人教【数学】数学 圆的综合的专项 培优易错试卷练习题含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.
(1)求证:AC∥OD;
(2)如果DE⊥BC,求AC的长度.
【答案】(1)证明见解析;(2)2π.
【解析】
试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.
试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,
∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;
(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三
角形,∴∠AOC=60°,∴弧AC的长度=606
180
π⨯
=2π.
点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.
2.等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.
(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?
(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?
(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?
【答案】(1)52
-
;(2)52
-;(3)
2042
-
【解析】
分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;
(2)设运动的时间为t秒,根据题意得:CC′=2t,DD′=t,则C′D′=CD+DD′-CC′=4+t-2t=4-t,由第(1)的结论列式得出结果;
(3)求出相切的时间,进而得出B点移动的距离.
详解:(1)假设第一次相切时,△ABC移至△A′B′C′处,
如图1,A′C′与⊙O切于点E,连接OE并延长,交B′C′于F,
设⊙O与直线l切于点D,连接OD,则OE⊥A′C′,OD⊥直线l,
由切线长定理可知C′E=C′D,
设C′D=x,则C′E=x,
∵△ABC是等腰直角三角形,
∴∠A=∠ACB=45°,
∴∠A′C′B′=∠ACB=45°,
∴△EFC′是等腰直角三角形,
∴2x,∠OFD=45°,
∴△OFD也是等腰直角三角形,
∴OD=DF,
∴2x+x=1,则2-1,
∴CC′=BD-BC-C′D=5-1-2-1)2,
∴点C运动的时间为52
2
;
则经过522-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,
A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F ,
∵CC′=2t ,DD′=t ,
∴C′D′=CD+DD′-CC′=4+t -2t=4-t ,
由切线长定理得C′E=C′D′=4-t ,
由(1)得:4-t=2-1,
解得:t=5-2,
答:经过5-2秒△ABC 的边与圆第一次相切;
(3)由(2)得CC′=(2+0.5)t=2.5t ,DD′=t ,
则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t ,
由切线长定理得C′E=C′D′=4-1.5t ,
由(1)得:4-1.5t=2-1,
解得:t=10223
-, ∴点B 运动的距离为2×
10223-=20423-.
点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.
3.如图,△ABC 中,∠A=45°,D 是AC 边上一点,⊙O 经过D 、A 、B 三点,OD ∥BC . (1)求证:BC 与⊙O 相切;
(2)若OD=15,AE=7,求BE的长.
【答案】(1)见解析;(2)18.
【解析】
分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;
(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.
详解:(1)证明:连接OB.
∵∠A=45°,
∴∠DOB=90°.
∵OD∥BC,
∴∠DOB+∠CBO=180°.
∴∠CBO=90°.
∴直线BC是⊙O的切线.
(2)解:连接BD.则△ODB是等腰直角三角形,
∴∠ODB=45°,BD=OD=15,
∵∠ODB=∠A,∠DBE=∠DBA,
∴△DBE∽△ABD,
∴BD2=BE•BA,
∴(15)2=(7+BE)BE,
∴BE=18或﹣25(舍弃),
∴BE=18.
点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.
4.如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D 在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.
【答案】见解析
【解析】
试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得
OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.
试题解析:
图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.
证明如下:
∵AE是小⊙O的直径,
∴OA=OE.
连接OF,
∵BD与小⊙O相切于点F,
∴OF⊥BD.
∵BD是大圆O的弦,
∴DF=BF.
∵CE⊥BD,
∴CE∥OF,
∴AF=CF.
∴四边形ABCD是平行四边形.
∴AD=BC,AB=CD.
∵CE:AE=OF:AO,OF=AO,
∴AE=EC.
连接OD、OC,
∵OD=OC,
∴∠ODC=∠OCD.
∵∠AOD=∠ODC,∠EOC=∠OEC,
∴∠AOC=∠EOC,
∴△AOD≌△EOC,
∴AD=CE.
∴BC=AD=CE=AE.
【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.
5.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
解决问题:如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.
(1)使∠APB=30°的点P有_______个;
(2)若点P在y轴正半轴上,且∠APB=30°,求满足条件的点P的坐标;
(3)设sin∠APB=m,若点P在y轴上移动时, 满足条件的点P有4个,求m的取值范围.
【答案】(1)无数;(2)(0,370,37
+3)0﹤m﹤2 3 .
【解析】
试题分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.
(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标.
(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,由此即可求出m的范围.
试题解析:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.
在优弧AP1B上任取一点P,如图1,则∠APB=1
2
∠ACB=1
2
×60°=30°,∴使∠APB=30°的点P
有无数个.
故答案为:无数.
(2)点P在y轴的正半轴上,过点C作CG⊥AB,垂足为G,如图1.
∵点A(1,0),点B(5,0),∴OA=1,OB=5,∴AB=4.
∵点C为圆心,CG⊥AB,∴AG=BG=1
2
AB=2,∴OG=OA+AG=3.
∵△ABC是等边三角形,∴AC=BC=AB=4,∴CG=22
AC AG
-
=22
42
-
=23,∴点C的坐标为(3,23).
过点C作CD⊥y轴,垂足为D,连接CP2,如图1.∵点C的坐标为(3,23),∴CD=3,OD=23.
∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.
∵CP2=CA=4,CD=3,∴DP2=22
43
-=7.
∵点C为圆心,CD⊥P1P2,∴P1D=P2D=7,∴P1(0,23+7),P2(0,23﹣7).
(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.
理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH=
2
AE
得:当AE
最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.∵∠APB为锐角,∴sin∠APB随∠APB增大而增大,.
连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.
∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°,∴四边形OPEH是矩形,∴OP=EH,
PE=OH=3,∴EA=3.sin∠APB=sin∠AEH=2
3
,∴m的取值范围是
2
3
m
<<.
点睛:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.
6.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.
(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;
(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;
(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)
【答案】(1)3π;(2)27π;(3)3.
【解析】
试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;
(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.
试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,
AC BC AB ==,∴AC BC l l ==AB l =603180
π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;
(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,
由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =2
1203360
π⨯=3π,∴图形在运动过
程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;
(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,
AD =12AC =32,∴OI =AI =32
30AD cos DAI cos ∠=︒
=3,∴当它第1次回到起始位置时,点I 所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.
点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.
7.已知,ABC ∆内接于O ,点P 是弧AB 的中点,连接PA 、PB ;
(1)如图1,若AC BC =,求证:AB PC ⊥;
(2)如图2,若PA 平分CPM ∠,求证:AB AC =;
(3)在(2)的条件下,若24sin 25
BPC ∠=,8AC =,求AP 的值.
【答案】(1)见解析;(2)见解析5
【解析】
【分析】
(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.
(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.
(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得
sin sin BD BOD BPC OB
∠=∠=
,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值.
【详解】
解:(1)∵点P 是弧AB 的中点,如图1,
∴AP =BP ,
在△APC 和△BPC 中 AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩
,
∴△APC ≌△BPC (SSS ),
∴∠ACP =∠BCP ,
在△ACE 和△BCE 中
AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩
,
∴△ACE ≌△BCE (SAS ),
∴∠AEC =∠BEC ,
∵∠AEC +∠BEC =180°,
∴∠AEC =90°,
∴AB ⊥PC ;
(2)∵PA 平分∠CPM ,
∴∠MPA =∠APC ,
∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°,
∴∠ACB =∠MPA =∠APC ,
∵∠APC =∠ABC ,
∴∠ABC =∠ACB ,
∴AB =AC ;
(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,
由(2)得出AB =AC ,
∴AD 平分BC ,
∴点O 在AD 上,
连结OB ,则∠BOD =∠BAC ,
∵∠BPC =∠BAC ,
∴sin sin BOD BPC ∠=∠=
2425BD OB =, 设OB =25x ,则BD =24x ,
∴OD 22OB BD -7x ,
在Rt ABD 中,AD =25x +7x =32x ,BD =24x ,
∴AB 22AD BD +40x ,
∵AC =8,
∴AB =40x =8,
解得:x =0.2,
∴OB =5,BD =4.8,OD =1.4,AD =6.4,
∵点P 是AB 的中点,
∴OP 垂直平分AB ,
∴AE =12
AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE 223AO AE -=,
∴PE =OP ﹣OE =5﹣3=2,
在Rt APE ∆中,AP 22222425PE AE +=+=
【点睛】
本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.
8.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .
(1)求证:BC 是⊙O 的切线;
(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)
【答案】(1)证明见解析(2)2
3 3
π
-
【解析】
【分析】
(1)连接OD,只要证明OD∥AC即可解决问题;
(2)连接OE,OE交AD于K.只要证明△AOE是等边三角形即可解决问题.
【详解】
(1)连接OD.
∵OA=OD,∴∠OAD=∠ODA.
∵∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.
(2)连接OE,OE交AD于K.
∵AE DE
=,∴OE⊥AD.
∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE
是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE
2
6023
360
π⋅⋅
=-22
2
3
3
π
=.
【点睛】
本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.
9.如图1,AB为半圆O的直径,半径OP⊥AB,过劣弧AP上一点D作DC⊥AB于点C.连接DB,交OP于点E,∠DBA=22.5°.
⑴若OC=2,则AC的长为;
⑵试写出AC与PE之间的数量关系,并说明理由;
⑶连接AD并延长,交OP的延长线于点G,设DC=x,GP=y,请求出x与y之间的等量关系式. (请先补全图形,再解答)
【答案】⑴ 222-;⑵ 见解析;⑶ y =2x
【解析】
【分析】
(1)如图,连接OD ,则有∠AOD=45°,所以△DOC 为等腰直角三角形,又OC=2,所以DO=AO=22,故可求出AC 的长;
(2)连接AD ,DP ,过点D 作DF ⊥OP ,垂足为点F . 证AC=PF 或AC=EF ,证DP=DE
证PF=EF=12
PE ,故可证出PE =2AC ; (3)首先求出22OD CD x ==,再求AB=22x ,再证△DGE ≌△DBA,得
GE =AB =22x ,由PE=2AC 得PE =2(2)x x -,再根据GP =GE -PE 可求结论.
【详解】
(1)连接OD ,如图,
∵∠B=22.5°,
∴∠DOC=45°,
∵DC ⊥AB
∴△DOC 为等腰直角三角形,
∵OC=2,
∴2
∴2,
∴AC=AO-OC=
2.
⑵连接AD,DP,过点D作DF⊥OP,垂足为点F.
∵OP⊥AB,
∴∠POD=∠DOC=45°,
∴AD=PD,
∵△DOC为等腰直角三角形,
∴DC=CO,
易证DF=CO,
∴DC=DF,
∴Rt△DAC≌Rt△DPF,
∴PF=AC,
∵DO=AO,∠DOA=45°
∴∠DAC=67.5°
∴∠DPE=67.5°,
∵OD=OB,∠B=22.5°,
∴∠ODE=22.5°
∴∠DEP=22.5°+45°=67.5°
∴∠DEP=∠DPE
∴PF=EF=1
PE
2
∴PE=2AC
(3)如图2,由∠DCO=90°,∠DOC=45°得OD==
∴AB=2OD=
∵AB是直径,
∴∠ADB=∠EDG=90°,
由(2)得AD=ED,∠DEG=∠DAC
∴△DGE≌△DBA
∴GE=AB=
∵PE=2AC
∴PE=2)x-
-
∴GP=GE-PE=-)x
即:y=2x
【点睛】
本题是一道圆的综合题,涵盖的知识点较多,难度较大,主要考查了圆周角定理,等腰三角形的性质,三角形全等的判定与性质等知识,熟练掌握并运用这些知识是解题的关键.
10.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=1
2
AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.
【答案】(1)26;(2)①证明见解析;②33﹣3.
【解析】
试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;
(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;
②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.
试题解析:(1)如图2,连接OD,
∵OP⊥PD,PD∥AB,
∴∠POB=90°,
∵⊙O的直径AB=12,
∴OB=OD=6,
在Rt△POB中,∠ABC=30°,
∴OP=OB•tan30°=6×=2,
在Rt△POD中,
PD===;
(2)①如图3,连接OD,交CB于点F,连接BD,
∵,
∴∠DBC=∠ABC=30°,
∴∠ABD=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴OD⊥FB,
∵BE=AB,
∴OB=BE,
∴BF∥ED,
∴∠ODE=∠OFB=90°,
∴DE是⊙O的切线;
②由①知,OD⊥BC,
∴CF=FB=OB•cos30°=6×=3,
在Rt△POD中,OF=DF,
∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.
考点:圆的综合题。