昔阳县实验中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昔阳县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 下列各组函数为同一函数的是( ) A .f (x )=1;g (x )
= B .f (x )=x ﹣2;g (x )
= C .f (x )=|x|;g (x )
=
D .f (x )
=
•;g (x )
=
2. 已知等比数列{a n }的前n 项和为S n ,若=4,则
=( )
A .3
B .4
C .
D .13
3. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )
A .2个
B .3 个
C .4 个
D .8个
4. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .
π21 C .π121- D .π
2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
5. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )
A .∅
B .{1,4}
C .M
D .{2,7}
6. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .k
B .﹣k
C .1﹣k
D .2﹣k
7.
设集合( )
A
. B
.
C
.
D
.
D
A
B
C
O
8.已知集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z},若P∩Q≠∅,则b的最小值等于()A.0 B.1 C.2 D.3
9.若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则()
A.l∥αB.l⊥α
C.l⊂αD.l与α相交但不垂直
10.,
AD BE分别是ABC
∆的中线,若1
AD BE
==,且AD与BE的夹角为120,则AB AC
⋅=()
(A)1
3
(B )
4
9
(C)
2
3
(D)
8
9
11.若函数()()()()()
1
cos sin cos sin3sin cos41
2
f x x x x x a x x a x
=-++-+-在0
2
π
⎡⎤
-⎢⎥
⎣⎦
,上单调递增,则实数的取值范围为()
A.
1
1
7
⎡⎤
⎢⎥
⎣⎦
,B.
1
1
7
⎡⎤
-⎢⎥
⎣⎦
,
C.
1
(][1)
7
-∞-+∞
,,D.[1)
+∞
,
12.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()
A.4 B.5 C.32D.33
二、填空题
13.设R
m∈,实数x,y满足2360
3260
y m
x y
x y
≥
⎧
⎪
-+≥
⎨
⎪--≤
⎩
,若18
2≤
+y
x,则实数m的取值范围是___________.
【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.
14.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是.
15.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被
抽到的概率都为,则总体的个数为.
16.利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|a﹣b|>2发生的概率是.
17.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.
18.在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.
三、解答题
19.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条
谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,
您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
20.本小题满分10分选修44-:坐标系与参数方程选讲
在直角坐标系xoy
中,直线的参数方程为32
x y ⎧=⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C
的方程为ρθ=. Ⅰ求圆C 的圆心到直线的距离;
Ⅱ设圆C 与直线交于点A B 、,若点P
的坐标为(3,,求PA PB +.
21.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:
X 1 2 3 4 Y 51 48 45 42
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;
(II )在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
22.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;
(1)求ω,φ;
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个
对称点为(,0),求θ的最小值.
(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.
23.已知函数f(x)=|2x+1|+|2x﹣3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.
24.已知函数()()2
1+2||02
()1()102
x x x x f x x ⎧-≤⎪⎪=⎨⎪->⎪⎩.
(1)画出函数()f x 的图像,并根据图像写出函数()f x 的单调区间和值域;
(2)根据图像求不等式3
(x)2
f ≥的解集(写答案即可)
昔阳县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数; B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数; C
、因为
,故两函数相同;
D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.
综上可得,C 项正确. 故选:C .
2. 【答案】D
【解析】解:∵S n 为等比数列{a n }的前n 项和,=4,
∴S 4,S 8﹣S 4,S 12﹣S 8也成等比数列,且S 8=4S 4,
∴(S 8﹣S 4)2=S 4×(S 12﹣S 8),即9S 42=S 4×(S 12﹣4S 4), 解得
=13.
故选:D .
【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.
3. 【答案】C
【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3}, ∴集合S=A ∩B={1,3},
则集合S 的子集有22
=4个,
故选:C .
【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.
4. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 5. 【答案】D
【解析】解:∵M∪N=M,∴N⊆M,
∴集合N不可能是{2,7},
故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
6.【答案】D
【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,
∴f(2016)=20163a+2016b+1=k,
∴20163a+2016b=k﹣1,
∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.
故选:D.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.7.【答案】B
【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,
集合B中的解集为x>,
则A∩B=(,+∞).
故选B
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
8.【答案】C
【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,
可得b的最小值为:2.
故选:C.
【点评】本题考查集合的基本运算,交集的意义,是基础题.
9.【答案】B
【解析】解:∵=(1,0,2),=(﹣2,0,4),
∴=﹣2,
∴∥,
因此l⊥α.
故选:B.
10.【答案】C
【解析】由1(),21(2),2AD AB AC BE AB AC ⎧
=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE
⎧=-⎪⎪⎨⎪=+⎪⎩ 22422
()()33333
AB AC AD BE AD BE ⋅=-⋅+=.
11.【答案】D 【
解
析
】
考
点:1、导数;2、单调性;3、函数与不等式.
12.【答案】D 【解析】
试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面
,//,3,1ABCDE BC AE AB AD AG DE ====,
根据几何体的性质得:AC GC ==
GE ===
4,BG AD EF CE ====
所以最长为GC =
考点:几何体的三视图及几何体的结构特征.
二、填空题
13.【答案】[3,6]-.
【解析】
14.【答案】甲.
【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,
方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;
乙的平均数是=(78+88+89+96+99)=90,
方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;
∵<,∴成绩较为稳定的是甲.
【解法二】根据茎叶图中的数据知,
甲的5个数据分布在87~93之间,分布相对集中些,方差小些;
乙的5个数据分布在78~99之间,分布相对分散些,方差大些;
所以甲的成绩相对稳定些.
故答案为:甲.
【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.
15.【答案】300.
【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,
所以总体中的个体的个数为15÷=300.
故答案为:300.
【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.
16.【答案】.
【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,
事件“a+b为偶数”包含基本事件:
(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),
(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)
(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,
“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:
(1,5),(2,6),(5,1),(6,2)共4个,
故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==
故答案为:
【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.
17.【答案】:.
【解析】解:∵•=cosα﹣sinα=,
∴1﹣sin2α=,得sin2α=,
∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,
∴cos2α==,
∵α为锐角,sin(α+)>0,
∴sin(α+)
====
.
故答案为:.
18.【答案】(1,2).
【解析】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,
即y=2x2.
由ρcosθ=1,得x=1.
联立,解得:.
∴曲线C1与C2交点的直角坐标为(1,2).
故答案为:(1,2).
【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,
(0.0015+0.019)×20+(x﹣140)×0.025=0.5,
解得:x=143.6.
∴测试成绩中位数为143.6.
进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.
(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,
则ξ~B(3,),
∴E(ξ)=.
∴最后抢答阶段甲队得分的期望为[]×20=30,
∵P (η=0)
=,
P (η=1)
=, P (η=2)
=,
P (η=3)
=,
∴E η
=
.
∴最后抢答阶段乙队得分的期望为
[]×20=24.
∴120+30>120+24, ∴支持票投给甲队.
【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.
20.【答案】
【解析】Ⅰ
∵:C ρθ=
∴2:sin C ρθ=
∴22:0C x y +-=,即圆C
的标准方程为22(5x y +=.
直线的普通方程为30x y +=. 所以,圆C
=
.
Ⅱ由22(53
x y y x ⎧+=⎪⎨=-+⎪⎩
,解得12x y =⎧⎪⎨=⎪⎩
或21x y =⎧⎪⎨=⎪⎩
所以 21.【答案】
【解析】
【专题】概率与统计. 【分析】(I )确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;
(II )确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.
【解答】解:(I )所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株
数为12,
从三角形地块的内部和边界上分别随机选取一株的不同结果有
=36种,选取的两株作物恰好“
相
||||PA PB +==
近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概
率为=;
(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列
∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)
∴只需求出P(X=k)(k=1,2,3,4)即可
记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3
由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==
∴所求的分布列为
Y 51 48 45 42
P
数学期望为E(Y)=51×+48×+45×+42×=46
【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.
22.【答案】
【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得
•=,
求得ω=2.
再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,
∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,
故θ的最小正值为.
(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,
∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.
23.【答案】
【解析】解:(Ⅰ)原不等式等价于
或
或
,
解得:<x ≤2或﹣≤x ≤或﹣1≤x <﹣, ∴不等式f (x )≤6的解集为{x|﹣1≤x ≤2}.
(Ⅱ)不等式f (x )﹣
>2恒成立⇔
+2<f (x )=|2x+1|+|2x ﹣3|恒成立⇔
+2<f (x )min 恒成立,
∵|2x+1|+|2x ﹣3|≥|(2x+1)﹣(2x ﹣3)|=4, ∴f (x )的最小值为4, ∴+2<4,
即
,
解得:﹣1<a <0或3<a <4.
∴实数a 的取值范围为(﹣1,0)∪(3,4).
24.【答案】(1)图象见答案,增区间:(],2-∞-,减区间:[)2,-+∞,值域:(],2-∞;(2)[]3,1--。
【解析】
试题分析:(1)画函数()f x 的图象,分区间画图,当0x ≤时,()2
122
f x x x =--,此时为二次函数,开口向下,配方得()()()2
1142222
f x x x x =-
+=-++,可以画出该二次函数在0x ≤的图象,当0x >时,
()1()12x f x =-,可以先画出函数1
()2
x y =的图象,然后再向下平移1个单位就得到0x >时相应的函数图
象;(2)作出函数()f x 的图象后,在作直线3
2
y =,求出与函数()f x 图象交点的横坐标,就可以求出x 的
取值范围。
本题主要考查分段函数图象的画图,考查学生数形结合思想的应用。
试题解析:(1)函数()f x 的图象如下图所示:
由图象可知:增区间:(],2-∞-,减区间:[)2,-+∞,值域为:(],2-∞。
(2)观察下图,()3
2
f x ≥
的解集为:[]3,1--。
考点:1.分段函数;2.函数图象。