bu,y = Cx + Du,其中A = [[-1, -2], [3, -4]],B = [[1], [0]],C = [[1, 0], [0, 1]],D = [[0], [0]],试求该系统的零输入响应。
《现代控制理论》课后习题答案2
⎪ ⎪⎪an−2
=
−
1 2
tr( AHn−2 )
⎪⎪
#
⎨
(6)
⎪ ⎪
a1
=
−
1 tr( n −1
AH1 )
⎪ ⎪ ⎪⎩
a0
=
−
1 n
tr( AH0 )
利用式(5)和(6),未知矩阵 Hi 和 ai 可以交替计算得到,从而可求出预解矩阵 (sI − A)−1
的解。
求解预解矩阵 (sI − A)−1 的 Matlab 程序为:
x(t) = eA(t−t0 ) x(t0 )
和
∫ x(t) = eAt x(0) + t eA(t−τ )Bu(τ )dτ 0
2.5 试求下列矩阵 A 对应的状态转移矩阵 Φ(t) 。
(1)
A
=
⎡0 ⎢⎣0
1⎤ −2⎥⎦
,
(2)
A
=
⎡0 ⎢⎣4
−1⎤ 0⎥⎦
,
(3)
A
=
⎡0 ⎢⎣−1
1⎤ −2⎥⎦
,
⎡0 1 0 0⎤
⎡λ 0 0 0⎤
⎡0 (4) A = ⎢⎢0
⎢⎣2
1 0 −5
0⎤ 1⎥⎥ , (5) 4⎥⎦
A
=
⎢⎢0 ⎢0
⎢⎣0
0 0 0
1 0 0
0⎥⎥ , 1⎥
(6)
A
=
⎢ ⎢ ⎢
0 0
0⎥⎦
⎢ ⎣
0
λ 0 0
1 λ 0
0
⎥ ⎥
1⎥
λ
⎥ ⎦
答:(1) Φ(t) = L−1 ⎡⎣(sI − A)−1 ⎤⎦
《现代控制理论》第二章习题解答
现代控制理论》课后习题答案(完整版)
现代控制理论》课后习题答案(完整版)试求图1-27所示系统的状态空间表达式和输出方程表达式。
解:系统的模拟结构图如下:image.png]()根据模拟结构图,可以列出系统的状态方程:begin{cases} \dot{x}_1 = -2x_1 + 3x_2 + u \\ \dot{x}_2 = -x_1 + 2x_2 \end{cases}$$其中,$u$为输入量,$x_1$和$x_2$为状态变量。
将状态方程写成矩阵形式:begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} =\begin{bmatrix} -2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$系统的输出方程为:y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \end{bmatrix}$$因此,系统的状态空间表达式为:begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$其中。
A = \begin{bmatrix} -2 & 3 \\ -1 & 2 \end{bmatrix}。
B =\begin{bmatrix} 1 \\ 0 \end{bmatrix}。
C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$输出方程表达式为:y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \end{bmatrix}$$因此,系统的状态空间表达式和输出方程表达式为:begin{cases} \dot{x} = \begin{bmatrix} -2 & 3 \\ -1 & 2\end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x \end{cases}$$对于下面的文章,我们首先删除了明显有问题的段落,然后进行了小幅度的改写和格式修正。
现代控制理论试题(详细答案)-现控题目
现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。
《现代控制理论》习题解答 2016-5-18
2s 7 ( s 3)( s 4) 1-13 G ( s ) 1 s3
1 0 0 x 1 0 x 1-14 2 x 3 a2 0 4 a4 0 x y( z) 2( z 1) 2 1-15 u ( z ) ( z 3z 1)
10 s 26 ( s 2)( s 3)( s 4) 。 2s 10 ( s 2)( s 3)
0 x1 0 u1 y1 1 0 0 0 x2 ; 。 0 u2 y2 0 1 0 0 x3 b2 x4
x1 x2 x3 。 u ; (0 0 0 0 0 1) x4 x 5 x 6
1-04 设状态变量为 x1 i1 , x2 i2 , x3 uC ,状态方程, : x1 i1 , x2 i2 , x3 uC ,状态方程
2( s 2) ( s 1)( s 3) 并联 G ( s ) W1 ( s ) W2 ( s ) 1 s 1
2( s 3) ( s 2)( s 4) 。 s 1 s2
第二章习题解答
1 0 0 A 2-01 (1) 注意 A 0 1 0 1 0 1 2 1 0 A1t 1 1 t ,其中 A1 1 , A2 ,而 e L [( sI A1 ) ] e , 1 2 A2
1 ( s 1)( s 3) 1-18 串联 G ( s ) W2 ( s )W1 ( s ) 1 ( s 1)2 s 2 5s 7 ( s 2)( s 3)( s 4) ; 1 ( s 1)( s 2)
(完整word版)现代控制理论习题解答
(完整word版)现代控制理论习题解答《现代控制理论》第1章习题解答1.1 线性定常系统和线性时变系统的区别何在?答:线性系统的状态空间模型为:xAx Bu y Cx Du=+=+&线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和D 中的各分量均为常数,⽽对线性时变系统,其系数矩阵A ,B ,C 和D 中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的⼀类系统,⽽线性时变系统的参数则随时间的变化⽽变化。
1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别?答: 传递函数模型与状态空间模型的主要区别如下:1.3 线性系统的状态空间模型有哪⼏种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对⾓线标准型。
对于n 阶传递函数1212101110()n n n n n n n b s b s b s b G s d s a s a s a ------++++=+++++L L ,分别有⑴能控标准型: []012101210100000100000101n n n xx u a a a a y b b b b x du---=+??----????=+LL &M M M O M M L LLb a b y xdu ---?--=-+?????-????=+??L L &%%L M M M M M M L %L ⑶对⾓线标准型: []1212001001001n n p p x x u p y c c c x du=+??????=+?L L &M M O M M L L 式中的12,,,n p p p L 和12,,,n c c c L 可由下式给出,12121012111012()n n n n n n n n nb s b s b s bc c c G sd d s a s a s a s p s p s p ------++++=+=++++++++---L L L 能控标准型的特点:状态矩阵的最后⼀⾏由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分⼦多项式系数,输⼊矩阵中的元素除了最后⼀个元素是1外,其余全为0。
现代控制理论习题解答
现代控制理论习题解答《现代控制理论》第1章习题解答1.1 线性定常系统和线性时变系统的区别何在?答:线性系统的状态空间模型为:xAx Bu y Cx Du=+=+&线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和D 中的各分量均为常数,⽽对线性时变系统,其系数矩阵A ,B ,C 和D 中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的⼀类系统,⽽线性时变系统的参数则随时间的变化⽽变化。
1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别?答: 传递函数模型与状态空间模型的主要区别如下:1.3 线性系统的状态空间模型有哪⼏种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对⾓线标准型。
对于n 阶传递函数1212101110()n n n n n n n b s b s b s b G s d s a s a s a ------++++=+++++L L ,分别有⑴能控标准型: []012101210100000100000101n n n xx u a a a a y b b b b x du---=+??----????=+LL &M M M O M M L LL⑵能观标准型: []001122110001000100010001n n n b a b a xa x ub a b y xdu ---?--=-+?????-????=+??L L &%%L M M M M M M L %L ⑶对⾓线标准型: []1212001001001n n p p x x u p y c c c x du=+??????=+?L L &M M O M M L L 式中的12,,,n p p p L 和12,,,n c c c L 可由下式给出,12121012111012()n n n n n n n n nb s b s b s bc c c G sd d s a s a s a s p s p s p ------++++=+=++++++++---L L L 能控标准型的特点:状态矩阵的最后⼀⾏由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分⼦多项式系数,输⼊矩阵中的元素除了最后⼀个元素是1外,其余全为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业: 10-1, 10-3
习 题
10-1 给定系统
()()()()⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤
⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡25.025.0000010001021212121f f t x t x x x u x x x x f t 待定,1≤u 。
试确定使下面性能指标最小的最优控制。
()dt t u J f
t 20⎰=
10-2 给定系统
()()()()⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡0000100010212010212121f f t x t x x x x x u x x x x 1≤u
试确定使下面性能指标最小的最优控制, 式中ρ是加权系数。
()dt t u t J f
t f ⎰+
=0ρ
10-3 对于系统
()15.0,50,≤≤=-=u x u x x
试用极大值原理求使下列性能指标为最小的最优控制()t u *,最优轨线()t x *以及J 的最小值*J 。
()dt u x J +=⎰1
10-4 对于如习图10-1所示的RLC 网络,
(1)写出状态方程;
(2)给定x (0),f t , 0<u (t )<E (常数)
试求使下面性能指标最小的最优控制。
()dt t x J f
t 20-=⎰
习图10-1 RLC 网络
10-5 当燃料重量与宇宙飞船的重量相比可以忽略不计时,用极大值原理解在月球上软着陆最少燃料的最优控制问题。
状态方程为 ⎪⎩
⎪⎨⎧+-==m u g v v h 设m 为常数,两端边值条件为
()()()()0,0,0,000====T v T h v v h h
性能指标为
()()α≤≤=⎰t u dt
t u J T
00。