高一下册物理 期末精选单元培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一下册物理期末精选单元培优测试卷
一、第五章抛体运动易错题培优(难)
1.如图所示,半径为R的半球形碗竖直固定,直径
AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()
A.gR B.2gR C.3gR D.2gR
【答案】C
【解析】
小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,
则由2
1
sin
2
y gt Rα
==,得
2sin
R
t
g
α
=,竖直方向的分速度为
2sin
y
v gt gRα
==,水平方向的分速度为
22
(2)(2sin)42sin
v gR gR gR gR
αα
=-=-,又
00
tan y
v gt
v v
α==,而2
00
1
2
tan
2
gt gt
v t v
β==,所以tan2tan
αβ
=,物体沿水平方向的位移为2cos
x Rα
=,又0
x v t
=,联立以上的方程可得
3
v gR
=,C正确.
2.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。

则可以求出的物理量是()
A .α的值
B .小球的初速度v 0
C .小球在空中运动时间
D .小球初动能 【答案】A 【解析】 【分析】 【详解】
设初速度v 0与竖直方向夹角β,则β=90°−α(1);
由A 点斜抛至至最高点时,设水平位移为x 1,竖直位移为y 1,由最高点至碰撞点D 的平抛过程Ⅱ中水平位移为x 2,竖直位移y 2。

A 点抛出时:
0sin x v v β=(2)
10cos y v v β=(3)
21
12y v y g
=
(4)
小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持
0sin x v v β=不变,斜面倾角θ=45°,
20tan 45sin y x x v v v v β===(5)
2
222y y y g
=
(6)
()
222012cos sin 2v y y y g
ββ-∆=-=
(7),
平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:
()111111
tan 90222tan y x v y x v ββ
==-=(8) 由(8)变形化解:
2
011cos sin 2tan v x y g
ββ
β==(9)
同理,Ⅱ中水平位移为:
22022sin 2tan 45v x y g
β
==(10)
()
2012sin sin cos v x x x g
βββ+=+=
总(11) =tan45y
x ∆总

=y x ∆总

2sin sin cos βββ-=-(12)
由此得
1
tan 3
β=
19090arctan 3
αβ=-=-
故可求得α的值,其他选项无法求出; 故选:A 。

3.一小船在静水中的速度为3m/s ,它在一条河宽150m 、水流速度为4m/s 的河流中渡河,则该小船( ) A .能到达正对岸 B .渡河的时间不少于50s
C .以最短时间渡河时,它渡河的位移大小为200m
D .以最短位移渡河时,位移大小为150m 【答案】B 【解析】 【分析】 【详解】
A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸,选项A 错误;
B .当船在静水中的速度垂直河岸时,渡河时间最短
min 150s 50s 3
d t v =
==船 选项B 正确;
C .船以最短时间50s 渡河时,沿水流方向的位移大小
450m 200m min x v t ==⨯=水
渡河位移应为水流方向的位移与垂直河岸方向位移的合位移,选项C 错误;
D .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。

若以最短位移渡河,情景如图
根据三角形相似可知,最短位移
150m 200m v s v =
⨯=水船
选项D 错误。

故选B 。

4.一个半径为R 的空心球固定在水平地面上,球上有两个与球心O 在同一水平面上的小孔A 、B ,且60AOB ∠=︒2
gR
设水流出后做平抛运动,重力加速度g ,则两孔流出的水的落地点间距离为( ) A .R B 3R C .2R D .23R
【答案】C 【解析】 【分析】 【详解】
水做平抛运动,竖直方向上有
212
R gt =
解得运动时间
2R
t g
=
水平方向上有
022
gR R
x v t R g
==
= 则两落地点距圆心在地面投影点的距离为2R ,与圆心在地面投影点的连线夹角为60︒,两落地点和圆心在地面投影点组成等边三角形,根据几何知识可知,两落地点间距为
2R ,选项C 正确,ABD 错误。

故选C 。

5.如图所示,套在竖直细杆上的轻环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连,施加外力让A 沿杆以速度v 匀速上升,从图中M 位置上升至与定滑轮的连线处于水平N 位置,已知AO 与竖直杆成θ角,则( )
A .刚开始时
B 的速度为
cos v
θ
B .A 匀速上升时,重物B 也匀速下降
C .重物B 下降过程,绳对B 的拉力大于B 的重力
D .A 运动到位置N 时,B 的速度最大 【答案】C 【解析】 【详解】
A.对于A ,它的速度如图中标出的v ,这个速度看成是A 的合速度,其分速度分别是
a b v v 、,其中a v 就是B 的速率(同一根绳子,大小相同),故刚开始上升时B 的速度cos B v v θ=,故A 不符合题意;
B.由于A 匀速上升,θ在增大,所以B v 在减小,故B 不符合题意;
C .B 做减速运动,处于超重状态,绳对B 的拉力大于B 的重力,故C 符合题意; D.当运动至定滑轮的连线处于水平位置时90θ=︒,所以0B v =, 故
D 不符合题意。

6.一快艇从离岸边100m 远的河流中央向岸边行驶.已知快艇在静水中的速度图象如(图甲)所示;河中各处水流速度相同,且速度图象如(图乙)所示.则( )
A .快艇的运动轨迹一定为直线
B .快艇的运动轨迹一定为曲线
C .快艇最快到达岸边,所用的时间为20s
D .快艇最快到达岸边,经过的位移为100m 【答案】BC 【解析】 【分析】 【详解】
AB 、两分运动为一个做匀加速直线运动,一个做匀速线运动,知合速度的方向与合加速度的方向不在同一直线上,合运动为曲线运动.故A 错误、B 正确;
CD 、当水速垂直于河岸时,时间最短,垂直于河岸方上的加速度a =0.5m/s 2,由
2
12d at =
,得t =20s ,而位移大于100m ,故C 正确、D 错误. 【点睛】 解决本题的关键会将的运动分解为沿河岸方向和垂直河岸方向,知道在垂直于河岸方向上速度越大,时间越短.以及知道分运动和合运动具有等时性.
7.一小船在静水中的速度为8m/s ,要渡过宽为80m 、水流速度为6m/s 的河流,下列说法正确的是( ) A .小船渡河的最短时间为8s B .小船渡河的最短时间为10s
C .若小船在静水中的速度增大,则小船渡河的最短路程不变
D .若小船在静水中的速度比水流速度小,则小船渡河的最短路程不变 【答案】BC 【解析】 【分析】 【详解】
AB .当船头指向正对岸时渡河时间最短,且最短时间为
80
s 10s 8
d t v =
==船 B 正确,A 错误;
C .由于船速大于水流的速度,因此小船渡河的最短路程是到达正对岸,若小船在静水中的速度增大,则小船渡河的最短路程不变,C 正确;
D .若小船在静水中的速度比水流速度小,则小船不能到达正对岸,因此渡河的最短路程改变,D 错误。

故选BC 。

8.如图所示,一光滑宽阔的斜面,倾角为θ,高为h ,重力加速度为g 。

现有一小球在A 处贴着斜面以水平速度v 0射出,最后从B 处离开斜面,下列说法中正确的是( )
A .小球的运动轨迹为抛物线
B .小球的加速度为g tan θ
C .小球到达B 12sin h g
θD .小球到达B 02sin v h g
θ【答案】AC 【解析】 【分析】
【详解】
A .小球受重力和支持力两个力作用,合力沿斜面向下,与初速度垂直,做类平抛运动,轨迹为抛物线,A 正确;
B .小球所受合力为重力沿斜面向下的分力,根据牛顿第二定律
sin mg ma θ=
因此加速度
sin a g θ=
B 错误;
小球沿斜面方向做匀加速运动
21
sin sin 2
h g t θθ=⋅ 可得运动时间
12sin h t g
θ=
C 正确;
D .水平位移应是AB 线段在水平面上的投影,到达B 点的沿水平x 方向的位移
002sin g
x h t v v θ==
沿水平y 方向的位移
cot y h θ=
因此水平位移
0222sin v s x y h g
θ=+>
D 错误。

故选AC 。

9.如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是
A .小环刚释放时轻绳中的张力一定大于2mg
B .小环到达
B 处时,重物上升的高度也为d
C .小环在B 处的速度与重物上升的速度大小之比等于
D .小环在B 处的速度与重物上升的速度大小之比等于
【答案】AC 【解析】 【分析】 【详解】
由题意,释放时小环向下加速运动,则重物将加速上升,对重物由牛顿第二定律可知绳中张力一定大于重力2mg ,所以A 正确;小环到达B 处时,重物上升的高度应为绳子缩短的长度,即2h d d ∆=
-,所以B 错误;根据题意,沿绳子方向的速度大小相等,将小环A
速度沿绳子方向与垂直于绳子方向正交分解应满足:
A B v cos v θ=,即1
2A B
v v cos θ
==,所以C 正确,D 错误. 【点睛】
应明确:①对与绳子牵连有关的问题,物体上的高度应等于绳子缩短的长度;②物体的实际速度即为合速度,应将物体速度沿绳子和垂直于绳子的方向正交分解,然后列出沿绳子方向速度相等的表达式即可求解.
10.如图所示,a ,b 两个小球分别从半圆轨道顶端和斜面顶端以大小相等的初速度同时水平抛出,已知半圆轨道的半径与斜面的竖直高度相等,斜面底边长是其竖直高度的2倍,则( )
A .一定是b 球先落在斜面上
B .可能是a 球先落在半圆轨道上
C .当0210gR
v >时,一定是a 球先落到半圆轨道上 D .当043gR
v <
b 球先落在斜面上 【答案】BC 【解析】 【分析】 【详解】
AB .将圆轨道和斜面轨道重合在一起,如图所示
交点为A ,初速度合适,小球可做平抛运动落在A 点,则运动的时间相等,即同时落在半圆轨道和斜面上。

若初速度不适中,由图可知,可能小球先落在斜面上,也可能先落在圆轨道上,故A 错误,B 正确;
CD .斜面底边长是其竖直高度的2倍,由几何关系可知,斜面与水平面之间的夹角
1tan 2
θ=
由图中几何关系可知
42cos sin 5h R R θθ=⋅⋅=
,82cos cos 5x R R θθ=⋅= 当小球落在A 点时
2
12
h gt =
,0x v t = 联立得
0210gR
v =
所以当0210gR v >
a 球先落到半圆轨道上,当0210gR
v <时,一定是b 球先落在斜面上,故C 正确,D 错误。

故BC 正确。

二、第六章 圆周运动易错题培优(难)
11.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。

则下列说法正确的是( )
A .当ω=2rad/s 时,T 3+1)N
B .当ω=2rad/s 时,T =4N
C .当ω=4rad/s 时,T =16N
D .当ω=4rad/s 时,细绳与竖直方向间夹角
大于45° 【答案】ACD 【解析】 【分析】 【详解】
当小球对圆锥面恰好没有压力时,设角速度为0ω,则有
cos T mg θ=
2
0sin sin T m l θωθ=
解得
053
2
rad/s 3
ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则
cos sin T N mg θθ+=
2sin cos sin T N m l θθωθ-=
代入数据整理得
(531)N T =
A 正确,
B 错误;
CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则
cos T mg α=
2sin sin T m l αωα=
解得
16N T =,o 5
arccos 458
α=>
CD 正确。

故选ACD 。

12.荡秋千是大家喜爱的一项体育活动。

某秋千的简化模型如图所示,长度均为L 的两根细绳下端拴一质量为m 的小球,上端拴在水平横杆上,小球静止时,细绳与竖直方向的夹角均为θ。

保持两绳处于伸直状态,将小球拉高H 后由静止释放,已知重力加速度为g ,
忽略空气阻力及摩擦,以下判断正确的是( )
A .小球释放瞬间处于平衡状态
B .小球释放瞬间,每根细绳的拉力大小均为
2
cos 2cos L H
mg L θθ
- C .小球摆到最低点时,每根细绳的拉力大小均为2cos θ
mg
D .小球摆到最低点时,每根细绳的拉力大小均为2cos 2cos mgH mg
L θθ
+
【答案】BD 【解析】 【分析】 【详解】
AB .设每根绳的拉力大小为T ,小球释放瞬间,受力分析如图1,所受合力不为0 由于速度为0,则有
2cos cos 0T mg θα-=
如图2,由几何关系,有
cos cos cos L H
L θαθ
-=
联立得
2cos 2cos L H
T mg L θθ
-=
A 错误,
B 正确;
CD .小球摆到最低点时,图1中的0α=,此时速度满足
2112
mgH mv =
由牛顿第二定律得
2
12cos v T mg m R
θ'-=
其中cos R L θ= 联立解得
22cos 2cos mgH mg
T L θθ
'=
+
C 错误,
D 正确。

故选BD 。

13.如图所示,水平转台上有一个质量为m 的小物块,用长为L 的轻细绳将物块连接在通过转台中心的转轴上,细绳与竖直转轴的夹角为θ,系统静止时细绳绷直但张力为零.物块与转台间动摩擦因数为μ(<tan μθ),设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,在物块离开转台前( )
A .物块对转台的压力大小等于物块的重力
B .转台加速转动的过程中物块受转台的静摩擦力方向始终指向转轴
C .绳中刚出现拉力时,sin g
L μθ
D cos g
L θ
【答案】CD 【解析】 【详解】
A .当转台达到一定转速后,物块竖直方向受到绳的拉力,重力和支持力,故A 错误;
B .转台加速转动的过程中,物块做非匀速圆周运动,故摩擦力不指向圆心,B 错误;
C .当绳中刚好要出现拉力时,
2sin μmg m ωL θ=
故sin g
L μωθ
=
,C 正确;
D .当物块和转台之间摩擦力为0时,物块开始离开转台,故
2tan sin mg m L θωθ=
角速度为cos g
L θ
,故D 正确;
故选CD 。

14.一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )
A .小球过最高点时,杆所受到的弹力可以等于零
B gR
C .小球过最高点时,杆对球的作用力一定随速度增大而增大
D .小球过最高点时,杆对球的作用力可能随速度增大而增大 【答案】AD 【解析】 【分析】 【详解】
A .当小球到达最高点弹力为零时,重力提供向心力,有
2
v mg m R
=
解得
v gR =即当速度v gR =
A 正确;
B .小球通过最高点的最小速度为零,选项B 错误; CD .小球在最高点,若v gR <
2
v mg F m R
-=
杆的作用力随着速度的增大而减小; 若v gR >
2
v mg F m R
+=
杆的作用力随着速度增大而增大。

选项C 错误,D 正确。

故选AD 。

15.如图所示,匀速转动的水平圆盘上放有质量分别为2kg 和3kg 的小物体A 、B ,A 、B 间用细线沿半径方向相连。

它们到转轴的距离分别为R A =0.2m 、R B =0.3m 。

A 、B 与盘面间的最大静摩擦力均为重力的0.4倍。

g 取10m/s 2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )
A .小物体A 达到最大静摩擦力时,
B 受到的摩擦力大小为12N B .当A 恰好达到最大静摩擦力时,圆盘的角速度为4rad/s
C 230
D .当A 恰好达到最大静摩擦力时,剪断细线,A 将做向心运动,B 将做离心运动 【答案】AC 【解析】 【分析】 【详解】
A .当增大原盘的角速度,
B 先达到最大静摩擦力,所以A 达到最大静摩擦力时,B 受摩擦力也最大,大小为
f B=km B
g =0.4⨯3⨯10N=12N
故A 正确;
B .当A 恰好达到最大静摩擦力时,圆盘的角速度为ω,此时细线上的拉力为T ,由牛顿第二定律,对A
2A A A k T R m g m ω-=
对B
2B B B T km g m R ω+=
联立可解得
s 13
102
ω=
故B 错误;
C. 当细线上开始有弹力时,此时B 物体受到最大摩擦力,由牛顿第二定律,有
2B B 1B k m R m g ω=
可得
1230
rad/s 3
ω=
故C正确;
D. 当A恰好达到最大静摩擦力时,剪断细线,A物体摩擦力减小,随圆盘继续做圆周运动,而B不再受细线拉力,最大摩擦力不足以提供向心力,做离心运动,故D错误。

故选AC。

16.如图甲,一长为R且不可伸长的轻绳一端固定在O点,另一端系住一小球,使小球在竖直面内圆周运动,小球经过最高点的速度大小为v,此时绳子拉力大小为F,拉力F与速度的平方r2的关系如图乙所示,以下说法正确的是()
A.利用该装置可以得出重力加速度
R g
a =
B.利用该装置可以得出小球的质量
aR m
b
C.小球质量不变,换绳长更长的轻绳做实验,图线a点的位置不变
D.绳长不变,用质量更大的球做实验,得到的图线斜率更大
【答案】D
【解析】
【分析】
【详解】
A.由图乙可知当2v a
=时,此时绳子的拉力为零,物体的重力提供向心力,则
2
v
mg m
R
=
解得
2
v gR
=
所以
a gR
=
则重力加速度
a
g
R
=
A错误;
B.当22
v a
=时,对物体受力分析,有
2
v mg b m R
+=
解得小球的质量为
b m g
=
B 错误;
D .小球经过最高点时,根据牛顿第二定律有
2
T v mg F m R
+=
解得
2
T m F v mg R
=
- 所以图乙图线的斜率为
m k R
=
所以绳长不变,用质量更大的球做实验,得到的图线斜率更大,D 正确; C .当0T F =时,有
2v gR =
所以小球质量不变,换绳长更长的轻绳做实验,图线a 点的位置将会发生变化,C 错误。

故选D 。

17.如图所示,转台上固定有一长为4L 的水平光滑细杆,两个中心有孔的小球A 、B 从细杆穿过并用原长为L 的轻弹簧连接起来,小球A 、B 的质量分别为3m 、2m 。

竖直转轴处于转台及细杆的中心轴线上,当转台绕转轴匀速转动时( )
A .小球A 、
B 受到的向心力之比为3:2
B .当轻弹簧长度变为2L 时,小球A 做圆周运动的半径为1.5L
C .当轻弹簧长度变为3L 时,转台转动的角速度为ω,则弹簧的劲度系数为1.8mω²
D .如果角速度逐渐增大,小球A 先接触转台边沿 【答案】C 【解析】 【分析】 【详解】
A .由于弹簧的拉力提供小球做圆周运动的向心力,弹簧对两个小球的拉力相等,因此两个小球的向心力相等,A 错误;
B .由于向心力相等,因此
221232m r m r ωω=
而轻弹簧长度变为2L 时
122r r L +=
可得
10.8r L =,2 1.2r L =
当轻弹簧长度变为2L 时,小球A 做圆周运动的半径为0.8L ,B 错误; C .当长度为3L 时,即
123r r L ''+=
可得
1 1.2r L '=
此时弹簧的弹力提供A 球做圆周运动的向心力,则
2(3)3 1.2k L L m L ω-=⨯
整理得
21.8k m ω=
C 正确;
D .由于B 球的轨道半径总比A 球的大,因此B 球先接触转台边沿,D 错误。

故选C 。

18.如图所示,A 、B 是两只相同的齿轮,A 被固定不能转动。

若B 齿轮绕A 齿轮运动半周,到达图中的C 位置,则B 齿轮上所标出的竖直向上的箭头所指的方向是( )
A .竖直向上
B .竖直向下
C .水平向左
D .水平向右
【答案】A 【解析】 【详解】
若B 齿轮逆时针绕A 齿轮转动,当B 齿轮转动
1
4
周时,B 齿轮在A 齿轮正上方,B 齿轮上所标出箭头所指的方向竖直向下;B 齿轮继续转动1
4
周,B 齿轮到达图中的C 位置,B 齿轮上所标出箭头所指的方向竖直向上。

若B 齿轮顺时针绕A 齿轮转动,当B 齿轮转动
1
4
周时,B 齿轮在A 齿轮正下方,B 齿轮上
所标出箭头所指的方向竖直向下;B 齿轮继续转动1
4
周,B 齿轮到达图中的C 位置,B 齿轮上所标出箭头所指的方向竖直向上。

综上,BCD 三项错误,A 项正确。

19.如图所示,一根轻杆,在其B 点系上一根细线,细线长为R,在细线下端连上一质量为 m 小球.以轻杆的A 点为顶点,使轻杆旋转起来,其B 点在水平面内做匀速圆周运动,轻杆的轨迹为一个母线长为L 的圆锥,轻杆与中心轴AO 间的夹角为α.同时小球在细线的约束下开始做圆周运动,轻杆旋转的角速度为ω,小球稳定后,细线与轻杆间的夹角β = 2α.重力加速度用g 表示,则( )
A .细线对小球的拉カ为mg /sina
B .小球做圆周运动的周期为π/ω
C .小球做圆周运动的线速度与角速度的乘积为gtan2a
D .小球做圆周运动的线速度与角速度的比值为(L+R)sina 【答案】D 【解析】 【分析】 【详解】
细线的拉力满足cos F mg α=,得cos mg
F α
=
,选项A 错误;小球达到稳定状态后做匀速圆周运动,其周期与轻杆旋转的周期相同,周期2T πω
=

,选项B 错误;小球做圆周运
动,根据题意有tan(2)mg mv ααω-=得,小球的线速度与角速度的乘积是
tan v g ωα=,选项C 错误;小球做圆周运动的线速度与角速度的比值即是半径,根据题
意得()sin r L R α=+,选项D 正确. 综上所述本题答案是:D
20.质量为 m 的小球由轻绳 a 和 b 分别系于一轻质细杆的 A 点和 B 点,如图所示,绳 a 与水平方向成θ角,绳 b 在水平方向且长为 l ,当轻杆绕轴 AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周 运动,则下列说法正确的是( )
A .a 绳的张力可能为零
B .a 绳的张力随角速度的增大而增大
C .若 b 绳突然被剪断,则 a 绳的弹力一定发生变化
D .当角速度tan g
l ωθ
>,b 绳将出现弹力 【答案】D 【解析】 【分析】 【详解】
A 、小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 错;
B 、根据竖直方向上平衡得,F a sinθ=mg ,解得sin a mg
F θ
=,可知a 绳的拉力不变,故B 错误.
D 、当b 绳拉力为零时,有:2mgcot m l θω= ,解得tan g
l ωθ
=
,可知当角速度tan g
l ωθ
>
,b 绳将出现弹力,故D 对; C 、由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故C 错误 故选D 【点睛】
小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变.
三、第八章 机械能守恒定律易错题培优(难)
21.如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a 、b 可视为质
点,重力加速度大小为,则
A.a减少的重力势能等于b增加的动能
B.轻杆对b一直做正功,b的速度一直增大
C.当a运动到与竖直墙面夹角为θ时,a、b的瞬时速度之比为tanθ
D.a落地前,当a的机械能最小时,b对地面的压力大小为mg
【答案】CD
【解析】
【分析】
【详解】
ab构成的系统机械能守恒,a减少的重力势能大于b增加的动能.当a落到地面时,b的速度为零,故b先加速后减速.轻杆对b先做正功,后做负功.由于沿杆方向的速度大小相等,则
cos sin
a b
v v
θθ
=

tan
a
b
v
v
θ
=
当a的机械能最小时,b动能最大,此时杆对b作用力为零,故b对地面的压力大小为mg.综上分析,CD正确,AB错误;
故选CD.
22.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A和B,使滑轮左侧轻绳始终与斜面平行,初始时A位于斜面的C点,C、D两点间的距离为L.现由静止同时释放A、B,物体A沿斜面向下运动,将弹簧压缩到最短的位置E点,D、E两点间
的距离为
2
L
.若A、B的质量分别为4m和m,A与斜面间的动摩擦因数
3
8
μ=,不计空气阻力,重力加速度为g,整个过程中,轻绳始终处于伸直状态,则( )
A.A在从C至E的过程中,先做匀加速运动,后做匀减速运动
B .A 在从
C 至
D 的过程中,加速度大小为120
g C .弹簧的最大弹性势能为
15
8
mgL D .弹簧的最大弹性势能为38
mgL 【答案】BD 【解析】 【分析】 【详解】
AB .对AB 整体,从C 到D 的过程受力分析,根据牛顿第二定律得加速度为
4sin 304cos30420
mg mg mg g
a m m μ︒--⋅︒=
=+
可知a 不变,A 做匀加速运动,从D 点开始与弹簧接触,压缩弹簧,弹簧被压缩到E 点的过程中,弹簧弹力是个变力,则加速度是变化的,所以A 在从C 至E 的过程中,先做匀加速运动,后做变加速运动,最后做变减速运动,直到速度为零,故A 错误,B 正确; CD .当A 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对AB 整体应用动能定理得
004sin 304cos30222L L L mg L mg L mg L W μ⎛⎫⎛⎫⎛
⎫-=+︒-+-⨯︒+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭弹
解得3
8
W mgL =
弹,则弹簧具有的最大弹性势能为 p 3
8
E W mgL ==弹
故C 错误,D 正确。

故选BD 。

23.如图a 所示,小物体从竖直弹簧上方离地高h 1处由静止释放,其动能E k 与离地高度h 的关系如图b 所示。

其中高度从h 1下降到h 2,图象为直线,其余部分为曲线,h 3对应图象的最高点,轻弹簧劲度系数为k ,小物体质量为m ,重力加速度为g 。

以下说法正确的是( )
A .小物体从高度h 2下降到h 4,弹簧的弹性势能增加了24()mg h h -
B .小物体下降至高度h 3时,弹簧形变量为
mg
k
C .小物体从高度h 1下降到h 5,弹簧的最大弹性势能为15()mg h h -
D .小物体下落至高度h 4时,物块处于失重状态 【答案】ABC 【解析】 【分析】 【详解】
A .小物体下落过程中,小物体和弹簧组成的系统机械能守恒;由图知,小物体下落至高度h 4的动能与下落至高度h 2时的动能相同,则小物体从高度h 2下降到h 4过程,弹簧弹性势能的增加量等于重力势能的减少量,所以弹簧弹性势能的增加量为24()mg h h -,故A 正确;
B .小物体下降至高度h 3时,动能达到最大,加速度为零,此时有
kx mg =
弹簧形变量为
mg
k
,故B 正确; C .小物体到达最低点时,速度为0,弹簧压缩量最大,弹簧弹性势能最大;小物体从高度h 1下降到h 5,动能的变化量为0,弹簧弹性势能的增大等于重力势能的减少,所以弹簧的最大弹性势能为15()mg h h -,故C 正确;
D .小物体从高度h 3下降到高度h 5过程,小物体动能减小,向下做减速运动,则小物体下落至高度h 4时,小物体处于超重状态,故D 错误。

故选ABC 。

24.如图,水平传送带长为L =4m ,在电动机的带动下以速度v =2m/s 始终保持匀速运动,把质量为m =10kg 的货物放到左端A 点,货物与皮带间的动摩擦因数为μ=0.4,当货物从A 点运动到B 点的过程中,下列说法正确的是(g 取10m/s 2)( )
A .货物一直做匀加速运动
B .货物运动到B 点时的速度大小为2m/s
C .货物与传送带因摩擦而产生的热量为10J
D .电动机因货物多输出的机械能为40J 【答案】BD 【解析】 【分析】。

相关文档
最新文档