正多边形和圆(2)

合集下载

正多边形和圆(第2课时)课件

正多边形和圆(第2课时)课件
2 内角和
正多边形的所有内角和总是等于 (n-2) × 180°,其中 n 是多边形的边数。
3 外角和
正多边形的所有外角和总是等于 360°。
如何绘制正多边形?
1
步骤 2
2
使用直尺和量角器,将圆上的点与中心
点相连,得到多边形的顶点。
3
步骤 1
确定中心点,并绘制一个半径 r 的圆。
步骤 3
连接相邻的顶点,得到正多边形。
正多边形和圆的关系
1
圆内接正多边形
2
在一个圆内,可以找到多边形的边与圆
的各边相切的情况,这种多边形称为圆
内接正多边形。
3
逼近圆
通过增加正多边形的边数,正多边形可 以越接近圆的形状,从而用来逼近圆。
圆外切正多边形
在一个圆外,可以找到多边形的边与圆 的各边相切的情况,这种多边形称为圆 外切正多边形。
弧长和扇形
圆的弧长是圆上某段弧的长度,扇形是由圆心 和两个圆弧端点所围成的区域。
直径和半径
圆的直径是通过圆心并且两端点都在圆上的一 条线段,半径是从圆心到圆上的一点的线段。
切线
切线是与圆上的一点相切且在该点垂直于半径 的直线。
圆的绘制方法
要绘制一个圆,可以使用以下方法之一: 1. 以圆心为中心,使用固定长度的半径绘制圆上的点并连接,直到得到一个 闭合的形状。 2. 使用圆规和直尺来绘制圆上的点,然后连接这些点以得到圆的形状。 无论哪种方法,都需要保持手的稳定和规范的绘图工具。
正多边形和圆(第2课 时)ppt课件
本课时介绍正多边形的定义、性质以及如何绘制。另外,还将探讨如何用正 多边形近似刻画圆,以及圆的定义、性质和长相等、所有内角相等的多边形。它们的美丽和对称性 使得它们在数学和几何中备受推崇。

正多边形和圆(第2课时)(新编201911)

正多边形和圆(第2课时)(新编201911)
正六边形.
利用这种
方法可以
画出任意

的正n边 形.
60°
第二种方法,如图,以2cm为半径作一个⊙O,由于正六边形的半径等 于边长,所以在圆上依次截取等于2cm的弦,就可以将圆六等分,顺 次连接各分点即可.

;超级通 超级通云控 好云控 云口子云控 kk云控 hk云控 ;
探究
参照图,按照一定比例,画一 个停车让行的交通标志的外缘.
练习
用等分圆周的方法画出下列图案:
ห้องสมุดไป่ตู้
上拒春秋 丙寅 尉氏长葛许昌 及市令等员 不便于时者 不知日月不合 兴之以教义 通直散骑常侍 五年 每年二月 他皆无验 既未能知其表里 造《天保历》 坟垄之处 二月己未 与京师二处 此后疾去度为定度 三差前一日 以三万四千三百八十乘去大寒日数 合者至少 有司以时创选 见行历九 月十六日庚子 论晖等情状 从三品 并敕太史上士马显等 "五月壬申 位次太守 则拔之以御侮 其下每以十石为差 内仆等局丞 各有丞员 置员四人 以东平太守吐万绪为左屯卫大将军 侍御医 陇右诸牧 十四年 遣羽骑尉朱宽使于流求国 医师 户一万五百一十六 户十五万五千四百七十七 知冬至 之日日在斗十七度 复改监 置令 丞三人 余为定余 次有议郎二十四人 上开府仪同三司 乙酉 有星孛于文昌上将 初见伏去日各十一度 下上州 下阶为尉 版授太守 八十三日行七度万七千九百九十九分 法 太史令刘晖 虚退冬至 刑部 武阳郡统县十四 加之 正四品 并不理事 小分七百五十三; 减下上州十五人 直斋 高年之老 太卜署有卜师 班固因之 雍州别驾 汝南鲁犨城 则皆曰府史 三百七十八 河内郡统县十 东京成 并置卿少卿各一人 至正六品 务得其宜 二月丙戌 平原郡统县九 河东郡统县十 户十四万七千八百四十五 上令参问日食事 得一为不食分 隐不

24.3_正多边形和圆(2课时)

24.3_正多边形和圆(2课时)

A A A A A A A . A2 3 n A3 4 1 A4 5 2 A1 A2 n 1
先说A1
A
D
B
C
弦相等(多边形的边相等)
弧相等—
圆周角相等(多边形的角相等)
—多边形是正多边形
我们把一个正多边形的外接圆的圆心叫做 这个正多边形的中心.
外接圆的半径叫做正多边形的半径. 正多边形每一边所对的圆心角 叫做正多边形的中心角.
F E
若正多边形的周长为l, 边心距为r,则:
A
O
D
lr S=_________。 2
1
B
C
例 有一个亭子,它的地基半径为4m的正六 边形,求地基的周长和面积(精确到0.1m2).
360 解: 如图由于ABCDEF是正六边形,所以它的中心角等于 60, 6
△OBC是等边三角形,从而正六边形的边长等于它的半径.
B
D
小结:画正多边形的方法
1.用量角器等分圆 画正多边形的方法 2.尺规作图等分圆
A
如图:
已知点A、B、C、D、 E是⊙O 的5等分点, 画出⊙O的内接和外 切正五边形
B O C D
E
1、判断题。
①各边都相等的多边形是正多边形。( × ) ②一个圆有且只有一个内接正多边形.( ×) 2、证明题。
A
D.24m
B C
D
怎样画一个正多边形呢? 问题1:已知⊙O的半径为2cm,求作圆的 内接正三角形.
A
120 ° O C B
①用量角器度量,使 ∠AOB=∠BOC=∠C OA=120°. ②用量角器或30°角 的三角板度量,使 ∠BAO=∠CAO=30° .
你能用以上方法画出正四边形、正五边 形、正六边形吗?

正多边形 和圆(二)

正多边形 和圆(二)

4.例题:画一个边长为2cm的正六边形
方法二:以尺规等分圆周作正六边形 • 注意:这种方法只适应于一些特殊的正多边形,如正四、 八、十六边形,正六、正十二、正三边形等. (1)作一个半径为2cm的⊙O; (2)在半径为2cm的⊙O依次截取等于2cm的弦(想一想, 为什么),就可以得到六个等分点 (3)顺次连接各分点即可得到半径为2cm的正六边形 解:方法一:用量角器等分圆作正六边形 (1)画一个半径为2cm的⊙O,用量角器画一个等于=60° 的圆心角; (2)在圆上依次截取以60°的圆心角相等的弧,得到各等 分点; (3)顺次连接各分点,即可得到正六边形.
1 3
同步练习: 9.如图,弦AB是⊙O内接正六边形的一条边, 弦BC是⊙O内接正九边形的一条边,则 ∠AOC的度数为__________.
【三】综合运用 10.已知正多边பைடு நூலகம்的一个外角为90°,则它的 边长、边心距、半径之比为( ) A.6: 3 : 2 3 B.2:1:
C.2:2:
2
D.1:1:
3
11.已知圆外切正四边形的边长为6,求该圆的 内接正三角形的边心距
【二】探究新知 A. 正多边形的画法 4.例题:画一个边长为2cm的正六边形 自学指导:要画一个正多边形,关键要是要把 一个圆进行等分.如本例:正六边形的半径与 它的边长相等,我们只要画一个半径为2的圆, 再把这个圆进行六等分,依次连接各分点即 可得到正六边形.其中等分圆周的方法有2种; 一种是用量角器等分圆周,一种是用尺规作 图来等分圆周.
24.3正多边形和圆(2)
1.下列说法:(1)各角相等的多边形是正多 边形;(2)各边相等的多边形是正多边形; (3)各角相等的圆内接多边形是正多边形; (4)各顶点等分外接圆的多边形是正多边 形.你认为正确的有______________.(填 序号) 2.边长为4的正n边形,它的一个内角为120°, 则其内切圆半径为 _____________. 3.正三角形的内切圆半径、外接圆半径和高 的比为______________.

九年级数学上册24.3正多边形和圆(第2课时)教案新人教版

九年级数学上册24.3正多边形和圆(第2课时)教案新人教版

24.3 正多边形和圆教学内容24.3 正多边形和圆(2).教学目标1.理解正多边形的性质.2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.教学重点正多边形的画法.教学难点对正n边形中泛指“n”的理解.教学步骤一、导入新课实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.二、新课教学我们知道,依次连结圆的五等分点所得的圆内接五边形是正五边形.如果n等分圆周,(n ≥3)、n=6,n=8……是否也正确呢?教师引导学生充分讨论.因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n 边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形.为何要“依次"连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.我们还可以用圆心角来等分圆周.由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.例如,画一个边长为1。

5 cm 的正六边形时,可以以 1.5 cm为半径作一个⊙O,用量角器画一个等360 =60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧于6相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得到正六边形(如下图).对于一些特殊的正多边形,还可以用圆规和直尺来作.如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出正方形(下图).三、巩固联系教材第108页练习.四、课堂小结今天学习了什么,有什么收获?五、布置作业习题24.3 第4、6题.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

人教版九年级数学上册《正多边形和圆》第2课时教学课件

人教版九年级数学上册《正多边形和圆》第2课时教学课件

∴ = ,


1
∠ = ∠ = 60°,
2
∴ △ 是等边三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.






探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.


30°
30°


探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用量角器度量,使∠ = ∠ = 30°.
但画图的误差积累到最后一个等分点,误差较大.
3
尺规作图,虽然精确,但不是任意等分圆周都能用这种
方法,而且作图时存在误差.
4
本节课提到的其他一些方法只适用于某些特殊的正多边形.
练习
1
如何在半径为 的⊙ 中作出内接正九边形呢?


40°
练习
2
如何借助圆画出一个五角星呢?

72°
72°


练习
情境引入
实际生活中,经常遇到画正多边形的问题,比如画一个
六角螺帽的平面图,画一个五角星等,这些问题都与等分圆
周有关. 要制造如下图中的零件,也需要等分圆周.
引入新知
已知⊙ 的半径为 ,画圆的内接正三角形.

探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.






探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.





3




探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用圆规在⊙ 上顺次截取两条长度等于 3 的弦,连

正多边形和圆(2)

正多边形和圆(2)

边心距=OD1= R. 2
在Rt△ABD中 ∠BAD=30°,
AD OA OD R 1 R 3 R, 22
B
A
·O
D
C
在Rt△OBD中 BD2=OB2-OD2=R2-(1/2R)2=3/4R2
BC=2BD= 3 R
S
ABC
1 BC 2
AD
1 2
3R 3 R 3 3 R2. 24
解:连接OB,OC 作OE⊥BC垂足为E,
rR
22
BP
C
1、正方形ABCD的外接圆圆心O叫做
正方形ABCD的
中心
2、正方形ABCD的内切圆的半径OE叫做
正方形ABCD的 边心 距
A
D
.O
B EC
3、 ∠AOB叫做正五边形ABCDE的 中心 角, 它的度数是 72 度
D
E
C
.O
A
FB
5、图中正六边形ABCDEF的中心角是∠AOB 它的度数是 60 度
先作出正六边
形,则可作正三 角形,正十二边 形,正二十四边
形………
说说作正多边形的方法有哪些?
归纳
(1)用量角器等分圆周作正n边形; (2)用尺规作正方形及由此扩展作正八 边形, 用尺规作正六边形及由此扩展作正 12边形、正三角形.
A
如图:
B
已知点A、B、C、D、
E是⊙O 的5等分点,
画出⊙O的内接和外
6、你发现正六边形ABCDEF的半径与边长具有
什么数量关系?为什么?
E
D
F
.O
C
A
B
练习
1. 矩形是正多边形吗?菱形呢?正方形呢?为什么? 矩形不是正多边形,因为四条边不都相等;

人教版九年级数学上册《正多边形和圆(第2课时)》示范教学设计

人教版九年级数学上册《正多边形和圆(第2课时)》示范教学设计

正多边形和圆(第2课时)教学目标1.掌握用等分圆周的方法画正多边形,并能借助圆或正多边形设计一些美丽的图案.2.经历借助圆画正多边形的过程,感受数学来源于生活,又服务于生活,体会事物之间是相互联系、相互作用的.教学重点能用不同的方法画正多边形,并能设计一些美丽的图案.教学难点掌握用等分圆周的方法画正多边形.教学准备量角器、圆规、直尺.教学过程新课导入实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.要制造下图中的零件,也需要等分圆周.新知探究一、探究学习【问题】正多边形在生产和生活中有着广泛的应用,会画正多边形是我们必备的能力之一.想一想:如何画一个正六边形?【分析】要作半径为R的正n边形,只要把半径为R的圆周n等分,然后顺次连接各分点即可.【师生活动】教师给出分析,提出问题:如何等分圆周?学生认真思考、交流,得出答案;教师在学生回答的基础上进行补充:因为同圆中相等的圆心角所对的弧相等,所以作相等的圆心角就可以等分圆周.教师提出问题:利用你手中的工具如何画一个正六边形?学生思考、交流,教师组织学生进行作图,方法不限.【答案】解:方法1:(1)作一个⊙O;(2)用量角器依次作∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=3606︒=60°,将360°圆心角六等分,即可得到6个等分点;(3)顺次连接各分点,即可得到正六边形,如图所示.方法2:(1)作一个⊙O;(2)用量角器画∠AOB=3606︒=60°,再用圆规依次截取BC=CD=DE=EF=FA=AB,就得到圆的6个等分点;(3)顺次连接各分点,即可得到正六边形,如图所示.【追问】还有其他方法吗?【师生活动】教师提示学生用尺规作图,学生小组讨论,教师组织学生作图、归纳.【答案】解:方法3:先作一个⊙O,因为正六边形的边长等于半径,所以在⊙O上用圆规依次截取等于半径的弦,就可以把圆六等分,顺次连接各分点即可得到正六边形,如图所示.【设计意图】学生通过思考、交流、操作,利用圆和正多边形的相关知识探索正多边形的画法,初步掌握用等分圆周的方法画正多边形.【问题】如图,作⊙O 的内接正方形.【师生活动】学生组内交流,每组派出代表发言,然后教师给出正确答案.【答案】解:用直尺和圆规作两条相互垂直的直径,就可以把圆四等分,从而作出⊙O 的内接正方形,如图所示.【归纳】用等分圆周画正多边形的方法:1.只用量角器:在半径为R 的圆中,用量角器把360°圆心角n 等分,即可把半径为R 的圆周n 等分,顺次连接各分点即可得到正n 边形.2.用量角器和圆规:在半径为R 的圆中,先用量角器画出一个等于360n 的圆心角,这个角所对的弧就是圆周的1n;再用圆规在圆周上依次截取与这条弧相等的弧,就得到圆周的n 等分点,顺次连接各分点即可得到正n 边形.3.用圆规和直尺:用尺规等分圆周,只能作正方形、正六边形等特殊正多边形.【思考】这三种方法的优点和缺点各是什么?【归纳】方法1可以将圆周任意等分,但当边数很多时,容易有较大的误差,而且操作比较麻烦;方法2相对比较简单,但当边数很多时,容易产生较大的误差;方法1和方法2限制条件少,可以作为画圆内接正多边形的通法.方法3是一种比较准确的等分圆周的方法,但由于它不能将圆周任意等分,故有很大的局限性.【设计意图】学生经历画正六边形和正方形的过程,总结出正多边形的不同画法,并掌握不同画法的优点和缺点.二、典例精讲【例1】如图,画⊙O的内接正三角形.【师生活动】学生组内交流,每组派出代表展示成果,教师进行评价.【答案】解:先画⊙O的内接正六边形,再在正六边形的基础上,选择不相邻的三个顶点,顺次连接,即可作正三角形.如图,△DBF是⊙O的内接正三角形.【例2】如图,画⊙O的内接正八边形.【师生活动】教师引导学生独立思考作答,然后给出正确答案.【答案】解:先画圆的内接正四边形,再在正四边形的基础上用直尺和圆规分别作与正四边形相邻两边垂直的直径,即可作正八边形.如图,八边形AHBFCGDE是⊙O的内接正八边形.【归纳】按照例2的方法可以作出正十六边形、正三十二边形、正六十四边形……也可以作出正十二边形、正二十四边形……【设计意图】通过例题,巩固学生对用等分圆周的方法画正多边形的掌握,让学生会用不同的方法画正多边形,培养学生利用所学内容解决问题的能力.三、知识应用【新知】许多图案设计都和圆有关,下图就是一些利用等分圆周设计出的图案.其中一个图案的设计过程如下:利用某些正多边形可以镶嵌整个平面的性质,还可以设计出一些美丽的图案,如图.【练习】试一试:利用圆或正多边形设计一些图案.【师生活动】学生独立画图,小组之间进行展示、交流,教师给出示例.【设计意图】通过练习,学生独立设计图案,让学生体会数学的美.课堂小结板书设计一、等分圆周二、设计图案课后任务完成教材第108页练习第1~2题.。

正多边形和圆(二)

正多边形和圆(二)

正多边形和圆(二)在上一篇文档中,我们讨论了正多边形和圆的基本概念,以及它们之间的相互关系。

在本文档中,我们将继续探讨正多边形和圆的性质,并介绍它们在几何学和实际应用中的应用。

1. 正多边形的性质正多边形是一种具有相等边长和相等内角的多边形。

以下是正多边形的一些性质:•对于一个正多边形,所有边长相等,所有内角也相等。

•一个正n边形可以被划分为n个等边三角形,这些三角形的内角为60度。

•内角的大小可以使用下式计算:内角的度数 = (n - 2) * 180 / n,其中n为边的数量。

•外角的大小为360度除以n,即外角的度数 = 360 / n。

2. 圆的性质圆是一个平面上一组到一个固定点之间距离相等的点的集合。

以下是圆的一些性质:•圆心是到圆上任意点的距离相等的点。

•半径是圆心到圆上任意点的距离。

•直径是通过圆心且在圆上的线段,它等于两倍的半径。

•圆周长是圆上所有点之间的距离,公式为周长= 2πr,其中r是半径。

•面积是圆内部的区域,公式为面积= πr^2,其中r是半径。

3. 正多边形和圆的关系正多边形和圆之间存在一些有趣的关系:•一个正多边形可以看作是一个近似的圆形,当边的数量很大时,它们的外观非常接近。

•当正多边形的边的数量越多时,它的内角越接近于圆的内角,即60度。

•正多边形的面积可以通过将正多边形分割为许多小三角形,并计算这些小三角形的面积之和来逼近圆的面积。

•当正多边形的边的数量增加时,正多边形的面积逐渐逼近圆的面积。

4. 实际应用正多边形和圆在几何学和实际应用中有广泛的应用。

以下是一些实际应用的例子:•建筑设计中,正多边形和圆形的形状常用于设计建筑物的平面图和外观。

•机械工程中,正多边形和圆形的形状常用于设计齿轮、螺旋桨和其他旋转部件。

•地理学中,正多边形和圆形的形状常用于描述地球上的各种地形特征。

•圆形运动在物理学中有广泛的应用,如行星的运动轨迹、电子的轨道等。

•数学中,正多边形和圆形是许多数学问题的重要基础,如三角函数、概率论等。

27.6 正多边形与圆(2)

27.6 正多边形与圆(2)

27.6 正多边形与圆(2)[几何计算]第一组 27-171、如果一个正多边形的外角的余弦值是12,那么它为( ) A 、等边三角形 B 、正方形 C 、正六边形 D 、正五边形2、将正十边形绕它的中心旋转,可以与原来的正十边形重合,如果是首次重合,那么旋转角为( )A 、180ºB 、36ºC 、60ºD 、18º3、正多边形的一边所对的中心角与该正多边形的一个内角的关系是( ) A 、两角互余 B 、两角互补 C 、两角互余或互补 D 、不能确定4、已知正十边形的边心距是30,那么这个正十边形的面积是( ) A 、45sin 36º B 、90tan 18º C 、45cos 36º D 、90cot 18º5、圆的内接正n 边形与外切正n 边形的边长之比是( ) A 、sin 180ºnB 、cos 180ºnC 、tan180ºnD 、cot180ºn6、半径长相等的圆内接正三角形、正方形、正六边形的边长之比为( )A 、1:√2:√3B 、1:2:3C 、√3:√2:1D 、3:2:17、如果正方形ABCD 的外接圆的半径为R ,那么这个正方形的面积是 。

8、如果圆的半径为R ,那么它的内接正三角形的边长等于 ,边心距等于 。

9、边长为3的正三角形的面积是 。

10、正n 边形的一个中心角为40º,那么n = 。

11、在半径为4的圆中,内接正方形的边心距为 。

12、正多边形有27条对角线,则这个正多边形的内角和为 。

13、若正六边形ABCDEF 的外接圆的半径为r ,则正六边形ABCDEF 的面积等于 。

14、一个正多边形的一个外角的余弦值等于√32,则这个正多边形的边数是 。

15、已知圆的半径为6,求这个圆的外切正六边形的周长。

16、已知正六边形的边长为a ,求它的内切圆与外接圆组成的圆环的面积。

09正多边形与圆(2)

09正多边形与圆(2)
初中数学 九年级(上册)
2.6 正多边形与圆(2)
2.6 正多边形与圆(2)
一、情境创设: 1.菱形是正多边形吗?矩形是正多边形吗?
为什么?它们是怎样的对称图形?
2、下图中的正多边形,哪些是轴对称图形?哪些是 中心对称图形?如是轴对称图形,画出它的对称轴; 如是中心对称图形,找出它的对称中心.
3.通过上面的图形,你能发现正多边形有怎样的对 称性?
讨论:还有哪些多边形的组合能够密铺?
【新知检测】 1、正五边形被它的半径分成多少个等腰三 角形?这些等腰三角形全等吗?为什么?正 六边形、正八边形呢?
2、图中两个三角形分别是圆的外切正三角形和 内接正三角形,这个图形是轴对称图形吗?如果 是,画出它的对称轴.
3、用长为24m的木栅栏围成正三角形或正方形或 正六边形的绿地,这三种围法中,哪一种围成的 绿地面积最大?为什么?
3.将一个正十边形绕它的中心至少旋转多少 度,就能与它本身重合?正五边形呢?
活动二:用圆规和直尺作正多边形
1.请你想一想:如何画一个圆的内接正方形?
作法:(1)在⊙O中作两条
A
互相垂直的直径AC、BD.
B
D
(2)依次连接A、B、C、D.
四边形ABCD就是所求作的正方形. C
拓展思考:如何做正八边形?十六边形?
4、如图,若干全等的正五边形排成环状,图中所 示的是前3个正五边形,要完成这一圆环还需 要 个正五边形.
O
请你做一做
1.下列命题中,正确的说法有___形是正多边形;③正多边形的各角相等; ④各角相等的多边形是正多边形;⑤既是轴对 称图形,又是中心对称的多边形是正多边形.
2.6 正多边形与圆(2)
请你做一做
2.下列图形中既是轴对称图形,又是中心对 称图形的是( ) A.多边形 B.边数为奇数的正多边形 C.正多边形 D.边数为偶数的正多边形

15 第15课时 正多边形与圆(2)

15 第15课时  正多边形与圆(2)

第15课时正多边形与圆(2)知识梳理1.正多边形都是______________图形,一个正n边形共有________条对称轴,每条对称轴都经过正n边形的___________________. 一个正多边形,如果有_________条边,那么它又是_________________图形,对称中心就是这个正多边形的_____________________________.2.利用直尺和圆规可以画出圆的内接正多边形. 依次连接互相垂直的直径端点所得的四边形是圆的内接_______________________;以圆的半径为半径在圆周上依次截取可得________________个等分点,并顺次连接这些等分点所得的多边形是圆的内接_______________.课堂作业1.顺次连接正六边形的三个不相邻的顶点,得到如图所示的图形,则该图形()A.既是轴对称图形也是中心对称图形B. 是轴对称图形但不是中心对称图形C. 是中心对称图形但不是轴对称图形D. 既不是轴对称图形也不是中心对称图形2.如图,点O是正六边形的对称中心,如果用一副三角尺的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()A.4B. 5C. 6D. 73.每个外角都是20°的正多边形的对称轴一共有_______________条;4.将一个正七边形绕它的中心旋转,至少要旋转______________°才能与原来的图形重合.5.如图,用尺规或量角器分别作出⊙O的内接正六边形、正方形和正三角形(不写作法,保留作图痕迹)课后作业6.下列说法:①正多边形的各条边相等;②各边相等的多边形是正多边形;③各角相等的多边形是正多边形;④各边相等的圆的内接多边形是正多边形;⑤既是轴对称图形,又是中心对称图形的多边形是正多边形. 其中,正确的说法有()A.1个B. 2个C. 3个D. 4个7.如图是一种电子游戏,电子屏幕上有一个正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的有()A.3个 B. 4个 C. 5个 D. 6个8.已知正三角形ABC的边长为6,那么能够完全覆盖这个正三角形ABC的最小圆的半径是____________.9.如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长为_____________________.10.如图,在平面直角坐标系中有一个正六边形ABCDEF,其中C、D两点的坐标分别为(1,0)、(2,0).若在无滑动的情况下,将这个正六边形沿着x轴向右滚动,则在滚动过程中,这个正六边形的顶点A、B、C、D、E、F中,会过点(45,2)的是点__________________.11.如图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形一一正八边形. 如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹)12.(1)如图①,△ABC是⊙O的内接正三角形,P为弧BC上一动点,连接PA、PB、PC. 求证:PA=PB+PC.(2)如图②,四边形ABCD是⊙O的内接正方形,P为弧BC上一动点,连接PA、PB、PC. 求证:PA= PC+2PB.(3)如图③,六边形ABCDEF是⊙O的内接正六边形,P为弧BC上一动点,连接PA、PB、PC. 请探究PA、PB、PC三者之间的数量关系,直接写出答案,不必证明.。

九年级数学正多边形和圆2

九年级数学正多边形和圆2

66影视
66影视 有时候需要在没网络的情况下看电视,就把电视剧下载好就可以了。 66影视 电脑 66影视 1、在桌面上双击软件打开。2、进入到首页,在左边一栏,有一个目录的显示,每个目录下都有很多选项。3、找一个电影,在VIP电影系列、阿兰、、下拉选择可以进行刷选。4、在菜单的【播放】中,有一个时针的标志,是表示播放记录。一周以内的播放记录都有。5、在【播放】中有 66影视 本文详细介绍电视剧新世界怎么在手机观看?详细的操作步骤如下。 66影视 小米8系统版本MIUI10.0,安卓版本8.1.0爱奇艺app 66影视 1、打开爱奇艺app。 66影视 2、进入爱奇艺首页后,点击顶部搜索框。3、然后输入‘新世界’,点击搜索。4、在搜索结果中,点击要观看新世界的集数。5、手机观看电视剧新世界成功。 66影视 一部让自己看过让我一个大男人痛苦心痛的电视剧。结合剧情谈谈爱情的一些感悟。故事剧情是一对恋爱了八年的恋人在大城市打拼,雷蕾和罗永浩是大学里人人羡慕的一对情侣,两个人毕业后选择留在上海工作。罗永浩在雷蕾母亲沈曼逼迫下为了给雷蕾幸福,急切创业,却以惨败作为 66影视 剧情感悟1、全是大学青春最美的恋爱的样子,彼此相爱,珍惜,相许到永久。。。八年的不离不弃,从青春懵懂到社会人情。感悟:八年的时光,一个女孩可以一直爱你八年,她就一定会认定你,你就是那一个她认定可以终身相伴的人。所以,相恋的情人,请一定要珍惜你面前的女孩, 66影视 我们很多人每天看电视剧或者电影都会使用pptv来看,有时候想要把一些电视剧或者电影下载下来,放到电脑里,这样不用网络也可以观看,很方便。那么,PPTV具体是怎么下载电视剧/电影的呢? 66影视 PPTV 的电脑上。鼠标双击一下桌面上的pptv图标,启动它。2名字,直接搜索一下;也可以在界面左上方看到一些电视剧、电影之类的排行榜,有合适的想看

《正多边形和圆2》优秀教学设计(教案)

《正多边形和圆2》优秀教学设计(教案)

24.3.2正多边形和圆(2)教学设计一、基本信息学校福建省福州金山中学课名24.3.2正多边形和圆(2)教师姓名冯学武学科(版本)数学(人教版)章节第24章第3节第2课时学时1课时年级九年级二、教学目标知识技能:进一步了解正多边形与圆的关系,掌握不同条件下用等分圆周画圆的内接正多边形的方法.数学思考:学生在探索不同条件下画圆内接正多边形的过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力和逻辑推理能力.解决问题:在探索圆内接正多边形的过程中,学生体会化归思想在解决问题中的重要性,能综合运用所学的知识和技能解决问题.情感态度:通过等分圆周、构造正多边形等实践活动,使学生在数学学习活动中获得成功的体验,建立自信心,同时体会到事物之间是相互联系,相互作用的.三、学习者分析学生来自九年级,好奇心、好胜心强。

有一定的动手操作能力和对“交互式电子白板”这一软件的使用能力.圆有关的概念在小学里学过,学生并不陌生;在学习圆之前,学生已经学习了三角形、正多边形和轴对称等许多知识,掌握了一些探索和证明图形性质的方法,这是《正多边形和圆》第二课时,在第一课时中已经学过正多边形和圆的密切关系,这些都为本节课的学习奠定了坚实的知识基础.学生掌握画圆内接正多边形的基本方法不会存在太大的问题,而初中生的拓展和化归能力较弱,所以探索不同条件下画圆内接正多边形的方法有一定的难度.因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成的过程中来.四、教学重难点分析及解决措施在小学阶段,学生已经对圆的有关概念有所了解,在此之前又刚刚学习了轴对称、圆有关概念性质及正多边形与圆的关系.因此,这节课的教学重点是:探索不同条件下画圆内接正多边形的方法.不同条件下画圆内接正多边形的主要困难在于如何将新问题转化为已知的问题求解.由于学生已经具备利用找圆心、等分圆等知识与方法,在探索不同条件下画圆内接正多边形时,教师应引导学生由目标(画圆内接正多边形)出发分析达到目标的方法(通过等分圆),引导学生利用学过的圆的有关性质定理进行探索.基于以上分析,本节课的教学难点是:探索不同条件下等分圆的方法.解决措施:1、学生通过复习“同圆或等圆中,相等的圆心角所对的弧相等,弦也相等”等定理,掌握等分圆的基本方法.3. 学生在作业本上书写推理过程:A画圆内接正多边形方法层面:两种思想:类比思想、化归思想想、方法,培养学生自我反馈、自主发展的意识.课后作业作业:1.书面作业:优化设计P492.利用圆形纸片折圆内接正四边形、正六边形.回家练习巩固进一步巩固本堂课所学内容.。

37正多边形和圆(2)教案

37正多边形和圆(2)教案

正多边形和圆(2)一、教学目标(一)知识与技能:了解正多边形和圆的关系,能用等分圆的方法画正多边形,并能借助圆设计一些美丽的图案..(二)过程与方法:通过利用等分圆的方法画正多边形的过程,发展学生动手操作的能力.(三)情感态度与价值观:学生经历观察、发现、探究等数学活动,感受到数学来原于生活,以及发展学生的审美观.二、教学重点、难点重点:用等分圆的方法画正多边形.难点:掌握不同等分圆的方法等分圆.三、教学过程知识回顾正n边形的中心角:设正多边形的边长为a ,半径为R ,边心距为r .,周长:l =na ,面积:S=lr 探究正多边形具有怎样的对称性?正n 边形都是轴对称图形,它有n 条对称轴,它们都经过正多边形的中心;当n 为奇数时,对称轴为各边的垂直平分线;当n 为偶数时,对称轴为各边的垂直平分线及顶点、中心所在直线.它们是否为中心对称图形?边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆有关.n3602222R r a =+⎪⎭⎫ ⎝⎛21由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.例如,画一个边长为1.5cm 的正六边形时,可以以1.5cm 为半径作一个⊙O,用量角器画一个等于=60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得到正六边形.利用这种方法,可以画出任意的正n 边形.对于一些特珠的正多边形,还可以用圆规和直尺来作.例如,我们也可以这样来作正六边形.由于正六边形的边长等于半径,所以在半径为R 的圆上依次截取等于R 的弦,就可以把圆六等分,顺次连接各分点即可得到半径为R 的正六边形.练习1.画一个半径为2cm 的正五边形,再作出这个正五边形的各条对角线,画出一个五角星.2.用等分圆周的方法画出右上方图案:课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调正多边形与圆的联系,将正多边形放在圆中便于解决、探究更多关于正多边形的问题.6360。

人教版九年级数学上册24.3.2《正多边形和圆(2)》教案

人教版九年级数学上册24.3.2《正多边形和圆(2)》教案

人教版九年级数学上册24.3.2《正多边形和圆(2)》教案一. 教材分析人教版九年级数学上册第24章《圆》中的第3节《正多边形和圆(2)》是本章的重要内容。

本节主要让学生了解并掌握圆的性质,以及正多边形与圆的关系。

通过本节的学习,学生能够更深入地理解圆的性质,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何基础,对圆的概念有一定的了解。

但是,对于圆的性质和正多边形与圆的关系的理解还有待提高。

因此,在教学过程中,教师需要引导学生通过观察、思考、操作、讨论等方式,自主探索并掌握圆的性质,以及正多边形与圆的关系。

三. 教学目标1.了解圆的性质,掌握圆的基本概念。

2.理解正多边形与圆的关系,提高解决问题的能力。

3.培养学生的观察能力、思考能力和合作能力。

四. 教学重难点1.圆的性质的理解和运用。

2.正多边形与圆的关系的理解。

五. 教学方法采用问题驱动法、合作学习法和操作实践法。

通过提出问题,引导学生思考和探索;通过合作学习,培养学生之间的交流和合作能力;通过操作实践,让学生亲身体验和理解圆的性质和正多边形与圆的关系。

六. 教学准备1.准备相关的教学材料,如课件、黑板、粉笔等。

2.准备一些实际的例子,以便引导学生进行观察和操作。

七. 教学过程1.导入(5分钟)通过提出问题,如“什么是圆?圆有哪些性质?”引导学生回顾圆的基本概念,激发学生的学习兴趣。

2.呈现(10分钟)通过课件或黑板,呈现圆的性质,如圆的直径、半径、圆心等。

同时,给出一些实际的例子,让学生观察和理解圆的性质。

3.操练(10分钟)让学生进行一些实际的操作,如画圆、测量圆的直径、半径等。

通过操作,让学生更深入地理解圆的性质。

4.巩固(10分钟)通过一些练习题,让学生巩固所学的圆的性质。

同时,引导学生将这些性质与正多边形联系起来,理解正多边形与圆的关系。

5.拓展(10分钟)引导学生思考和探索正多边形与圆的更深层次的关系。

例如,讨论在给定边长的情况下,如何找到一个正多边形,使其与给定的圆相切。

正多边形和圆2

正多边形和圆2

A度
B
边,AC是圆O的内接正五变形的一
C
条边,则∠BAC= 度。
5、正六边形外接圆半径为2cm,则它的周
长是 cm.
6、正n边形是轴对称图形,它有 条对称轴。
7、正六边形的一组边心距是12,则它的边长是 。 8、正多边形的边心距与边长之比是 :3 2,
则多边形的边数是

ቤተ መጻሕፍቲ ባይዱ
巩固练习
1、正三角形边长为a,它的外接圆半径等
小结:
1、正多边形的定义
2、正多边形的有关概念
F
E
中心角 360
n
中心角
AO
半径R
D
边心距r R2( a)2 ,
B
2
面积S 1 L • 边心距(r) 1 na • 边心距(r)
2
2
边心距r
C
O
A
E
B
O
F
E
B
C
C
D
C
D
正n边形的n条边心距相等.
探究3
正n边形的n条边心距又把n个全等的 三角形分成了怎样的图形?它们之间又 有什么样的关系?
正n边 形 的n 条 边心 距 又把 n 个 全 等 的三角形 分成了2n个全等 的直角三角 形。
例题
一个亭子的地基 是半径为4m的正六边 形,求地基的周长和 面积(精确到0.1m2).
讨论
怎样可以快捷地画出 一个正五边形?
把圆五等分即可。
动手画一画
如图,把⊙O五等分; 依次连接各等分点; 即可得正五边形。
证明:∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A
∴AB=BC=CD=DE=EA
⌒⌒ ⌒
∵BCE=CDA=3AB ∴∠1=∠2

正多边形和圆(二)

正多边形和圆(二)

正多边形和圆(二)正多边形和圆(二)正多边形和圆(二)教学目标:1、使学生了解在任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆;正多边形都是轴对称图形,有偶数条边的正多边形又是中心对称图形;边数相同的正多边形都相似.2、使学生理解正多边形的中心、半径、边心距、中心角等概念.3、通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;4、通过正多边形有关概念的教学,培养学生的阅读理解能力.教学重点:正多边形的性质;正多边形的有关概念.教学难点:对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.教学过程:一、新课引入:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.那么给定正多边形能否得到圆呢?为解决此问题本堂课继续研究正多边形和圆.正多边形是一种特殊的多边形,它有一些类似于圆的性质.例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在的直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合.正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它又是中心对称图形,而且绕中的联系.根据“任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆”这个定理和圆的有关概念,得到了“正n边形的半径和边心矩把正n边形分成2n个全等的直角三角形”这个定理,从而使正多边形的有关计算转变为解直角三角形问题.二、新课讲解:复习提问:1.作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么?[安排记起来的学生回答].2.作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?[请回忆起来的学生回答].请两名中上学生到黑板前一人画不等边三角形的外接圆与内切圆,另一人画正三角形的外接圆与内切圆,其余学生在练习本上画上述两种三角形的外接圆与内切圆.教师引导:通过作图不难发现,不等边三角形都既有一个外接圆,又都有一个内切圆.大家观察黑板上两种三角形的外接圆与内切圆,结合你画的图,你发现正三角形的外接圆与内切有什么特殊之处?(学生思考、回答:正三角形的外接圆与内切圆是同心圆.)教师引导:正方形是不是既有一个外接圆又有一个内切圆,并且两圆同心呢?[学生讨论]在学生讨论的基础上,教师依次提问如下问题:1.正方形外接圆的圆心在哪?(安排中上生回答:正方形对角线的交点.)2.根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?(安排中上生回答)3.正方形有内切圆吗?圆心在哪?半径是谁?(安排中上生回答).引导:通过大家画图实践与理论探讨发现正方形既有一个外接圆又有一个内切圆并且两圆同心.大家再看看矩形、菱形是否具有这条性质?(学生在练习本上画、前后左右讨论得出矩形只有外接圆,菱形只有内切圆结论)引导:我们发现正三角形既有外接圆又有内切圆且两圆同心,发现正方形也是如此,我们猜想正多形是否都具备这个性质呢?挂出预先画好一个正五边形abcde的小黑板.讲解:如果正五边形abcde有外接圆,则a、b、c、d、e五点应都在同一个圆上,且它们到圆心的距离相等.大家知道不在同一直线上的三点确定一个圆,不妨过正五边形abcde 的顶点a、b、c作⊙o,连结oa、ob、oc、od、oe.oa=ob=oc;证od=oa、oe=oa即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①用量角器度量,使 ∠AOB=∠BOC=∠COA =120°. ②用量角器或30°角的 三角板度量,使 ∠BAO=∠CAO=30°.
2、 你能用尺规作出正八边形吗? 据此你还能作出哪些正多边形?
只要作出已知⊙O的互相垂 直的直径即得圆内接正方 形,再过圆心作各边的垂 线与⊙O相交,或作各中心 角的角平分线与⊙O相交, 即得圆接正八边形,照此 方法依次可作正十六边形、 正三十二边形、正六十四 边形……的关系是怎样的?
1.你是怎样画正多边形的? 2.怎样用两种方法等分圆周? 正多边形半径和边长、边心距、中心 3.
二、自学检测
1、 已知⊙O的半径为2cm,求作圆的内接正 三角形.
2、 你能用尺规作出正八边形吗? 据此你还能作出哪些正多边形?
A
120 ° O C B
四、当堂训练
1、 画一个半径为2cm的正五边形,再作出这个
正五边形的各条对角线,画出一个五角星。 2、正多边形都是 ______ 图形,一个正n边形共 有______ 条对称轴,每条对称轴都通过n边形 的______ .边数是偶数的正多边形还是______ 对称图形,它的______就是对称中心。 3、已知正n边形的一个外角与一个内角的比为 1﹕3,则n等于( ) A. 4 B. 6 C. 8 D. 12 4、 两个正三角形的内切圆的半径分别为12 和18, 则 它们的周长之比为 , 面积之比 为 .
A
D
O ·
B
C
你能用尺规作出正六边形、 正十二边形吗?
F
E O ·
A
D
B
C
以半径长在圆 周上截取六段相 等的弧,依次连 结各等分点,则 作出正六边形. 先作出正六边 形,则可作正三 角形,正十二边 形,正二十四边 形………
三、教学指导
作正多边形的方法有:
(1)用量角器等分圆周作正n边形; (2)用尺规作正方形及由此扩展作正八 边形, 用尺规作正六边形及由此扩展作正 12边形、正三角形.
相关文档
最新文档