热力学与统计物理47页PPT

合集下载

热力学统计物理-第五版-汪志诚-精ppt课件

热力学统计物理-第五版-汪志诚-精ppt课件

描述).
单位:
1 m 3 1 0 3 L 1 0 3 d m 3
3 温度 T : 气体冷热程度的量度(热学描述).
单位:K(开尔文).
2020/4/29
.
20
简单系统:一般仅需二个参量就能确定的系统, 如PVT系统。
单相系:
复相系:
2020/4/29
.
21
§1.2 热平衡定律和温度
一、热力学第零定律 热交换:系统之间传热但不交换粒子
热平衡:两个系统在热交换的条件下达到了一 个共同的平衡态。
经验表明:如果两个系统A和B同时分别与第三个系 统C达到热平衡,则这两个系统A和B也处于热平衡。 称热力学第零定律(热平衡定律)
2020/4/29
.
22
为了描绘一个系统与另外一个系统处于 热平衡 需要一个物理量:温度
(1)日常生活中,常用温度来表示冷热的程度
在一定的宏观条件下,系统演化方向一般具有确 定的规律性。
研究热运动的规律性以及热运动对物质宏观性质 影响的理论统称为热学理论。按研究方法的不同可 分为热力学与统计物理等。其中,热力学是热学的 宏观理论,统计物理是热学的微观理论。
2020/4/29
.
7
2020/4/29
.
8
热力学理论的发展简介 Introduction to Development of
① 热学
② 分子运动论
③ 原子物理学
2020④/4/29量子力学
.
11
The Fundamental Laws of Thermodynamics
2020/4/29.Fra bibliotek12
目 录 Contents

热力统计物理复习PPT课件

热力统计物理复习PPT课件

第22页/共28页
2.已知在体积保持不变时,一气体的压强正比于其绝对温度。证明在温度 保持不变时,该气体的熵随体积而增加。
第23页/共28页
3.求V=L3内在Px到Px+dPx, Py到Py+dPy, Pz到Pz+dPz间的自由粒子的量子态数与态密度。
在能级密集的假设下,令n连续
dnx
L
2
dpx
第1页/共28页
4.其它热力学函数

H U pV
自由能
F U TS
等温等容下,自由能永不增加
吉布斯函数 G U TS pV 等温等压下,吉布斯函数永不
增加
第2页/共28页
第二章
1.热力学函数 热力学基本方程 dU TdS pdV
H U pV
dH TdS Vdp
F U TS
dF SdT pdV
l
al
l
l
e l 1
巨配分函数 l
1 e l l
l
l
平均总粒子数 N ln
(费米)
l
1 e l l
l
l
内能
U ln
广义力
Y 1 ln
y
p 1 ln
V

S
k
ln
ln
ln
S
k
ln
2.玻色-爱因斯坦凝聚 P230 了解
第13页/共28页
dnx dny dnz
4V
h
p2dp
将 p2 代入上式,得:
2m
4V
h3
p2dp
4V
h3
1
2md (2m )2
2V
h3

热力学统计物理_第五版_汪志诚_完整ppt课件

热力学统计物理_第五版_汪志诚_完整ppt课件

t 0C
T K
273.15
国际通 用
t 0F
9 5
T 459.67 K
英美等 国使用
TR 1.8T
英美等 国使用
2021/7/27
精选ppt
30
§1.3 物态方程
物态方程
简单系统平衡态 T T (p ,V )或 f(T ,p ,V ) 0
把处于平衡态的某种物质的热力学参量(如压强、体积、温度)之间 所满足的函数关系称为该物质的物态方程或称状态方程。
在热力学中,物态方程的具体形式一般要由实验来确定。与物态方 程密切相关的几个重要物理量:
1 V
V T p
体胀系数
1 p
p T V
压强系数
T
1 V
V p
T
等温压缩系数
三者关系,由:
2021/7/27
V p T T p V V T 1 =Tp
精选ppt
31
p
b. 理想气体温标:
T ( p) 273.16K lim ptr 0
ptr
首先保持体积不变,有 然后保持温度不变,则
p2'
p2' V1
p1
T2
T1
p2V2
联立,得
p1V1 p2V2
Ctr
T1
T2
273.16K
2021/7/27
精选ppt
33
其中

C tr ptrVtr n ptr Vm,tr
pV Ctr T n ptr Vm,tr T
273.16K
273.16K
c. 阿伏伽德罗定律: 同温同压下,1mol气体的体积相同

R ptr Vm,tr

热力学和统计物理的课件

热力学和统计物理的课件

热力学和统计物理的研究对象和任务宏观物质系统:由大量微观粒子组成的气、液、固体。

存在无规则运动——热运动。

运动:机械运动,如:质点的运动,刚体的平动和转动。

热运动:大量微观粒子的无规则运动(例如花粉的运动),有规律性,自身固有的。

为什么研究热运动?它决定了热现象(物性和物态),影响物质的各种宏观性质,如:力、热、电磁、凝聚态(固、液、气)、化学反应进行的方向和限度。

热力学和统计物理学的任务?研究热运动规律及其对宏观性质的影响。

热力学与统计物理的研究方法热力学和统计物理学的任务相同,但研究方法不同。

1.宏观唯象理论——热力学2.微观本质理论——统计物理宏观的观点 即观察一个固体,液体,气体的特性。

如:密度、温度、压力、弹性、传热等,不涉及物质的原子结构。

微观的观点 由物质的原子性质着手,来研究物质的宏观性质。

热力学的基本逻辑体系以可测宏观物理量描述系统状态;例如气体:压强p 、体积V 和温度T实验现象 热力学基本定律 宏观物性 其结论可靠且具有普适性;结合实验才能得到具体物性;物质看成连续体系,不能解释宏观物理量涨落。

例如:焦耳定律、玻意耳定律、阿伏伽德罗定律, 推理演绎为热力学基本定律:第一、第二、第三定律及推论。

再推理演绎为卡诺热机性质,热辐射理论,相变理论,化学反应理论亥姆霍兹方程,能态方程,焓态方程等。

统计物理基本逻辑体系从微观结构出发,深入热运动本质,认为宏观物性是大量微观粒子运动性质的集体表现; 微观粒子力学量 宏观物理量 热力学基本定律归结为一条基本统计原理,阐明其统计意义,可解释涨落现象; 借助微观模型,可近似导出具体物性。

例如:认为微观粒子遵从力学定律:牛顿定律或量子力学。

经典的 量子的应用统计原理:最概然统计法 或 系综统计法 微观运动 通过假设 宏观性质 如:分子与壁碰撞时动量的变化→气体压力概念。

分子运动动能→气体温度 典型应用实例:导出理想气体的物态方程PV=RT 理想气体分子速度分布律 普朗克热辐射定律 大气压随高度的变化关系等@@@第一章 热力学的基本规律热力学 thermodynamics 平衡态热力学equilibrium thermodynamics 经典热力学classical thermodynamics §1.1 平衡态及其描述 重点掌握几个新概念 一 系统、外界和子系统热力学系统 由大量微观粒子组成的宏观物质系统 外界 与系统发生相互作用的其它物质 二 系统分类系统与环境关系一般很复杂,多种多样。

热力学与统计物理学.pptx

热力学与统计物理学.pptx
具体来说有:全微分法、系数比较法、循环关系法、 复合函数微分、混合二阶偏导法
系数比较法(适用对象:求U、H、F、G的偏导数) 复合函数的偏导数法(适用对象:求两个函数偏导数之差)
f f f y (x)z (x)y(y)x(x)z
循环关系法(适用对象:求脚标为U、H、F、G的偏导数) x y z
例、求能态方程和焓态方程及Cp 、 Cv
熵变的计算
S是状态函数。在给定的初态和终态之间,系统 无论通过何种方式变化(经可逆过程或不可逆过程), 熵的改变量一定相同。
当系统由初态A通过一可逆过程R到达终态B时求熵
变的方法:直接用
SB SA
B dQ
(
A
T
)R
来计算。
当系统由初态A通过一不可逆过程到达终态B时求熵变
的方法:
(1)把熵作为状态参量的函数表达式推导出来,再将
T V
V T
UFTSFTF
CV
U T V
H=U+pV
TV ,G=F+pV
(2)吉布斯函数G=G(T、p)
由G=G(T、p)和dG=—SdT+Vdp
例:求表面系统的热力学函数
表面系统指液体与其它相的交界面。
表面系统的状态参量: 、A、T 表面系统的实验关系: =(T) 分析:对于流体有f(p,V,T)=0, 对应于表面系统:p,AV
PA
p p(T)
B
固 A
液 C

在T—p图中,描述复相系统平衡热力学性Βιβλιοθήκη OLALC T
B P


PC
C
PA
A

O
LA
LC T
A---三相点 C---临界点

热力学统计物理-统计热力学课件第二章

热力学统计物理-统计热力学课件第二章

p
Cp
p
p
Cp (T ,
p)
Cp (T ,
p0 )
T
p0
2V T 2
dp p
p0
T Cp0 Cp (T, p0),V V (T, p) 由实验测定, H H (T, p), S S(T, p) 即可确定。
2020/6/17
14
三、 简单系统的 Cp – CV =?
Cp
CV
第二章 均匀物质的热力学性质
根据热力学基本规律,利用数学方法(多 元函数微积分),求得热力学量之间关系,及 各种过程的规律。
2020/6/17
1
§2.1 内能、焓、自由能和吉布斯函 数的全微分
一、数学定义
2020/6/17
2
二、热力学函数U, H, F, G 的全微分
1、内能
U U(S,V )
F V
T
S
G T
p
,
V
G p
T
2020/6/17
6
§2.2 麦氏关系及应用
一、麦氏关系
内能
T U T (S, V ), p U p(S, V )
S V
V S
2U 2U VS SV
T p V S S V
2020/6/17
7

T H T (S, p), S p
2. 焓
H U pV dH TdS Vdp
H H(S, p)
2020/6/17
3
dH TdS Vdp
3、自由能
F U TS
dF SdT pdV
F F (T , V ), dF F dT F dT
T V
V T
S

热力学统计物理_第一章_ppt课件

热力学统计物理_第一章_ppt课件

物质交换
系统
能量交换
孤立系统
仅有能量交换
系统
闭系
能量交换+物质交换
系统
物质交换
能量交换
开放系统
2. 平衡态:在不受外界的影响的条件下(孤立系统), 系统的宏观性质不随时间变化的状态。 不受外界影响,指系统不与外界进行能量和物质交换。
3. 关于平衡态的几点说明 (1)实际系统都要或多或少地受到外界影响,不受外 界影响的孤立系统,同质点模型、刚体模型、点电荷模 型和点光源模型一样都是一个理想化的概念;
(3)二者联系: 热力学对热现象给出普遍而可靠的结果,可以 用来验证微观理论的正确性; 统计物理学则可以深入热现象的本质,使热力 学的理论获得更深刻的意义。
第ห้องสมุดไป่ตู้章
热力学的基本规律
热力学是研究热现象的宏观理论——根据实验总结 出来的热力学定律,用严密的逻辑推理的方法,研 究宏观物体的热力学性质。 热力学不涉及物质的微观结构,它的主要理论基础 是热力学的三条定律。 本章的内容是热力学第一定律和热力学第二定律。
热平衡系统所具有的共同宏观性质
热平衡温度相同
T
p
A
B
T
p
2. 温度函数引入证明如下:
C
互为热平衡的两系统, 其状态参量不完全独立, A B 要被一定的函数关系所制约。 即热平衡条件为: F 若A与C达到热平衡: AC( pA,V A; p C,V C) 0 B与C达到热平衡:
F BC( p B,V B; p C,V C) 0
质的参量,如电场强度和磁场强度,极化强度和磁化
强度等,称为电磁参量。 2、状态参量的种类:力学参量、几何参量、化
学参量、电磁参量

热力学统计物理 第二章 课件

热力学统计物理 第二章 课件

可得
S S dS dp dT T p p T
S S dH T V dp dT T T p p T 两式比较,即有 H S Cp T T T p p
上式给出两热容之差与物态方程的关系。由此处推导可知, 此式适用于任意简单系统。
对于理想气体,可得
Cp-CV = nR
雅可比行列式
在热力学中往往要进行导数变换的运算。 雅可比行列式是进行导数变换运算的一个有用的工具。
设u、v是独立变数x、y的函数 u = u(x,y), v = v(x,y) 雅可比行列式的定义是
H S T V p T p T 对此式,利用麦氏关系得 H V V T p T p T 此式给出温度不变时焓随压强的变化率与物态方程的关系。
对于定压热容Cp和定容热容CV,由前可得 S S C p CV T T T p T V 但由下述函数关系

U = U(S,V), H = H(S,p), F = F(T,V), G = G(T,p)
由自由能的全微分表达式
dF = -SdT – pdV 易知
F F , p T V 若已知F(T,V),求F 对T的偏导数即可得出熵S(T,V);求F S
对V的偏导数即可得出压强p(T,V),这就是物态方程。 根据自由能的定义F=U-TS,有
T、V参量
选取T、V为状态参量,则物态方程为
p = p (T, V ) 当然具体方程形式需由实验测定。 由第2节内容可知,内能全微分为
U U dU d T dV T V V T p CV dT T p dV T V

热力学统计物理课件

热力学统计物理课件

第一章 热力学的基本规律
青岛科大数理学院
第一章 热力学的基本规律
第一章 热力学的基本规律
青岛科大数理学院
§1.1
热力学系统的平衡状态及其描述
一、系统、状态、平衡状态 1. 系统与外界(环境) 外界 我们关注系统的各种性 质,给予尽可能精确的描述。 而对外界只给出概括性描述。 系统与外界之间可能 交换能量或物质(粒子)。根 据不同的交换,区分系统为
第一章 热力学的基本规律 青岛科大数理学院
统计物理从宏观物质系统是由大量微观粒子所构成这一事 实出发,认为热现象是微观粒子热运动的宏观表现,而实际观 测到的宏观热力学量则是相应微观力学量的统计平均值。 两种研究方法存在着各自的优缺点,在实际研究中,需要 互为补充,相辅相成。 三.本课程的特点和要求 作为宏观理论与微观理论的结合,热力学与统计物理学 是一个比较好的例子。其中统计物理的部分与当代物理学前 沿的很多内容结合较紧。 学习中要把握好物理模型的构建,以及概念之间的相互关 系,重点领会其中的物理思想和物理方法。
昂尼斯气体方程
nR T n ⎛ n ⎞ p=( )[1 + B (T ) + ⎜ ⎟ C (T + V V ⎝V ⎠
2
]
其中 B(T)、C(T)、 … …分别称为第二、第三… …位力系数.
第一章 热力学的基本规律 青岛科大数理学院
2. 简单固体和液体 室温范围内系数 α 和 κ T 很小,可近似看作常数.
度变化指示温度。
10
0
3. 用水在1个标准大气压
下的冰点作摄氏零度。沸 点为100度。确定温标。
t = T − 273.15
第一章 热力学的基本规律 青岛科大数理学院
§1.3 物态方程

热力学统计物理_第五版_汪志诚_完整ppt课件

热力学统计物理_第五版_汪志诚_完整ppt课件

注意
1)理动态平衡。
2020/4/18
.
17
三、状态参量
定义:系统处于平衡态时,可以表征、描述系统状态的变量
状态参量
几何参量:体积 力学参量:压强 化学参量:摩尔数,浓度,摩尔质量 电磁参量:电场强度,电极化强度,磁场强度,磁化强度 热学参量:温度(直接表征热力学系统的冷热程度)
热力学第二定律 卡诺循环 热力学温标 克劳修斯等式和不等式 熵和热力学基本方程 理想气体的熵
热力学第二定律的数学 表达式
熵增加原理的简单应用 自由能和吉布斯函数
2020/4/18
.
13
§1. 1 热力学系统的平衡状态及其描述
一 、热力学系统(简称为系统)
定义:热力学研究的对象——宏观物质系统 系统分类: ⑴ 孤立系统:与外界没有任何相互作用的系统 ⑵ 封闭系统:与外界有能量交换,但无物质交换的系统 ⑶ 开放系统:与外界既有能量交换,又有物质交换的系统
处在平衡态的大量分子仍在作热运动,而且因 为碰撞,每个分子的速度经常在变,但是系统的宏 观量不随时间改变。
例如:粒子数
箱子假想分成两相同体积的部分, 达到平衡时,两侧粒子有的穿越 界线,但两侧粒子数相同。
2020/4/18
.
16
平衡态的特点
1)单一性( p , T 处处相等);
2)物态的稳定性—— 与时间无关; 3)自发过程的终点; 4)热动平衡(有别于力平衡).
2020/4/18
.
18
宏观量 表征系统宏观性质的物理量
如系统的体积V、压强P、温度T等,可直接测量 可分为广延量和强度量 广延量有累加性:如质量M、体积V、内能E等 强度量无累加性:如压强 P,温度T等

热力学统计物理-统计热力学课件第九章-49页PPT文档资料

热力学统计物理-统计热力学课件第九章-49页PPT文档资料

N,V
22
系统热平衡条件 : 1 2
热力学中类似的两个系统达到热平衡的条件:
US11
N1,V1
US22
N2,V2
比较可得:
1 kT
Skln
S U
N ,V

1 T
——熵与微观状态数的关系—玻耳兹曼关系。
•不仅适用于近独立粒子系统,也适用于粒子间存在相
01.12.2019
1 E (E 11) 2(E 2) 1(E 1) 2 E (E 22) E E 1 20
ln E 11(E1)N1,V1 ln E 22 (E2)N2,V2 ——系统热平衡条件

lnE(E)



ln V
N
,E
lnN 11E1,V1 lnN 22E2,V2



ln N
E,V
1 1
1 2 1 2
01.12.2019
24
•参量的物理意义
全微分: d ln d E d V d N
开系的热力学基本方程:
dSdUpdVdN
TT T 比较可得:
01.12.2019
1 kT
p kT
kT
1 1
1 2 1 2
T1 T2 p1 p2
1 2
25
经典理想气体——确定常量k
(N,E,V)VN
在经典理想气体中,粒子的位置是互不相关的。一个 粒子出现在空间某一区域的概率与其它粒子的位置无关。 一个粒子处在体积为V的容器中,可能的微观状态数与V 成正比,N个粒子处在体积为V的容器中,可能的微观状 态数将与VN成正比。

热力学与统计物理课件 热力学部分 第一章 热力学基本概念与基本定律

热力学与统计物理课件 热力学部分 第一章 热力学基本概念与基本定律

热力学﹒统计物理(Thermodynamics and statistical Physics)厦门大学物理系2007年2月参考书:1. 熊吟涛《热力学》2. M.W. Zemansky“Heat and Thermodynamics”3. 苏汝铿《统计物理学》4. F.Mandle“Statistical Physics”网上资源:/statisticalphysics/jpkc绪论(Preface)一、热力学与统计物理的研究对象、方法与特点研究对象:宏观物体热性质与热现象有关的一切规律。

方法与特点:热力学:较普遍、可靠,但不能求特殊性质。

以大量实验总结出来的几条定律为基础,应用严密逻辑推理和严格数学运算来研究宏观物体热性质与热现象有关的一切规律。

统计物理:可求特殊性质,但可靠性依赖于微观结构的假设,计算较麻烦。

从物质的微观结构出发,考虑微观粒子的热运动,通过求统计平均来研究宏观物体热性质与热现象有关的一切规律。

两者体现了归纳与演绎不同之处,可互为补充,取长补短。

二、热力学理论的发展(1)经典热力学1824年,卡诺(Carnot):卡诺定理1840’s,迈尔(Mayer)焦耳(Joule):第一定律:能量守恒定律1850’s克劳修斯(Clausius)1850年,开尔文(Kelvin)1851年:第二定律:熵增加原理能斯脱(Nernst):第三定律:不可能将物体的温度降到绝对零度。

经典热力学特点:a.不涉及时间与空间;b.以平衡态、准静态过程、可逆过程为模型。

因而:经典热力学→静热力学。

二、热力学理论的发展1930’s:(2)非平衡态热力学,分为a. 线性非平衡态热力学,翁萨格(Onsager)1968年,诺贝尔奖b. 非线性非平衡态热力学,普里果金(Prigogine)1977年,诺贝尔奖近年来:有限时间热力学工程热力学第一章热力学基本概念与基本定律(The Fundamental Concepts and Law of Thermodynamics)§1.1 平衡态、温度、物态方程(Equilibrium state, Temperature and Equation of State)一、平衡态:1.系统与外界:热力学系统(或简称体系或系统)是指一个宏观的系统,它一般由大量的微观粒子组成。

热力学与统计物理学的建立PPT课件

热力学与统计物理学的建立PPT课件
• 英国格拉斯哥大学的仪器修理工瓦特(公元1736-1819),对纽可门机进行了根本性变 革。
• 在布莱克的帮助下,瓦特终于在1765年研制成了分离冷凝器,制成了一台“单动式蒸汽 机”。
• 1782年瓦特又将发动机从单动变为双动,可将汽缸的功率提高一倍。 • 1787年,瓦特又安装了离心式调速器,以保证发动机速度相对稳定。这样瓦特的双动旋转
第24页/共55页
五、焦耳对热功当量的测定
• 1849年6月21日,他通过法拉第把论文《论热的机械当量》送交皇家学会。在这篇论文 中,焦耳全面地整理了他用摩擦水、水银和铸铁的方法测量热功当量的实验结果,得出两 个重要结论:
• 第一,由物体的摩擦所产生的热量总是与消耗的力之量成正比; • 第二,要使一磅水(在真空中55F一60F时称量)的温度升高 1F,需要消耗相当于使
• 1851年,迈尔出版了《论热的机械当量》一文中,详细地阐述了热功当量的计算。
第22页/共55页
四、亥姆霍兹的工作
• 1847年,德国青年科学家亥姆霍兹(公元1821— 1894)提出了《论力的守恒》一文,总结出以下三 点结论:
• l.当自然界中的物体在既与时间无关、又与速度 无关的吸力和斥力的相互作用下,系统中活力和张力 的总和始终不变;所得到的功的最大值就是一个确定 的和有限的。
第11页/共55页
五、关于热之本性的研究
•第二,认为热是物体粒子的内部运 动。热质说的成功,使人们相信了 热质说是正确的学说,但是到了十 八世纪末,热质说受到了严重的挑 战。1798年,英国物理学家汤普森 (即伦福德伯爵,公元1753-1814) 在德国进行炮膛钻孔时,提出了大 量的热是从哪里来的这个问题。
第26页/共55页
第三节 热力学第二定律的建立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档