河北黄骅市中学等比数列经典例题 百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题
1.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2
B .4
C .8
D .16
2.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}
2
n a 的前n 项和为n T ,若2
(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )
A .()3,+∞
B .()1,3-
C .93,5⎛⎫ ⎪⎝⎭
D .91,5⎛
⎫- ⎪⎝

3.已知数列{}n a 满足112a =
,*
11()2
n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列
{}n b 是单调递增数列,则实数λ的取值范围是( )
A .(,1)-∞
B .3
(1,)2
-
C .3(,)2
-∞
D .(1,2)-
4.已知数列{}n a 的前n 项和为n S 且满足111
30(2),3
n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ⎧⎫⎨
⎬⎩⎭
是等差数列 B .1
3n S n = C .1
3(1)
n a n n =-
-
D .{}
3n S 是等比数列
5.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0
D .若S 2020>0,则a 2+a 4>0
6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里 B .86里 C .90里 D .96里 7.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )
A .2±
B .2
C .3±
D .3
8.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个
单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1
122f - B .第三个单音的频率为1
42f - C .第五个单音的频率为162f
D .第八个单音的频率为1
122f
9.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8
B .8±
C .8-
D .1
10.已知等比数列{}n a 的前n 项和为n S ,若2
13a a =,且数列{}13n S a -也为等比数列,
则n a 的表达式为( )
A .12n
n a ⎛⎫= ⎪⎝⎭
B .1
12n n a +⎛⎫= ⎪⎝⎭
C .23n
n a ⎛⎫= ⎪⎝⎭
D .1
23n n a +⎛⎫= ⎪⎝⎭
11.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50
B .60
C .70
D .80
12.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-
B .2-或1
C .1
D .2
13.已知等比数列{}n a 的前5项积为32,112a <<,则35
124
a a a ++的取值范围为( ) A .73,
2⎡⎫
⎪⎢⎣⎭
B .()3,+∞
C .73,
2⎛⎫ ⎪⎝⎭
D .[
)3,+∞
14.已知1a ,2a ,3a ,4a 成等比数列,且()2
1234123a a a a a a a +++=++,若11a >,则( )
A .13a a <,24a a <
B .13a a >,24a a <
C .13a a <,24a a >
D .13a a >,24a a >
15.公差不为0的等差数列{}n a 中,2
3711220a a a -+=,数列{}n b 是等比数列,且
77b a =,则68b b =( )
A .2
B .4
C .8
D .16
16.已知数列{}n a ,{}n b 满足12a =,10.2b =,1112
33
n n n a b a ++=+
,113
44
n n n b a b +=
+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5
B .7
C .9
D .11
17.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-
B .1
C .2或2-
D .2
18.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1
B .2
C .4
D .8
19.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥
B .若13a a =,则12a a =
C .222
1322a a a +≥
D .若31a a >,则42a a >
20.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-
B .3-
C .3
D .8
二、多选题21.题目文件丢失! 22.题目文件丢失!
23.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34
-
B .23
-
C .43
-
D .32
-
24.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2
{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-1
25.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )
A .1
12n n n S S ++-= B .12n n a
C .21n
n S =-
D .1
21n n S -=-
26.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =
D .()222lg lg lg 3n n n a a a n -+=+≥
27.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .12
33
BE BA BC =
+ C .数列{a n }为等比数列
D .14n
n n a a +-=
28.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a ⋅>,
871
01
a a -<-,则下列结论正确的是( ) A .01q << B .791a a ⋅> C .n S 的最大值为9S
D .n T 的最大值为7T
29.数列{}n a 的前n 项和为n S ,若11a =,()
*
12n n a S n N +=∈,则有( ) A .1
3n n S -= B .{}n S 为等比数列 C .1
23n n a -=⋅
D .2
1,
1,23,2n n n a n -=⎧=⎨
⋅≥⎩
30.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )
A .1
12n n n S S ++-=
B .12n n
a
C .21n
n S =- D .1
21n n S -=-
31.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得
64m n a a =,则( )
A .数列{}n a 为等差数列
B .数列{}n a 为等比数列
C .22
212413
n
n a a a -++
+=
D .m n +为定值
32.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1n
a n n
b a q q =≠,则{}n b 的前n 项和可以是( )
A .n
B .nq
C .
()
12
1n n n q nq nq q q ++---
D .
()
211
2
1n n n q nq nq q q ++++---
33.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a >,
871
01
a a -<-.则下列结论正确的是( ) A .01q <<
B .791a a <
C .n T 的最大值为7T
D .n S 的最大值为7S
34.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8
B .9
C .10
D .11
35.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )
A .m =3
B .7
67173a =⨯
C .()1
313
j ij a i -=-⨯
D .()()1
31314
n S n n =
+-
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.C 【分析】
根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】
设正数的等比数列{}n a 的公比为()0q q >,
因为53134a a a =+,所以4211134a q a q a =+,则42
340q q --=,
解得24q =或2
1q =-(舍),所以2q

又等比数列{}n a 的前4项和为30,
所以23
111130a a q a q a q +++=,解得12a =, ∴2
318a a q ==.
故选:C . 2.D 【分析】
由2n n S a =-利用11,1,2
n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,1
2为公比的等比
数列,进而得到{}
2
n a 是以1为首项,
1
4
为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0n
n n S T λ-->恒成立,转化为(
)
()
321(1)
2
10n
n
n
λ---+>对
*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.
【详解】
当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-, 两式相减得
11
2
n n a a -=, 所以数列{}n a 是以1为首项,
1
2
为公比的等比数列. 因为11
2
n n a a -=, 所以22114
n n a a -=.
又2
11a =,所以{}
2
n a 是以1为首项,
1
4
为公比的等比数列, 所以1112211212n
n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414
n
n
n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=
=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得2
14141(1)10234n n
n
λ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,
所以2
21131(1)1022n n
n
λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,
所以211131(1)110222n n n n λ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
. 又*n N ∈,所以1102n
⎛⎫-> ⎪⎝⎭

所以1131(1)1022n n n
λ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣
⎦,
即(
)
()
321(1)
2
10n
n
n
λ---+>对*n N ∈恒成立,
当n 为偶数时,()()321210n
n
λ--+>,
所以()()3213216
632121
21
n
n
n n n λ-+-<==-
+++,
令6
321
n n b =-
+,则数列{}n b 是递增数列, 所以2269
3215
λb <=-
=+; 当n 为奇数时,(
)()
321210n
n
λ-++>,
所以()()3213216
632121
21
n
n
n n n λ-+--<==-
+++,
所以16
332121
λb -<=-=-=+, 所以1λ>-.
综上,实数λ的取值范围是91,5⎛
⎫- ⎪⎝
⎭.
故选:D. 【点睛】
方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 3.C 【分析】 由*11()2n n a a n N +=
∈可知数列{}n a 是公比为2的等比数列,1
2
n n a =,得2(2)2n n n
n b n a λ
λ-=
=-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.
【详解】 由*11
()2
n n a a n N +=
∈可知数列{}n a 是公比为2的等比数列, 所以1111()222
n n n a -=
=, 2(2)2n n n
n b n a λ
λ-=
=- ∵数列{n b 是单调递增数列, ∴1n n b b +>对于任意的*n N ∈*恒成立, 即1
(12)2
(2)2n n n n λλ++->-,整理得:2
2
n λ+<
3
2λ∴< ,
故选:C.
【点睛】
本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 4.C 【分析】
由1
(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】
2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以
1
113n n S S --=, 所以1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,A 正确;
1113S a ==,113S =,公差3d =,所以133(1)3n
n n S =+-=,所以13n S n
=,B 正确; 11
3
a =不适合13(1)n a n n =--,C 错误;
1313n n S +=
,数列113n +⎧⎫
⎨⎬⎩⎭
是等比数列,D 正确. 故选:C . 【点睛】
易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,
在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错. 5.A 【分析】
根据等比数列的求和公式及通项公式,可分析出答案. 【详解】
等比数列{}n a 的前n 项和为n S ,当1q ≠时,
202112021(1)01a q S q
-=>-,
因为2021
1q
-与1q -同号,
所以10a >,
所以2
131(1)0a a a q +=+>,
当1q =时,
2021120210S a =>,
所以10a >,
所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】
易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 6.D 【分析】
由题意得每天行走的路程成等比数列{}n a 、且公比为1
2
,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】
由题意可知此人每天走的步数构成
1
2
为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]
2378
1
12a -=-, 解得1192a =,∴此人第二天走1
192962

=里, ∴第二天走了96里,
故选:D . 7.D 【分析】
根据等比数列定义知3
813q =,解得答案.
【详解】
4个数成等比数列,则3
813q =,故3q =.
故选:D. 8.B 【分析】
根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】
解:根据题意得该单音构成公比为 因为第六个单音的频率为f ,
1
4
1
4
2
2
f
f
-
==.
6
6
1
1
2
2
f
f
-
==.
所以第五个单音的频率为112
2f
=.
所以第八个单音的频率为
1
2
6
2
f f
=
故选:B.
9.A
【分析】
分析出70
a>,再结合等比中项的性质可求得
7
a的值.
【详解】
设等比数列{}n a的公比为q,则2
75
a a q
=>,
由等比中项的性质可得2
759
64
a a a
==,因此,
7
8
a=.
故选:A.
10.D
【分析】
设等比数列{}n a的公比为q,当1
q=时,
1111
33(3)
n
S a na a n a
-=-=-,该式可以为0,不是等比数列,当1
q≠时,11
11
33
11
n
n
a a
S a q a
q q
-=-⋅+-
--
,若是等比数列,则
1
1
30
1
a
a
q
-=
-
,可得
2
3
q=,利用2
13
a a
=,可以求得
1
a的值,进而可得
n
a的表达式【详解】
设等比数列{}n a的公比为q
当1
q=时,
1
n
S na
=,所以
1111
33(3)
n
S a na a n a
-=-=-,
当3
n=时,上式为0,所以{}13
n
S a
-不是等比数列.
当1
q≠时,
()
111
1
111
n
n
n
a q a a
q
S
q q q
-
==-⋅+
---

所以11
11
33
11
n
n
a a
S a q a
q q
-=-⋅+-
--

要使数列{}13
n
S a
-为等比数列,则需1
1
30
1
a
a
q
-=
-
,解得
2
3
q=.
2
13
a a
=,
2
1
2
3
a
⎛⎫
∴= ⎪
⎝⎭

故2
1
1
1
1222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭
⎝⎭
⎝⎭
.
故选:D. 【点睛】
关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301a
a q
-=-,即可求得q 的值,通项即可求出. 11.B 【分析】
由等比数列前n 项和的性质即可求得12S . 【详解】 解:
数列{}n a 是等比数列,
3S ∴,63S S -,96S S -,129S S -也成等比数列,
即4,8,96S S -,129S S -也成等比数列, 易知公比2q

9616S S ∴-=,12932S S -=,
121299663332168460S S S S S S S S =-+-+-+=+++=.
故选:B. 12.A 【分析】
由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,
所以()2
13
1416
a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A . 13.C 【分析】
由等比数列性质求得3a ,把35
124
a a a ++表示为1a 的函数,由函数单调性得取值范围. 【详解】
因为等比数列{}n a 的前5项积为32,所以53
32a =,解得32a =,则23511
4a a a a =
=,35
124
a a a +
+ 1111a a =++
,易知函数()1
f x x x
=+在()1,2上单调递增,所以35173,242a a a ⎛⎫+
+∈ ⎪⎝⎭, 故选:C . 【点睛】
关键点点睛:本题考查等比数列的性质,解题关键是选定一个参数作为变量,把待求值的表示为变量的函数,然后由函数的性质求解.本题蝇利用等比数列性质求得32a =,选1a 为参数. 14.B 【分析】
由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】
设等比数列的公比为q , 则(
)()()23
2
123411
1+++1+1+0a a a a a q q q
a q q +++==≥,可得1q ≥-,
当1q =-时,12340a a a a +++=,()2
1230a a a ++≠,1q ∴>-,
()2
1234123a a a a a a a +++=++,即()2
23211+++1++q q q a q q =,
()
23
12
21+++11++q q q a q q ∴=
>,整理得432++2+0q q q q <,显然0q <,
()1,0q ∴∈-,()20,1q ∈,
()213110a a a q ∴-=->,即13a a >,
()()32241110a a a q q a q q ∴-=-=-<,即24a a <.
故选:B. 【点睛】
关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 15.D 【分析】
根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2
687b b b ==16.
【详解】
等差数列{}n a 中,31172a a a +=,故原式等价于2
7a -740a =解得70a =或74,a =
各项不为0的等差数列{}n a ,故得到774a b ==,
数列{}n b 是等比数列,故2
687b b b ==16.
故选:D. 16.C 【分析】
令n n n c a b =-,由1112
3
3n n n a b a ++=+
,11344
n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即1
1.812n n c -⎛⎫ ⎪
⎝⎭
=⨯,则1
10.0121.8n -⎛⎫< ⎪
⎝⎭
⨯,解不等式可得n 的最小
值. 【详解】
令n n n c a b =-,则11120.2 1.8c a b =-=-=
1111131313
4444412123334
3n n n n n n n n n n n
n c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222
n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以1
1.812n n c -⎛⎫ ⎪
⎝⎭
=⨯
由0.01n n a b -<,即1
10.0121.8n -⎛⎫< ⎪
⎝⎭
⨯,整理得12180n ->
由72128=,82256=,所以18n -=,即9n =
故选:C. 【点睛】
本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 17.C 【分析】
根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】
设等比数列{}n a 的公比为q ,
因为12a =,且53a a =,所以2
1q =,解得1q =±, 所以9
1012a a q ==±.
故选:C. 18.C 【分析】
根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】
因为数列{}n a 是等比数列,由17138a a a =,得3
78a =,
所以72a =,因此2
31174a a a ==.
故选:C. 19.C 【分析】
取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】
解:设等比数列的公比为q ,
对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;
对于B 选项,若13a a =,则2
11a a q =,则1q =±,所以12a a =或12a a =-,故错误;
对于C 选项,由均值不等式可得222
1313222a a a a a +≥⋅=,故正确;
对于D 选项,若31a a >,则()2110a q ->,所以()
1422
1a a a q q -=-,其正负由q 的符
号确定,故D 不确定. 故选:C. 20.A 【分析】
根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】
设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2
326a a a =,
即2
(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)
661(2)2422
S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A
二、多选题 21.无 22.无
23.BD 【分析】
先分析得到数列{}n a 有连续四项在集合{54-,24-,18,36,81}中,再求等比数列的公比.
4n n b a =+ 4n n a b ∴=-
数列{}n b 有连续四项在集合{-50,-20,22,40,85}中
∴数列{}n a 有连续四项在集合{54-,24-,18,36,81}中

数列{}n a 是公比为q 的等比数列,
∴在集合{54-,24-,18,36,81}中,数列{}n a 的连续四项只能是:24-,36,
54-,81或81,54-,36,24-.
∴363242
q =
=--或2432
36q -==-. 故选:BD 24.AC 【分析】
根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】
设等比数列{}n a 公比为,(0)q q ≠
则2221
12
()n n n n
a a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;
若123,a a a <<则12
11101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩
,即数列{}n a 是递增数列,C 正确;
若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211
323(1),3
a a q r r a a =
==∴=+=-,即D 错误 故选:AC 【点睛】
等比数列的判定方法
(1)定义法:若1
(n n
a q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且2
12n n a a a a ++=,则数列{}n a 是等比数列;
(3)通项公式法:若数列通项公式可写成(,n
n a cq c q =均是不为0的常数),则{}n a 是等比
数列;
(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,n
n S kq k q q k =-≠≠为非零常数),则
{}n a 是等比数列.
25.BC
根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】
数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>
23464a a a =,2364a ∴=,解得34a =,
2410a a +=,4
410q q
∴+=即22520q q -+=,解得2q

12
, 又数列{a n }为单调递增的等比数列,取2q
,3124
14
a a q =
==, 1
2
n n
a ,212121
n n n S -==--,()1121212n n n
n n S S ++-=---=.
故选:BC 【点睛】
本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 26.ACD 【分析】
根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】
因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;
因为131(31)132n
n n S -==--,所以131+2+2(3+3)132
n
n n S -==-, 因为+1+11
1(3+3)+22
2=1+1+21+3(3+3)2
n n
n n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确; 因为5
51(31)=1212
S =
-,所以选项C 正确; 11130n n n a a q --=⋅=>,
因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++⋅=,所以选项D 正确. 故选:ACD 【点睛】
本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力.
【分析】
证明
12
33 BE BA
BC
=+,所以选项B 正确;设BD tBE
=(0
t>),易得
()
11
4
n n n n
a a a a
+-
-=-,显然
1
n n
a a
-
-不是同一常数,所以选项A 错误;数列{
1
n n
a a
-
-}
是以4为首项,4为公比的等比数列,所以
1
4n
n n
a a
+
-=,所以选项D正确,易得3
21
a=,选项C不正确.
【详解】
因为2
AE EC
=,所以
2
3
AE AC
=,
所以
2
()
3
AB BE AB BC
+=+,
所以
12
33
BE BA BC
=+,所以选项B正确;
设BD tBE
=(0
t>),
则当n≥2时,由()()
11
23
n n n n
BD tBE a a BA a a BC
-+
==-+-,所以
()()
11
11
23
n n n n
BE a a BA a a BC
t t
-+
=-+-,
所以()1
11
2
3
n n
a a
t-
-=,()
1
12
3
3
n n
a a
t+
-=,
所以()
11
322
n n n n
a a a a
+-
-=-,
易得()
11
4
n n n n
a a a a
+-
-=-,
显然1
n n
a a
-
-不是同一常数,所以选项A错误;
因为2a-1a=4,1
1
4
n n
n n
a a
a a
+
-
-
=
-,
所以数列{1
n n
a a
-
-}是以4为首项,4为公比的等比数列,
所以
1
4n
n n
a a
+
-=,所以选项D正确,
易得321
a=,显然选项C不正确.
【点睛】
本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 28.AD 【分析】
根据题意71a >,81a <,再利用等比数列的定义以及性质逐一判断即可. 【详解】
因为11a >,781a a ⋅>,
871
01
a a -<-, 所以71a >,81a <,所以01q <<,故A 正确.
27981a a a =<⋅,故B 错误;
因为11a >,01q <<,所以数列{}n a 为递减数列,所以n S 无最大值,故C 错误; 又71a >,81a <,所以n T 的最大值为7T ,故D 正确. 故选:AD 【点睛】
本题考查了等比数列的性质、定义,考查了基本知识的掌握情况,属于基础题. 29.ABD 【分析】
根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】
由题意,数列{}n a 的前n 项和满足(
)*
12n n a S n N +=∈,
当2n ≥时,12n n a S -=,
两式相减,可得112()2n n n n n a a S S a +-=-=-,
可得13n n a a +=,即1
3,(2)n n
a a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以
2
1
2a a =, 所以数列的通项公式为2
1,
123
2
n n n a n -=⎧=⎨⋅≥⎩;
当2n ≥时,1
1123322
n n n n a S --+⋅===,
又由1n =时,111S a ==,适合上式,
所以数列的{}n a 的前n 项和为1
3n n S -=;
又由11333
n
n n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】
本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 30.BC 【分析】
先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】
由23464a a a =得33
34a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由
2410a a +=,得4
410q q
+=,即22520q q -+=,解得2q
或1
2q =
.又因为数列{}n a 单调递增,所以2q
,所以112810a a +=,解得11a =.所以12n n
a ,
()
1122112
n n n S ⨯-=
=--,所以()1121212n n n
n n S S ++-=---=.
故选:BC 【点睛】
本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.
31.BD 【分析】
由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数
列前n 项和公式,求出 1
22
212443
n n a a a +-++
+=,故选项C 错误,由等比数列的通项公式
得到62642m n +==,所以选项D 正确. 【详解】
由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,
所以()111222222n n n n n n n a S S a a a a ----=-=---=,
所以1
2n
n a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,
故选项A 错误,选项B 正确; 数列{}2
n
a 是以首项214a
=,公比14q =的等比数列,
所以()
()21112221
2
1
141444114
3
n n n n
a q a a a q +-⨯--++
+=
=
=
--,故选项C 错误;
6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.
故选:BD 【点睛】
本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 32.BD 【分析】
设等差数列{}n a 的公差为d ,根据2a ,4a ,8a 是一个等比数列中的相邻三项求得0d =或1,再分情况求解{}n b 的前n 项和n S 即可. 【详解】
设等差数列{}n a 的公差为d ,又11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项
∴2428a a a =,即()()()2
11137a d a d a d +=++,化简得:(1)0d d -=,所以0d =或1,
故1n a =或n a n =,所以n b q =或n
n b n q =⋅,设{}n b 的前n 项和为n S ,
①当n b q =时,n S nq =;
②当n
n b n q =⋅时,
23123n n S q q q n q =⨯+⨯+⨯+⋯⋯+⨯(1),
2341123n n qS q q q n q +=⨯+⨯+⨯+⋯⋯+⨯(2),
(1)-(2)得:()()2
3
1
1111n n
n n n q q q S q q q q n q
n q q
++--=+++-⨯=
-⨯-+⋅⋅,
所以1211
22
(1)(1)1(1)n n n n n n q q n q q nq nq q S q q q ++++-⨯+--=-=---,
故选:BD 【点睛】
本题主要考查了等差等比数列的综合运用与数列求和的问题,需要根据题意求得等差数列的公差与首项的关系,再分情况进行求和.属于中等题型. 33.ABC 【分析】
由11a >,781a a >,
871
01
a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】
11a >,781a a >,
871
01
a a -<-, 71a ∴>,801a <<,
∴A.01q <<,故正确;
B.2798
1a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.
D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确.
故选:ABC .
【点睛】
本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.
34.AB
【分析】
由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案.
【详解】
由题意,a n =1+2(n ﹣1)=2n ﹣1,12n n b -=,
n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,
其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1)
=(21+22+…+2n )﹣n ()21212n
n -=-=-2n +1﹣2﹣n .
当n =9时,T n =1013<2019;
当n =10时,T n =2036>2019.
∴n 的取值可以是8,9.
故选:AB
【点睛】
本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
35.ACD
【分析】
根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假.
【详解】
∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-
(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,
∴a 67=17×36,
∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn ) 11121131313131313
n n n n a a a ---=+++---()()()
12=
(3n ﹣1)•2312n n +-() 14
=n (3n +1)(3n ﹣1) 故选:ACD.
【点睛】
本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.。

相关文档
最新文档