最新初中数学数据分析知识点总复习有答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学数据分析知识点总复习有答案解析
一、选择题
1.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A.10元是该班同学捐款金额的平均水平B.班上比小慧捐款金额多的人数可能超过20人
C.班上捐款金额的中位数一定是10元D.班上捐款金额数据的众数不一定是10元【答案】C
【解析】
【分析】
根据平均数,中位数及众数的定义依次判断.
【详解】
∵该班同学捐款的平均金额为10元,
∴10元是该班同学捐款金额的平均水平,故A正确;
∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元,
∴班上比小慧捐款金额多的人数可能超过20人,故B正确;
班上捐款金额的中位数不一定是10元,故C错误;
班上捐款金额数据的众数不一定是10元,故D正确,
故选:C.
【点睛】
此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键. 2.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
对他们的训练成绩作如下分析,其中说法正确的是()
A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同
C.他们训练成绩的众数不同D.他们训练成绩的方差不同
【答案】D
【解析】
【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.
【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,
∴甲成绩的平均数为6788910
6
+++++
=8,中位数为
88
2
+
=8、众数为8,
方差为1
6
×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=
5
3
,
∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,
∴乙成绩的平均数为778889
6
+++++
=
47
6
,中位数为
88
2
+
=8、众数为8,
方差为1
6
×[2×(7﹣
47
6
)2+3×(8﹣
47
6
)2+(9﹣
47
6
)2]=
17
36
,
则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,
故选D.
【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.
3.回忆位中数和众数的概念;
4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:
则这15运动员的成绩的众数和中位数分别为()
A.1.75,1.70 B.1.75,1.65 C.1.80,1.70 D.1.80,1.65
【答案】A
【解析】
【分析】
5.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:
如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()
A.丁B.丙C.乙D.甲
【答案】B
【解析】
【分析】
先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.
【详解】
∵甲、丙的平均数比乙、丁大,
∴甲和丙成绩较好,
∵丙的方差比甲的小,
∴丙的成绩比较稳定,
∴丙的成绩较好且状态稳定,应选的是丙,
故选:B.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.
6.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定
【答案】B
【解析】
【分析】
根据方差的意义求解可得.
【详解】
∵乙的成绩方差<甲成绩的方差,
∴乙的成绩比甲的成绩稳定,
故选B.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
7.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:
这些同学平均每月阅读课外书籍本数的中位数和众数为( )
A.5,5 B.6,6 C.5,6 D.6,5
【答案】D 【解析】 【分析】
根据中位数和众数的定义分别进行解答即可. 【详解】
把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6; 5出现了6次,出现的次数最多,则众数是5. 故选D . 【点睛】
此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
8.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( ) A .这两组数据的波动相同 B .数据B 的波动小一些 C .它们的平均水平不相同 D .数据A 的波动小一些
【答案】B 【解析】
试题解析:方差越小,波动越小.
22,A B s s >Q
数据B 的波动小一些. 故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
9.某青年排球队12名队员的年龄情况如下:
则12名队员的年龄( ) A .众数是20岁,中位数是19岁 B .众数是19岁,中位数是19岁 C .众数是19岁,中位数是20.5岁 D .众数是19岁,中位数是20岁
【答案】D 【解析】 【分析】
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量
数列中间位置的变量值就称为中位数 ;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个). 【详解】
解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D. 【点睛】
理解中位数和众数的定义是解题的关键.
10.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:
该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( ) A .平均数 B .方差
C .中位数
D .众数
【答案】D 【解析】 【分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数. 【详解】
由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选D . 【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
11.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,2
1s ,若此同学的得分恰好为x ,则( ) A .1x x <,2
2
1s s = B .1x x =,22
1s s > C .1x x =,2
2
1s s < D .1x x =,2
2
1s s =
【答案】B 【解析】 【分析】
根据平均数和方差的公式计算比较即可. 【详解】
设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n , 第i 个同学没登录, 第一次计算时总分是(n−1)x , 方差是s 2=
1
1
n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =()1n x x n
-+=x ,
方差s 12=
1
n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n
-s 2, 故2
2
1s s >, 故选B . 【点睛】
此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.
12.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
则下列叙述正确的是( ) A .这些运动员成绩的众数是 5 B .这些运动员成绩的中位数是 2.30 C .这些运动员的平均成绩是 2.25 D .这些运动员成绩的方差是 0.0725 【答案】B 【解析】 【分析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【详解】
由表格中数据可得:
A 、这些运动员成绩的众数是2.35,错误;
B 、这些运动员成绩的中位数是2.30,正确;
C 、这些运动员的平均成绩是 2.30,错误;
D 、这些运动员成绩的方差不是0.0725,错误; 故选B . 【点睛】
考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平
均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
13.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A .中位数为1 B .方差为26
C .众数为2
D .平均数为0
【答案】B 【解析】 【分析】 【详解】
A .∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;
B .41212
05
x -++-+=
= ,
()()()()2
2
2
2
2401010202
265
5
s --+--+-+-⨯=
=
,故不正确;
C .∵众数是2,故正确;
D .41212
05
x -++-+==,故正确;
故选B.
14.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了20名学生,调查结果如表所示:
课外名著阅读量(本) 8 9 10 11 12 学生人数
3
3
4
6
4
关于这20名学生课外阅读名著的情况,下列说法错误的是( ) A .中位数是10 B .平均数是10.25
C .众数是11
D .阅读量不低于10
本的同学点70% 【答案】A 【解析】 【分析】
根据中位数、平均数、众数的定义解答即可. 【详解】
解:A 、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是
=10.5,故本选项错误;
B 、平均数是:(8×3+9×3+10×4+11×6+12×4)÷20=10.25,此选项不符合题意;
C 、众数是11,此选项不符合题意;
D、阅读量不低于10本的同学所占百分比为×100%=70%,此选项不符合题意;故选:A.
【点睛】
本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).众数是一组数据中出现次数最多的数.
15.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()
A.10 B.23 C.50 D.100
【答案】A
【解析】
【分析】
根据众数就是一组数据中,出现次数最多的数,即可得出答案.
【详解】
∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,
∴众数是10元.
故答案为A.
【点睛】
本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.
16.某中学篮球队12名队员的年龄如表:
年龄(岁)13141516
人数1542
关于这12名队员年龄的数据,下列说法正确的是()
A.中位数是14.5 B.年龄小于15岁的频率是
5 12
C.众数是5 D.平均数是14.8
【答案】A
【解析】
【分析】
根据表中数据,求出这组数据的众数、频率、中位数和平均数即可.【详解】
解:A、中位数为第6、7个数的平均数,为1415
2
+
=14.5,此选项正确;
B、年龄小于15岁的频率是151
122
+
=,此选项错误;
C、14岁出现次数最多,即众数为14,此选项错误;
D、平均数为:131145154162175
=
1212
⨯+⨯+⨯+⨯
,此选项错误;
【点睛】
本题考查了众数、中位数、平均数与频率的计算问题,是基础题.解题的关键是掌握众数、中位数、平均数与频率的定义进行解题.
17.下列关于统计与概率的知识说法正确的是()
A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
B.检测100只灯泡的质量情况适宜采用抽样调查
C.了解北京市人均月收入的大致情况,适宜采用全面普查
D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
【答案】B
【解析】
【分析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
【详解】
解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
故选B.
【点睛】
本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
18.数据2、5、6、0、6、1、8的中位数是()
A.8 B.6 C.5 D.0
【答案】C 【解析】 【分析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数. 【详解】
将数据从小到大排列为:0,1,2,5,6,6,8 ∵这组数据的个数是奇数 ∴最中间的那个数是中位数 即中位数为5 故选C . 【点睛】
此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
19.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()
A .平均数是58
B .中位数是58
C .极差是40
D .众数是60
【答案】A 【解析】
分别根据平均数,中位数,极差,众数的计算方法计算即可作出判断
平均数是指在一组数据中所有数据之和再除以数据的个数,因此,这组数据的平均数是:
526062545862
586
+++++=.
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为52,54,58,60,62,62,∴中位数是按从小到大排列后第3,4个数的平均数为:59.
根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是: 62-52=10.
众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是62,故这组
数据的众数为62.
综上所述,说法正确的是:平均数是58.故选A.
20.下列说法正确的是()
A.要调查人们对“低碳生活”的了解程度,宜采用普查方式
B.一组数据:3,4,4,6,8,5的众数和中位数都是3
C.必然事件的概率是100%,随机事件的概率是50%
D.若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定
【答案】D
【解析】
A、由于涉及范围太广,故不宜采取普查方式,故A选项错误;
B、数据3,4,4,6,8,5的众数是4,中位数是4.5,故B选项错误;
C、必然事件的概率是100%,随机事件的概率是50%,故C选项错误;
D、方差反映了一组数据的波动情况,方差越小数据越稳定,故D选项正确.
故选D.。