湖北黄冈市2018中考数学试题(word版含解析)
(完整版)2018年湖北省黄冈市中考数学试卷含答案解析(Word版)

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年湖北省黄冈市中考数学试卷(答案+解析)

2018年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1.(3分)﹣23的相反数是( ) A .﹣32B .﹣23C .23D .322.(3分)下列运算结果正确的是( ) A .3a 3•2a 2=6a 6 B .(﹣2a )2=﹣4a 2 C .tan 45°=22 D .cos 30°= 323.(3分)函数y =x +1x−1中自变量x 的取值范围是( ) A .x ≥﹣1且x ≠1 B .x ≥﹣1 C .x ≠1 D .﹣1≤x <14.(3分)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°5.(3分)如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =( )A .2B .3C .4D .2 36.(3分)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为( ) A .﹣1 B .2 C .0或2 D .﹣1或2二、填空题(本题共8小题,每题小3分,共24分 7.(3分)实数16800000用科学记数法表示为 . 8.(3分)因式分解:x 3﹣9x = .9.(3分)化简( 2﹣1)0+(12)﹣2﹣ 9+ −273= .10.(3分)若a ﹣1a= 6,则a 2+1a2值为 .11.(3分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC = .12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x +21=0的根,则三角形的周长为 .13.(3分)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 cm (杯壁厚度不计).14.(3分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数图象恰好经过第一、二、四象限的概率为 .三、解答题(本题共10题,满分78分(x -2)≤815.(5分)求满足不等式组 x −3(x −2)≤812x −1<3−32x 的所有整数解.16.(6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子,A 型粽子28元/千克,B 型粽子24元/千克,若B 型粽子的数量比A 型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”,B 表示“喜欢”、C 表示“一般”,D 表示“不喜欢”.(1)被调查的总人数是 人,扇形统计图中C 部分所对应的扇形圆心角的度数为 ; (2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A 类有 人;(4)在抽取的A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.18.(7分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C . (1)求证:∠CBP =∠ADB .(2)若OA =2,AB =1,求线段BP 的长.19.(6分)如图,反比例函数y =kx(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(8分)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.21.(7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(8分)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.23.(9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=x+4(1≤x≤8,x为整数),每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(14分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.2018年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1.(3分)﹣23的相反数是( ) A .﹣32B .﹣23C .23D .32【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:﹣23的相反数是23. 故选:C .2.(3分)下列运算结果正确的是( ) A .3a 3•2a 2=6a 6 B .(﹣2a )2=﹣4a 2C .tan 45°=22 D .cos 30°= 32【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算. 【解答】解:A 、原式=6a 5,故本选项错误; B 、原式=4a 2,故本选项错误; C 、原式=1,故本选项错误; D 、原式=32,故本选项正确. 故选:D .3.(3分)函数y =x +1x−1中自变量x 的取值范围是( ) A .x ≥﹣1且x ≠1 B .x ≥﹣1 C .x ≠1 D .﹣1≤x <1【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到: x +1≥0x −1≠0,解得x ≥﹣1且x ≠1,故选:A .4.(3分)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°【分析】根据线段垂直平分线的性质得到DA =DC ,根据等腰三角形的性质得到∠DAC =∠C ,根据三角形内角和定理求出∠BAC ,计算即可.【解答】解:∵DE 是AC 的垂直平分线, ∴DA =DC ,∴∠DAC =∠C =25°, ∵∠B =60°,∠C =25°, ∴∠BAC =95°,∴∠BAD =∠BAC ﹣∠DAC =70°,故选:B .5.(3分)如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =( )A .2B .3C .4D .2 3【分析】根据直角三角形的性质得出AE =CE =5,进而得出DE =3,利用勾股定理解答即可. 【解答】解:∵在Rt △ABC 中,∠ACB =90°,CE 为AB 边上的中线,CE =5, ∴AE =CE =5, ∵AD =2, ∴DE =3,∵CD 为AB 边上的高,∴在Rt △CDE 中,CD = CE 2−DE 2= 52−32=4,故选:C .6.(3分)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为( ) A .﹣1B .2C .0或2D .﹣1或2【分析】利用二次函数图象上点的坐标特征找出当y =1时x 的值,结合当a ≤x ≤a +1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论. 【解答】解:当y =1时,有x 2﹣2x +1=1, 解得:x 1=0,x 2=2.∵当a ≤x ≤a +1时,函数有最小值1, ∴a =2或a +1=0, ∴a =2或a =﹣1,故选:D .二、填空题(本题共8小题,每题小3分,共24分7.(3分)实数16800000用科学记数法表示为 1.68×107 .【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可. 【解答】解:16800000=1.68×107.故答案为:1.68×107.8.(3分)因式分解:x 3﹣9x = x (x +3)(x ﹣3) .【分析】先提取公因式x ,再利用平方差公式进行分解. 【解答】解:x 3﹣9x , =x (x 2﹣9), =x (x +3)(x ﹣3).9.(3分)化简( 2﹣1)0+(12)﹣2﹣ 9+ −273= ﹣1 .【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案. 【解答】解:原式=1+4﹣3﹣3 =﹣1.故答案为:﹣1.10.(3分)若a ﹣1a= 6,则a 2+1a值为 8 .【分析】根据分式的运算法则即可求出答案.【解答】解:∵a ﹣1a= 6 ∴(a ﹣1a )2=6∴a 2﹣2+1a=6∴a 2+1a2=8故答案为:811.(3分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC = 2 3 .【分析】连接BD .在Rt △ADB 中,求出AB ,再在Rt △ACB 中求出AC 即可解决问题; 【解答】解:连接BD .∵AB 是直径, ∴∠C =∠D =90°,∵∠CAB =60°,AD 平分∠CAB , ∴∠DAB =30°,∴AB =AD ÷cos 30°=4 3, ∴AC =AB •cos 60°=2 3,故答案为2 3.12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x +21=0的根,则三角形的周长为 16 . 【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长. 【解答】解:解方程x 2﹣10x +21=0得x 1=3、x 2=7, ∵3<第三边的边长<9, ∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.13.(3分)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 20 cm (杯壁厚度不计).【分析】将杯子侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=A′D2+BD2=162+122=20(cm).故答案为20.14.(3分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为16.【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a>0,b<0的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,满足a>0,b<0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,所以该二次函数图象恰好经过第一、二、四象限的概率=212=16.故答案为16.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)求满足不等式组x−3(x−2)≤812x−1<3−32x的所有整数解.【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可.【解答】解:解不等式x﹣3(x﹣2)≤8,得:x≥﹣1,解不等式12x﹣1<3﹣32x,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1.16.(6分)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得y=2x−2028x+24y=2560,解得x=40y=60.答:订购了A型粽子40千克,B型粽子60千克.17.(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有180人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×30=216°,50故答案为:50、216°;(2)B类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为820=25.18.(7分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C . (1)求证:∠CBP =∠ADB .(2)若OA =2,AB =1,求线段BP 的长.【分析】(1)连接OB ,如图,根据圆周角定理得到∠ABD =90°,再根据切线的性质得到∠OBC =90°,然后利用等量代换进行证明;(2)证明△AOP ∽△ABD ,然后利用相似比求BP 的长. 【解答】(1)证明:连接OB ,如图, ∵AD 是⊙O 的直径, ∴∠ABD =90°, ∴∠A +∠ADB =90°, ∵BC 为切线, ∴OB ⊥BC , ∴∠OBC =90°,∴∠OBA +∠CBP =90°, 而OA =OB , ∴∠A =∠OBA , ∴∠CBP =∠ADB ; (2)解:∵OP ⊥AD , ∴∠POA =90°, ∴∠P +∠A =90°, ∴∠P =∠D , ∴△AOP ∽△ABD , ∴AP AD =AO AB,即1+BP 4=21,∴BP =7.19.(6分)如图,反比例函数y =k x(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k 的值与B 点的坐标;(2)在平面内有点D ,使得以A ,B ,C ,D 四点为顶点的四边形为平行四边形,试写出符合条件的所有D 点的坐标.【分析】(1)将A 点的坐标代入反比例函数y =kx求得k 的值,然后将x =6代入反比例函数解析式求得相应的y 的值,即得点B的坐标;(2)使得以A 、B 、C 、D 为顶点的四边形为平行四边形,如图所示,找出满足题意D 的坐标即可. 【解答】解:(1)把点A (3,4)代入y =kx (x >0),得k =xy =3×4=12,故该反比例函数解析式为:y =12x .∵点C (6,0),BC ⊥x 轴,∴把x =6代入反比例函数y =12x ,得 y =122=6.则B (6,2).综上所述,k 的值是12,B 点的坐标是(6,2).(2)①如图,当四边形ABCD 为平行四边形时,AD ∥BC 且AD =BC . ∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y A ﹣y D =y B ﹣y C 即4﹣y D =2﹣0,故y D =2. 所以D (3,2).②如图,当四边形ACBD ′为平行四边形时,AD ′∥CB 且AD ′=CB . ∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y D ′﹣y A =y B ﹣y C 即y D ﹣4=2﹣0,故y D ′=6. 所以D ′(3,6).③如图,当四边形ACD ″B 为平行四边形时,AC =BD ″且AC ∥BD ″. ∵A (3,4)、B (6,2)、C (6,0),∴x D ″﹣x B =x C ﹣x A 即x D ″﹣6=6﹣3,故x D ″=9. y D ″﹣y B =y C ﹣y A 即y D ″﹣2=0﹣4,故y D ″=﹣2. 所以D ″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).20.(8分)如图,在▱ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC =BF ,CD =DE ,∠CBF =∠CDE ,连接AF ,AE .(1)求证△ABF ≌△EDA ;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;(2)只要证明FB⊥AD即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∵BC=BF,CD=DE,∴BF=AD,AB=DE,∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,∴∠ADE=∠ABF,∴△ABF≌△EDA.(2)证明:延长FB交AD于H.∵AE⊥AF,∴∠EAF=90°,∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠F AH=90°,∴∠F AH+∠AFB=90°,∴∠AHF=90°,即FB⊥AD,∵AD∥BC,∴FB⊥BC.21.(7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.【分析】(1)在直角三角形ABC 中,利用锐角三角函数定义求出AC 的长即可; (2)设CD =2x ,则DE =x ,CE = 3x ,构建方程即可解决问题;【解答】解:(1)在直角△ABC 中,∠BAC =90°,∠BCA =60°,AB =60米,则AC =AB tan 60°=3=20 3(米)答:坡底C 点到大楼距离AC 的值是20 3米.(2)设CD =2x ,则DE =x ,CE = 3x , 在Rt △BDF 中,∵∠BDF =45°, ∴BF =DF ,∴60﹣x =20 3+ 3x , ∴x =40 3﹣60, ∴CD =2x =80 3﹣120, ∴CD 的长为(80 3﹣120)米.22.(8分)已知直线l :y =kx +1与抛物线y =x 2﹣4x . (1)求证:直线l 与该抛物线总有两个交点;(2)设直线l 与该抛物线两交点为A ,B ,O 为原点,当k =﹣2时,求△OAB 的面积. 【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A 、B 的坐标,再求出直线y =﹣2x +1与x 轴的交点C ,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立 y =kx +1y =x 2−4x化简可得:x 2﹣(4+k )x ﹣1=0, ∴△=(4+k )2+4>0,故直线l 与该抛物线总有两个交点; (2)当k =﹣2时, ∴y =﹣2x +1过点A 作AF ⊥x 轴于F ,过点B 作BE ⊥x 轴于E ,∴联立 y =x 2−4x y =−2x +1解得: x =1+ 2y =−1−2 2或x =1− 2y =2 2−1∴A (1﹣ 2,2 2﹣1),B (1+ 2,﹣1﹣2 2) ∴AF =2 2﹣1,BE =1+2 2易求得:直线y =﹣2x +1与x 轴的交点C 为(12,0)∴OC =12∴S △AOB =S △AOC +S △BOC =12OC •AF +12OC •BE =12OC (AF +BE )=12×12×(2 2﹣1+1+2 2)= 223.(9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y (万件)与月份x (月)的关系为:y =x +4(1≤x ≤8,x 为整数),每件产品的利润z (元)与月份x (月)的关系如下表:(1)请你根据表格求出每件产品利润z (元)与月份x (月)的关系式;(2)若月利润w (万元)=当月销售量y (万件)×当月每件产品的利润z (元),求月利润w (万元)与月份x (月)的关系式; (3)当x 为何值时,月利润w 有最大值,最大值为多少?【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决; (2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.【解答】解;(1)当1≤x ≤9时,设每件产品利润z (元)与月份x (月)的关系式为z =kx +b ,k +b =192k +b =18,得 k =−1b =20,即当1≤x ≤9时,每件产品利润z (元)与月份x (月)的关系式为z =﹣x +20, 当10≤x ≤12时,z =10, 由上可得,z ={−x +20(1≤x ≤9,x 取整数)10(10≤x ≤12,x 取整数);(2)当1≤x ≤8时,w =(x +4)(﹣x +20)=﹣x 2+16x +80, 当x =9时,w =(﹣9+20)×(﹣9+20)=121, 当10≤x ≤12时,w =(﹣x +20)×10=﹣10x +200, 由上可得,w ={−x 2+16x +80(1≤x ≤8,x 取整数)121(x =9)−10x +200(10≤x ≤12,x 取整数); (3)当1≤x ≤8时,w =﹣x 2+16x +80=﹣(x ﹣8)2+144, ∴当x =8时,w 取得最大值,此时w =144;当x =9时,w =121,当10≤x ≤12时,w =﹣10x +200,则当x =10时,w 取得最大值,此时w =100,由上可得,当x 为8时,月利润w 有最大值,最大值144万元. 24.(14分)如图,在直角坐标系xOy 中,菱形OABC 的边OA 在x 轴正半轴上,点B ,C 在第一象限,∠C =120°,边长OA =8.点M 从原点O 出发沿x 轴正半轴以每秒1个单位长的速度作匀速运动,点N 从A 出发沿边AB ﹣BC ﹣CO 以每秒2个单位长的速度作匀速运动,过点M 作直线MP 垂直于x 轴并交折线OCB 于P ,交对角线OB 于Q ,点M 和点N 同时出发,分别沿各自路线运动,点N 运动到原点O 时,M 和N 两点同时停止运动. (1)当t =2时,求线段PQ 的长; (2)求t 为何值时,点P 与N 重合;(3)设△APN 的面积为S ,求S 与t 的函数关系式及t 的取值范围.【分析】(1)解直角三角形求出PM ,QM 即可解决问题; (2)根据点P 、N 的路程之和=24,构建方程即可解决问题,; (3)分四种情形考虑问题即可解决问题; 【解答】解:(1)当t =2时,OM =2, 在Rt △OPM 中,∠POM =60°, ∴PM =OM •tan 60°=2 3, 在Rt △OMQ 中,∠QOM =30°, ∴QM =OM •tan 30°=2 33,∴PQ =CN ﹣QM =2 3﹣2 33=4 33.(2)由题意:8+(t ﹣4)+2t =24, 解得t =203.(3)①当0<t <4时,S =12•2t •4 3=4 3t .②当4≤t <203时,S =12×[8﹣(t ﹣4)﹣(2t ﹣8)]×4 3=40 3﹣6 3t . ③当203<t <8时.S =12×[(t ﹣4)+(2t ﹣8)﹣8]×4 3=6 3t ﹣40 3.④当8≤t ≤12时,S =S菱形ABCO ﹣S △AON ﹣S △ABP ﹣S △PNC =32 3﹣12•(24﹣2t )•4 3﹣12•[8﹣(t ﹣4)]•4 3﹣12•(t ﹣4)•32•(2t ﹣16)=﹣ 32t 2+12 3t ﹣56 3.。
2018湖北省黄冈市中考数学试卷(含答案解析版)资料讲解

2018年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1.(3分)(2018•黄冈)﹣的相反数是()A.﹣ B.﹣ C.D.2.(3分)(2018•黄冈)下列运算结果正确的是()A.3a3•2a2=6a6B.(﹣2a)2=﹣4a2C.tan45°=D.cos30°=3.(3分)(2018•黄冈)函数y=中自变量x的取值范围是()A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<14.(3分)(2018•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°5.(3分)(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.26.(3分)(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或2二、填空题(本题共8小题,每题小3分,共24分7.(3分)(2018•黄冈)实数16800000用科学记数法表示为.8.(3分)(2018•黄冈)因式分解:x3﹣9x=.9.(3分)(2018•黄冈)化简(﹣1)0+()﹣2﹣+=.10.(3分)(2018•黄冈)则a﹣=,则a2+值为.11.(3分)(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.12.(3分)(2018•黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.13.(3分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).14.(3分)(2018•黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)(2018•黄冈)求满足不等式组的所有整数解.16.(6分)(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(8分)(2018•黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.18.(7分)(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.19.(6分)(2018•黄冈)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(8分)(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.21.(7分)(2018•黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(8分)(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.23.(9分)(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112 z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(14分)(2018•黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.2018年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1.(3分)(2018•黄冈)﹣的相反数是()A.﹣ B.﹣ C.D.【考点】14:相反数.【专题】11 :计算题.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3分)(2018•黄冈)下列运算结果正确的是()A.3a3•2a2=6a6B.(﹣2a)2=﹣4a2C.tan45°=D.cos30°=【考点】49:单项式乘单项式;47:幂的乘方与积的乘方;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.【解答】解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选:D.【点评】考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.3.(3分)(2018•黄冈)函数y=中自变量x的取值范围是()A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<1【考点】E4:函数自变量的取值范围.【专题】53:函数及其图象.【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:,解得x≥﹣1且x≠1,故选:A.【点评】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.4.(3分)(2018•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°【考点】KG:线段垂直平分线的性质.【专题】17 :推理填空题.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(3分)(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【考点】KP:直角三角形斜边上的中线.【专题】55:几何图形.【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.【点评】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=5.6.(3分)(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a 的值为()A.﹣1 B.2 C.0或2 D.﹣1或2【考点】H7:二次函数的最值.【专题】535:二次函数图象及其性质.【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x ≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.二、填空题(本题共8小题,每题小3分,共24分7.(3分)(2018•黄冈)实数16800000用科学记数法表示为 1.68×107.【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:16800000=1.68×107.故答案为:1.68×107.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(3分)(2018•黄冈)因式分解:x3﹣9x=x(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.9.(3分)(2018•黄冈)化简(﹣1)0+()﹣2﹣+=﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.【解答】解:原式=1+4﹣3﹣3=﹣1.故答案为:﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.(3分)(2018•黄冈)则a﹣=,则a2+值为8.【考点】6B:分式的加减法.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案.【解答】解:∵a﹣=∴(a﹣)2=6∴a2﹣2+=6∴a2+=8故答案为:8【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.11.(3分)(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=2.【考点】MA:三角形的外接圆与外心;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】连接BD.在Rt△ADB中,求出AB,再在Rt△ACB中求出AC即可解决问题;【解答】解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(3分)(2018•黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16.【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【专题】11 :计算题;523:一元二次方程及应用;552:三角形.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.【点评】本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13.(3分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20 cm(杯壁厚度不计).【考点】KV:平面展开﹣最短路径问题.【专题】27 :图表型.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14.(3分)(2018•黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.【考点】X6:列表法与树状图法;H3:二次函数的性质.【专题】11 :计算题.【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a<0,b>0的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,满足a<0,b>0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,所以该二次函数图象恰好经过第一、二、四象限的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)(2018•黄冈)求满足不等式组的所有整数解.【考点】CC:一元一次不等式组的整数解.【专题】1 :常规题型.【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可.【解答】解:解不等式x﹣3(x﹣2)≤8,得:x≥﹣1,解不等式x﹣1<3﹣x,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1.【点评】本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.16.(6分)(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【考点】9A:二元一次方程组的应用.【专题】1 :常规题型.【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.17.(8分)(2018•黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有180人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×=216°,故答案为:50、216°;(2)B类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;(4)列表如下:女1女2女3男1男2女1﹣﹣﹣女2女1女3女1男1女1男2女1女2女1女2﹣﹣﹣女3女2男1女2男2女2女3女1女3女2女3﹣﹣﹣男1女3男2女3男1女1男1女2男1女3男1﹣﹣﹣男2男1男2女1男2女2男2女3男2男1男2﹣﹣﹣所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.18.(7分)(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.【考点】MC:切线的性质;M5:圆周角定理.【专题】14 :证明题.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠A,∴△AOP∽△ABD,∴=,即=,∴BP=7.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.19.(6分)(2018•黄冈)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.【考点】GB:反比例函数综合题.【专题】153:代数几何综合题.【分析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;(2)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.【解答】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得y==6.则B(6,2).综上所述,k的值是12,B点的坐标是(6,2).(2)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).【点评】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(2)题时,采用了“数形结合”和“分类讨论”的数学思想.20.(8分)(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【专题】552:三角形.【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;(2)只要证明FB⊥AD即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∵BC=BF,CD=DE,∴BF=AD,AB=DE,∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,∴∠ADE=∠ABF,∴△ABF≌△EDA.(2)证明:延长FB交AD于H.∵AE⊥AF,∴∠EAF=90°,∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠FAH=90°,∴∠FAH+∠AFB=90°,∴∠AHF=90°,即FB⊥AD,∵AD∥BC,∴FB⊥BC.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,学会添加常用辅助线,属于中考常考题型.21.(7分)(2018•黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【专题】552:三角形.【分析】(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)由相似三角形△ABC∽△ECD的对应边成比例解答.【解答】解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC===20(米)答:坡底C点到大楼距离AC的值是20米.(2)设CD=2x,则DE=x,CE=x,在Rt△ABC中,∠ABC=30°,则BC===60(米),在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴60﹣x=20+x,∴x=40﹣60.∴CD的长为(80﹣120)米.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.22.(8分)(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.【考点】H5:二次函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【专题】15 :综合题.【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立化简可得:x 2﹣(4+k )x ﹣1=0, ∴△=(4+k )2+4>0,故直线l 与该抛物线总有两个交点; (2)当k=﹣2时, ∴y=﹣2x +1过点A 作AF ⊥x 轴于F ,过点B 作BE ⊥x 轴于E , ∴联立解得:或∴A (1﹣,2﹣1),B (1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x +1与x 轴的交点C 为(,0)∴OC=∴S △AOB =S △AOC +S △BOC=OC•AF +OC•BE=OC (AF +BE )=××(2﹣1+1+2)=【点评】本题考查二次函数的综合问题,涉及解一元二次方程组,根的判别式,三角形的面积公式等知识,综合程度较高.23.(9分)(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112 z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?【考点】HE:二次函数的应用.【专题】12 :应用题.【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决;(2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.【解答】解;(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z=kx+b,,得,即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=﹣x+20,当10≤x≤12时,z=10,由上可得,z=;(2)当1≤x≤8时,w=(x+4)(﹣x+20)=﹣x2+16x+80,当x=9时,w=(﹣9+20)×(﹣9+20)=121,当10≤x≤12时,w=(﹣x+20)×10=﹣10x+200,由上可得,w=;(3)当1≤x≤8时,w=﹣x2+16x+80=﹣(x﹣8)2+144,∴当x=8时,w取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=﹣10x+200,则当x=10时,w取得最大值,此时w=100,由上可得,当x为8时,月利润w有最大值,最大值144万元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.24.(14分)(2018•黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.【考点】LO:四边形综合题.【专题】25 :动点型.【分析】(1)解直角三角形求出PM,QM即可解决问题;(2)根据点P、N的路程之和=24,构建方程即可解决问题,;(3)分三种情形考虑问题即可解决问题;【解答】解:(1)当t=2时,OM=2,在Rt△OPM中,∠POM=60°,∴PM=OM•tan60°=2,在Rt△OMQ中,∠QOM=30°,∴QM=OM•tan30°=,∴PQ=CN﹣QM=2﹣=.(2)由题意:8+(t﹣4)+2t=24,解得t=.(3)①当0<x<4时,S=•2t•4=4t.②当4≤x<时,S=×[8﹣(t﹣4)﹣(2t﹣8)]×4=40﹣6t.③当≤x<8时.S=×[(t﹣4)+(2t﹣8)﹣8]×4=6t﹣40.④当8≤x ≤12时,S=S 菱形ABCO ﹣S △AON ﹣S △ABP =32﹣•(24﹣2t )•4﹣•[8﹣(t ﹣4)]•4=6t ﹣40.【点评】本题考查四边形综合题、解直角三角形、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。
(完整版)2018年湖北省黄冈市中考数学试卷含答案解析(Word版)

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年湖北省黄冈市中考数学试卷(含答案解析版)

2018年XX省黄冈市中考数学试卷一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1.(3分)(2018?黄冈)﹣的相反数是()A.﹣B.﹣C.D.2.(3分)(2018?黄冈)下列运算结果正确的是()A.3a3?2a2=6a6B.(﹣2a)2=﹣4a2C.tan45°= D.cos30°=3.(3分)(2018?黄冈)函数y= 中自变量x的取值X围是()A.x≥﹣1且x≠1B.x≥﹣1C.x≠1D.﹣1≤x<14.(3分)(2018?黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°5.(3分)(2018?黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.26.(3分)(2018?黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2 D.﹣1或2第1页(共28页)二、填空题(本题共8小题,每题小3分,共24分7.(3分)(2018?黄冈)实数16800000用科学记数法表示为.8.(3分)(2018?黄冈)因式分解:x3﹣9x= ..(分)(2018?黄冈)化简(﹣1)0+()﹣2﹣+=.9310.(3分)(2018?黄冈)则a﹣= ,则a2+ 值为.11.(3分)(2018?黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.12.(3分)(2018?黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.13.(3分)(2018?黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).14.(3分)(2018?黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)(2018?黄冈)求满足不等式组的所有整数解.<第2页(共28页)16.(6分)(2018?黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(8分)(2018?黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.18.(7分)(2018?黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.第3页(共28页)19.(6分)(2018?黄冈)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(8分)(2018?黄冈)如图,在?ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.21.(7分)(2018?黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.第4页(共28页)(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(8分)(2018?黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.23.(9分)(2018?黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y= ,为整数,每件产品的利润z(元)与月份x(月)的,为整数关系如下表:x 1 2 3 4 5 6 7 8 9 10 11 12 z 19 18 17 16 15 14 13 12 11 10 10 10 (1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w (万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(14分)(2018?黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;第5页(共28页)(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值X围.第6页(共28页)2018年XX省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1.(3分)(2018?黄冈)﹣的相反数是()A.﹣B.﹣C.D.【考点】14:相反数.【专题】11:计算题.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3分)(2018?黄冈)下列运算结果正确的是()A.3a3?2a2=6a6B.(﹣2a)2=﹣4a2C.tan45°=D.cos30°=【考点】49:单项式乘单项式;47:幂的乘方与积的乘方;T5:特殊角的三角函数值.【专题】11:计算题.【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.【解答】解:A、原式=6a5,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选:D.第7页(共28页)【点评】考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.3.(3分)(2018?黄冈)函数y= 中自变量x的取值X围是()A.x≥﹣1且x≠1B.x≥﹣1C.x≠1D.﹣1≤x<1【考点】E4:函数自变量的取值X围.【专题】53:函数及其图象.【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:,解得x≥﹣1且x≠1,故选:A.【点评】本题考查了函数自变量的取值X围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.4.(3分)(2018?黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°【考点】KG:线段垂直平分线的性质.【专题】17:推理填空题.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,第8页(共28页)∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(3分)(2018?黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.2【考点】KP:直角三角形斜边上的中线.【专题】55:几何图形.【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD= ,故选:C.【点评】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=5.第9页(共28页)6.(3分)(2018?黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2 D.﹣1或2【考点】H7:二次函数的最值.【专题】535:二次函数图象及其性质.【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.二、填空题(本题共8小题,每题小3分,共24分7.(3分)(2018?黄冈)实数16800000用科学记数法表示为1.68×107.【考点】1I:科学记数法—表示较大的数.【专题】17:推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:16800000=1.68×107.故答案为:1.68×107.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(3分)(2018?黄冈)因式分解:x3﹣9x= x(x+3)(x﹣3).第10页(共28页)【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底..(分)(2018?黄冈)化简(﹣1)0+()﹣2﹣+=﹣1.93【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1:常规题型.【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.【解答】解:原式=1+4﹣3﹣3=﹣1.故答案为:﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.(3分)(2018?黄冈)则a﹣=,则a2+值为8.【考点】6B:分式的加减法.【专题】11:计算题.【分析】根据分式的运算法则即可求出答案.【解答】解:∵a﹣=∴(a﹣)2=6∴a2﹣2+=6∴a2+=8故答案为:8第11页(共28页)【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.11.(3分)(2018?黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=2.【考点】MA:三角形的外接圆与外心;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】连接BD.在Rt△ADB中,求出AB,再在Rt△ACB中求出AC即可解决问题;【解答】解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB?cos60°=2,故答案为2.【点评】本题考查三角形的外接圆与外心,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(3分)(2018?黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16.【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.第12页(共28页)【专题】11:计算题;523:一元二次方程及应用;552:三角形.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.2【解答】解:解方程x﹣10x+21=0得x1=3、x2=7,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.【点评】本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的X围是:大于已知的两边的差,而小于两边的和.13.(3分)(2018?黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【考点】KV:平面展开﹣最短路径问题.【专题】27:图表型.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:第13页(共28页)将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==(cm).=20故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14.(3分)(2018?黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.【考点】X6:列表法与树状图法;H3:二次函数的性质.【专题】11:计算题.【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a<0,b>0的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,满足a<0,b>0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,所以该二次函数图象恰好经过第一、二、四象限的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事第14页(共28页)件A或事件B的概率.也考查了一次函数的性质.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)(2018?黄冈)求满足不等式组的所有整数解.<【考点】CC:一元一次不等式组的整数解.【专题】1:常规题型.【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可.【解答】解:解不等式x﹣3(x﹣2)≤8,得:x≥﹣1,解不等式x﹣1<3﹣x,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1.【点评】本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的X围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.16.(6分)(2018?黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【考点】9A:二元一次方程组的应用.【专题】1:常规题型.【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根第15页(共28页)据题目给出的条件,找出合适的等量关系,列出方程组再求解.17.(8分)(2018?黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有180人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】1:常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对第16页(共28页)应的扇形圆心角的度数为360°×=216°,故答案为:50、216°;(2)B类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;(4)列表如下:女1 女2 女3 男1 男2女1﹣﹣﹣女2女1女3女1男1女1男2女1女2女1女2 ﹣﹣﹣女3女2 男1女2 男2女2女3女1女3 女2女3 ﹣﹣﹣男1女3 男2女3男1 女1男1 女2男1 女3男1 ﹣﹣﹣男2男1男2女1男2女2男2女3男2男1男2﹣﹣﹣所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.18.(7分)(2018?黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.【考点】MC:切线的性质;M5:圆周角定理.【专题】14:证明题.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠A,∴△AOP∽△ABD,∴=,即=,∴BP=7.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.19.(6分)(2018?黄冈)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.【考点】GB:反比例函数综合题.【专题】153:代数几何综合题.【分析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;(2)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.第19页(共28页)【解答】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得y= =6.则B(6,2).综上所述,k的值是12,B点的坐标是(6,2).(2)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,yA﹣yD=yB﹣yC即4﹣yD=2﹣0,故yD=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,yD′﹣yA=yB﹣yC即yD﹣4=2﹣0,故yD′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.∵A(3,4)、B(6,2)、C(6,0),∴xD″﹣xB=xC﹣xA即xD″﹣6=6﹣3,故xD″=9.yD″﹣yB=yC﹣yA即yD″﹣2=0﹣4,故yD″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).【点评】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(2)题时,采用了“数形结合”和“分类讨论”的数学思想.20.(8分)(2018?黄冈)如图,在?ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【专题】552:三角形.【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;(2)只要证明FB⊥AD即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∵BC=BF,CD=DE,∴BF=AD,AB=DE,∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,∴∠ADE=∠ABF,∴△ABF≌△EDA.(2)证明:延长FB交AD于H.第21页(共28页)∵AE⊥AF,∴∠EAF=90°,∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠FAH=90°,∴∠FAH+∠AFB=90°,∴∠AHF=90°,即FB⊥AD,∵AD∥BC,∴FB⊥BC.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,学会添加常用辅助线,属于中考常考题型.21.(7分)(2018?黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.第22页(共28页)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【专题】552:三角形.【分析】(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)由相似三角形△ABC∽△ECD的对应边成比例解答.【解答】解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC== =20(米)答:坡底C点到大楼距离AC的值是20米.(2)设CD=2x,则DE=x,CE=x,在Rt△ABC中,∠ABC=30°,则BC== =60(米),在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴60﹣x=20+x,∴x=40﹣60.∴CD的长为(80﹣120)米.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.22.(8分)(2018?黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.第23页(共28页)【考点】H5:二次函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征.【专题】15:综合题.【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l与该抛物线总有两个交点;(2)当k=﹣2时,∴y=﹣2x+1过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,∴联立解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1与x轴的交点C为(,0)∴OC=∴S△AOB=S△AOC+S△BOC=OC?AF+OC?BE=OC(AF+BE)=××(2﹣1+1+2)=第24页(共28页)【点评】本题考查二次函数的综合问题,涉及解一元二次方程组,根的判别式,三角形的面积公式等知识,综合程度较高.23.(9分)(2018?黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y= ,为整数,每件产品的利润z(元)与月份x(月)的,为整数关系如下表:x 1 2 3 4 5 6 7 8 9 10 11 12 z 19 18 17 16 15 14 13 12 11 10 10 10 (1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w (万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?【考点】HE:二次函数的应用.【专题】12:应用题.【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决;(2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.【解答】解;(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z=kx+b,,得,第25页(共28页)即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=﹣x+20,当10≤x≤12时,z=10,由上可得,z= ,取整数;,取整数(2)当1≤x≤8时,w=(x+4)(﹣x+20)=﹣x2+16x+80,当x=9时,w=(﹣9+20)×(﹣9+20)=121,当10≤x≤12时,w=(﹣x+20)×10=﹣10x+200,,取整数由上可得,w=;,取整数(3)当1≤x≤8时,w=﹣x2+16x+80=﹣(x﹣8)2+144,∴当x=8时,w取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=﹣10x+200,则当x=10时,w取得最大值,此时w=100,由上可得,当x为8时,月利润w有最大值,最大值144万元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.24.(14分)(2018?黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;第26页(共28页)(3)设△APN的面积为S,求S与t的函数关系式及t的取值X围.【考点】LO:四边形综合题.【专题】25:动点型.【分析】(1)解直角三角形求出PM,QM即可解决问题;(2)根据点P、N的路程之和=24,构建方程即可解决问题,;(3)分三种情形考虑问题即可解决问题;【解答】解:(1)当t=2时,OM=2,在Rt△OPM中,∠POM=60°,∴PM=OM?tan60°=2,在Rt△OMQ中,∠QOM=30°,∴QM=OM?tan30°=,∴PQ=CN﹣QM=2﹣=.(2)由题意:8+(t﹣4)+2t=24,解得t=.(3)①当0<x<4时,S=?2t?4=4t.②当4≤x<时,S=×[8﹣(t﹣4)﹣(2t﹣8)]×4 =40 ﹣6 t.③当≤x<8时.S=×[(t﹣4)+(2t﹣8)﹣8]×4=6t﹣40.④当8≤x≤12时,S=S菱形ABCO﹣S△AON﹣S△ABP ﹣(﹣)?4﹣﹣=32 ? 242t ?[8 (t﹣4)]?4 =6 t﹣40.【点评】本题考查四边形综合题、解直角三角形、三角形的面积等知识,解题的第27页(共28页)关键是学会用分类讨论的思想思考问题,属于中考常考题型.第28页(共28页)。
2018年湖北省黄冈市中考数学试题(含答案解析)

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年黄冈市中考数学试卷(含答案解析版)

2018年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1.(3分)(2018•黄冈)﹣23的相反数是( )A .﹣32B .﹣23C .23D .322.(3分)(2018•黄冈)下列运算结果正确的是( )A .3a 3•2a 2=6a 6B .(﹣2a )2=﹣4a 2C .tan45°=√22D .cos30°=√323.(3分)(2018•黄冈)函数y=√x+1x−1中自变量x 的取值范围是( )A .x ≥﹣1且x ≠1B .x ≥﹣1C .x ≠1D .﹣1≤x <14.(3分)(2018•黄冈)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B=60°,∠C=25°,则∠BAD 为( )A .50°B .70°C .75°D .80°5.(3分)(2018•黄冈)如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=( )A .2B .3C .4D .2√36.(3分)(2018•黄冈)当a ≤x ≤a +1时,函数y=x 2﹣2x +1的最小值为1,则a 的值为( ) A .﹣1 B .2 C .0或2 D .﹣1或2二、填空题(本题共8小题,每题小3分,共24分7.(3分)(2018•黄冈)实数16800000用科学记数法表示为 . 8.(3分)(2018•黄冈)因式分解:x 3﹣9x= .9.(3分)(2018•黄冈)化简(√2﹣1)0+(12)﹣2﹣√9+√−273= .10.(3分)(2018•黄冈)则a ﹣1a =√6,则a 2+1a2值为 .11.(3分)(2018•黄冈)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC= .12.(3分)(2018•黄冈)一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x +21=0的根,则三角形的周长为 .13.(3分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 cm (杯壁厚度不计).14.(3分)(2018•黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax 2+bx +1中a ,b 的值,则该二次函数图象恰好经过第一、二、四象限的概率为 .三、解答题(本题共10题,满分78分(x -2)≤815.(5分)(2018•黄冈)求满足不等式组{x −3(x −2)≤812x −1<3−32x 的所有整数解.16.(6分)(2018•黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(8分)(2018•黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.18.(7分)(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.19.(6分)(2018•黄冈)如图,反比例函数y=kx(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(8分)(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.21.(7分)(2018•黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(8分)(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.23.(9分)(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y={x+4(1≤x≤8,x为整数)−x+20(9≤x≤12,x为整数),每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112 z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(14分)(2018•黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.2018年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)1.(3分)(2018•黄冈)﹣23的相反数是( )A .﹣32B .﹣23C .23D .32【考点】14:相反数. 【专题】11 :计算题.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣23的相反数是23.故选:C .【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3分)(2018•黄冈)下列运算结果正确的是( )A .3a 3•2a 2=6a 6B .(﹣2a )2=﹣4a 2C .tan45°=√22D .cos30°=√32【考点】49:单项式乘单项式;47:幂的乘方与积的乘方;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.【解答】解:A 、原式=6a 5,故本选项错误; B 、原式=4a 2,故本选项错误; C 、原式=1,故本选项错误;D 、原式=√32,故本选项正确.故选:D .【点评】考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.3.(3分)(2018•黄冈)函数y=√x+1x−1中自变量x 的取值范围是( ) A .x ≥﹣1且x ≠1 B .x ≥﹣1 C .x ≠1 D .﹣1≤x <1【考点】E4:函数自变量的取值范围. 【专题】53:函数及其图象.【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分. 【解答】解:根据题意得到:{x +1≥0x −1≠0,解得x ≥﹣1且x ≠1, 故选:A .【点评】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.4.(3分)(2018•黄冈)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B=60°,∠C=25°,则∠BAD 为( )A .50°B .70°C .75°D .80°【考点】KG :线段垂直平分线的性质. 【专题】17 :推理填空题.【分析】根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC ,计算即可. 【解答】解:∵DE 是AC 的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(3分)(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.2√3【考点】KP:直角三角形斜边上的中线.【专题】55:几何图形.【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=√CE2−DE2=√52−32=4,故选:C.【点评】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=5.6.(3分)(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a 的值为()A.﹣1B.2C.0或2D.﹣1或2【考点】H7:二次函数的最值.【专题】535:二次函数图象及其性质.【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x ≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.二、填空题(本题共8小题,每题小3分,共24分7.(3分)(2018•黄冈)实数16800000用科学记数法表示为 1.68×107.【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:16800000=1.68×107.故答案为:1.68×107.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(3分)(2018•黄冈)因式分解:x3﹣9x=x(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.9.(3分)(2018•黄冈)化简(√2﹣1)0+(12)﹣2﹣√9+√−273=﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.【解答】解:原式=1+4﹣3﹣3=﹣1.故答案为:﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.(3分)(2018•黄冈)则a﹣1a =√6,则a2+1a2值为8.【考点】6B:分式的加减法.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案.【解答】解:∵a﹣1a=√6∴(a﹣1a)2=6∴a2﹣2+1a=6∴a2+1a2=8故答案为:8【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.11.(3分)(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=2√3.【考点】MA:三角形的外接圆与外心;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】连接BD.在Rt△ADB中,求出AB,再在Rt△ACB中求出AC即可解决问题;【解答】解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4√3,∴AC=AB•cos60°=2√3,故答案为2√3.【点评】本题考查三角形的外接圆与外心,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(3分)(2018•黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16.【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【专题】11 :计算题;523:一元二次方程及应用;552:三角形.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.【点评】本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.13.(3分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20 cm(杯壁厚度不计).【考点】KV:平面展开﹣最短路径问题.【专题】27 :图表型.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离,A′B=√A′D 2+BD 2=√162+122=20(cm ). 故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14.(3分)(2018•黄冈)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax 2+bx +1中a ,b 的值,则该二次函数图象恰好经过第一、二、四象限的概率为 16. 【考点】X6:列表法与树状图法;H3:二次函数的性质.【专题】11 :计算题.【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a <0,b >0的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,满足a <0,b >0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,所以该二次函数图象恰好经过第一、二、四象限的概率=212=16. 故答案为14. 【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了一次函数的性质.三、解答题(本题共10题,满分78分(x -2)≤815.(5分)(2018•黄冈)求满足不等式组{x −3(x −2)≤812x −1<3−32x 的所有整数解. 【考点】CC :一元一次不等式组的整数解.【专题】1 :常规题型.【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可.【解答】解:解不等式x ﹣3(x ﹣2)≤8,得:x ≥﹣1,解不等式12x ﹣1<3﹣32x ,得:x <2, 则不等式组的解集为﹣1≤x <2,所以不等式组的整数解为﹣1、0、1.【点评】本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.16.(6分)(2018•黄冈)在端午节来临之际,某商店订购了A 型和B 型两种粽子,A 型粽子28元/千克,B 型粽子24元/千克,若B 型粽子的数量比A 型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【考点】9A :二元一次方程组的应用.【专题】1 :常规题型.【分析】订购了A 型粽子x 千克,B 型粽子y 千克.根据B 型粽子的数量比A 型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【解答】解:设订购了A 型粽子x 千克,B 型粽子y 千克,根据题意,得{y =2x −2028x +24y =2560, 解得{x =40y =60.答:订购了A 型粽子40千克,B 型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.17.(8分)(2018•黄冈)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有180人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×3050=216°, 故答案为:50、216°;(2)B 类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A 类有1800×10%=180人,故答案为:180;(4)列表如下:女1 女2 女3 男1 男2女1 ﹣﹣﹣ 女2女1 女3女1 男1女1 男2女1女2 女1女2 ﹣﹣﹣ 女3女2 男1女2 男2女2女3 女1女3 女2女3 ﹣﹣﹣ 男1女3 男2女3男1 女1男1 女2男1 女3男1 ﹣﹣﹣ 男2男1男2 女1男2 女2男2 女3男2 男1男2 ﹣﹣﹣所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为820=25. 【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的应用.解题时注意:概率=所求情况数与总情况数之比.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.18.(7分)(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.【考点】MC:切线的性质;M5:圆周角定理.【专题】14 :证明题.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠A,∴△AOP∽△ABD,∴APAD =AOAB,即1+BP4=21,∴BP=7.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.19.(6分)(2018•黄冈)如图,反比例函数y=kx(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.【考点】GB:反比例函数综合题.【专题】153:代数几何综合题.【分析】(1)将A点的坐标代入反比例函数y=kx求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;(2)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.【解答】解:(1)把点A (3,4)代入y=k x(x >0),得 k=xy=3×4=12,故该反比例函数解析式为:y=12x. ∵点C (6,0),BC ⊥x 轴,∴把x=6代入反比例函数y=12x,得 y=122=6. 则B (6,2).综上所述,k 的值是12,B 点的坐标是(6,2).(2)①如图,当四边形ABCD 为平行四边形时,AD ∥BC 且AD=BC . ∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y A ﹣y D =y B ﹣y C 即4﹣y D =2﹣0,故y D =2.所以D (3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB 且AD′=CB . ∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y D ′﹣y A =y B ﹣y C 即y D ﹣4=2﹣0,故y D′=6. 所以D′(3,6).③如图,当四边形ACD″B 为平行四边形时,AC=BD″且AC=BD″. ∵A (3,4)、B (6,2)、C (6,0),∴x D″﹣x B =x C ﹣x A 即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B =y C ﹣y A 即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).【点评】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(2)题时,采用了“数形结合”和“分类讨论”的数学思想.20.(8分)(2018•黄冈)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【专题】552:三角形.【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;(2)只要证明FB⊥AD即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∵BC=BF,CD=DE,∴BF=AD,AB=DE,∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,∴∠ADE=∠ABF,∴△ABF≌△EDA.(2)证明:延长FB交AD于H.∵AE⊥AF,∴∠EAF=90°,∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠FAH=90°,∴∠FAH+∠AFB=90°,∴∠AHF=90°,即FB⊥AD,∵AD∥BC,∴FB⊥BC.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,学会添加常用辅助线,属于中考常考题型.21.(7分)(2018•黄冈)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【专题】552:三角形.【分析】(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)由相似三角形△ABC∽△ECD的对应边成比例解答.【解答】解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=ABtan60°=√3=20√3(米)答:坡底C点到大楼距离AC的值是20√3米.(2)设CD=2x,则DE=x,CE=√3x,在Rt△ABC中,∠ABC=30°,则BC=ABsin60°=√33=60√3(米),在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴60﹣x=20√3+√3x,∴x=40√3﹣60.∴CD的长为(80√3﹣120)米.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.22.(8分)(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.【考点】H5:二次函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征. 【专题】15 :综合题.【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A 、B 的坐标,再求出直线y=﹣2x +1与x 轴的交点C ,然后利用三角形的面积公式即可求出答案. 【解答】解:(1)联立{y =kx +1y =x 2−4x化简可得:x 2﹣(4+k )x ﹣1=0, ∴△=(4+k )2+4>0,故直线l 与该抛物线总有两个交点; (2)当k=﹣2时, ∴y=﹣2x +1过点A 作AF ⊥x 轴于F ,过点B 作BE ⊥x 轴于E , ∴联立{y =x 2−4xy =−2x +1解得:{x =1+√2y =−1−2√2或{x =1−√2y =2√2−1∴A (1﹣√2,2√2﹣1),B (1+√2,﹣1﹣2√2) ∴AF=2√2﹣1,BE=1+2√2易求得:直线y=﹣2x +1与x 轴的交点C 为(12,0)∴OC=12∴S △AOB =S △AOC +S △BOC=12OC•AF +12OC•BE =12OC (AF +BE ) =12×12×(2√2﹣1+1+2√2) =√2【点评】本题考查二次函数的综合问题,涉及解一元二次方程组,根的判别式,三角形的面积公式等知识,综合程度较高.23.(9分)(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y (万件)与月份x (月)的关系为:y={x +4(1≤x ≤8,x 为整数)−x +20(9≤x ≤12,x 为整数),每件产品的利润z (元)与月份x (月)的关系如下表: x 1 2 3 4 5 6 7 8 9 10 11 12 z191817161514131211101010(1)请你根据表格求出每件产品利润z (元)与月份x (月)的关系式; (2)若月利润w (万元)=当月销售量y (万件)×当月每件产品的利润z (元),求月利润w (万元)与月份x (月)的关系式;(3)当x 为何值时,月利润w 有最大值,最大值为多少? 【考点】HE :二次函数的应用. 【专题】12 :应用题.【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决; (2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题. 【解答】解;(1)当1≤x ≤9时,设每件产品利润z (元)与月份x (月)的关系式为z=kx +b ,{k +b =192k +b =18,得{k =−1b =20,即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=﹣x+20,当10≤x≤12时,z=10,由上可得,z={−x+20(1≤x≤9,x取整数) 10(10≤x≤12,x取整数);(2)当1≤x≤8时,w=(x+4)(﹣x+20)=﹣x2+16x+80,当x=9时,w=(﹣9+20)×(﹣9+20)=121,当10≤x≤12时,w=(﹣x+20)×10=﹣10x+200,由上可得,w={−x2+16x+80(1≤x≤8,x取整数) 121(x=9)−10x+200(10≤x≤12,x取整数);(3)当1≤x≤8时,w=﹣x2+16x+80=﹣(x﹣8)2+144,∴当x=8时,w取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=﹣10x+200,则当x=10时,w取得最大值,此时w=100,由上可得,当x为8时,月利润w有最大值,最大值144万元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.24.(14分)(2018•黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN 的面积为S ,求S 与t 的函数关系式及t 的取值范围.【考点】LO :四边形综合题. 【专题】25 :动点型.【分析】(1)解直角三角形求出PM ,QM 即可解决问题; (2)根据点P 、N 的路程之和=24,构建方程即可解决问题,; (3)分三种情形考虑问题即可解决问题; 【解答】解:(1)当t=2时,OM=2, 在Rt △OPM 中,∠POM=60°, ∴PM=OM•tan60°=2√3, 在Rt △OMQ 中,∠QOM=30°,∴QM=OM•tan30°=2√33,∴PQ=CN ﹣QM=2√3﹣2√33=4√33.(2)由题意:8+(t ﹣4)+2t=24,解得t=203.(3)①当0<x <4时,S=12•2t•4√3=4√3t .②当4≤x <203时,S=12×[8﹣(t ﹣4)﹣(2t ﹣8)]×4√3=40√3﹣6√3t .③当203≤x <8时.S=12×[(t ﹣4)+(2t ﹣8)﹣8]×4√3=6√3t ﹣40√3.④当8≤x ≤12时,S=S 菱形ABCO ﹣S △AON ﹣S △ABP =32√3﹣12•(24﹣2t )•4√3﹣12•[8﹣(t ﹣4)]•4√3=6√3t ﹣40√3.【点评】本题考查四边形综合题、解直角三角形、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.。
2018年湖北省黄冈市中考数学试卷(含答案解析)-精品

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C=25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年湖北省中考数学真题试卷6套(含答案及名师解析)

2018年湖北省中考数学真题试卷6套(含答案及名师解析)2018年湖北省武汉市中考数学真题一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.(3分)计算3x2﹣x2的结果是()A.2B.2x2C.2x D.4x24.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6B.a2+a﹣6C.a2+6D.a2﹣a+66.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3B.4C.5D.68.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.9.(3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.201310.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.(3分)计算﹣的结果是.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.三、解答题(共8题,共72分)17.(8分)解方程组:18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(8分)如图,P A是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC 交AB于点E,且P A=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM ∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tan C的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m 的值及相应点P的坐标.【参考答案】一、选择题(共10小题,每小题3分,共30分)1.A【解析】温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.2.D【解析】∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.3.B【解析】3x2﹣x2=2x2,故选:B.4.B【解析】这组数据的众数和中位数分别42,38.故选:B.5.B【解析】(a﹣2)(a+3)=a2+a﹣6,故选:B.6.A【解析】点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.7.C【解析】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.8.C【解析】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.9.D【解析】设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.10.B【解析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解析】原式=+﹣=故答案为:12.0.9【解析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.13.【解析】原式=+=故答案为:14.30°或150°【解析】如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.15.216【解析】t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.16.【解析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.三、解答题(共8题,共72分)17.解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.18.证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.19.解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.20.解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.21.(1)证明:连接OP、OB.∵P A是⊙O的切线,∴P A⊥OA,∴∠P AO=90°,∵P A=PB,PO=PO,OA=OB,∴△P AO≌△PBO.∴∠P AO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵P A、PB都是切线,∴P A=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=P A=2a,∵△P AK∽△POA,∴P A2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.22.解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.23.解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠P AC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tan C==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.24.解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).2018年湖北省恩施州中考数学真题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣8的倒数是()A.﹣8B.8C.﹣D.2.(3分)下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1075.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1B.2C.3D.46.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.(3分)64的立方根为()A.8B.﹣8C.4D.﹣48.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3B.a<3C.a≥3D.a≤39.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.810.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.1212.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2B.3C.4D.5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程)13.(3分)因式分解:8a3﹣2ab2=.14.(3分)函数y=的自变量x的取值范围是.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于O.求证:AD与BE互相平分.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【参考答案】一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C【解析】根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.2.B【解析】A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.3.D【解析】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.B【解析】0.000000823=8.23×10﹣7.故选:B.5.B【解析】∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:B.6.A【解析】∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.7.C【解析】64的立方根是4.故选:C.8.D【解析】解不等式2(x﹣1)>4,得:x>3,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选:D.9.A【解析】由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.10.C【解析】设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.11.D【解析】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.12.B【解析】∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程)13.2a(2a+b)(2a﹣b)【解析】8a3﹣2ab2=2a(4a2﹣b2)=2a(2a+b)(2a﹣b).故答案为:2a(2a+b)(2a﹣b).14.x≥﹣且x≠3【解析】根据题意得2x+1≥0,x﹣3≠0,解得x≥﹣且x≠3.故答案为:x≥﹣且x≠3.15.π【解析】∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;∴点B所经过的路径与直线l所围成的封闭图形的面积=+=.故答案为π.16.1946【解析】2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.三、解答题(本大题共有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:•(1+)÷=••=,把x=2﹣1代入得,原式===.18.证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.19.解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.20.解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.21.解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)当y=2时,2=,即x=3,∴D(3,2),∴CD=3﹣1=2,∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),∴△CDE的面积=×2×(6+2)=8.22.解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.23.(1)证明:如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)解:设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)解:PF=FD,理由是:∵∠APD=∠ABE=90°,∠P AD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠P AD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.24.解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.2018年湖北省黄石市中考数学真题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(3分)下列各数是无理数的是()A.1B.﹣0.6C.﹣6D.π2.(3分)太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×108C.0.696×107D.6.96×1053.(3分)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列计算中,结果是a7的是()A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a45.(3分)如图,该几何体的俯视图是()A.B.C.D.6.(3分)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)7.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.(3分)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.9.(3分)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B 两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<410.(3分)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD 沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.二、填空题(本大题给共6小题,每小题3分,共18分)11.(3分)分解因式:x3y﹣xy3=.12.(3分)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为13.(3分)分式方程=1的解为14.(3分)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是米.(结果保留根号)15.(3分)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为16.(3分)小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指2石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或验算步骤)17.(7分)计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|18.(7分)先化简,再求值:.其中x=sin60°.19.(7分)解不等式组,并求出不等式组的整数解之和.20.(8分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.21.(8分)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.22.(8分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?23.(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C240D x260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m >0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.24.(9分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.25.(10分)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.【参考答案】一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.D【解析】A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.2.B【解析】696000千米=696000000米=6.96×108米,故选:B.3.C【解析】A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.4.B【解析】A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=;故选:B.5.A【解析】从几何体的上面看可得,故选:A.6.C【解析】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.7.A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.8.D【解析】连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.9.B【解析】解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.10.A【解析】∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x ﹣18,故选项A正确;故选:A.二、填空题(本大题给共6小题,每小题3分,共18分)11.xy(x+y)(x﹣y)【解析】x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).12.4π【解析】∵∠C=90°,CA=8,CB=6,∴AB==10,∴△ABC的内切圆的半径==2,∴△ABC内切圆的周长=π•22=4π.故答案为4π.13.x=0.5【解析】方程两边都乘以2(x2﹣1)得,8x+2﹣5x﹣5=2x2﹣2,解得x1=1,x2=0.5,检验:当x=0.5时,x﹣1=0.5﹣1=﹣0.5≠0,当x=1时,x﹣1=0,所以x=0.5是方程的解,故原分式方程的解是x=0.5.故答案为:x=0.514.100(1+)【解析】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tan A=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.故答案为100(1+).15.【解析】根据题意列表得:2345。
2018年黄冈市中考数学试卷含答案解析

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
湖北省黄冈市2018年中考数学试卷及参考答案

图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.
(1) 被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为. (2) 补全条形统计图; (3) 若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人; (4) 在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽 到的两个学生性别相同的概率. 18. 如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.
A . 50° B . 70° C . 75° D . 80° 5. 如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=( )
A.2B.3C.4D.2 6. 当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为( ) A . -1 B . 2 C . 0或2 D . -1或2
(1) 求证:△ABF≌△EDA; (2) 延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC. 21. 如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60 °,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.
(1) 求证:∠CBP=∠ADB. (2) 若OA=2,AB=1,求线段BP的长. 19. 如图,反比例函数y= (x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比 例函数图象于点B.
湖北省黄冈市2018年中考数学试卷(含解析)-推荐

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解. 21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
湖北省黄冈市中考数学试卷 含解析

黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为° ° ° °(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=36.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 或2 或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的)1. (2018·湖北黄冈)-32的相反数是A. -23B. -32C. 32D. 23【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。
一般地,任意的一个有理数a ,它的相反数是-a 。
a 本身既可以是正数,也可以是负数,还可以是零。
本题根据相反数的定义,可得答案. 【解答】解:因为32与-32是符号不同的两个数 所以-32的相反数是32.故选C.【点评】本题考查了绝对值的性质,如果用字母a 表示有理数,则数a 绝对值要由字母a 本身的取值来确定:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ; ③当a 是零时,a 的绝对值是零.2. (2018·湖北黄冈)下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22D. cos30°=23【考点】同底数幂的乘法与除法、幂的乘方,以及特殊角的三角函数值。
【分析】根据同底数幂的乘法、幂的乘方的运算法则以及特殊角的三角函数值计算即可. 【解答】解:A. 根据同底数幂的乘法,3a 3·2a 2=6a 5,故本选项错误;B. 根据幂的乘方,(-2a)2= 4a 2,故本选项错误C .根据特殊角的三角函数值,tan45°=1,故本选项错误;D .根据特殊角的三角函数值,cos30°=23,故本选项正确.故选D .【点评】本题考查了同底数幂的乘法与除法、幂的乘方,以及特殊角的三角函数值,熟知运算法则、熟记特殊角的三角函数值是钥匙的关键。
3. (2018·湖北黄冈)函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <1 【考点】函数自变量的取值范围。
【分析】自变量x 的取值范围必须使函数有意义,1+x 中x+1≥0;分式作为除式,则x-1≠0.综上即可得解。
【解答】解:依题意,得 x+1≥0x-1≠0∴x ≥-1且x≠1. 故选A.【点评】本题考查了函数自变量的取值范围。
要使二次根式有意义,必须使被开方数为非负数;分式的分母不能为零。
4. (2018·湖北黄冈)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)【考点】垂直平分线的性质,三角形的内角和定理。
【分析】由三角形的内角和定理,得∠BAC 的度数,又由垂直平分线的性质,知∠C =∠DAC=25°,从而得出∠BAD 的度数。
【解答】解:由三角形的内角和定理,得∠BAC=180°-∠B-∠C=180°-60°-25°=95°。
又由垂直平分线的性质,知∠C =∠DAC=25°,∴∠BAC=∠BAD+∠DAC=∠BAD+∠C=∠BAD+25°=9 ∴∠BAD=95°-25°=70°. 故选B.【点评】本题考查了垂直平分线的性质,三角形的内角和定理。
熟练掌握性质和定理是解题的关键。
5. (2018·湖北黄冈)如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD= A.2 B.3 C.4 D.23(第5题图)【考点】直角三角形斜边上的中线的性质,勾股定理。
【分析】由直角三角形斜边上的中线等于斜边的一半,可得CE=AE=5,又知AD=2,可得DE=AE-AD=5-2=3,在Rt△CDE中,运用勾股定理可得直角边CD的长。
【解答】解:在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,∴CE=AE=5,又∵AD=2,∴DE=AE-AD=5-2=3,∵CD为AB边上的高∴∠CDE=90°,∴△CDE 为Rt△∴CD=DECE22-=3522-=4故选C.【点评】本题考查了直角三角形斜边上的中线的性质,勾股定理。
得出DE的长是解题的关键。
6.(2018·湖北黄冈)当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为A.-1B.2C.0或2D.-1或2【考点】不等式组,二次函数的最值。
【分析】由题意知函数y=x2-2x+1≥1,可得出x的取值范围,再由a≤x≤a+1可得出a的值。
【解答】解:∵当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,∴y=x2-2x+1≥1,即x2-2x≥0,∴x≥2或x≤0,当x≥2时,由a≤x,可得a=2,当x≤0时,由x≤a+1,可得a+1=0,即a=-1综上,a的值为2或-1,故选D.【点评】本题考查了不等式组. 弄清题意,解不等式组是关键。
第Ⅱ卷(非选择题共102分)二、填空题(本题共8小题,每小题3分,共24分)7.(2018·湖北黄冈)实数16 800 000用科学计数法表示为______________________.【考点】用科学记数法表示较大的数。
【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于16 800 000有8位,所以可以确定n=8-1=7.【解答】解:16 800 000=1.68×107. 故答案为:1.68×107.【点评】本题考查了科学记数法。
把一个数M 记成a×10n (1≤|a|<10,n 为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n 的值为a 的整数位数减1;(2)当|a|<1时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.8. (2018·湖北黄冈)因式分解:x 3-9x=___________________________. 【考点】因式分解。
【分析】先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:x 3-9x=x (x 2-9),=x (x+3)(x-3).故答案为:x (x+3)(x-3).【点评】本题考查了因式分解-提取公因式法和公式法的综合运用.9. (2018·湖北黄冈)化简(2-1)0+(21)-2-9+327-=________________________. 【考点】实数的运算。
【分析】根据零次幂、副整数指数幂的运算法则,以及平方根,立方根计算即可。
【解答】解:(2-1)0+(21)-2-9+327-=1+22-3-3= -1. 故答案为:-1.【点评】本题考查了实数的运算。
掌握零次幂、副整数指数幂、平方根、立方根的运算法则是关键。
10. (2018·湖北黄冈)若a-a1=6,则a 2+a21值为_______________________. 【考点】完全平方公式.【分析】根据完全平方公式,对已知的算式和各选项分别整理,即可得出答案. 【解答】解:∵a-a1=6, ∴(a-)2=6,a 2+-2=6,∴a 2+=8,故答案为:8.【点评】本题考查了完全平方公式。
熟记公式的几个变形公式对解题大有帮助。
11. (2018·湖北黄冈)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)【考点】圆,角平分线,30°角所对的直角边等于的一半,勾股定理. 【分析】连结BD ,根据30°角所对的直角边等于的一半,易得出BD=AC=21AB ;再通过勾股定理可求得AB 的长,从而得出AC 的长。
【解答】解:连结BD ,∵AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB , ∴∠ABC=∠DAB=30°∴在Rt △ABC 和 Rt △ABD 中,BD=AC=21AB 在Rt △ABD 中,AB 2=BD 2+AD 2,即AB 2=(21AB )2+62, ∴AB=43,∴AC=23.故答案为:23.【点评】本题考查了圆,角平分线,30°角所对的直角边等于的一半,勾股定理. 熟练掌握定理是解题的关键。
12.(2018·湖北黄冈)一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.【考点】解一元二次方程,三角形三边的关系.【分析】将已知的方程x2-10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长,从而求得三角形的周长.【解答】解:x2-10x+21=0,因式分解得:(x-3)(x-7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2-10x+21=0的根,∴三角形的第三边为3或7,当三角形第三边为3时,3+3=6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为3,6,7,能构成三角形,则第三边的长为7.∴三角形的周长为: 3+6+7=16.故答案为:16.【点评】本题考查了利用因式分解法求解解一元二次方程,以及三角形三边的关系. 利用因式分解法求解解一元二次方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程来求解。
13.(2018·湖北黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A 处,则蚂蚁从外壁A处到内壁B处的最短距离为_________________cm(杯壁厚度不计).(第13题图)【考点】平面展开-最短路径问题.【分析】将圆柱体侧面展开,过B 作BQ ⊥EF 于Q ,作A 关于EH 的对称点A ′,连接A ′B 交EH 于P ,连接AP ,则AP+PB 就是蚂蚁到达蜂蜜的最短距离,求出A ′Q ,BQ ,根据勾股定理求出A ′B 即可.【解答】解:沿过A 的圆柱的高剪开,得出矩形EFGH ,过B 作BQ ⊥EF 于Q ,作A 关于EH 的对称点A ′,连接A ′B 交EH 于P ,连接AP ,则AP+PB 就是蚂蚁到达蜂蜜的最短距离,∵AE=A ′E ,A ′P=AP , ∴AP+PB=A ′P+PB=A ′B , ∵BQ=21×32cm=16cm ,A ′Q=14cm-5cm+3cm=12cm , 在Rt △A ′QB 中,由勾股定理得:A ′B=121622=20cm.故答案为:20.【点评】本题考查了平面展开-最短路径问题.将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14. (2018·湖北黄冈)在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________. 【考点】概率.【分析】首先利用列表法求得所有点的情况,再由二次函数图像恰好经过第一、二、四象限,即可求得答案. 【解答】解:列表得:∴一共有12种情况,∵若二次函数图像恰好经过第一、二、四象限,则△=b 2-4ac >0,且a >0, ∴符合要求的点有(1,-4),(2,-4)2个∴所有的二次函数图像恰好经过第一、二、四象限的概率为122=61. 本题考查了概率.当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.三、解答题 (本题共10题,满分78分)15. (2018·湖北黄冈)(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x 【考点】解不等式组.【分析】先求出不等式组的解集,再求出不等式组的整数解即可. 【解答】解:由x-3(x-2)≤8得:x ≥1; 由21x-1<3 -23x 得:x <2; ∴不等式组的解为:-1≤x <2所有整数解为:-1,0,1.【点评】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.16.(2018·湖北黄冈)(本题满分6分)在端午节来临之际,某商店订购了A型和B型两种粽子。