菏泽市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菏泽市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在平行四边形ABCD 中,AC 为一条对角线,
=(2,4),
=(1,3),则
等于( )
A .(2,4)
B .(3,5)
C .(﹣3,﹣5)
D .(﹣2,﹣4)
2. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )
A .﹣1<a <2
B .﹣3<a <6
C .a <﹣3或a >6
D .a <﹣1或a >2
3. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )
A .3
B .
C .±
D .以上皆非
4. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0
C .a >0,△≥0
D .a >0,△>0
5. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )
A .
B .
C .4
D .
6. 数列1,3,6,10,…的一个通项公式是( )
A .21n a n n =-+
B .(1)2n n n a -=
C .(1)
2
n n n a += D .21n a n =+ 7. 在下面程序框图中,输入44N =,则输出的S 的值是( )
A .251
B .253
C .255
D .260
【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.
8.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()
A.1 B.3 C.5 D.9
9.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则,类比这个结论可
知:四面体S﹣ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S﹣ABC的体积为V,则r=()
A.B.
C.D.
10.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()
A.92% B.24% C.56% D.5.6%
11.阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是()
A.i>4?B.i>5?C.i>6?D.i>7?
12.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为()
A.20+2πB.20+3πC.24+3πD.24+3π
二、填空题
13.如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成.
14
.平面向量
,满足
|2
﹣|=1,
|﹣
2|=1
,则的取值范围 .
15.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .
1310 B .3 C .4 D .2110
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.
16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()
210{ 21(0)
x
x
x e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.
17.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()2
2
a c
b d -+-的最小值为 ▲ . 18.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1
212
||z z z +在复平面内对应的点在
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.
三、解答题
19.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,
228b S =(*n N ∈).
(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧
⎫
⎨⎬⎩⎭
的前项和n T .
20.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:
(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S
21.求下列函数的定义域,并用区间表示其结果.
(1)y=+;
(2)y=.
22.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,
求出的长,若不存在,请说明理由.
23.设F是抛物线G:x2=4y的焦点.
(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;
(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.
24.已知函数f(x0=.
(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;
(2)解不等式f(x﹣1)≤﹣.
菏泽市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:∵,
∴=
=(﹣3,﹣5).
故选:C .
【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.
2. 【答案】C
【解析】解:由于f (x )=x 3+ax 2
+(a+6)x ﹣1,
有f ′(x )=3x 2
+2ax+(a+6).
若f (x )有极大值和极小值,
则△=4a 2
﹣12(a+6)>0,
从而有a >6或a <﹣3, 故选:C .
【点评】本题主要考查函数在某点取得极值的条件.属基础题.
3. 【答案】C
【解析】解:∵a 3,a 9是方程3x 2
﹣11x+9=0的两个根, ∴a 3a 9=3,
又数列{a n }是等比数列,
则a
62
=a 3a 9=3,即a 6=±
.
故选C
4. 【答案】A
【解析】解:∵不等式ax 2
+bx+c <0(a ≠0)的解集为R ,
∴a <0,
且△=b 2
﹣4ac <0,
综上,不等式ax 2
+bx+c <0(a ≠0)的解集为的条件是:a <0且△<0.
故选A .
5. 【答案】A
【解析】解:由题意双曲线kx 2﹣y 2
=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,
又由于双曲线的渐近线方程为y=±x
故
=,∴k=,
∴可得a=2,b=1,c=,由此得双曲线的离心率为,
故选:A .
【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k ,熟练掌握双曲线的性质是求解本题的知识保证.
6. 【答案】C 【解析】
试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)
2
n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 7. 【答案】B
8. 【答案】C
【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A}, ∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},
∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个. 故选C .
9. 【答案】 C
【解析】解:设四面体的内切球的球心为O , 则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为
∴R=
故选C.
【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
10.【答案】C
【解析】解:这次测验的优秀率(不小于80分)为
0.032×10+0.024×10=0.56
故这次测验的优秀率(不小于80分)为56%
故选C
【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.
11.【答案】C
【解析】解:模拟执行程序框图,可得
S=0,i=1
S=2,i=2
不满足条件,S=2+4=6,i=3
不满足条件,S=6+8=14,i=4
不满足条件,S=14+16=30,i=5
不满足条件,S=30+32=62,i=6
不满足条件,S=62+64=126,i=7
由题意,此时应该满足条件,退出循环,输出S的值为126,
故判断框中的①可以是i>6?
故选:C.
【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.
12.【答案】B
【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),
其底面面积S=2×2+=4+,
底面周长C=2×3+=6+π,高为2,
故柱体的侧面积为:(6+π)×2=12+2π,
故柱体的全面积为:12+2π+2(4+)=20+3π,
故选:B
【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.
二、填空题
13.【答案】4
【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,
故后排有三个,故此几何体共有4个木块组成.
故答案为:4.
14.【答案】[,1].
【解析】解:设两个向量的夹角为θ,
因为|2﹣|=1,|﹣2|=1,
所以,,
所以,=
所以5=1,所以,所以5a2﹣1∈[],
[
,1],
所以;
故答案为:[,1].
【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范
围.
15.【答案】D 【
解析】
16.【答案】1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,)
【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,
当x ≥0时,由f (x )﹣1=0得
110x
x
e +-=,得x=0, 由,y=
f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:
y=
1x x
e +≥1(x ≥0), y ′=1x
x e
-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,
x=1时,函数取得最大值:1
1e
+,
当1<a ﹣211e <+时,即a ∈(3,3+1
e )时,y=
f (f (x )﹣a )﹣1有4个零点,
当a ﹣2=1+1e 时,即a=3+1
e 时则y=
f (f (x )﹣a )﹣1有三个零点,
当a >3+1
e 时,y=
f (f (x )﹣a )﹣1有1个零点
当a=1+1
e 时,则y=
f (f (x )﹣a )﹣1有三个零点,
当11{ 21
a e a >+-≤时,即a ∈(1+1e
,3)时,y=f (f (x )﹣a )﹣1有三个零点.
综上a ∈1
1[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,),函数有3个零点. 故答案为:11[133e
e ⎧⎫+⋃+⎨⎬⎩⎭
,).
点睛:已知函数有零点求参数取值范围常用的方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 17.【答案】5
【解析】
考
点:利用导数求最值
【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f ′(x )>0或f ′(x )<0求单调区间;第二步:解f ′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比
较极值同端点值的大小. 18.【答案】D 【
解
析
】
三、解答题
19.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21
n n +. 【解析】
试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为,
由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,
36.d q ⎧
=-⎪⎨⎪=⎩
∴21n a n =-,12n n b -=或1
(52)3
n a n =-,16n n b -=.
(2)若+1n n a a <,由(1)知21n a n =-,
∴111111()(21)(21)22121
n n a a n n n n +==--+-+, ∴111111(1)2335212121
n n
T n n n =-+-++-=-++….
考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用. 20.【答案】
【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,
②中的值为=0.40,③中的值为50×0.2=10,
④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;
(2)不低于85的概率P=×0.20+0.30=0.40,
∴获奖的人数大约为800×0.40=320;
(3)该程序的功能是求平均数,
S=65×0.10+75×0.40+85×0.20+95×0.30=82,
∴800名学生的平均分为82分
21.【答案】
【解析】解:(1)∵y=+,
∴,
解得x≥﹣2且x≠﹣2且x≠3,
∴函数y的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,
∴,
解得x≤4且x≠1且x≠3,
∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].
22.【答案】
【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直
【试题解析】(Ⅰ)是等边三角形,为的中点,
平面平面,是交线,平面
平面.
(Ⅱ)取的中点,底面是正方形,,两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,
则,
,,
设平面的法向量为,,
,,
平面的法向量即为平面的法向量.
由图形可知所求二面角为锐角,
(Ⅲ)设在线段上存在点,,
使线段与所在平面成角,
平面的法向量为,,
,解得,适合
在线段上存在点,当线段时,与所在平面成角.23.【答案】
【解析】解:(1)设切点.
由,知抛物线在Q点处的切线斜率为,
故所求切线方程为.
即y=x0x﹣x02.
因为点P(0,﹣4)在切线上.
所以,,解得x0=±4.
所求切线方程为y=±2x﹣4.
(2)设A(x1,y1),C(x2,y2).
由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.
因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.
点A,C的坐标满足方程组,
得x2﹣4kx﹣4=0,
由根与系数的关系知,
|AC|==4(1+k2),
因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.
同理可求得|BD|=4(1+),
S ABCD=|AC||BD|==8(2+k2+)≥32.
当k=1时,等号成立.
所以,四边形ABCD面积的最小值为32.
【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.
24.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为
(﹣∞,0),(1,+∞),
丹迪减区间是(0,1)
(2)由已知可得
或,
解得x≤﹣1或≤x≤,
故不等式的解集为(﹣∞,﹣1]∪
[,].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.。