天津市滨海新区2019-2020学年中考第三次适应性考试数学试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市滨海新区2019-2020学年中考第三次适应性考试数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列汽车标志中,不是轴对称图形的是()
A.B.C.D.
2.菱形的两条对角线长分别是6cm和8cm,则它的面积是()
A.6cm2B.12cm2C.24cm2D.48cm2
3.下列解方程去分母正确的是( )
A.由,得2x﹣1=3﹣3x
B.由,得2x﹣2﹣x=﹣4
C.由,得2y-15=3y
D.由,得3(y+1)=2y+6
4.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
A.1
2
B.
1
3
C.
1
4
D.
1
6
5.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )
A.AD DE
DB BC
=B.
BF EF
BC AD
=
C.AE BF
EC FC
=D.
EF DE
AB BC
=
6.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( ) A.y=2x2+3 B.y=2x2﹣3
C.y=2(x+3)2D.y=2(x﹣3)2
7.一元二次方程2x2﹣3x+1=0的根的情况是()
A .有两个相等的实数根
B .有两个不相等的实数根
C .只有一个实数根
D .没有实数根
8.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A (2,y 1),B (2,y 2),C (﹣5,y 3),则y 1、y 2、y 3的大小关系为( ) A .y 1>y 2>y 3
B .y 2>y 1>y 3
C .y 3>y 1>y 2
D .y 3>y 2>y 1
9.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( ) A .
1
9
B .
14
C .
16
D .
13
10.(2011•雅安)点P 关于x 轴对称点为P 1(3,4),则点P 的坐标为( ) A .(3,﹣4) B .(﹣3,﹣4) C .(﹣4,﹣3) D .(﹣3,4)
11.下列各式中的变形,错误的是(( ) A .
B .
C .
D .
12.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )
A .
B .
C .
D .
二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数23
x +x 的取值范围是_____. 148x -有意义,则x 的取值范围是 . 15.方程
1223
x x =+的解为__________. 16.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.
17.如图,点D 在ABC ∆的边BC 上,已知点E 、点F 分别为ABD ∆和ADC ∆的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于________.
18.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.
20.(6分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
21.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).
22.(8分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.
(1)求m的值及该抛物线对应的解析式;
(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;
(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.
23.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛
球的数量大于乙种羽毛球数量的3
5
,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
24.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.(1)求A,B两点间的距离(结果精确到0.1km).
(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)
25.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C (3,3).
(1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2; (3)判断以O ,A 1,B 为顶点的三角形的形状.(无须说明理由)
26.(12分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)
8 9 10 11.5 13 1y (分钟)
18
20
22
25
28
(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用
2
21y x 11x 782
=
-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
27.(12分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣
|
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】
根据轴对称图形的概念求解.
【详解】
A、是轴对称图形,故错误;
B、是轴对称图形,故错误;
C、不是轴对称图形,故正确;
D、是轴对称图形,故错误.
故选C.
【点睛】
本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.C
【解析】
【分析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
【详解】
根据对角线的长可以求得菱形的面积,
根据S=1
2
ab=
1
2
×6cm×8cm=14cm1.
故选:C.
【点睛】
考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.
3.D
【解析】
【分析】
根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
【详解】
A.由,得:2x﹣6=3﹣3x,此选项错误;
B.由,得:2x﹣4﹣x=﹣4,此选项错误;
C.由,得:5y﹣15=3y,此选项错误;
D.由,得:3(y+1)=2y+6,此选项正确.
故选D.
【点睛】
本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
4.D
【解析】
【分析】
根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.
【详解】
解:根据题意画图如下:
共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,
则抽到的书签正好是相对应的书名和作者姓名的概率是
2
12
=
1
6
;
故选D.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
5.C
【解析】
【分析】
根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
【详解】
解:∵DE∥BC,
∴DE
BC
=
AD
AB
,BD≠BC,
∴AD
BD
≠
DE
BC
,选项A不正确;
∵DE∥BC,EF∥AB,
∴BF
BC
=
AE
AC
,EF=BD,
EF
AD
=
BD
AD
,
∵AE
AC
≠
BD
AD
,
∴BF
BC
≠
EF
AD
,选项B不正确;
∵EF∥AB,
∴AE
EC
=
BF
CF
,选项C正确;
∵DE∥BC,EF∥AB,
∴EF
AB
=
CE
AC
,
DE
BC
=
AE
AC
,CE≠AE,
∴EF
AB
≠
DE
BC
,选项D不正确;
故选C.
【点睛】
本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.6.C
【解析】
【分析】
按照“左加右减,上加下减”的规律,从而选出答案.
【详解】
y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.
【点睛】
本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.
7.B
【解析】
试题分析:对于一元二次方程,当△=时方程有两个不相等的实数根,当△=时方程有两个相等的实数根,当△=时方程没有实数根.根据题意可得:
△=,则方程有两个不相等的实数根.
8.D
【解析】
试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
故选D
点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
作出树状图即可解题. 【详解】
解:如下图所示
一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是1 9 ,
故选A.
【点睛】
本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.
10.A
【解析】
∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴点P的坐标为(3,﹣4).
故选A.
11.D
【解析】
【分析】
根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
【详解】
A、,故A正确;
B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
D、≠,故D错误;
故选:D.
【点睛】
本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
观察图形,利用中心对称图形的性质解答即可.
【详解】
选项A,新图形不是中心对称图形,故此选项错误;
选项B,新图形是中心对称图形,故此选项正确;
选项C,新图形不是中心对称图形,故此选项错误;
选项D,新图形不是中心对称图形,故此选项错误;
故选B.
【点睛】
本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.x≥﹣3
2
且x≠1.
【解析】
【分析】
根据分式有意义的条件、二次根式有意义的条件列式计算.【详解】
由题意得,2x+3≥0,x-1≠0,
解得,x≥-3
2
且x≠1,
故答案为:x≥-3
2
且x≠1.
【点睛】
本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.
14.x≥8
【解析】
略
15.1
x=
【解析】
【分析】
两边同时乘2(3)
x x+,得到整式方程,解整式方程后进行检验即可.
【详解】
解:两边同时乘2(3)x x +,得
34x x +=,
解得1x =,
检验:当1x =时,2(3)x x +≠0,
所以x=1是原分式方程的根,
故答案为:x=1.
【点睛】
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
16.1
【解析】
析:本题需先根据已知条件列出关于m 的等式,即可求出m 的值.
解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根
∴△=b 2-4ac=(-2)2-4×1?m=0
4-4m=0
m=1
故答案为1
17.4
【解析】
【分析】
连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,根据三角形的重心的概念可得12
DG BD =,12
DH CD =,2AE GE =,2AF HF =,即可求出GH 的长,根据对应边成比例,夹角相等可得EAF GAH ∆∆∽,根据相似三角形的性质即可得答案.
【详解】
如图,连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,
∵点E 、F 分别是ABD ∆和ACD ∆的重心, ∴12DG BD =,12
DH CD =,2AE GE =,2AF HF =, ∵12BC =, ∴111()126222GH DG DH BD CD BC =+=
+==⨯=, ∵2AE GE =,2AF HF =, ∴23
AE AF AG AH ==,
∵EAF GAH ∠=∠,
∴EAF GAH ∆∆∽, ∴23
EF AE GH AG ==, ∴4EF =,
故答案为:4
【点睛】
本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.
18.﹣18
【解析】
【分析】
要求代数式a 3b ﹣2a 2b 2+ab 3的值,而代数式a 3b ﹣2a 2b 2+ab 3恰好可以分解为两个已知条件ab ,(a ﹣b )的乘积,因此可以运用整体的数学思想来解答.
【详解】
a 3
b ﹣2a 2b 2+ab 3=ab (a 2﹣2ab+b 2)
=ab (a ﹣b )2,
当a ﹣b=3,ab=﹣2时,原式=﹣2×
32=﹣18, 故答案为:﹣18.
【点睛】
本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(1)254y x x =-+-;(2)(0174)或(0,4).
【解析】
试题分析:(1)将A 点的坐标代入抛物线中,即可得出二次函数的解析式;
(2)本题要分两种情况进行讨论:①PB=AB ,先根据抛物线的解析式求出B 点的坐标,即可得出OB 的长,进而可求出AB 的长,也就知道了PB 的长,由此可求出P 点的坐标;
②PA=AB ,此时P 与B 关于x 轴对称,由此可求出P 点的坐标.
试题解析:(1)∵抛物线25y x x n =-++经过点A (1,0),∴4n =-,∴2
54y x x =-+-;
(2)∵抛物线的解析式为254y x x =-+-,∴令0x =,则4y =-,∴B 点坐标(0,﹣4),AB=17, ①当PB=AB 时,PB=AB=17,∴OP=PB ﹣OB=174-.∴P (0,174-),
②当PA=AB 时,P 、B 关于x 轴对称,∴P (0,4),因此P 点的坐标为(0,174-)或(0,4). 考点:二次函数综合题.
20.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A 和B 两种支付方式的购买者共有928名.
【解析】
分析:(1)根据B 的数量和所占的百分比可以求得本次调查的购买者的人数;
(2)根据统计图中的数据可以求得选择A 和D 的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A 种支付方式所对应的圆心角的度数;
(3)根据统计图中的数据可以计算出使用A 和B 两种支付方式的购买者共有多少名.
详解:(1)56÷
28%=200, 即本次一共调查了200名购买者;
(2)D 方式支付的有:200×20%=40(人),
A 方式支付的有:200-56-44-40=60(人),
补全的条形统计图如图所示,
在扇形统计图中A 种支付方式所对应的圆心角为:360°
×60200=108°, (3)1600×60+56200
=928(名), 答:使用A 和B 两种支付方式的购买者共有928名.
点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
21.(1)见解析;(2)75﹣
154
a. 【解析】
【分析】
(1)连接CD ,求出∠ADC=90°,根据切线长定理求出DE=EC ,即可求出答案;
(2)连接CD 、OD 、OE ,求出扇形DOC 的面积,分别求出△ODE 和△OCE 的面积,即可求出答案
【详解】
(1)证明:连接DC,
∵BC是⊙O直径,
∴∠BDC=90°,
∴∠ADC=90°,
∵∠C=90°,BC为直径,
∴AC切⊙O于C,
∵过点D作⊙O的切线DE交AC于点E,
∴DE=CE,
∴∠EDC=∠ECD,
∵∠ACB=∠ADC=90°,
∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,
∴∠A=∠ADE;
(2)解:连接CD、OD、OE,
∵DE=10,DE=CE,
∴CE=10,
∵∠A=∠ADE,
∴AE=DE=10,
∴AC=20,
∵∠ACB=90°,AB=25,
∴由勾股定理得:BC===15,
∴CO=OD=
, ∵的长度是a ,
∴扇形DOC 的面积是×a×=a ,
∴DE 、EC 和弧DC 围成的部分的面积S=×
×10+×10﹣a=75﹣a . 【点睛】
本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.
22.(1)214
y x x =-;(2)(2+221)( 2-22,1);(3)存在,145t =,245t =36t =,4132
t = 【解析】
试题分析:(1)将x=-2代入y=-2x-1即可求得点B 的坐标,根据抛物线过点A 、O 、B 即可求出抛物线的方程.
(2)根据题意,可知△ADP 和△ADC 的高相等,即点P 纵坐标的绝对值为1,所以点P 的纵坐标为1± ,分别代入214
y x x =
-中求解,即可得到所有符合题意的点P 的坐标. (3)由抛物线的解析式为214y x x =- ,得顶点E (2,﹣1),对称轴为x=2; 点F 是直线y=﹣2x ﹣1与对称轴x=2的交点,求出F (2,﹣1),DF=1.
又由A (4,0),根据勾股定理得5AE = .然后分4种情况求解.
点睛:(1)首先求出点B 的坐标和m 的值,然后利用待定系数法求出抛物线的解析式;
(2)△ADP 与△ADC 有共同的底边AD ,因为面积相等,所以AD 边上的高相等,即为1;从而得到点P 的纵坐标为1,再利用抛物线的解析式求出点P 的纵坐标;
(3)如解答图所示,在点M 的运动过程中,依次出现四个菱形,注意不要漏解.针对每一个菱形,分别进行计算,求出线段MF 的长度,从而得到运动时间t 的值.
23.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
【解析】
【分析】(1)设甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,由条件可列方程组,则可求得答案;
(2)①设购进甲种羽毛球m 筒,则乙种羽毛球为(200﹣m )筒,由条件可得到关于m 的不等式组,则可求得m 的取值范围,且m 为整数,则可求得m 的值,即可求得进货方案;
②用m 可表示出W ,可得到关于m 的一次函数,利用一次函数的性质可求得答案.
【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得
15
23255
x y
x y
-=
⎧
⎨
+=
⎩
,解得
60
45
x
y
=
⎧
⎨
=
⎩
,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得
()
()
5040208780
3
200
5
m m
m m
⎧+-≤
⎪
⎨
>-
⎪⎩
,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
24.(1)1.7km;(2)8.9km;
【解析】
【分析】
(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离.
【详解】
解:(1)由题意可得,
∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km,
∴AO=OC•tan34°,BO=OC•tan45°,
∴AB=OB﹣OA=OC•tan45°﹣OC•tan34°=OC(tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km,
即A,B两点间的距离是1.7km;
(2)由已知可得,
∠DOC=90°,OC=5km ,∠DCO=56°,
∴cos ∠DCO=,OC CD
即5cos56,CD =o ∵sin34°=cos56°,
∴50.56CD
=, 解得,CD≈8.9
答:此时雷达站C 和运载火箭D 两点间的距离是8.9km .
【点睛】
本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答. 25.(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.
【解析】
【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1为所作; (2)利用网格特定和旋转的性质画出A 、B 、C 的对应点A 2、B 2、C 2,从而得到△A 2B 2C 2, (3)根据勾股定理逆定理解答即可.
【详解】(1)如图所示,△A 1B 1C 1即为所求;
(2)如图所示,△A 2B 2C 2即为所求;
(3)三角形的形状为等腰直角三角形,OB=OA 1224117+=A 12253+34
即OB 2+OA 12=A 1B 2,
所以三角形的形状为等腰直角三角形.
【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
26. (1) y 1=2x +2;(2) 选择在B 站出地铁,最短时间为39.5分钟.
【解析】
【分析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到
家所需的时间为y,则y=y1+y2=1
2
x2-9x+80,根据二次函数的性质,即可得出最短时间.
【详解】
(1)设y1=kx+b,将(8,18),(9,20),代入
y1=kx+b,得:
818, 920. k b
k b
+=
⎧
⎨
+=
⎩
解得
2,
2. k
b
=⎧
⎨
=⎩
所以y1关于x的函数解析式为y1=2x+2. (2)设李华从文化宫回到家所需的时间为y,则
y=y1+y2=2x+2+1
2
x2-11x+78=
1
2
x2-9x+80=
1
2
(x-9)2+39.5.
所以当x=9时,y取得最小值,最小值为39.5,
答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.
【点睛】
本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.
27.1
【解析】
【分析】
原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.
【详解】
解:原式=1﹣1×+1+=1﹣+1+=1.
【点睛】
此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.。