蒋乔镇初中2018-2019学年初中七年级上学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒋乔镇初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•郴州)2的相反数是()
A. B. C. -2 D. 2
2.(2分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()
A. 147.40元
B. 143.17元
C. 144.23元
D. 136.83元
3.(2分)(2015•绵阳)福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()
A. 0.242×1010美元
B. 0.242×1011美元
C. 2.42×1010美元
D. 2.42×1011美元
4.(2分)(2015•南宁)3的绝对值是()
A. 3
B. -3
C.
D.
5.(2分)(2015•遵义)在0,﹣2,5,,﹣0.3中,负数的个数是()
A. 1
B. 2
C. 3
D. 4
6.(2分)(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是()
A. ﹣2xy2
B. 3x2
C. 2xy3
D. 2x3
7.(2分)(2015•来宾)来宾市辖区面积约为13400平方千米,这一数字用科学记数法表示为()A. 1.34×102 B. 1.34×103 C. 1.34×104 D. 1.34×105
8.(2分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()
A. 赚16元
B. 赔16元
C. 不赚不赔
D. 无法确定
9.(2分)(2015•丹东)﹣2015的绝对值是()
A. ﹣2015
B. 2015
C.
D.
10.(2分)(2015•贵阳)计算:﹣3+4的结果等于()
A. 7
B. -7
C. 1
D. -1
11.(2分)(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()
A. B. C. D.
12.(2分)(2015•抚顺)6的绝对值是()
A. 6
B. ﹣6
C.
D. ﹣
二、填空题
13.(1分)(2015•呼伦贝尔)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 ________.
14.(1分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=________ .
15.(1分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=________ .
16.(1分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是________ .
17.(1分)(2015•呼伦贝尔)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 ________.
18.(1分)(2015•巴中)从巴中市交通局获悉,我市2015年前4月在巴陕高速公路完成投资8400万元,请你将8400万元用科学记数记表示为 ________元.
三、解答题
19.(10分)某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.
(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?
(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?
20.(15分)粮库3天内发生粮食进出库的吨数如下(“ +”表示进库“﹣”表示出库)
+26,﹣32,﹣15,+34,﹣38,﹣20.
(1)经过这3天,粮库里的粮食是增多还是减少了?
(2)经过这3天,仓库管理员结算发现库里还存480吨粮,那么3天前库里存粮多少吨?
(3)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?
21.(12分)已知,数轴上点A和点B所对应的数分别为,点P 为数轴上一动点,其对应的数为.
(1)填空:________ ,________ .
(2)若点P到点A、点B 的距离相等,求点P 对应的数.
(3)现在点A、点B分别以2 个单位长度/秒和0.5 个单位长度/秒的速度同时向右运动,点P以3 个单位长度/秒的速度同时从原点向左运动.当点A与点B之间的距离为2个单位长度时,求点P所对应的数是多少?
22.(12分)如图:在数轴上A点表示数,B点示数,C点表示数c,b是最小的正整数,
且a、b满足|a+2|+ (c-7)2=0.
(1)a=________,b=________,c=________;
(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合;
(3)点A.B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB=________,AC=________,BC=________.(用含t的代数式表示)
(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.23.(3分)某市出租车的计价标准为:行驶路程不超过3 km收费10元,超过3 km的部分按每千米1.8元收费.
(1)某出租车行程为x km,若x>3 km,则该出租车驾驶员收到车费________元(用含有的代数式表示);(2)一出租车公司坐落于东西向的宏运大道边,某驾驶员从公司出发,在宏运大道上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km).
①送完第4批客人后,该出租车驾驶员在公司的________边(填“东或西”),距离公司________km的位置;24.(11分)如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.
我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.
(1)求a,c的值;
(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.25.(11分)
(1)【归纳】观察下列各式的大小关系:
|-2|+|3|>|-2+3| |-6|+|3|>|-6+3|
|-2|+|-3|=|-2-3| |0|+|-8|=|0-8|
归纳:|a|+|b|________|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)
(2)【应用】根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.
(3)【延伸】a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.
26.(10分)出租车司机老王某天上午的营运全是在东西走向的解放路上进行的,如果规定向东行驶路程记为正数,向西为负,他这天上午的行车里程(单位:)依次如下:
,,,,,,,.
(1)若汽车的耗油量为,这天上午老王耗油多少升?
(2)当老王最后一次行驶结束时,他在上午最初出发点的什么位置?
蒋乔镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)
一、选择题
1.【答案】C
【考点】相反数
【解析】【解答】解:2的相反数是﹣2,
故选:C.
【分析】根据相反数的概念解答即可.
2.【答案】A
【考点】有理数大小比较,有理数的加减混合运算
【解析】【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.
【分析】根据存折中的数据进行解答.
3.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将242亿用科学记数法表示为:2.42×1010.
故选:C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
4.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】解:|3|=3.
故选A.
【分析】直接根据绝对值的意义求解.
5.【答案】B
【考点】正数和负数
【解析】【解答】在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,
故选:B.
【分析】根据小于0的是负数即可求解.
6.【答案】D
【考点】单项式
【解析】【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.
A、﹣2xy2系数是﹣2,错误;
B、3x2系数是3,错误;
C、2xy3次数是4,错误;
D、2x3符合系数是2,次数是3,正确;故选D.
【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.
7.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:13400=1.34×104,
故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于13400有5位,所以可以确定n=5﹣1=4.
8.【答案】B
【考点】一元一次方程的实际应用-销售问题
【解析】【解答】设赚了25%的衣服是x元,则(1+25%)x=120,
解得x=96元,
则实际赚了24元;
设赔了25%的衣服是y元,
则(1-25%)y=120,
解得y=160元,
则赔了160-120=40元;
∵40>24;
∴赔大于赚,在这次交易中,该商人赔了40-24=16元.
故选B.
9.【答案】B
【考点】绝对值及有理数的绝对值
【解析】【解答】解:∵﹣2015的绝对值等于其相反数,
∴﹣2015的绝对值是2015;
故选B.
【分析】根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.
10.【答案】C
【考点】有理数的加法
【解析】【解答】﹣3+4=1.
故选:C.
【分析】利用绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而求出即可.
11.【答案】C
【考点】正数和负数的认识及应用,绝对值及有理数的绝对值
【解析】【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,
∴﹣0.6最接近标准,
故选:C.
【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.
12.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】解:6是正数,绝对值是它本身6.
故选:A.
【分析】根据绝对值的定义求解.
二、填空题
13.【答案】4n+1
【考点】探索图形规律
【解析】【解答】解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;
第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,
以此类推,根据以上操作,则第n次得到4n+1个正方形,
故答案为:4n+1.
【分析】仔细观察,发现图形的变化的规律,从而确定答案.
14.【答案】1﹣a
【考点】相反数,实数与数轴
【解析】【解答】解:∵a<﹣1,
∴a﹣1<0,
原式=|a﹣1|
=﹣(a﹣1)
=﹣a+1
=1﹣a.
故答案为:1﹣a.
【分析】根据数轴上的点与实数的一一对应关系得到a<﹣1,然后利用绝对值的意义得到原式=﹣(a﹣1),再去括号、合并即可.
15.【答案】1﹣a
【考点】相反数,实数与数轴
【解析】【解答】解:∵a<﹣1,
∴a﹣1<0,
原式=|a﹣1|
=﹣(a﹣1)
=﹣a+1
=1﹣a.
故答案为:1﹣a.
【分析】根据数轴上的点与实数的一一对应关系得到a<﹣1,然后利用绝对值的意义得到原式=﹣(a﹣1),再去括号、合并即可.
16.【答案】-2
【考点】有理数大小比较
【解析】【解答】解:根据有理数比较大小的方法,可得
﹣2<﹣1<0,
所以在﹣1,0,﹣2这三个数中,最小的数是﹣2.
故答案为:﹣2.
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
17.【答案】4n+1
【考点】探索图形规律
【解析】【解答】解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;
第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,
以此类推,根据以上操作,则第n次得到4n+1个正方形,
故答案为:4n+1.
【分析】仔细观察,发现图形的变化的规律,从而确定答案.
18.【答案】8.4×107
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将8400万用科学记数法表示为8.4×107.
故答案为8.4×107.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
三、解答题
19.【答案】(1)解:+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米
(2)解:(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.04)
=640×0.2
=128(升).
答:他们共耗氧气128升.
【考点】正数和负数的认识及应用,绝对值及有理数的绝对值
【解析】【分析】(1)根据有理数的加法法则可得到达的地点,再根据有理数的减法可得他们距顶峰的距离。
(2)根据路程5个人的单位耗氧量即可求出答案。
20.【答案】(1)解:依题可得,
+26+(-32)+(-15)+(+34)+(-38)+(-20),
=26-32-15+34-38-20,
=(26+34)-(32+15+38+20),
=60-105,
=-45.
∴粮食减少了45吨.
答:粮库里的粮食是减少了,减少了45吨.
(2)解:依题可得:
480-(-45)=480+45=525(吨).
答:3天前库里存粮525吨.
(3)解:依题可得:
(|+26|+|-32|+|-15|+|+34|+|-38|+|-20|)×5,
=(26+32+15+34+38+20)×5,
=165×5,
=825(元).
答:这3天要付825元的装卸费.
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)根据题意将这3天进库和出库的粮食加起来,根据由有理数加减法计算即可得出答案. (2)根据题意用现在粮库里的粮食吨数减去这3天粮食减少的吨数,计算即可得出答案.
(3)分别求出这3天内进库、出库粮食吨数的绝对值,之后求出它们的和,再用这个和乘以每吨粮食的装卸费即可得出总费用.
21.【答案】(1)-1;3
(2)解:依题可得:
PA=|x+1|,PB=|3-x|,
∵点P到点A、点B的距离相等,
∴PA=PB,
即|x+1|=|3-x|,
解得:x=1,
∴点P对应的数为1.
(3)解:∵点A、点B 速度分别以2 个单位长度/秒、0.5 个单位长度/秒的速度同时向右运动,
∴A点对应的数为2t-1,
点B对应的数为3+0.5t,
①当点A在点B左边时,
∵AB=2,
∴(3+0.5t)-(2t-1)=2,
解得:t=,
∵点P以3 个单位长度/秒的速度同时从原点向左运动,
∴×3=4,
∴P点对应的数为:-4.
②当点A在点B右边时,
∵AB=2,
∴(2t-1)-(3+0.5t)=2,
解得:t=4,
∵点P以3 个单位长度/秒的速度同时从原点向左运动,
∴4×3=12,
∴P点对应的数为:-12.
【考点】数轴及有理数在数轴上的表示,一元一次方程的其他应用,两点间的距离
【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,
∴,
解得:.
故答案为:-2;3.
【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.
(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.
(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P点的速度得出点P对应的数. 22.【答案】(1)-2;1;7
(2)4
(3)3t+3;5t+9;2t+6
(4)解:不变.
3BC-2AB=3(2t+6)-2(3t+3)=12
【考点】整式的加减运算,翻折变换(折叠问题),几何图形的动态问题,非负数之和为0
【解析】【解答】解:(1)∵|a+2|+(c-7)2=0,
∴a+2=0,c-7=0,
解得a=-2,c=7,
∵b是最小的正整数,
∴b=1;
故答案为:-2,1,7.
(2 )(7+2)÷2=4.5,
对称点为7-4.5=2.5,2.5+(2.5-1)=4;
故答案为:4.
(3 )AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
故答案为:3t+3,5t+9,2t+6.
【分析】(1)根据绝对值的非负性,偶次幂的非负性,由几个非负数的和为0,则这几个数都为0,列出方程组a+2=0,c-7=0,求解得出a,c的值,再根据最小的正整数是1,得出b的值;
(2)根据(1)可知A、C两点间的距离为2+7=9,根据折叠的性质得出折迹处到A、C两点的距离是(7+2)÷2=4.5,折叠处表示的数是7-4.5=2.5,B点距离折叠处的距离是2.5-1=1.5,根据对称的性质即可得出与点B 重合的点所表示的数是2.5+1.5=4;
(3)根据路程等于速度乘以时间得出:A点运动的路程为t,B点运动的路程为2t,C点运动的路程为4t,由AB=A点运动的路程加上B点运动的路程再加上一开始AB两点间的距离得出AB=t+2t+3=3t+3,由AC=A点运动的路程加上C点运动的路程再加上一开始AC两点间的距离得出AC=t+4t+9=5t+9,由BC=C点运动的路程减去B点运动的路程再加上一开始BC两点间的距离得出BC=4t-2t+6=2t+6;
(4)将(3)中得出的BC,AB的长度分别代入3BC-2AB ,即可列出一个整式的加减法算式,再去括号合并同类项后发现是一个常数,于是得出3BC-2AB 的值与字母t无关。
23.【答案】(1)1.8x+4.6
(2)西;9 ②在这过程中该出租车驾驶员共收到车费多少元? 解:由题意可得:在这过程中该出租车驾驶员共收到车费为:1.8×5+4.6+10+1.8×4+4.6+1.8×12+4.6=61.6(元).答:在这过程中该出租车驾驶员共收到车费61.6元
【考点】运用有理数的运算解决简单问题
【解析】【解答】解:(1)由题意可得:该出租车驾驶员收到车费为:10+(x﹣3)×1.8=1.8x+4.6.
故答案为:(1.8x+4.6);
(2 )①由题意可得:5+2+(﹣4)+(﹣12)=﹣9,∴送完第4批客人后,该出租车驾驶员在公司的西边,距离公司9km.
故答案为:西,9;
【分析】(1)由题意可得该出租车驾驶员收到车费=起步价+超过3 km的部分的收费;
(2)由题意将表格中的数据相加,和为正,在公司的东边;和为负,在公司的东边;
(3)由题意把每一批乘客的车费相加即为该驾驶员在这过程中共收到的车费。
24.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30
(2)-70或
(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,
点A,B之间每秒缩小1个单位长
度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t=
秒, b.点A,C在相遇时,AB=BC,
点A,C之间每秒缩小5个单位长
度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC大于AC,不符合条件. 综上所述,
t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.
【考点】数轴及有理数在数轴上的表示,整式的加减运算,线段的长短比较与计算,几何图形的动态问题
【解析】【解答】解:(2)分三种情况讨论,
•当点D在点A的左侧,
∵CD=2AD,
∴AD=AC=50,
点C点表示的数为-20-50=-70,
‚当点D在点A,C之间时,
∵CD=2AD,
∴AD= AC= ,
点C点表示的数为-20+ =- ,
ƒ当点D在点C的右侧时,
AD>CD与条件CD=2AD相矛盾,不符合题意,
综上所述,D点表示的数为-70或;
【分析】(1)根据多项式x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。
(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时,根据CD=2AD,及点A、C表示的数,就可求出点D表示的数。
(3)①根据题意画出图形,当t=0时,AB=21,BC=29 ,分情况讨论:a.点A,C在相遇前时;b.点A,C在相遇时,AB=BC ,分别求出符合题意的t的值即可;②当时间为t时,点A表示得数为-20+2t,点B 表示得数为1+t,点C表示得数为30+3t,建立方程求出m的值即可。
25.【答案】(1)≥
(2)解:由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n 异号.当m为正数,n 为负数时,m-n=13,则n=m-13,|m+m-13|=1,m=7或6;当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6.综上所述:m为±6或±7
(3)解:若按a、b、c中0的个数进行分类,可以分成四类:第一类:A.b、c三个数都不等于0 .①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|;②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|;③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除;④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除;第二类:A.b、c三个数中有1个0 【结论同第(1)问①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除;②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除;③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|;第三类:A.b、c三个数中有2个0.①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除;②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除;第四类:A.b、c 三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除;综上所述:不等式成立的条件是:1个负数2个正数;1个正数2个负数;1个0,1个正数和1个负数.【考点】探索数与式的规律
【解析】【分析】(1)由题意可得;
(2)由已知可得≠ ,所以可知m、n异号,分两种情况讨论即可求解:①当m为正数,n为负数时;②当m为负数,n为正数时;
(3)由题意可按a、b、c中0的个数进行分类,可以分成四类:
第一类:A.b、c三个数都不等于0。
①1个正数,2个负数,结合已知可求解;②1个负数,2个正数,结合已知可求解;③3个正数,结合已知可求解;
第二类:A.b、c三个数中有1个0 ,①1个0,2个正数,结合已知可求解;②1个0,2个负数,结合已知可求解;③1个0,1个正数,1个负数,结合已知可求解;
第三类:A.b、c三个数中有2个0.①2个0,1个正数,结合已知分析可求解;②2个0,1个负数,结
合已知分析可求解;
第四类:A.b、c 三个数都为0,此时|a|+|b|+|c|=|a+b+c| 不符合题意。
26.【答案】(1)解:| +| |+| +| |+| |+| |+| |+| |+| .=52(公里),
52×0.4=20.8(L)
(2)解:(+8)+(-10)+(-3)+(+6)+(-5)+(-7)+(+4)+(+6)+(-6)+(-11),=-4(公里),所以,当老王最后一次行驶结束时,他在上午最初出发点西方4公里处
【考点】运用有理数的运算解决简单问题
【解析】【分析】(1)只要汽车在行驶就一定要耗油,故算出出租车司机老王某天上午的营运记录各个数据绝对值的和得出出租车行驶的总路程,再乘以汽车的耗油量即可得出出租车师傅老王的总耗油量;(2)算出出租车当天上午行驶的里程记录各个数据的和,根据最后结果的正负,由规定向东行驶路程记为正数,向西为负即可得出答案。