深圳市福田区北环中学数学平面图形的认识(一)章末练习卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)
1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.
(1)如图①,当点E在线段AC上时,求证:.
(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.
(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.
【答案】(1)解:∵




(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H






(3)解:过点G作交BE于点H






故的关系仍成立
(4)不成立| ∠EGF-∠DEC+∠BFG=180°
【解析】【解答】解:(4)过点G作交BE于点H
∴∠DEC=∠EGH


∴∠HGF+∠BFG=180°
∵∠HGF=∠EGF-∠EGH
∴∠HGF=∠EGF-∠DEC
∴∠EGF-∠DEC+∠BFG=180°
∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,
,即可得到答案.(3)过点G作交BE于点H,得到
,因为,所以,得到,
即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.
2.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F
(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;
(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.
【答案】(1)∠PFD+∠AEM=90°
(2)过点P作PG∥AB
∵AB∥CD,
∴PG∥AB∥CD,
∴∠AEM=∠MPG,∠PFD=∠NPG
∵∠MPN=90°
∴∠NPG-∠MPG=90°
∴∠PFD-∠AEM=90°;
(3)设AB与PN交于点H
∵∠P=90°,∠PEB=15°
∴∠PHE=180°-∠P-∠PEB=75°
∵AB∥CD,
∴∠PFO=∠PHE=75°
∴∠N=∠PFO-∠DON=45°.
【解析】【解答】(1)过点P作PH∥AB
∵AB∥CD,
∴PH∥AB∥CD,
∴∠AEM=∠MPH,∠PFD=∠NPH
∵∠MPN=90°
∴∠MPH+∠NPH=90°
∴∠PFD+∠AEM=90°
故答案为:∠PFD+∠AEM=90°;
【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.
3.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.
(1)当时,的值为________.
(2)如何理解表示的含义?
(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.
【答案】(1)5或-3
(2)解:∵ = ,
∴表示到-2的距离
(3)解:∵点、在0到3(含0和3)之间运动,
∴0≤a≤3, 0≤b≤3,
当时, =0+2=2,此时值最小,
故最小值为2;
当时, =2+5=7,此时值最大,
故最大值为7
【解析】【解答】(1)∵,
∴a=5或-3;
故答案为:5或-3;
【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;
(2)此题就是求表示数b的点与表示数-2的点之间的距离;
(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.
4.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.
(1)若,,求∠D的度数;
(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.
【答案】(1)解:∵BD平分∠ABC,
∴∠CBD= ∠ABC= ×75°=37.5°,
∵CD平分△ABC的外角,
∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,
∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.
(2)解:猜想:∠ D = ( ∠ M + ∠ N − 180 ° ).
∵∠M+∠N+∠CBM+∠NCB=360°,
∴∠D=180°- ∠CBM-∠NCB- ∠NCE.
=180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE.
=180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE.
= ∠M+ ∠N- ∠NCB- ∠NCE= ,
或写成
【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;
(2)由四边形内角和与角平分线性质即可求解.
5.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.
(1)求A点对应的数;
(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;
(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.
【答案】(1)解:如图1,∵点B对应数是90,
∴OB=90.
又∵ OA+50=OB,即 OA+50=90,
∴OA=120.
∴点A所对应的数是﹣120
(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,
PM=|2t﹣(90﹣8t)|=|10t﹣90|,
又∵MN=PM,
∴|﹣120+5t|=|10t﹣90|,
∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)
解得t=﹣6或t=14,
∵t≥0,
∴t=14,点M、N之间的距离等于点P、M之间的距离
(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,
RO=45+4t,
PN=(90+8t)﹣(﹣120﹣7t)=210+15t,
则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0
【解析】【分析】(1)根据点B对应的数求得OB的长度,结合已知条件和图形来求点A 所对应的数;(2)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t;(3)由M、N之间的距离等于P、M之间的距离列式为,列方程求出t,并求出RQ,RO 及PN,再求出22RQ﹣28RO﹣5PN的值.
6.已知:如图1,在平面直角坐标系中,点A,B,E分别是x轴和y轴上的任意点.BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点C.
(1)探究:
求∠C的度数.
(2)发现:当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围.
(3)应用:如图2在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数.
【答案】(1)解:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,
∴∠ABE=∠OAB+90°,
∵BD是∠ABE的平分线,AC平分∠OAB,
∴∠ABE=2∠ABD,∠OAB=2∠BAC,
∴2∠ABD=2∠BAC+90°,
∴∠ABD=∠BAC+45°,
又∵∠ABD=∠BAC+∠C,
∴∠C=45°
(2)解:不变.
理由如下:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,
∴∠ABE=∠OAB+90°,
∵BD是∠ABE的平分线,AC平分∠OAB,
∴∠ABE=2∠ABD,∠OAB=2∠BAC,
∴2∠ABD=2∠BAC+∠AOB,
∴∠ABD=∠BAC+ ∠AOB,
又∵∠ABD=∠BAC+∠C,
∴∠C=∠AOB=45°
(3)解:延长ED,BC相交于点G.
在四边形ABGE中,
∵∠G=360°﹣(∠A+∠B+∠E)=50°,
∴∠P=∠FCD﹣∠CDP=(∠DCB﹣∠CDG)
=∠G= ×50°=25°
【解析】【分析】(1)(2)根据三角形外角的性质和角平分线的性质进行解答;
(3)延长ED,BC相交于点G,根据四边形形内角和为360°求得∠G的度数,再根据三角形外角的性质和角平分线的性质求∠P的度数.
7.已知:直线EF//MN,点A、B分别为EF,MN上的动点,且∠ACB= a,BD平分∠CBN交EF于D.
(1)若∠FDB=120°,a=90°.如图1,求∠MBC与∠EAC的度数?
(2)延长AC交直线MN于G,这时a =80°,如图2,GH平分∠AGB交DB于点H,问∠GHB是否为定值,若是,请求值.若不是,请说明理由?
【答案】(1)解:如图1,过C作CP∥EF.
∵EF∥MN,∴EF∥MN∥CP.
∵EF∥MN,∴∠NBD=180°-∠FDB=180°-120°=60°.
∵BD平分∠CBN,∴∠CBD=∠NBD=60°,∴∠MBC=180°-∠CBD-∠NBD=180°-60°-60°=60°.
∵CP∥MN,∴∠PCB=∠MBC=60°,∴∠ACP=∠ACB-∠BCP=90°-60°=30°.
∵EF∥CP,∴∠EAC=∠ACP=30°
(2)解:∠GHB为定值50°.理由如下:
∵∠CBN是△CBG的外角,∴∠BCG=∠CBN﹣∠AGB.
∵GH平分∠AGB,BD平分∠CBN,∴∠HGB∠AGB,∠DBN∠CBN.
∵∠DBN是△HGB的外角,∴∠GHB=∠DBN﹣∠HGB∠CBN∠AGB(∠CBN ﹣∠AGB)∠BCG(180°-80°)=50°,故∠GHB是定值50°.
【解析】【分析】(1)过C作CP∥EF,进而得到EF∥MN∥CP,根据平行线的性质,求出∠DBN的度数,进而求出∠MBC、∠EAC的度数;(2)根据∠CBN是△CBG的外角,
得到∠BCG=∠CBN﹣∠AGB.根据角平分线的定义得到∠HGB∠AGB,∠DBN
∠CBN.由三角形外角的性质得到∠GHB=∠DBN﹣∠HGB∠CBN∠AGB
(∠CBN﹣∠AGB)∠BCG,即可得出结论.
8.
(1)如图,请证明∠A+∠B+∠C=180°
(2)如图的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D
(3)如图,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明
(4)如图,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.
【答案】(1)证明:如图1,延长BC到D,过点C作CE∥BA,
∵BA∥CE,
∴∠B=∠1,
∠A=∠2,
又∵∠BCD=∠BCA+∠2+∠1=180°,
∴∠A+∠B+∠ACB=180°;
(2)证明:如图2,在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(3)解:如图3,
∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,
∠2+∠P=(180°﹣∠3)+∠D,
∴2∠P=180°+∠D+∠B,
∴∠P=90°+ (∠B+∠D);
(4)解:②∠3+∠4﹣∠1﹣∠2不变正确.
理由如下:
作PQ∥AB,如图4,
∵AB∥CD,
∴PQ∥CD,
由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,
由PQ∥CD得∠5=∠2,
∵∠APQ+∠5+∠1=90°,
∴180°﹣∠3﹣∠4+∠2+∠1=90°,
∴∠3+∠4﹣∠1﹣∠2=90°.
【解析】【分析】(1)如图1,延长BC到D,过点C作CE∥BA,根据二直线平行,同位角相等、内错角相等得出∠B=∠1,∠A=∠2,根据平角的定义得∠BCA+∠2+∠1=180°,再等量代换即可得出结论:∠A+∠B+∠ACB=180°;
(2)根据三角形的内角和得出:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,根据对顶角相等得出∠AOB=∠COD,根据等式的性质得出∠A+∠B=∠C+∠D;
(3)∠P=90°+ (∠B+∠D),理由如下:根据角平分线的定义得出∠1=∠2,∠3=∠4,根据(2)的结论得出(∠1+∠2)+∠B=(180°﹣2∠3)+∠D ①,∠2+∠P=(180°﹣∠3)+∠D ②,由①得 180°﹣2∠3=∠1+∠2+∠B -∠D ③,②×2得:
2∠2+2∠P=2(180°﹣∠3)+2∠D ④,将③代入④即可得出结论:∠P=90°+ (∠B+∠D);
(4)②∠3+∠4﹣∠1﹣∠2不变正确. 理由如下:作PQ∥AB,如图4,根据平行于同一直线的两条直线互相平行得出PQ∥CD,根据平行线的性质得出∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,∠5=∠2,根据角的和差得出∠APQ+∠5+∠1=90°,再整体替换即可得出∠3+∠4﹣∠1﹣∠2=90°.
9.已知BE平分∠ABD,DE平分∠BDC,且∠BED =∠ABE +∠EDC.
(1)如图1,求证:AB//CD;
(2)如图2,若∠ABE=3∠ABF,且∠BFD=30°时,试求的值;
(3)如图3,若H是直线CD上一动点(不与D重合),BI平分∠HBD,画出图形,并探究出∠EBI与∠BHD的数量关系.
【答案】(1)证明:∵∠BED =∠ABE +∠EDC,∠EBD+∠BED+∠BDE=180°,∴∠ABD+∠BDC=180°,∴AB∥CD
(2)解:∵BE平分∠ABD,DE平分∠BDC,∴∠ABE=∠EBD,∠EDC=∠EDB.
∵∠ABD+∠BDC=180°,∴∠BED=∠ABE+∠EDC=90°.
设∠ABF=α,则∠ABE=3α.
如图,
过F作FG∥AB,则有:∠ABF+∠CDF=∠BFD,∴∠CDF=30°-α.
过E作EH∥AB,则有:∠ABE+∠CDE=∠BED,∴∠CDE=90°-3α,∴∠FDE=60°-2α,∴
.
(3)解:分两种情况讨论:
①当H在点D的左边时,如图3.
设∠HBI=∠DBI=x,∠EBH=y,则∠EBD=2x+y,∴∠ABE=∠EBD=2x+y.
∵AB∥CD,∴∠BHD=∠ABH=2x+y+y=2(x+y)=2∠EBI;
②当H在点D右边时,如图4.
设∠HBI=∠DBI=x,∠EBD=y,则∠EBI=x+y,∴∠ABH=2x+2y.
∵AB∥CD,∴∠ABH+∠BHD=180°,∴2x+2y+∠BHD=180°,∴∠BHD+2∠EBI=180°.
综上所述:∠BHD=2∠EBI或∠BHD+2∠EBI=180°
【解析】【分析】(1)由∠BED =∠ABE +∠EDC和三角形内角和定理即可得到∠ABD+∠BDC=180°,再由同旁内角互补,两直线平行即可得到结论;(2)由角平分线定义和∠ABD+∠BDC=180°,得到∠BED=∠ABE+∠EDC=90°.
设∠ABF=α,则∠ABE=3α,过F作FG∥AB,则有∠ABF+∠CDF=∠BFD,得到∠CDF=30°-α.过E作EH∥AB,同理可得:∠CDE=90°-3α,根据角的和差得到∠FDE=60°-2α,即可得到结论;(3)分两种情况讨论:①当H在点D的左边时,②当H在点D右边时.
10.如图,在△ ABC中,∠ ABC、∠ ACB的平分线交于点O.
(1)若∠ABC=40°,∠ ACB=50°,则∠BOC=________
(2)若∠ABC+∠ ACB=lO0°,则∠BOC="________"
(3)若∠A=70°,则∠BOC=________
(4)若∠BOC=140°,则∠A=________
(5)你能发现∠ BOC与∠ A之间有什么数量关系吗?写出并说明理由.
【答案】(1)135°
(2)130°
(3)125°
(4)100°
(5)解:BO平分∠ABC, CO平分∠ABC ∴∠OBC=0.5∠ABC ∠OCB=0.5∠ACB ∴∠OBC+∠OCB=0.5∠ABC+0.5∠ACB= 0.5(180-∠A)=90-0.5∠A ∴∠O=180-(∠OBC+∠OCB)=180-(90-0.5∠A)=90°+0.5∠A
【解析】【解答】解:(1)∵∠ABC=40°,∠ACB=50°,在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC=20°,∠OCB= ∠ACB=25°,
∴∠BOC=180°-∠OBC-∠OCB=180°-20°-25°=135°,
故答案是:135°;
( 2 )在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠OBC+∠OCB= (∠ABC+∠ACB)=50°,
∴∠BOC=180°- (∠ABC+∠ACB)=180°-50°=130°,
故答案是130°.
( 3 )在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠OBC+∠OCB= (∠ABC+∠ACB)=55°,
∴∠BOC=180°- (∠ABC+∠ACB)=180°-55°=125°,
故答案是125°;
( 4 )∵∠BOC=140°,
∴∠OBC+OCB=40°,
∵∠OBC= ∠ABC,∠OCB= ∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=80°,
∴∠A=100°,
故答案是:100°;
【分析】根据角平分线的性质以及三角形内角和定理得出∠OBC和∠OCB与∠A之间的关系,然后根据△BOC的内角和定理得出∠BOC与∠A的关系.
11.已知:直线AB,CD相交于点O,且OE⊥CD,如图.
(1)过点O作直线MN⊥AB;
(2)若点F是(1)中所画直线MN上任意一点(O点除外),且∠AOC=35°,求∠EOF的度数;
(3)若∠BOD:∠DOA=1:5,求∠AOE的度数.
【答案】(1)解:如图,MN为所求
(2)解:若F在射线OM上,
∵MN⊥AB,OE⊥CD,
∴∠AOC+∠COM=90°,∠EOF+∠COM=90°,
则∠EOF=∠AOC=35°;
若F'在射线ON上,
∵MN⊥AB,OE⊥CD,
∴∠DON=∠COM=90°-∠AOC=55°,∠EOD=90°
则∠EOF'=∠DOE+∠DON=145°;
综上所述,∠EOF的度数为35°或145°;
(3)解:∵∠BOD:∠DOA=1:5
∴∠BOD:∠BOC=1:5,
∴∠BOD=∠COD=30°,
∴∠AOC=30°,
又∵EO⊥CD,
∴∠COE=90°,
∴∠AOE=90°+30°=120°.
【解析】【分析】(1)根据垂直的定义即可作图;(2)分F在射线OM上和在射线ON 上分别进行求解即可;(3)依据平角的定义以及垂线的定义,即可得到∠AOE的度数.
12.(探索新知)
如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,则AB=________;
(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC________DB;
(3)(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
若点M、N均为线段OC的圆周率点,求线段MN的长度.
(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
【答案】(1)3π+3
(2)=
(3)解:由题意可知,C点表示的数是π+1,
M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,
x+πx=π+1,解得x=1,
∴MN=π+1-1-1=π-1
(4)解:设点D表示的数为x,
如图3,若CD=πOD,则π+1-x=πx,解得x=1;
如图4,若OD=πCD,则x=π(π+1-x),解得x=π;
如图5,若OC=πCD,则π+1=π(x-π-1),解得x=π+ +2;
如图6,若CD=πOC,则x-(π+1)=π(π+1),解得x=π2+2π+1;
综上,D点所表示的数是1、π、π+ +2、π2+2π+1
【解析】【解答】(1)解:∵AC=3,BC=πAC,
∴BC=3π,
∴AB=AC+BC=3π+3
( 2 )解:∵点D、C都是线段AB的圆周率点且不重合,
∴BC=πAC,AD=πBD,
∴设AC=x,BD=y,则BC=πx,AD=πy,
∵AB=AC+BC=AD+BD,
∴x+πx=y+πy,
∴x=y
∴AC=BD
【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度.。

相关文档
最新文档