一道数学竞赛题的另解
小学六年级数学竞赛试题及详细答案
![小学六年级数学竞赛试题及详细答案](https://img.taocdn.com/s3/m/43c8ca6ebf23482fb4daa58da0116c175f0e1e15.png)
小学六年级数学竞赛试题及详细答案成若干个小正方体,其中有12个小正方体在长方体的底面上,有16个小正方体在长方体的侧面上,问这个长方体的体积是多少?解答过程:设长方体的长为x,则宽和高分别为x/2,由题意可得:底面上小正方体的个数为:(x/2)²=12,解得x=6√2侧面上小正方体的个数为:4(x/2)=16,解得x=8因为x只能有一个值,所以x=6√2所以长方体的体积为:(6√2)³=432√2答案:432√2法中,左右两个乘法的结果相同,于是可以直接将左右两个乘法相加,得到分子部分的简化形式,再将分母部分也进行类似的化简,最终得到1/3的结果。
二.填空题1.解法一:设7岁时兔子的数量为x,则10岁时兔子的数量为2x,14岁时兔子的数量为3x。
根据题意,有3x-2x=24,解得x=24,因此7岁时兔子的数量为24只。
解法二:设兔子的平均寿命为x岁,则根据题意,有3x=2(x+7)+24,解得x=10,因此兔子的平均寿命为10岁,7岁时兔子的数量为24只。
2.解法一:设第一个数为x,则第二个数为x+1,第三个数为x+2,根据题意,有3x+3=2(x+1)+x+2,解得x=1,因此这三个数分别为1、2、3.解法二:设这三个数的平均数为x,则根据题意,有3x=2(x+1)+x+2,解得x=2,因此这三个数分别为1、2、3.3.设这个大长方体的长、宽、高分别为a、b、c,则根据题意,有2(ab+bc+ac)=600,解得XXX。
又因为这个大长方体由12个小长方体组成,因此有abc=12V,其中V为大长方体的体积。
将ab+bc+ac=300代入abc=12V中,解得V=75.4.设这批书共有x本,则根据题意,有x≡2 (mod 11),x≡0 (mod 3),x≡1 (mod 4)。
根据中国剩余定理,可以得到x≡89 (mod 132),因此这批书共有89+132k (k为非负整数)本。
数学周报_杯_2008年全国初中数学竞赛试题及解答
![数学周报_杯_2008年全国初中数学竞赛试题及解答](https://img.taocdn.com/s3/m/a1a65c8971fe910ef12df8df.png)
购物原价超过300元;则第一次购物原价为94.5÷0.9=105(元).所以小丽应付(316+105-300)×0.8+300×0.9=362.8(元).20.(1)证明:如图,延长CB至点G,使得BG=DF,连结AG.因为ABCD是正方形,所以在Rt△ADF和Rt△ABG中,AD=AB,∠ADF=∠ABG=90°,DF=BG.∴Rt△ADF≌Rt△ABG(SAS),∴AF=AG,∠DAF=∠BAG.又∵AE是∠BAF的平分线,∴∠EAF=∠BAE,∴∠DAF+∠EAF=∠BAG+∠BAE.即∠EAD=∠GAE. ∵AD∥BC,∴∠GEA=∠EAD,∴∠GEA=∠GAE,∴AG=GE.即AG=BG+BE.∴AF=DF+BE,得证.(2)S=S△ADF+S△ABE=12DF·AD+12BE·AB.∵AD=AB=1,∴S=12(DF+BE).由(1)知,AF=DF+BE,所以S=12AF.在Rt△ADF中,AD=1,DF=x,∴AF=x2槡+1,∴S=12x2槡+1.由上式可知,当x2达到最大值时,S最大.而0≤x≤1,所以,当x=1时,S最大值为12x2槡+1=12槡2櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕櫕毇毇毇毇.“《数学周报》杯”2008年全国初中数学竞赛试题及解答 一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填都得0分)1.已知实数x,y满足4x4-2x2=3,y4+y2=3,则4x4+y4的值为( ).A.7 B.槡1+132 C.槡7+132 D.5【答】(A)解:因为x2>0,y2≥0,由已知条件得1x2=槡2+4+4×4×38=槡1+134,y2=槡-1+1+4×32=槡-1+32,所以4x4+y4=2x2+3+3-y2=2x2-y2+6=7.另解:由已知得(-2x2)2+(-2x2)-3=0,(y2)2+y2-3=0烅烄烆.显然-2x2≠y2,以-2x2,y2为根的一元二次方程为t2+t-3=0,所以(-2x2)+y2=-1,(-2x2)×y2=-3.故4x+y3=[(-2x2+y2)]2-2×(-2x2)×y2=(-1)2-2×(-3)=7.2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是( ).A.512 B.49 C.1736 D.12【答】(C)解:基本事件总数有6×6=36,即可以得到36个二次函数.由题意知Δ=m2-4n>0,即m2>4n.通过枚举知,满足条件的m,n有17对.故P=1736.3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).A.6条 B.8条 C.10条 D.12条(第3题)【答】(B)解:如图,大圆周上有4个不同的点A,B,C,D,两两连线可以确定6条不同的直线;小圆周上的两个点E,F中,至少有一个不是四边形ABCD的对角线AC与BD34的交点,则它与A,B,C,D的连线中,至少有两条不同于A,B,C,D的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.(第4题)4.已知AB是半径为1的圆O的一条弦,且AB=a<1.以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为( ).A.槡52a B.1 C.槡32 D.a【答】(B)解:如图,连接OE,OA,OB.设∠D=α,则∠ECA=120°-α=∠EAC.又因为∠ABO=12∠ABD=12(60°+180°-2α)=120°-α,所以△ACE≌△ABO,于是AE=OA=1.另解:如图,作直径EF,连结AF,以点B为圆心,AB为半径作⊙B.因为AB=BC=BD,则点A,C,D都在⊙B上,由∠F=∠EDA=12∠CBA=12×60°=30°,所以AE=EF×sin∠F=2×sin30°=1.5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).A.2种 B.3种 C.4种 D.5种【答】(D)解:设a1,a2,a3,a4,a5是1,2,3,4,5的一个满足要求的排列.首先,对于a1,a2,a3,a4,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果ai(1≤i≤3)是偶数,ai+1是奇数,则ai+2是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以a1,a2,a3,a4,a5只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)6.对于实数u,v,定义一种运算“*”为:u*v=uv+v.若关于x的方程x*(a*x)=-14有两个不同的实数根,则满足条件的实数a的取值范围是.【答】a>0,或a<-1.解:由x*(a*x)=-14,得(a+1)x2+(a+1)x+14=0.依题意有a+1≠0,Δ=(a+1)2-(a+1)>0{.解得 a>0,或a<-1.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.【答】4.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x-6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以sx=4.即18路公交车总站发车间隔的时间是4分钟.(第8题)8.如图,在△ABC中,AB=7,AC=11,点M是BC的中点,AD是∠BAC的平分线,MF∥AD,则FC的长为.(第9题)【答】9.解:如图,设点N是AC的中点,连接MN,则MN∥AB.又MF∥AD,所以44∠FMN=∠BAD=∠DAC=∠MFN,所以FN=MN=12AB.因此FC=FN+NC=12AB+12AC=9.另解:如图,过点C作AD的平行线交BA的延长线为E,延长MF交AE于点N.则∠E=∠BAD=∠DAC=∠ACE.所以AE=AC=11.又FN∥CE,所以四边形CENF是等腰梯形,即CF=EN=12BE=12×(7+11)=9.9.△ABC中,AB=7,BC=8,CA=9,过△ABC的内切圆圆心I作DE∥BC,分别与AB,AC相交于点D,E,则DE的长为.【答】163.(第9题)解:如图,设△ABC的三边长为a,b,c,内切圆I的半径为r,BC边上的高为ha,则12aha=S△ABC=12(a+b+c)r,所以rha=aa+b+c.因为△ADE∽△ABC,所以它们对应线段成比例,因此ha-rha=DEBC,所以DE=ha-rha·a=(1-rha)a=(1-aa+b+c)a=a(b+c)a+b+c,故DE=8×(7+9)8+7+9=163.另解:∵S△ABC=rp=p(p-a)(p-b)(p-c槡)槡槡=12×4×3×5=12 5,(这里p=a+b+c2)所以r12 =槡512槡=5,ha=2S△ABCa2×12 58槡2 =槡5.由△ADE∽△ABC,得DEBC=ha-rha3 5-5槡3 =槡槡5=23,即DE=23BC=163.10.关于x,y的方程x2+y2=208(x-y)的所有正整数解为.【答】x=48,y=32{, x=160,y=32{.解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x,y都是偶数.设x=2a,y=2b,则a2+b2=104(a-b).同上可知,a,b都是偶数.设a=2c,b=2d,则c2+d2=52(c-d),所以,c,d都是偶数.设c=2s,d=2t,则s2+t2=26(s-t),于是(s-13)2+(t+13)2=2×132,其中s,t都是偶数.所以(s-13)2=2×132-(t+13)2≤2×132-152<112.所以|s-13|可能为1,3,5,7,9,进而(t+13)2为337,329,313,289,257,故只能是(t+13)2=289,从而|s-13|=7.于是s=6,t=4{;s=20,t=4{.因此x=48,y=32{,x=160,t=32{.另解:因为(x-104)2+(y+104)2=2×1042=21632,则有(y+104)2≤21632.又y正整数,所以1≤y≤43.令a=|x-104|,b=|y+104|,则a2+b2=21632.因为任何完全平方数的个位数为:1,4,5,6,9,由a2+b2=21632知a2,b2的个位数只能是1和1或6和6.当a2,b2的个位数是1和1时,则a,b的个位数字可以为1或9.但个位数为1和9的数的平方数的十位数字为偶数,与a2+b2的十位数字为3矛盾.当a2,b2的个位数是6和6时,则a,b的个位数字可以为4或6.由105≤b≤147,取b=106,114,116,124,126,134,136,144,146代入a2+b2=21632得,只有当b=54136时,a=56,即|x-104|=56,|y+104|=136{.解得x=48,y=32{; x=160,y=32{.三、解答题(共4题,每题15分,满分60分)11.在直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与x轴,y轴的正半轴分别交于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△OAB面积的最小值.解:(1)令x=0,得y=b,b>0;令y=0,得x=-bk>0,k<0.所以A,B两点的坐标分别为A(-bk,0),B(0,b),于是,△OAB的面积为S=12b·(-bk).由题意,有12b·(-bk)=-bk+b+3.解得 k=2b-b22(b+3),b>2.(2)由(1)知S=12b·(-bk)=b(b+3)b-2=(b-2)2+7(b-2)+10b-2=b-2+10b-2+7=(b槡-2-10b槡-2)2槡+7+2 10≥槡7+2 10.当且仅当b-2=10b-2时,有S槡=7+2 10,即当b槡=2+10,k=-1时,不等式中的等号成立.所以,△ABC面积的最小值为槡7+2 10.12.是否存在质数p,q,使得关于x的一元二次方程px2-qx+p=0有有理数根?解:设方程有有理数根,则判别式为平方数.令Δ=q2-4p2=n2,其中n是一个非负整数.则(q-n)(q+n)=4p2.由于1≤q-n≤q+n,且q-n与q+n同奇偶,故同为偶数.因此,有如下几种可能情形:q-n=2,q+n=2p2{, q-n=4,q+n=p2{, q-n=p,q+n=4p{.q-n=2p,q+n=2p{, q-n=p2,q+n{=4消去n,解得q=q2+1,q=2+p22,q=5p2,q=2p,q=2+p22.对于第1,3种情形,p=2,从而q=5;对于第2,5种情形,p=2,从而q=4(不合题意,舍去);对于第4种情形,q是合数(不合题意,舍去).又当p=2,q=5时,方程为2x2-5x+2=0,它的根为x1=12,x2=2它们都是有理数.综上所述,存在满足题设的质数.★12.已知a,b为正整数,关于x的方程x2-2ax+b=0的两个实数根为x1,x2,关于y的方程y2+2ay+b=0的两个实数根为y1,y2,且满足x1·y1-x2·y2=2008.求b的最小值.解:由韦达定理,得x1+x2=2a,x1·x2=b;y1+y2=-2a,y1·y2=b,即y1+y2=-2a=-(x1+x2)=(-x1)+(-x2),y1·y2=b=(-x1)·(-x2){.解得 y1=-x1,y2=-x2{; 或y1=-x2,y2=-x1{.把y1,y2的值分别代入x1·y1-x2·y2=2008得x1·(-x1)-x2·(-x2)=200.或x1·(-x2)-x2·(-x1)=2008(不成立).即x22-x21=2008,(x2+x1)(x2-x1)=2008.因为x1+x2=2a>0,x1·x2=b>0,所以x1>0,x2>0.于是有2a·4a2-4槡b=2008.即a·a2 -槡b=502=1×502=2×251.因为a,b都是正整数,所以a=1,a2-b=502{2或a=505,a2-b{=1或a=2,a2-b=251{2或a=251,a2-b=4{.分别解得:a=1,b=1-502{2或a=502,b=5022{-1或a=2,b=2-251{2或a=251,b=2512-4{.经检验只有:a=502b=5022{-1,a=251b=2512{-4符合题意.所以b的最小值为:b最小值=2512-4=62997.6413.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.解:存在满足条件的三角形.当△ABC的三边长分别为a=6,b=4,c=5时,∠A=2∠B.(第13(A)题答案)如图,当∠A=2∠B时,延长BA至点D,使AD=AC=b.连接CD,则△ACD为等腰三角形.因为∠BAC为△ACD的一个外角,所以∠BAC=2∠D.由已知,∠BAC=2∠B,所以∠B=∠D.所以△CBD为等腰三角形.又∠D为△ACD与△CBD的一个公共角,有△ACD∽△CBD,于是ADCD=CDBD, 即ba=ab+c,所以 a2=b(b+c).而62=4×(4+5),所以此三角形满足题设条件,故存在满足条件的三角形.说明:满足条件的三角形是唯一的.若∠A=2∠B,可得a2=b(b+c).有如下三种情形:(ⅰ)当a>c>b时,设a=n+1,c=n,b=n-1(n为大于1的正整数),代入a2=b(b+c),得(n+1)2=(n-1)(2n-1).解得n=5,有a=6,b=4,c=5;(ⅱ)当c>a>b时,设c=n+1,a=n,b=n-1(n为大于1的正整数),代入a2=b(b+c),得n2=(n-1)·2n.解得n=2,有a=2,b=1,c=3,此时不能构成三角形;(ⅲ)当a>b>c时,设a=n+1,b=n,c=n-1(n为大于1的正整数),代入a2=b(b+c),得(n+1)2=n(2n-1),即n2-3n-1=0,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4,5,6构成的三角形满足条件.★13.如图,△ABC的三边长BC=a,AC=b,AB=c,a,b,c都是整数,且a,b的最大公约数是2.点G和点I分别为△ABC的重心和内心,且∠GIC=90°,求△ABC的周长.解:如图,连结GA,GB.过G,I作直线交BC,AC于点E,F,作△ABC的内切圆I,切BC边于点D.记△ABC的半周长为P,内切圆半径为r,BC,AC边上的高线长为ha,hb.∵S△ABC=rp=p(p-q)(p-b)(p-c槡),∴r=(p-a)(p-b)(p-c)槡p.易知:CD=p-c,在Rt△CIE中,DE=r2p-c,即DE=(p-a)(p-b)p.∴CE=CD+DE=(p-c)+(p-a)(p-b)p=abp.又∵CI⊥EF,CI平分∠ACB,所以CE=CF.由S△ABC=S△ABG+S△BEG+S△AFG+S△FEC,S△ABC=S△ABC3+12×(a-abp)×ha3+12×(b-abp)×hb3+2×12×abp×r,即 S△ABC=S△ABC3+(12×a×ha)×p-b3p+(12×b×hb)×p-a3p+abp2×rp.整理得2p2-cp=3ab,即3ab=2p2-cp=p(2p-c)=p(a+b).设△ABC的周长为m,则m=2p=6aba+b为整数.由已知(a,b)=2,设a=2s,b=2t,且(s,t)=1,s,t都是正整数,代入上式,得m=12sts+t.∵(s,s+t)=1,(t,s+1)-1,∴s+t是12的约数,即s+t=1,2,3,4,6,12.不妨设s≥1,则(s,t)=1,得s=1,t=1,m=6烅烄烆; s=2,t=1,m=8烅烄烆; s=3,t=1,m=9烅烄烆;s=5,t=1,m=10烅烄烆; s=11,t=1,m=11烅烄烆; s=7,t=5,m=35烅烄烆.经检验,只有 s=7,t=5,m=35烅烄烆. 符合题意,所以 a=14,b=10,c=10或a=10,b=14,c=11,即所求△ABC的周长为35.7414.从1,2,…,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值.解:当n=4时,数1,3,5,8中没有若干个数的和能被10整除.当n=5时,设a1,a2,…,a5是1,2,…,9中的5个不同的数.若其中任意若干个数,它们的和都不能被10整除,则a1,a2,…,a5中不可能同时出现1和9;2和8;3和7;4和6.于是a1,a2,…,a5中必定有一个数是5.若a1,a2,…,a5中含1,则不含9.于是不含4(4+1+5=10),故含6;于是不含3(3+6+1=10),故含7;于是不含2(2+1+7=10),故含8.但是5+7+8=20是10的倍数,矛盾.若a1,a2,…,a5中含9,则不含1.于是不含6(6+9+5=20),故含4;于是不含7(7+4+9=20),故含3;于是不含8(8+9+3=10),故含2.但是5+3+2=10是10的倍数,矛盾.综上所述,n的最小值为5.★★14.已知有6个互不相同的正整数a1,a2,…,a6,且a1<a2<…<a6,从这6个数中任意取出3个数,分别设为ai,aj,ak,其中i<j<k.记f(i,j,k)=1ai+2aj+3ak.证明:一定存在3个不同的数组(i,j,k),其中1≤i<j<k≤6,使得对应着的3个f(i,j,k)两两之差的绝对值都小于0.5.(征求答案獉獉獉獉)。
2019年全国高中数学联赛试题及解答
![2019年全国高中数学联赛试题及解答](https://img.taocdn.com/s3/m/7592f91eb307e87100f6960b.png)
全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧2分析:平面几何最值、面积、三角函数、轨迹8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答2014高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得全国高中数学联赛试题及解答一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。
高中数学竞赛试卷及解答
![高中数学竞赛试卷及解答](https://img.taocdn.com/s3/m/62dbff4851e79b896902267b.png)
高中数学奥林匹克竞赛试题(9月7日上午9:00-11:00) 注意事项:本试卷共18题,满分150分一、选择题(本大题共6个小题,每小题6分,满分36分) 1.定义在实数集R 上的函数y =f(-x)的反函数是y =f -1(-x),则(A)y =f(x)是奇函数 (B)y =f(x)是偶函数(C)y =f(x)既是奇函数,也是偶函数 (D)y =f(x)既不是奇函数,也不是偶函数2.二次函数y =ax 2+bx +c 的图象如右图所示。
记N =|a +b +c|+|2a -b|,M =|a -b +c|+|2a +b|,则(A)M >N (B)M =N (C)M <N(D)M 、N 的大小关系不能确定3.在正方体的一个面所在的平面内,任意画一条直线,则与它异面的正方体的棱的条数是(A) 4或5或6或7 (B) 4或6或7或8 (C) 6或7或8 (D) 4或5或6 4.ΔABC 中,若(sinA +sinB)(cosA +cosB)=2sinC,则(A)ΔABC 是等腰三角形但不一定是直角三角形 (B)ΔABC 是直角三角形但不一定是等腰三角形 (C)ΔABC 既不是等腰三角形也不是直角三角形 (D)ΔABC 既是等腰三角形也是直角三角形5.ΔABC 中,∠C =90°。
若sinA 、sinB 是一元二次方程x 2+px +q =0的两个根,则下列关系中正确的是(A)p =q 21+±且q >21- (B)p =q 21+且q >21-(C)p =-q 21+且q >21- (D)p =-q 21+且0<q ≤216.已知A (-7,0)、B (7,0)、C (2,-12)三点,若椭圆的一个焦点为C,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(A)双曲线 (B)椭圆(C)椭圆的一部分 (D)双曲线的一部分二、填空题(本大题共6个小题,每小题6分,满分36分)7. 满足条件{1,2,3}⊆ X ⊆{1,2,3,4,5,6}的集合X 的个数为____。
一道全国初中数学竞赛试题另解与联想
![一道全国初中数学竞赛试题另解与联想](https://img.taocdn.com/s3/m/41971388d4d8d15abe234e9b.png)
由 A 2 C 知相似 比为 2, B: A , 因此
A 2P= ,Q= C 4 Q= A 2 3B 2P= , 4
Q P= Q B+/B P= A A A
C + B 尸 = B C =6 。 A A 0.
李 玉荣: 一道全 国初 中数 学竞赛试题另解与联想
・ 5・ 4
寺(△ + △A + △P ) J尸尸 .PP SP2 = s 13 s 2 3 13 P
5 +
得
= D cs0 = . 2 F o3 。 3
因为 E +p 2 + 2 =p 2所 以 AP F为 F =3 4 =5 E, E 直 角 三角形 , 故
A C = DF = PF + EF =1 0 . P C E D 2 0
即AP E为等边三角形 , 朋 =P 5 延 长 B 故 B= .
P C至点 F 使得 C C , P 4 连结 D , , , F= P 则 F= . F
易 证 AA C △D , P ̄ 于是
DF =AP = ,
,
从 而
。=
=Y z
因此 弦 A C 相 交 且 斜 率 互为 相 反 数 , B,D 由定 理 可
1+ 2
) ,
l+
1
一
Z
y 1一) , 2
‘
1 一 2
知点 A B, , , C D在同一圆上.
Y 2
’
一
道 全 国初 中 数 学 竞 赛 试 题 另 解 与 联 想
LA PC = LA C = P2
图3
图 4
另解 2 如 图 4 延长 A , C至点 D, 使得 C D=
一道数学竞赛题的另解及推广
![一道数学竞赛题的另解及推广](https://img.taocdn.com/s3/m/e422444fa8956bec0975e3ec.png)
关键 词 数 学 竞 赛 ; 中值 定 理 ; 极 限
中 图 分 类 号 O1 7 2 文 献 标 识码 A 文章 编 号 1 0 0 8 — 1 3 9 9 ( 2 0 1 3 ) 0 1 — 0 0 4 8 — 0 2
我 国高 校 广泛 开展 大 学 生数 学 竞赛 活 动 , 极 大
参 考 文献
苑 金 臣( 1 9 4 1 -) , 男, 山东郓城人 , 教授 , 从 事 实 分 析 及 数
论研究. E ma i l : y u a n J c h e n @1 2 6 . c o r n .
E I 5刘 培 杰 数 学 工 作 室 . 历 届 美 国 大 学 生 数 学 竞 赛 试 题 集
[ M] . 哈尔滨 : 哈尔滨工业大学出版社 , 2 0 0 9 : 6 1 1 - 6 1 4 .
第1 5卷 第 2期
2 0 1 2年 3月
高 等 数 学 研 究
STU D I ES I N CO LLEGE M A T H EM A TI CS
V01 . 1 5, No .2 Ma r .,20 12
n 一 ∞ 等一 " 一 。 。 / / - 十 1 一 一 一 。 。 ( \ 。 一 a ) = = =
+ ) n ] .
不 妨 设
。( z) 一 z丁 ,
有举 办数 学竞赛 的传 统 . 美 国大学 生 数 学 竞赛 又 称 普特 南竞 赛 , 其历史悠 久 , 影 响深 远. 下 例 引 自第 6 7
√以
2 ( n + l— n + L _ ( > 0 ) ,
4a
k +1
试 求极 限l i a r
"一 。。
小学四年级数学奥林匹克竞赛题及分析
![小学四年级数学奥林匹克竞赛题及分析](https://img.taocdn.com/s3/m/dfa84bfa4bfe04a1b0717fd5360cba1aa8118caa.png)
小学四年级数学奥林匹克竞赛题及分析统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
北师大版四年级下册数学竞赛试题 假设法解题(含答案)
![北师大版四年级下册数学竞赛试题 假设法解题(含答案)](https://img.taocdn.com/s3/m/3b8351d7f705cc175527097f.png)
假设法解题【名师解析】假设法是解应用题时常用的一种思维方法。
在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。
【例题精讲】【例1】有1角、5角硬币共28枚,价值108角,那么1角、5角硬币各有几枚?练习一:1、小明的妈妈买了鸡和兔共33只,脚共有96只。
问鸡、兔各有多少只?2、在一个停车场中,汽车、摩托车共有48辆,其中每辆汽车共有4个轮子,每辆摩托车有2个轮子,这些车共有152个轮子,那么停车场有汽车、摩托车各几辆?【例2】有一元、二元、五元的人民币50张,总面值116元。
已知一元的比二元的多2张,问三种面值的人民币各有几张?练习二:1、有3元、5元和7元的电影票400张,一共价值1920元。
其中7元的和5元的张数相等,三种价格的电影票各有多少张?2、有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。
问三种人民币各有多少张?【例3】有一堆黑白棋子,其中黑子个数是白子个数的2倍。
如果从这堆棋子中每次同时取出4个黑子和3个白子,那么取了多少次后,白子余1个,而黑子还剩18个?练习三:1、有一堆黑白棋子,其中黑子个数是白子个数的3倍。
如果从这堆棋子中每次同时取出6个黑子和3个白子,那么取了多少次后,白子余5个,而黑子还剩36个?2、操场上有一群同学。
男生人数是女生人数的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人。
操场上原有多少名同学?【例4】将200拆成两个自然数之和,其中一个是17的倍数,另一个是23的倍数,那么两个自然数的积是多少?练习四:1、将2007拆成两个自然数之和,其中一个是17的倍数,另一个是29的倍数,那么两个自然数的差是多少?(答案不唯一)2、将2010拆成两个自然数之和,其中一个是13的倍数,另一个是19的倍数,那么两个自然数的差是多少?【例5】某运输队为商店运送1998套玻璃茶具,按合同规定,每套茶具的运费为1.6元。
初中数学竞赛题详细解析全套(完整版)
![初中数学竞赛题详细解析全套(完整版)](https://img.taocdn.com/s3/m/0f3ccfb5ddccda38376baff0.png)
都是锐角。已知 EG=k,FH= l ,四边形 EFGH 的面积为 s.
(1)求证: sin 2s ; kl
(2)试用 k, l, s 表示正方形 ABCD 的面积.
物超过 200 元但不超过 500 元的,按标价给予九折优惠;③如一次购物超过 500 元的,其中
500 元按第②条给予优惠,超过 500 元的部分则给予八折优惠。某人两次去购物,分别付款
-7-
初中数学竞赛题详解
168 元和 423 元;如果他只去一次购物同样的商品,则应付款是【
】
(A)522.8 元
】
b
(A) 9 5
(B) 5 9
(C) 2001 5
(D) 2001 9
3、已知在△ABC 中,∠ACB=900,∠ABC=150,BC=1,则 AC 的长为【
】
(A) 2 3
(B) 2 3
(C) 0 3
(D) 3 2
4、如图,在△ABC 中,D 是边 AC 上的一点,下面四种情况中,△ABD∽△ACB 不一定成立的
二、1、20;2、150;3、4;4、
详解 一、1.(C) ∵ 14 6 5 (3 5)2 ,
,∴ 原式
2. (A ). 由 已 知 条 件 知 x≠0, y≠0 . 把 已 知 等 式 变 形 并 利 用 等 比 消 去 y, 得
则 x=3y .
故
3. (C )
设 a = 1 , b = 3 ,得 x = 1 0 , y = 2 . 从 而 否 定 ( A ) 及 ( B ) . 设 a = 3 , b = 4 ,得 x = 17 ,
由一道习题引发的讨论——《欧拉不等式》的另解
![由一道习题引发的讨论——《欧拉不等式》的另解](https://img.taocdn.com/s3/m/da2f92ab284ac850ad0242f7.png)
是 激发 学生 强 烈 的求 知 欲 望 的 源 泉 .它 能 够 激 发 学 生 思 维 的 积 极 性 , 发 学 生 的求 知 欲 望 , 培 养 学 生 的 分 析 问题 、 决 诱 对 解 问题 的 能力 起 着 非 常 重 要 的 作 用 师: 同学 们 , 们 能 够 从 不 同 角 度 考 虑 问 题 , 然 问题 没 你 虽 有 得 到解 决 , 想 法 还 是 不 错 的 。 但 学 生 个 个 自信 地 微 笑 着 。 师: 你们 用 了几 种 常 规 的 数 学 思 想 方 法 解 决 此 问 题 时 , 都 遇 到 了 困难 , 明此 问题 比 较 困 难 , 么你 们 不 会 将 此 问题 简 说 那 单化吗 ? !难 道 你 们 没 有 想 到 当 初 是 如 何 发 现 问题 的吗 ? 听 我 这 么 一 讲 , 生 的探 索 愿 望 重 新 被 点 燃 , 个 跃 跃 欲 学 个 试 , 上 开 始 自主 尝 试 , 一 会 儿 , 有 学 生 想 到 问题 的 最 特 马 不 便 殊 的情 况 ( 角 形 是 等 边 三 角形 )命 题 成 立 , 起 来 回答 出这 三 , 站 种情况的答案。 生2当三角形是等边三角形时 , : 内心 、 心 、 心 、 心 四 外 重 垂 心合一 , 由重 心 定 理 即 得 R 2 , 题 成 立 。 = r命 师 : , 彩 !这 你 也 能 发 现 ? 你 真 是 太 聪 明 了 ! 哇 精 生2 脸 红 光 , 动万 分 。 满 激 师 : 么 当三 角 形 AA C 那 B 是等 腰 三 角 形 时 . 题 成 立 吗 ? 命 我 把 画有 图 ( ) 一 张 幻 灯 片 用 幻 灯 机 放 出来 。这 时 , 1第 学 生 个个 激情 昂扬 , 不 时 地议 论 、 辩 。 生 议 论 纷 纷 : 的 说 并 争 学 有 用 三 角形 相 似 证 明 : 的说 用 射 影 定 理 证 明 ; 的 说 用 j 角 函 有 有 数 知识 证 明等 。 生 踊跃 思 考 , 述 己见 、 不 相 让 ; 个 课 堂 学 各 互 整 气 氛达 到高 潮 。最 后 大 家 经 过 热烈 的讨 论 、 真 分 析 、 算 之 认 演 后 得 出 当 三 角 形 AA C 等腰 三 角 形 的 证 明 情 况 . 由学 生 代 B 是
一道克罗地亚国家数学竞赛题的另证与推广
![一道克罗地亚国家数学竞赛题的另证与推广](https://img.taocdn.com/s3/m/d8946317c281e53a5802ffd5.png)
试 题 另 证 易 得 + 。≥
± ! ± :
± :: ]
[ 1 ) + ( + y ] a 1 ) ( +p ? I 8 ) [ ( +卢 。 + ( +y ] )
21 0 0年 第 5期
中 学 数 学 教 学
6 3
★ ★ ★ ★ ★ ★ ★
一
堕 ± = ± ± ] !: !: !
则
x- 丁q y
.
故
一 缶 x- 4 3- y 可 + a
+ 王 号 + +) 2 一. ≥ 一 ( ≥ 2 定 理 正 实 数 、 、 、 y 其 中 满 足 x z 、 口 、 , y ≥ +
= - ,
{
≥ } + +专 一 ( 羔』 号 +
[1 ( + )a + ( ) 。 。? + , ] )
1
\ 兰 ± : ± )[ ±
( ( ) . 有 +。 , ‘ 磐黼+) 类 )+ 。一 口 f 似
1
一
l± 、 一 , y+ 2 z_ y 2 _z _ 兰± .
+ 2 r+ 艮
[1 ) ! ( y ’ ( +卢 。 + + )] d
! ! : 兰± ± ! :
!±
福 建 省 大 田 第一 中 学 田 富 德 ( 编 : 6 1 0 邮 3 60 )
20 0 9年 克 罗 地 亚 国家 数 学 竞 赛 有 一 题 如 下 :
≥
x ̄ _y : q a
蔫
一
题目
正 实 数
、 满 足 J 2一 1 证 明 : ’ .
号 ×
: : ±
1+ 2 + & r
1+ ‘
≥——— L
华罗庚学校数学竞赛试题与详解小学五、六年级第一分册
![华罗庚学校数学竞赛试题与详解小学五、六年级第一分册](https://img.taocdn.com/s3/m/82ea7dc3b14e852458fb574a.png)
华罗庚学校数学竞赛试题与详解小学五、六年级第一分册幼苗杯第1套第一届幼苗杯数学邀请赛试题一、填空题:(y.01.01)9308-576= 。
(y.01.02)83×71+83×29= 。
(y.01.03)0.125÷161= 。
(y.01.04)两个数相加,交换加数的位置,它们的和不变,这叫做 。
(y.01.05)2×(1-5%)= 。
(y.01.06)21312131⨯÷⨯= 。
(y.01.07)8740除以90的余数是 。
(y.01.08)一个长方体的3条边各为1,2,3寸,则它的表面积是 平方寸。
(y.01.09)分解质因数:364= 。
(y.01.10)1800000平方尺= 平方千米。
(y.01.11)有一个是900的三角形为 三角形。
(y.01.12)81与253两个数中 比较大。
(y.01.13)自然数1是合数还是质数?答: 。
(y.01.14)梯形的上底为51,下底为61,高为1155,则它的面积是 。
二、选择题:(y.01.15)计算:2+3×32=( )(A )83 (B )45 (C )29 (D )20(y.01.16)“增产二成”中的“二成”,写成百分数是( )(A )100120 (B )1002 (C )20% (D )0.2 (y.01.17)方程32x -21=1的解是( )(A )1 (B )412 (C )94 (D )43 (y.01.18)两个整数的和是( )(A )奇数 (B )偶数 (C )奇数、偶数都不是 (D )可能是奇数也可能是偶数三、计算题(y.01.19)(12×21×45×10.2)÷(15×4×0.7×5.1)(y.01.20)2511212101211211÷⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎪⎪⎪⎪⎭⎫ ⎝⎛+--。
一类初中数学竞赛题目另类思考(张义)
![一类初中数学竞赛题目另类思考(张义)](https://img.taocdn.com/s3/m/cf591918650e52ea55189825.png)
C BEDC BC一类竞赛题目的另类思考--------------张义作为一种竞技数学活动的数学竞赛,对于提高学生思维,有着多方面的重要意义和常规课堂教学难以取代的作用:拓宽解题思路,增强逻辑推理能力、解题能力和运用数学知识解决实际问题的能力;激发学生的求知欲望,提高学习兴趣,促进思维能力的发展,培养良好的思维品质、创新才能。
数学竞赛题目的设置必须源于学生,并且学生能通过自己的努力够得到,不能超纲又不能太偏僻,这样在学习和教学中教师和学生同时能够体验成功感,久而久之形成一种灵活创新的思维习惯,为以后的学习数学打下基础。
解题方法上也需要及时创新,对于相同的题目,解题习惯不同,思维方式不同可能产生不同的思路,解题的灵活度,思维的多维化,考虑的全面性,解答的严谨性是学生应该学到的尤其在数学竞赛班,而不是题目的广度,对于一类题目能够举一反三,发散理解,多放面下手最终能够做一顶百,在本为中对于一类问题进行了不同深度的解释,并且进行了大胆另类思考,最终达到了理想效果:例题1:△ABC是正三角形,点D和点E分别在BC,AC上,连接BE,AD交点为O点,并且BD=CE,则:①∠AOE的度数为________(图1)②当点D和点E在CB和AC的延长线上时,∠AOE的度数为_____(图2)图1 图2分析:易知△ABD和△BCE全等,故∠AOE=∠BAD+∠ABO=∠DBO+∠ABO=∠ABC=60°对于图2用类似的方法可以解决。
另解:由题目可得∠AOE的大小与BD,CE的长度无关,故BD,CE的长度可大可小,在这里我们用极限方法,设BD=CE=0,这时候D点和B点重合,E点和C点重合,此时∠AOE就变成了∠ABC=60°;当然也可以假设BD=CE=AB,这时候D点和C点重合,E点和A点重合,此时∠AOE就变成了∠ACB=60°;对于图2也可以用类似的方法解决。
例题2:在等边三角形ABC中,AB=6cm,点O是△ABC中的任意一点,那么点O到AB,AC,BC的距离OE+OD+OF=____________.第 1 页共2 页GCGBC分析:易知用面积的方法易证OE+OD+OF=33另解:由题目可知OE+OD+OF的大小和点O的位置无关,但是点O的位置必须在△ABC内或上面,在外面则OE+OD+OF>33,所以取特殊点的时要注意一定要在三角形内或上面,故取点O,使得点O和C重合(如右图所示),此时D,C.O,F重合,由三角形的面积公式和勾股定理得到OE+OD+OF=33。
2018年北京初二数学竞赛试题-含详细解析
![2018年北京初二数学竞赛试题-含详细解析](https://img.taocdn.com/s3/m/68ea86d9f7ec4afe04a1dfc1.png)
2018年初二数学练习一、选择题(满分25分,每小题只有一个正确答案,答对得5分,将答案写在下面相应的空格中)13=,则220181x x x ++的值是(A )2020. (B )12020. (C )2025. (D )12025. 2.在非等腰三角形中,一个内角等于另两个内角的差,且一个内角是另一个内角的2倍.已知该三角形的最小边长等于1cm ,则这个三角形的面积是(A )1 cm 2. (B cm 2. (C cm 2. (D )2 cm 2. 3.n 是偶数,若从1开始,前n 个正整数的和的尾数是数字8,则后继的n 个正整数的和的尾数是数字(A )6. (B )4. (C )2. (D )0.4.如图,P (x p , y p )为反比例函数2y x=在平面直角坐标系x-O-y 的第一象限图像上一点,过点P 作x 轴、y 轴的平行线分别交10y x=在第一象限的图像于点A 和B ,则△AOB 的面积等于(A )26. (B )24. (C )22. (D )20.5.将数字和为11的自然数按由小到大的顺序排成一个数串,第m 个数是2018,则m 是.(A )134. (B )143. (C )341. (D )413.二、填空题(满分35分,每小题7分,将答案写在下面相应的空格中)1.295的约数中大于1000000的共有______个.2.若x ,y 都是自然数,关于x ,y 的方程[2.018x ]+[5.13y ]=24的解(x , y )共有______个.(其中[x ]表示不大于x 的最大整数)3.D 为锐角△ABC 内一点,满足AD =DC ,∠ADC =2∠DBC , AB =12,BC =10,则△BDC 的面积等于______.4.已知x 1, x 2, …, x n 中每一个x i (i =1, 2, …, n )的数值只能取 −2, 0, 1中的一个,且满足x 1+x 2+…+x n =−17,x 12+x 22+…+x n 2=37, 则(x 13+x 23+…+x n 3)2的值为______.5.在1~n 这n 个正整数中,正约数个数最多的那些数叫做这前n 个正整数中的“旺数”,如在正整数1~20中,正约数个数最多的数是12, 18, 20,所以12, 18, 20都是正整数1~20中的“旺数”,在正整数1~100中的所有“旺数”的最小公倍数是______.三、(满分10分)正整数a , b , c , d 满足a 2−ab +b 2=c 2−cd +d 2,求证:a +b +c +d 是合数.四、(满分15分)三个斜边彼此不等的等腰直角三角形ADC ,DPE 和BEC ,如图所示,其中AD =CD ,DP =EP ,BE =CE ;∠ADC =∠DPE =∠BEC =90°,求证:P 是线段AB 的中点.ADCPB五、(满分15分)求证:在十进制表示中,数29的某个正整数幂的末三位数字是001.2018年北京市中学生数学竞赛初二年级试题及参考解答2018年5月13日8:30~10:30.一、选择题(满分25分,每小题只有一个正确答案,答对得5分,将答案写在下面相应的空格中)题号12345答案DBCBA13+=,则220181x x x ++的值是(A )2020.(B )12020.(C )2025.(D )12025.答:D .3+=两边平方,得129x x ++=,即17x x +=.所以220181120182025x x x x x ++=++=,即21=201812025x x x ++.2.在非等腰三角形中,一个内角等于另两个内角的差,且一个内角是另一个内角的2倍.已知该三角形的最小边长等于1cm ,则这个三角形的面积是(A )1cm 2.(B )2cm 2.(C )2cm 2.(D )2cm 2.答:B .理由:设三角形的内角为A ,B ,C ,且B =C −A ,则A +(C −A )+C =180°,得C =90°.若最大角C 是另一个内角的2倍,易知三角形为等腰直角三角形,与题设“非等腰三角形”的条件不符,因此只能是另一个内角是第三个内角的2倍.不妨设A =2B ,可得A =60°,B =30°.因此角B 的对边AC =1cm ,斜边AB =2cm ,另一直角边BC =.所以这个三角形的面积是1122⨯(cm 2).3.n 是偶数,若从1开始,前n 个正整数的和的尾数是数字8,则后继的n 个正整数的和的尾数是数字(A )6.(B )4.(C )2.(D )0.答:C .解:设n =2k ,记S 为前n 个正整数的和,D 为后继的n 个正整数(由2k +1到4k )的和,则S =k (2k +1)2(214)(61).2k k k D k k ++==+数S 和D 的最后数字只依赖于数k 的最后数字.如果k 是奇数,那么S 是奇数,不合题意,于是k 是偶数,它的尾数取自0,2,4,6或8,则S 的结尾对应为0,0,6,8或6.依题意,k 应当以6结尾,这样D 的尾数就是(661)6⨯+⨯的尾数,即为2.4.如图,P (x p ,y p )为反比例函数2y x=在平面直角坐标系x -O -y 的第一象限图像上一点,过点P 作x 轴、y 轴的平行线分别交10y x=在第一象限的图像于点A 和B ,则△AOB 的面积等于(A )26.(B )24.(C )22.(D )20.答:B .理由:过点A ,B 分别作坐标轴的平行线,出现矩形MKON ,如右图,有KM =ON =10p x ,KA =OL =y p ,NM =OK =10py ,NB =OT =x p .△AOB 的面积=长方形OKMN 的面积−△AOK 的面积−△NOB 的面积−△AMB 的面积=101011011011010()()222p p p p p p p p p p y x x y y x y x y x ⋅-⋅⋅-⋅⋅---=100110055(10102)222-----+=24.另解:如图,联结OP ,LB ,TA ,可知△AOB 的面积=△AOP 的面积+△POB 的面积+△APB 的面积=11011011010()()()()222p p p p p p p p p p x y y x x y y x y x -+-+--=111100(102)(102)(10102)2222-+-+--+=24.5.将数字和为11的自然数按由小到大的顺序排成一个数串,第m 个数是2018,则m 是(A )134.(B )143.(C )341.(D )413.答:A理由:在一位数中没有数字和为11的数.两位数中有29,38,47,56,65,74,83,92这8个数.在三位数xyz 中,当x =1时,y 可取1~9这9个数,对应的z 取9~1,共9个数;同法可得:当x =2时,y 可取0~9这10个数,对应的z 取9~0,共10个数;当x =3时,p有308,317,326,335,344,353,362,371,380这9个数;当x=4时,有407,416,425,434, 443,452,461,470这8个数;当x=5时,有506,515,524,533,542,551,560这7个数;当x=6时,有605,614,623,632,641,650这6个数;当x=7时,有704,713,722,731,740这5个数;当x=8时,有803,812,821,830这4个数;当x=9时,有902,911,920这3个数.因此,在三位数xyz中,数字和为11的数共有9+10+9+8+7+6+5+4+3=61个.在四位数1xyz中,数字和为11的数相当于求数字和为10的三位数xyz,当x=0时,y可取1~9这9个数,对应的z取9~1的数,共9个数;同法可得:当x=1,2,3,4, 5,6,7,8,9时,数字和为10的三位数xyz分别有10,9,8,7,6,5,4,3,2个;因此在四位数1xyz中,数字和为11的数共有9+10+9+8+7+6+5+4+3+2=63个.在2xyz中,数字和为11的数由小到大有2009,2018.因此2018是该数串中的第8+61+63+2=134个数.二、填空题(满分35分,每小题7分,将答案写在下面相应的空格中)1.295的约数中大于1000000的共有______个.答:76.解:因为295有96个正约数:20,21,22,…,294,295,又210=1024,从而220=210×210=1048576>1000000.又219=1048576÷2=524288<1000000,所以295的约数中大于1000000的共有96−20=76个.2.若x,y都是自然数,关于x,y的方程[2.018x]+[5.13y]=24的解(x,y)共有______个.(其中[x]表示不大于x的最大整数)答:3.解:因为x,y都是自然数,且5.13×5=25.65>24,所以y只能取4,3,2,1,0.当y=4时,[5.13×4]=[20.52]=20,所以[2.018x]=24−20=4,即x=2;当y=3时,[5.13×3]=[15.39]=15,所以[2.018x]=24−15=9,无合适的x值;当y=2时,[5.13×2]=[10.26]=10,所以[2.018x]=24−10=14,即x=7;当y=1时,[5.13×1]=[5.13]=5,所以[2.018x]=24−5=19,无合适的x值;当y=0时,[5.13×0]=[0]=0,所以[2.018x]=24−0=24,即x=12.方程[2.018x]+[5.13y]=24的所有解为(2,4),(7,2),(12,0),共3个.3.D为锐角△ABC内一点,满足AD=DC,∠ADC=2∠DBC,AB=12,BC=10,如图,则△BDC的面积等于______.答:解:设∠DBC =θ,则∠ADC =2θ.以D 为旋转中心,旋转△BDC 到△ADP 的位置,如图.则AD=DC ,DP =DB ,AP =CB =10,∠DP A =∠DBC =θ,∠PDA =∠BDC ,即∠PDC +∠CDA =∠BDP +∠PDC ,所以∠BDP =∠ADC =2θ.在等腰△BDP 中,作DK ⊥BP 于点K ,则∠BPD =12(180°−2θ)=90°−θ.所以,∠APB =∠APD +∠DPB =θ+(90°−θ)=90°.即△ABP 为直角三角形.在直角△ABP中,BP ===作DH ⊥AP 于点H ,则PHDK 为矩形,DH =KP =12BP.所以△BDC 的面积=△PDA 的面积=1102⨯4.已知x 1,x 2,…,x n 中每一个x i (i =1,2,…,n )的数值只能取−2,0,1中的一个,且满足x 1+x 2+…+x n =−17,x 12+x 22+…+x n 2=37,则(x 13+x 23+…+x n 3)2的值为______.答:5041.解:设x 1,x 2,…,x n 中有p 个x i 取1,q 个x i 取−2,其余的x i 取0,可得217437p q p q -=-⎧⎨+=⎩,解得1.9p q =⎧⎨=⎩所以x i (i =1,2,…,n )中有1个取1,有9个取−2,其余的x i 取0.因此(x 13+x 23+…+x n 3)2=(1×13+9×(−2)3)2=(−71)2=5041.5.在1~n 这n 个正整数中,正约数个数最多的那些数叫做这n 个正整数中的“旺数”,比如,正整数1~20中,正约数个数最多的数是12,18,20,所以12,18,20都是正整数1~20中的“旺数”,在正整数1~100中的所有“旺数”的最小公倍数是______.答:10080.解:首先,前100个正整数的质因数分解式中,最多含有三个不同的质因数.这是因为最小的四个质数之积为2×3×5×7=210,已超过100.其次为使约数个数尽可能多,应使所含的质因数尽可能小,于是可以通过试算、分类枚举来确定正约数个数最大为12的数:只含一个质因数的正因数最多的是26=64,它有7个正约数,正约数小于12.对于只含有两个不同质因数的情况,正约数个数为12的是:23×32(=72),25×3(=96).对于含有三个不同质因数的情况,正约数个数为12的是:22×3×5(=60),2×32×5(=90),22×3×7(=84).可见,在前100个正整数中,正约数为12个的“旺数”只有:60,72,84,90,96这5个.因此在前100个正整数中,所有“旺数”的最小公倍数是25×32×5×7=10080.BKP CA HD三、(满分10分)正整数a ,b ,c ,d 满足a 2−ab +b 2=c 2−cd +d 2,求证:a +b +c +d 是合数.证明:记s =a +b +c +d ,由已知条件,(a +b )2−(c +d )2=3(ab −cd ),所以(a +b −c −d )s =3(ab −cd )=3(ab −c (s −a −b −c ))=3(a +c )(b +c )−3cs ,因此s 整除3(a +c )(b +c ).易知s 的每个质因数p 都是3(a +c )(b +c )的因数,即p 是3,a +c ,b +c 的因数,所以s 的每一个质因数p 不超过3,a +c ,b +c 中的最大值,因为s 大于3,a +c ,b +c 中的最大值,则s =p ·m (整数m ≥2).即数s 是合数.四、(满分15分)三个斜边彼此不等的等腰直角三角形ADC ,DPE 和BEC ,如图所示,其中AD=CD ,DP=EP ,BE=CE ;∠ADC =∠DPE =∠BEC =90°,求证:P 是线段AB 的中点.证明:(1)延长DP 至F ,使得PF =PD ,连接FE 、FB ,易知△DEF 为等腰直角三角形,即DE=EF ,∠DEF =90°.所以,∠CED =90°−∠CEF =∠BEF .又DE=EF ,CE=BE ,所以△CED ≌△BEF .因此CD=BF ,∠CDE =∠BFE .(2)连接AP 、BP ,因为AD=CD ,所以在△ADP 与△BFP 中,AD=BF ,∠ADP=∠ADC +∠CDE −∠EDP=90°+∠CDE −45°=∠CDE +45°=∠BFE +∠PFE =∠BFP .又DP=FP ,所以△ADP ≌△BFP .因此AP=BP ,∠APD=∠BPF .(3)如果CD ∥PE ,则A 、D 、P 三点共线,B 、F 、P 三点共线,又D 、P 、F 三点共线,所以A 、P 、B 三点共线.由AD=BF ,DP=PF ,所以AP =AD+DP=BF +PF=BP .因此P 是线段AB 的中点.如果CD 与PE 不平行,由于A ,B 在直线DF 的两侧,而D 、P 、F 三点共线,∠APD=∠BPF ,故A ,P ,B 三点共线,即点P 在线段AB 上,因为已证AP=BP ,所以P 是线段AB 的中点.五、(满分15分)求证:在十进制表示中,数29的某个正整数幂的末三位数字是001.证明:因为末三位数只有000到999这1000中不同的排列情况.而291,292,…,291001是1001个29的不同的幂数,根据抽屉原理,其中存在两个29的不同的幂数,它们的末三位数字是相同的.设末三位数字相同的这两个幂数是29k 与29l ,1≤l <k ≤1001,因此29k −29l 被1000整除,即29l (29k −l −1)被1000整除.但(29l ,1000)=1,所以29k −l −1被1000整除,即29k l 的末三位数字是001.这就证明了存在29的某个正整数幂的末三位数字是001.A DCPEBF。
一道大学生数学竞赛题的另解
![一道大学生数学竞赛题的另解](https://img.taocdn.com/s3/m/ae7bfa5cf01dc281e53af0b5.png)
+ U
n一 1
解 记
一 一
丢 客 [ +
[ n c + ≤ 壶,
,
由于 一 x l n ( 2 k ) < 0 , , < 1 , 且
一
1 + ( 1 一 1 ) + ( 1 一 1 ) + …一
所 以
一
+ ( 一
E ma i l : x x y u a n @c u g . e d u . c a
。 。
,
徊 L
( ) ] ,
6 4
高 等 数 学 研 究
2 0 1 3年 7月
则
o<
)<
1
,
+ . f - 毒d — z
从 而有
于是式 ( 5 ) 变 为
第 1 6卷 第 4期
2 O l 3年 7月
高 等 数 学 研 究
S TUDI ES I N COLL EGE M ATHEM ATI CS
Vo 1 . 1 6 , No . 4 J u 1 . ,2 0 1 3
L
—
l
一
+
[
1
一
一
道 大 学 生数 学 竞赛 题 的 另解 Байду номын сангаас
一 一
x 2  ̄ [ 1 n ( + 2
n( 1 + 1 +∑ I
=
” 一
) e —h ∞ 一 …
1
z 厂 ,
1 + 1 ) 1 e _ x l n ( 2 k ) + ¥ h , x 1 . l m
( 3 )
妇
求极 限
—
.
若 记
一
2021年“大梦杯”福建省初中数学竞赛试题参考答案
![2021年“大梦杯”福建省初中数学竞赛试题参考答案](https://img.taocdn.com/s3/m/70769de55a8102d276a22fe3.png)
2021年“大梦杯”福建省初中数学竞赛试题参考答案考试时间2021年3月14日9∶00-11∶00满分150分一、选择题(共5小题,每小题7分,共35分)。
每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若当13x -≤≤时,二次函数223y x x m =-+的最大值为6,则m =()A .3B .1C .3-D .1-【答案】C【解答】∵13x -≤≤时,2239232()48y x x m x m =-+=--+的有最大值为6。
∴3x =时,6y =。
∴1896m -+=。
∴3m =-。
2.已知a ,b ,c 为正数,且满足3815a b ab b c bc c a ca ++=⎧⎪++=⎨⎪++=⎩,则32a b c ++=()A .9B .11C .13D .15【答案】B【解答】由3815a b ab b c bc c a ca ++=⎧⎪++=⎨⎪++=⎩,得(1)(1)4(1)(1)9(1)(1)16a b b c c a ++=⎧⎪++=⎨⎪++=⎩。
∴222(1)(1)(1)4916a b c +++=⨯⨯。
∵a ,b ,c 为正数,∴(1)(1)(1)24a b c +++=。
于是,16c +=,813a +=,312b +=。
∴53a =,12b =,5c =,3251511a b c ++=++=。
3.已知0x >,且13x x +=,则551x x+=()A .121B .122C .123D .124注:参考资料“杨辉三角”是我国古代数学的研究成果之一,显示了我国古代劳动人民的卓越智慧和才能。
如下所示,由“杨辉三角”可以得到()n a b +展开式中各项的系数。
【答案】C 【解答】由“杨辉三角”,知3322333111111(33()()3()x x x x x x x x x x x x+=+⋅+⋅+=+++。
一道数列竞赛题的另解
![一道数列竞赛题的另解](https://img.taocdn.com/s3/m/f1be4434a31614791711cc7931b765ce05087af7.png)
一道数列竞赛题的另解
陈春
【期刊名称】《中学数学》
【年(卷),期】2012(000)009
【摘要】题目已知数列{an}满足:al=2t-3(t∈R,且t≠±1),an+1=an+
2tn-1/(2tn+1-3)an+2(t-1)tn-1(n∈N*)(1)求数列{an}的通项公式;(2)若t〉O,试比较an+1与an的大小.这是2011年全国高中数学联合竞赛试卷(A卷)第10题,该题综合性较强,思维量较大,能力层次要求高,区分度较好.通过研究,笔者发现这道题还有别于参考答案的新思路、新解法,呈现出来和大家一起分享.
【总页数】1页(P79)
【作者】陈春
【作者单位】湖北省汉川一中
【正文语种】中文
【相关文献】
1.运用广义对称另解竞赛题——一道竞赛题的解法新探 [J], 汪宗兴
2.一类特殊和式数列的极限——从一道数学竞赛题说起 [J], 李德新;刘孟月;林鸿钊
3.一道数列极限竞赛题的若干解法与延伸 [J], 王成强
4.一道数列极限竞赛题的若干解法与延伸 [J], 王成强
5.一道数列极限竞赛题的若干解法 [J], 王成强
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中 等 数 学
一
道数 学 竞 赛 题 的 另解
查6 4 1 6 ( 2 0 1 3 ) O l一 0 0 1 6一O l
( 江苏省 天一 中学 , 2 1 4 1 0 1 ) ( 江苏省 天一 中学高 ̄ -( 3 ) 班, 2 1 4 1 0 1 )
中图分类号 :01 5 6 . 1 文献标识码 : A
笔者在文 [ 1 ] 中看 到 一 个 赛题 的解 答 , 感 觉 其技巧性 太 强 , 不 容易想 到. 学生 阮宇平 给 了笔者一 个 新 的 思路 , 经 过 思 考 给 出 如 下
解 答.
则 { { ; { . ,
u =
9 P3" l 2
,
显然 也是 .
则
故 只需证 对任 意 的质数 P, ( + p t ) ( y 2 + p t ) ( + p t ) - 1 1 , ( n∈ Z) 有 正整数 解.
{ u = 3 P 3 2 - 3 , [ u = 9 p 2 - P .
题 目 证明 : 对于每个质数 P , 存在无穷
多个 四元数 组 ( , y , z , t ) ( 、 y t 为互 不 相
等的正整数 ) , 使得
( + p t ) ( Y + p t ) ( + p t ) 为完 全平 方数 . ¨
则
( 第 8届丝绸之路数学竞赛 ( 2 0 0 9 ) ) 证明 若 x 。 , Y 。 , 。 , t 0 ) 是满足条件 的一 个 四元数组 , 则( | l } 。 , k 2 y o , k 2 z o , k 2 t 。 ) ( k∈ N+ )
[
=
】 )
提出, 故上式 成
为偶数 , m的最大值为 l 0 .
【 注】 上述证明中未考虑 J s 不存在的情 形. 若I s 不存在, 只需说明 1 。 0 2 。 4 为偶数 , 利
用/ 7 , ! 分解式 容易说 明其 为偶数 , 结论仍 然
成 立.
参考文献 :
[ 1 ] 第 九届 中国东 南地 区数学 奥林 匹克 [ J ] . 中等数学 ,
2 0 1 2 ( 1 1 ) .
] + [
I 1 0 2 4 , 将 整数
立, 即S 。 =S - ( m o d 2 ) .
同理 , S 2 ;S 3 ( o r o d 2 ) , 县 Ⅱ S 1 一S 2 一 S 3 + S 4
接下来证明: 对任意的质数 P , U 2 + p t =
至少有 三组不 同的正整 数解.
( 1 ) P= 2 .
一 ( \ 2, ’ 2, ’ 2却 ’ 一 ) J
=
取t = 6, 得( 一M ) ( +“ ) = 7 2 .
收稿 日期 : 2 0 1 2—0 9—1 2