山西省太原市2018届九年级上期末考试数学试题含答案解析

合集下载

太原市 2018—2019 学年第一学期九年级期末考试数学

太原市 2018—2019 学年第一学期九年级期末考试数学

太原市2018~2019学年第一学期九年级期末考试数 学 试 卷说明:本试卷为闭卷笔答,不允许携带计算器.答题时间90分钟,满分100分.一、选择题(本大题共10个小题,每小题3分,共30分)下列每个小题给出的四个选项中,只有一项符合题目要求,请选出并填入下表相应的位置. 1.一元二次方程240x -=的解为A.124,4x x ==-B.122,2x x ==-C.120,4x x ==D.120,4x x ==- 【答案】B【考点】解一元二次方程【解析】240x -=,化简得24x =,解得122,2x x ==-2.下列反比例函数中,图象位于第二、四象限的是 A.2y x =B.0.2y x =C.y x =D.25y x-=【答案】D【考点】反比例函数图象的性质【解析】∵反比例函数的图象位于第二、四象限 ∴k<0,排除A 、B 、C ,选D3. 有两张印有太原市创建全国文明城市卡通形象“双双”和“塔塔”的卡片(除图案外完全相同).现将两张卡片背面朝上放置,搅匀后甲先从中随机抽取一张,记下图案放回,搅匀后乙再从中随机抽取一张,则甲、乙二人抽到的卡片图案恰好相同的概率是A.12 B.13 C.14 D.34【答案】A【考点】用表格或树状图法求概率 【解析】由题意得:同卡片的可能性为2种,故概率为12P4.如图,正方形ABCD 中,点E 是对角线AC 上的一点,且AE=AB ,连接BE ,DE ,则∠CDE 的度数为A.20°B.22.5°C.25°D.30° 【答案】B【考点】正方形的性质、等腰三角形的性质【解析】 ∵四边形ABCD 是正方形,∴AB=AD ,∠CAD=45°,又∵AE=AB ,∴AE=AD ,∴∠ADE=∠AED=67.5°,∴∠CDE=90°-67.5°=22.5°5.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼。

已做2018届九年级上学期期末考试数学试题 (解析版)

已做2018届九年级上学期期末考试数学试题 (解析版)
而符合条件的只有1种情况,
所以张华一次发短信成功的概率是 .
故选:A.
【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
7.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为( )
15.如图,在平面直角坐标系中,边长为4的等边△OAB的OA边在x轴的正半轴上,反比例函数y= (x>0)的图象经过AB边的中点C,且与OB边交于点D,则点D的坐标为.
三、解答题(本题共8个小题,共75分
16.(10分)(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣ )﹣2+
(2)解方程:x2+4x﹣2=0
A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;
B、a=0不符合一元二次方程的定义,此选项错误;
C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;
D、若c=0,则ac=0≤4,此选项正确;
故选:D.
【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
(1)证明:∵∠A=∠A,∠ACB=∠ADE∴△ACB∽△ADE∴ =又∵∴△ACD∽△ABE
(2)你还能得到图中哪些三角形是相似的?至少写出两对.
20.(10分)运城百货大楼经过重新装修后,面向公众开放.经过一段时间的营业后,某品牌儿童服装销售者发现:某款式童装平均每天可售出20件,每件盈利40元.为了迎接元旦,该老板决定降价促销,经调查发现如果每件降价1元,那么每天可多售出2件.若想要每天盈利1200元并尽快减少库存,那么每件童装应降价多少元?

2018-2019九年级期末考试试卷

2018-2019九年级期末考试试卷

太原市2018--2019学年第一学期九年级期末考试数学试卷解析一、选择题1.一元二次方程240x -=的解为( )。

A.41=x , 42-=xB.21=x , 22-=xC.01=x , 42=xD.01=x , 42-=x 2.下列反比例函数中,图像位于第二、四象限的是( ) A. x y 2=B.x y 2.0=C. x y 2=D.xy 52-=3.有两张印有太原市创建全国文明城市卡通形象“双双”和“塔塔”的卡片(除图案外完全相同)。

现将两张卡片背面朝上放置,搅匀后甲先从中随机抽取一张,记下图案放回,搅匀后乙再从中随机抽取一张,则甲、乙二人抽到的卡片图案恰好相同的概率是( ) A. 21 B.31 C. 41 D.434.如图,正方形ABCD 中,点E 是对角线AC 上的一点,且AB AE =,连接DE BE ,,则CDE ∠的度数为( ) A. ︒20 B.︒5.22 C. ︒25 D.︒305.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卵眼如图,甲构件带有棒甲头,乙构件带有卵眼,两个构件恰好可以完全咬合.根据图中标示的方向,乙构件的主视图是A. B. C. D.6. 在用配方法解一元二次方程()002≠=++a c bx ax 时,得到配方后的方程为222442a ac b a b x -=⎪⎭⎫ ⎝⎛+,若要将方程两边同时开平方,则系数c b a ,,满足的条件为A. ac b 4-2>0 B. ac b 4-2<0 C. ac b 4-2≥0 D.ac b 4-2≤07.过原点的直线l 与反比例函数xky =的图象交于点),2(a A -)3,(-b B ,则k 的值为A. -2B. -3C. -5D. -68、如图,平面直角坐标系中,将AOB ∆的顶点A,B 的横、纵坐标都乘2,得到点,,B A ''则关于B A O ''∆与OAB ∆的关系正确的是A. B A O ''∆与OAB ∆关于原点位似,相似比为2:1B. B A O ''∆与OAB ∆关于原点位似,相似比为1:2C. B A O ''∆与OAB ∆关于点),(42位似,相似比为1:2D. B A O ''∆.与OAB ∆关于点),(02位似,相似比为1:2 9.《山西省新能源汽车产业2018年行动计划》指出,2018年全省新能源汽车产能将达到30万辆.按照“十三五”规划,到2020年,全省新能源汽车产能将达到41万辆.若设这两年全省 新能源汽车产能的平均增长率为x ,则根据题意可列出方程是A. ()411302=+x B. ()412130=+xB. ()()41130130302=++++x x D. ()41130302=++x10.如图,在ABC ∆中, 2==AC AB ,将ABC ∆绕点 C 逆时针方向旋转得到DEC ∆,当点D 落在 BC 边上时 , ED 的延长线恰好经过点A ,则 AD 的长为A. 1B.32C. 1-5D.21-5二、填空题11.某超市随机调查了近期的1000次交易记录,发现顾客使用手机支付的次数为750次.若从 在该超市购物的顾客中随机选取一人,他恰好使用手机支付的概率约为 . 12.如图, ABCD 的对角线BD AC ,相交于点O ,点H G F E ,,,分别是OD OC OB OA ,,,的中点.若要使四边形EFGH 成为菱形,则 ABCD 应满足的条件是 .(写出一种即可) 13.如图的比例规是一种画图工具,使用它可以把线段按一定比例伸长或缩短.它是由长度相等的两脚AD 和BC 交叉构成的.如果螺丝钉点O 的位置使OA=3OD,OB=3OC,那么,当A,B 两点间距离为5时,C,D 两点间的距离为 .14.如图,在平面直角坐标系中, ABCD 的顶点D A ,在反比例函()0,0>>=x k xky 的图象上,点C 在x 轴上,对角线BD∥x 轴.若D A ,两点的横坐标分别为2,1,AD 的长为55,则k 的值为 .15. 如图,菱形纸片ABCD 中,,6,5==BD AB 将纸片沿对角线BD 剪开,再将 ABD ∆ 沿射线 BD 的方向平移得到D B A '''∆ .当D C A ''∆是直角三角形时,ABD ∆平移的距离为 .三、解答题16.解下列方程(每题4分,共8分)(1)01422=-+x x ; (2)2)2(2+=+x x x .17.(本题6分)新年游园会中有一款电子飞镖的游戏.如图,A 靶被等分成2个区域,分别涂上红色和蓝色,B 靶被等分成3个区域,分别涂上红色、蓝色和白色.小彬向A 靶、小颖向B 靶分别投掷一枚电子飞镖,飞镖随机落在靶盘的某一位置,若两枚飞镖命中部分的颜色恰好配成紫色,小彬获得奖品,否则,小颖获得奖品(若飞镖落在边界线上时,重投一次,直到落在某一区域).这个游戏公平吗?说明理由.【考点】列表法或树状图法求两步实验的概率 【难度星级】∥《城镇污水处理厂污染物排放标准》中硫化物的排放标准为1.0mg/L.某污水处理厂在自查中发现;所排污水中硫化物浓度超标,因此立即整改,并开始实时监测。

2018-2019(上)初三数学期末考试——数学_试卷解析

2018-2019(上)初三数学期末考试——数学_试卷解析
x
在 x 轴上,对角线 BD∥x 轴.若 A,D 两点的横坐标分别为 1,2,AD 的长为 5 ,则 k 的值为
.
【考点】反比例函数解析式 【难度星级】★ 【答案】4
【解析】易知,A,D 两点的纵坐标之差为 2,所以 B,C 两点的纵坐标之差也为 2,所以点 B 和点 D 的纵
坐标都为 2,又知道点 D 的横坐标为 2, k 4 .
【考点】位似的性质
【难度星级】★ 【答案】B
【解析】易知 OAB和OAB 关于原点位似,选项叙述中, OAB 在前,相似比为2 :1 .
9. 《山西省新能源汽车产业 2018 年行动计划》指出,2018 年全省新能源汽车产能将达到 30 万辆.按照“十 三五”规划,到 2020 年,全省新能源汽车产能将达到 41 万辆.若设这两年全省新能源汽车产能的平均 增率为 x,则根据题意可列出方程是
A. 1
B. 1
C. 1
D. 3
2
3
4
4
【考点】概率统计
【难度星级】★
【答案】A
【解析】总共有 4 种等可能的情况,符合要求的有 2 种如图,正方形 ABCD 中,点 E 是对角线 AC 上的一点,且 AE=AB,连接 BE,DE,则 CDE 的度数是
B. b2 4ac 0
C. b2 4ac 0
【考点】一元二次方程根的判别式
D. b2 4ac 0
【难度星级】★
【答案】C
【解析】被开方数 b2 4ac 非负,则 b2 4ac 非负即可. 4a2
-2-
-2--2-
7. 过原点的直线 l 与反比例函数 y k 的图象交于点 A2, a , B b, 3 ,则 k 的值为
A. 30 1 x2 41

太原市2017~2018学年第一学期九年级期末考试数学试题(含答案)

太原市2017~2018学年第一学期九年级期末考试数学试题(含答案)

太原市2017~2018学年第一学期九年级期末考试
数学试卷
说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分
一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中
,只有一个符合要求,请将正确答案的字母代号填入相应的位置
1.一元二次方程x 2+4x=0的一根为x=0,另一根为
A.x=2
B.x=-2
C.x=4
D.x=-4
【答案】 D
【解析】21240400,4
x x x x x x 2.若反比例函数2
y x 的图象经过点(-2,m),那么m 的值为
A.1
B.-1 C 1
2 D.-1
2
【答案】 B
【解析】∵反比例函数2
y x 的图象经过点(-2,m)∴2
1
2m m 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是
【答案】 B
4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是
A 1
3 B 1
6 C 1
9 D 2
3
【答案】 A
【解析】
共有9种等可能的结果,在一次游戏中两人手势相同有3种情况。

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。

山西省太原市九年级(上)期末数学试卷(含解析)

山西省太原市九年级(上)期末数学试卷(含解析)

山西省太原市九年级(上)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中只有一个符合要求,请将正确答案的字母代号填入相应的位置1.方程x2﹣4=0的解为()A.2B.﹣2C.±2D.42.下列反比例函数中,图象位于第二、四象限的是()A.y=B.y=C.y=D.y=3.有两张印有太原市创建全国文明城市卡通形象“双双”和“塔塔”的卡片(除图案外完全相同)现将两张卡片背面朝上放置,搅匀后甲先从中随机抽取一张,记下图案放回,搅匀后乙再从中随机抽取一张,则甲、乙二人抽到的卡片图案恰好相同的概率是()A.B.C.D.4.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°5.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助棒卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼.如图,甲构件带有榫头,乙构件带有卯眼,两个构件恰好可以完全咬合,根据图中标示的方向,乙构件的主视图是()A.B.C.D.6.在用配方法解一元二次方程ax2+bx+c=0(a≠0)时,得到配方后的方程为(x+)2=,若要将方程两边同时开平方,则系数a,b,c满足的条件为()A.b2﹣4ac>0B.b2﹣4ac<0C.b2﹣4ac≥0D.b2﹣4ac≤07.过原点的直线l与反比例函数y=的图象交于点A(﹣2,a),B(b,﹣3),则k的值为()A.﹣2B.﹣3C.﹣5D.﹣68.如图,平面直角坐标系中,将△AOB顶点A,B的横、纵坐标都乘2,得到点A',B′,则关于△OA′B′与△OAB的关系正确的是()A.△OA′B'与△OAB关于原点位似,相似比为1:2B.△OA′B'与△OAB关于原点位似,相似比为2:1C.△OA′B′与△OAB关于点(2,4)位似,相似比为2:1D.△OA′B'与△OAB关于点(2,0)位似,相似比为2:19.《山西省新能源汽车产业2018年行动计划》指出,2018年全省新能源汽车产能将达到30万辆.按照“十三五”规划,到2020年,全省新能源汽车产能将达到41万辆,若设这两年全省新能源汽车产能的平均增长率为x,则根据题意可列出方程是()A.30(1+x)2=41B.30(1+2x)=41C.30+30(1+x)+30(1+x)2=41D.30+30(1+x)2=4110.如图,在△ABC中,AB=AC=2,将△ABC绕点C逆时针方向旋转得到△DEC,当点D落在BC边上时,ED的延长线恰好经过点A,则AD的长为()A.1B.C.﹣1D.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上11.(2分)某超市随机调查了近期的1000次交易记录,发现顾客使用手机支付的次数为750次,若从在该超市购物的顾客中随机选取一人,他恰好使用手机支付的概率约为.12.(2分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F,G,H分别是OA,OB,OC,OD的中点,若要使四边形EFGH成为菱形,则▱ABCD应满足的条件是(写出一种即可).13.(2分)如图的比例规是一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的.如果螺丝钉点O的位置使OA=3OD,OB=3OC,那么,当A,B两点间距离为5时,C,D两点间的距离为.14.(2分)如图,在平面直角坐标系中,▱ABCD的顶点A,D在反比例函数y=(k>0,x>0)的图象上,点C在x轴上,对角线BD∥x轴,若A,D两点的横坐标分别为1,2,AD的长为,则k的值为.15.(2分)如图,菱形纸片ABCD中,AB=5,BD=6,将纸片沿对角线BD剪开,再将△ABD沿射线BD的方向平移得到△A'B′D′,当△A′CD′是直角三角形时,△ABD平移的距离为.三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程16.(8分)解下列方程(1)2x2+4x﹣1=0;(2)2x(x+2)=x+2.17.(6分)新年游园会中有一款电子飞镖的游戏如图,A靶被等分成2个区域,分别涂上红色和蓝色,B靶被等分成3个区域,分别涂上红色、蓝色和白色,小彬向A靶、小颖向B靶分别投掷一枚电子飞镖,飞镖随机落在靶盘的某一位置,若两枚飞镖命中部分的颜色恰好配成紫色,小彬获得奖品,否则,小颖获得奖品(若飞镖落在边界线上时,重投一次,直到落在某一区域).这个游戏公平吗?说明理由.18.(6分)《城镇污水处理厂污染物排放标准》中硫化物的排放标准为1.0mg/L.某污水处理厂在自查中发现,所排污水中硫化物浓度超标.因此立即整改,并开始实时监测据监测,整改开始第60小时时,所排污水中硫化物的浓度为5mg/L;从第60小时开始,所排污水中硫化物的浓度y (mg/L)是监测时间x(小时)的反比例函数其图象如图所示.(1)求y与x之间的函数关系式;(2)整改开始第100小时时,所排污水中硫化物浓度为mg/L;(3)按规定所排污水中硫化物的浓度不超过0.8mg/L时,才能解除实时监测,此次整改实时监测的时间至少为多少小时?19.(6分)一天晚上,哥哥和弟弟拿两根等长的标杆AB,CD直立在一盏亮着的路灯下,然后调整标杆位置,使它们在该路灯下的影子BE,DF恰好在一条直线上(如图所示).(1)请在图中画出路灯灯泡P的位置;(2)哥哥和弟弟测得如下数据:AB=CD=1.6米,BE=1米,DF=2米,两根标杆的距离AC=BD=3.6米,且AC∥BD,请你根据以上信息计算灯泡P距离地面的高度.20.(6分)已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形21.(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?22.(10分)综合与实践﹣图形变换中的数学问题问題情境:如图1,已知矩形ABOD中,点E,F是AD,BC的中点,连接EF,将矩形ABCD沿FF剪开,得到四边形ABFE和四边形EPCD.(1)求证:四边形EPCD是矩形;操作探究:保持矩形EPCD位置不变,将矩形ABFE从图1的位置开始,绕点E按逆时针方向旋转,设旋转角为α(0°<α<360).操作中,提出了如下问题,请你解答:(2)如图2,当矩形ABFE旋转到点A落在线段EP上时,线段EF恰好经过点D,设DC与AB 相交于点G.判断四边形EAGD的形状,并说明理由;(3)请从A,B两题中任选一题作答我选择题.A.在矩形ABFE旋转过程中连接线段AP和BP,当AP=BP时,直接写出旋转角α的度数.B.已知矩形ABCD中,AB=10,AD=8.在矩形ABFE旋转过程中,连接线段AP和BP,当AP=BP时,直接写出AP的长.参考答案与试题解析一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中只有一个符合要求,请将正确答案的字母代号填入相应的位置1.方程x2﹣4=0的解为()A.2B.﹣2C.±2D.4【分析】这个式子先移项,变成x2=4,从而把问题转化为求4的平方根.【解答】解:移项得x2=4,解得x=±2.故选:C.【点评】本题考查了解一元二次方程﹣直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.2.下列反比例函数中,图象位于第二、四象限的是()A.y=B.y=C.y=D.y=【分析】找到比例系数小于0的反比例函数即为本题的答案.【解答】解:A、B、C中比例系数均大于0,图象位于一、三象限;D选项k=﹣<0,图象位于二、四象限,符合题意,故选:D.【点评】考查了反比例函数的性质,关键是掌握反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.3.有两张印有太原市创建全国文明城市卡通形象“双双”和“塔塔”的卡片(除图案外完全相同)现将两张卡片背面朝上放置,搅匀后甲先从中随机抽取一张,记下图案放回,搅匀后乙再从中随机抽取一张,则甲、乙二人抽到的卡片图案恰好相同的概率是()A.B.C.D.【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再依据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有4种等可能结果,其中甲、乙二人抽到的卡片图案恰好相同的有2种结果,所以甲、乙二人抽到的卡片图案恰好相同的概率为,故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°【分析】根据∠CDE=90°﹣∠ADE,求出∠ADE即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,∠DAC=45°,∵AE=AB,∴AD=AE,∴∠ADE=∠AED=67.5°,∴∠CDE=90°﹣67.5°=22.5°,【点评】本题考查正方形的性质,等腰三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助棒卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼.如图,甲构件带有榫头,乙构件带有卯眼,两个构件恰好可以完全咬合,根据图中标示的方向,乙构件的主视图是()A.B.C.D.【分析】找到从正面所看到的图形即可,注意所看到的棱都应在主视图中.【解答】解:主视图是从正面看,看到的外面是一个长方体,而榫头是一个凸出的长方体,而进入卯眼后是看不到的,所以用虚线表示,所以选C.故选:C.【点评】本题考查了几何体的三视图,正确从指定角度观察是解题的关键.6.在用配方法解一元二次方程ax2+bx+c=0(a≠0)时,得到配方后的方程为(x+)2=,若要将方程两边同时开平方,则系数a,b,c满足的条件为()A.b2﹣4ac>0B.b2﹣4ac<0C.b2﹣4ac≥0D.b2﹣4ac≤0【分析】根据被开方数不能小于零确定正确的选项即可.【解答】解:∵要将方程(x+)2=两边同时开平方,∴≥0,∴系数a,b,c满足的条件为b2﹣4ac≥0,故选:C.【点评】考查了根的判别式及配方法解一元二次方程的知识,解题的关键是了解被开方数不能小于零,难度不大.7.过原点的直线l与反比例函数y=的图象交于点A(﹣2,a),B(b,﹣3),则k的值为()A.﹣2B.﹣3C.﹣5D.﹣6【分析】设直线l的解析式为y=mx(m≠0),再把A、B点的坐标代入,用m表示a与b,再代入反比例函数解析式,建立m的方程便可.【解答】解:设直线l的解析式为y=mx(m≠0),则a=﹣2m,b=﹣,把A(﹣2,a),B(b,﹣3)都代入y=中,得k=﹣2a=﹣3b,∴﹣2(﹣2m)=﹣3(﹣),解得,m=,∴k=﹣2a=﹣2×[﹣2×(±)]=±6,∵直线l与反比例函数y=的图象交于点A(﹣2,a),B(b,﹣3),∴反比例函数图象的两个分支必在第二、四象限内,∴k<0,∴k=﹣6,故选:D.【点评】本题主要考查了一次函数与反比例函数的交点问题,关键是将反比例函数的比例系数与正比例函数的比例系数建立联系,找到等量关系.8.如图,平面直角坐标系中,将△AOB顶点A,B的横、纵坐标都乘2,得到点A',B′,则关于△OA′B′与△OAB的关系正确的是()A.△OA′B'与△OAB关于原点位似,相似比为1:2B.△OA′B'与△OAB关于原点位似,相似比为2:1C.△OA′B′与△OAB关于点(2,4)位似,相似比为2:1D.△OA′B'与△OAB关于点(2,0)位似,相似比为2:1【分析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,进而得出答案.【解答】解:∵将△AOB顶点A,B的横、纵坐标都乘2,得到点A',B′,∴关于△OA′B′与△OAB的关系正确的是△OA′B'与△OAB关于原点位似,相似比为2:1.故选:B.【点评】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.9.《山西省新能源汽车产业2018年行动计划》指出,2018年全省新能源汽车产能将达到30万辆.按照“十三五”规划,到2020年,全省新能源汽车产能将达到41万辆,若设这两年全省新能源汽车产能的平均增长率为x,则根据题意可列出方程是()A.30(1+x)2=41B.30(1+2x)=41C.30+30(1+x)+30(1+x)2=41D.30+30(1+x)2=41【分析】可先表示出2019年的产能,那么2019年的产能×(1+增长率)=41,把相应数值代入即可求解.【解答】解:2019年的产能×(1+x),2020年的产能在2019年产能的基础上增加x,为30(1+x)×(1+x),则列出的方程是30(1+x)2=41.故选:A.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10.如图,在△ABC中,AB=AC=2,将△ABC绕点C逆时针方向旋转得到△DEC,当点D落在BC边上时,ED的延长线恰好经过点A,则AD的长为()A.1B.C.﹣1D.【分析】利用旋转的性质得CD=CA=2,∠B=∠E,再证明∠B=∠BAD得到BD=AD,接着证明△BAD∽△BCA,然后利用相似比可计算出BD的长,从而得到AD的长.【解答】解:∵△ABC绕点C逆时针方向旋转得到△DEC,∴CD=CA=2,∠B=∠E,∵∠ADB=∠CDE,∴∠BAD=∠DCE,∴∠ACD=∠BAD,∵AB=AC,∴∠B=∠ACD,∴∠B=∠BAD,∴BD=AD,∵∠ABD=∠CBA,∠BAD=∠ACB,∴△BAD∽△BCA,∴=,即=,整理得BD2+2BD﹣4=0,解得BD=﹣1,∴AD=﹣1.故选:C.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.也考查了旋转的性质.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上11.(2分)某超市随机调查了近期的1000次交易记录,发现顾客使用手机支付的次数为750次,若从在该超市购物的顾客中随机选取一人,他恰好使用手机支付的概率约为.【分析】直接利用概率公式求解即可.【解答】解:∵随机调查了近期的1000次交易记录,发现顾客使用手机支付的次数为750次,∴从在该超市购物的顾客中随机选取一人,他恰好使用手机支付的概率约为=,故答案为:.【点评】本题考查了概率公式,牢记公式是解答本题的关键,难度不大.12.(2分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F,G,H分别是OA,OB,OC,OD的中点,若要使四边形EFGH成为菱形,则▱ABCD应满足的条件是AB=AD或AC⊥BD(写出一种即可).【分析】根据菱形的判定方法即可解决问题.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E、F、G、H分别是OA、OB、OC、OD的中点,∴EF∥AB,EF=AB,GH∥CD,GH=CD,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∴要使得四边形EFGH是菱形,只要满足:EF=EH或EG⊥FH即可,∴▱ABCD应满足的条件是AB=AD或AC⊥BD.故答案为AB=AD或AC⊥BD.【点评】本题考查的是菱形的判定、平行四边形的判定,掌握三角形中位线定理、平行四边形的判定定理是解题的关键.13.(2分)如图的比例规是一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的.如果螺丝钉点O的位置使OA=3OD,OB=3OC,那么,当A,B两点间距离为5时,C,D两点间的距离为.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出CD的长度,此题得解.【解答】解:∵∠COD=∠BOA,OA=3OD,OB=3OC,∴ABO∽△DCO,∴,即,∴CD=.故答案为:.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出CD的长度是解题的关键.14.(2分)如图,在平面直角坐标系中,▱ABCD的顶点A,D在反比例函数y=(k>0,x>0)的图象上,点C在x轴上,对角线BD∥x轴,若A,D两点的横坐标分别为1,2,AD的长为,则k的值为4.【分析】过C作CE⊥BD于点E,过A作AF⊥x轴于点F交BD于点G,构造矩形ECFG,根据条件求出AF即可.【解答】解:过C作CE⊥BD于点E,过A作AF⊥x轴于点F交BD于点G∵BD∥x轴∴四边形ECFG为矩形∴GF=EC又∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠CBE=∠ADG又∵∠CEB=∠AGD=90°∴△BEC≌△DGA(AAS)∴AG=EC=GF∴AF=2AG∵D的横坐标是2,A的横坐标是1∴DG=1∴AG=∴AF=2AG=4∴A(1,4)∴k=4所以答案为4【点评】本题主要考查了全等三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造矩形和全等三角形.15.(2分)如图,菱形纸片ABCD中,AB=5,BD=6,将纸片沿对角线BD剪开,再将△ABD沿射线BD的方向平移得到△A'B′D′,当△A′CD′是直角三角形时,△ABD平移的距离为或.【分析】分两种情形分别求解即可解决问题.【解答】解:①当∠CD′A′=90°时,连接AC交BD于O.∵四边形ABCD是菱形,∴AB=AD=BC=CD=5,OB=OD=3,∵BC∥AD∥A′D′,∴∠BCD′=∠BOC=90°,∵∠CBO=∠CBD′,∴△CBO∽△D′BC,∴BC2=BO•BD′,∴BD′=,∴DD′=BD′﹣BD=,②当∠CA″D″=90°时,易知BD′=2BD′=,∴DD″=﹣6=,∴△ABD平移的距离为或.故答案为:或.【点评】本题考查菱形的性质,平移变换等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程16.(8分)解下列方程(1)2x2+4x﹣1=0;(2)2x(x+2)=x+2.【分析】(1)利用配方法得到(x+1)2=,然后利用直接开平方法解方程;(2)先变形得到2x(x+2)﹣(x+2)=0,然后利用因式分解法解方程.【解答】解:(1)x2+2x=,x2+2x+1=+1,(x+1)2=,x+1=±所以x1=﹣1+,x2=﹣1﹣;(2)2x(x+2)﹣(x+2)=0,(x+2)(2x﹣1)=0,x+2=0或2x﹣1=0,所以x1=﹣2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.17.(6分)新年游园会中有一款电子飞镖的游戏如图,A靶被等分成2个区域,分别涂上红色和蓝色,B靶被等分成3个区域,分别涂上红色、蓝色和白色,小彬向A靶、小颖向B靶分别投掷一枚电子飞镖,飞镖随机落在靶盘的某一位置,若两枚飞镖命中部分的颜色恰好配成紫色,小彬获得奖品,否则,小颖获得奖品(若飞镖落在边界线上时,重投一次,直到落在某一区域).这个游戏公平吗?说明理由.【分析】首先根据题意画出树状图,求得所有等可能的情况与能配成紫色(红色和蓝色一起可配成紫色)的情况,然后利用概率公式求解即可求得答案.【解答】解:这个游戏不公平,理由:树状图如图所示,结果共有6种可能,其中能成紫色的有2种,∴P(小彬得奖品)==.故这个游戏不公平.【点评】此题考查了列表法或树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果;列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.(6分)《城镇污水处理厂污染物排放标准》中硫化物的排放标准为1.0mg/L.某污水处理厂在自查中发现,所排污水中硫化物浓度超标.因此立即整改,并开始实时监测据监测,整改开始第60小时时,所排污水中硫化物的浓度为5mg/L;从第60小时开始,所排污水中硫化物的浓度y (mg/L)是监测时间x(小时)的反比例函数其图象如图所示.(1)求y与x之间的函数关系式;(2)整改开始第100小时时,所排污水中硫化物浓度为3mg/L;(3)按规定所排污水中硫化物的浓度不超过0.8mg/L时,才能解除实时监测,此次整改实时监测的时间至少为多少小时?【分析】(1)设y与x之间的函数关系式为y=,根据题意求出k的值即可;(2)根据函数关系式求出当x=100时y的值即可;(3)根据函数关系式求出当y=0.8时x的值即可.【解答】解:(1)设y与x之间的函数关系式为y=,根据题意得:k=xy=60×5=300,∴y与x之间的函数关系式为y=;(2)当x=100时,y==3(mg/L),∴整改开始第100小时时,所排污水中硫化物浓度为3mg/L;故答案为:3;(3)当y=0.8时,x==375,即此次整改实时监测的时间至少为375小时.【点评】本题考查了反比例函数的应用;求出反比例函数解析式是解决问题的关键.19.(6分)一天晚上,哥哥和弟弟拿两根等长的标杆AB,CD直立在一盏亮着的路灯下,然后调整标杆位置,使它们在该路灯下的影子BE,DF恰好在一条直线上(如图所示).(1)请在图中画出路灯灯泡P的位置;(2)哥哥和弟弟测得如下数据:AB=CD=1.6米,BE=1米,DF=2米,两根标杆的距离AC=BD=3.6米,且AC∥BD,请你根据以上信息计算灯泡P距离地面的高度.【分析】(1)作射线EA和射线FC,交于点P,即为所求;(2)由AC∥EF可得△PAC∽△PEF,据此知=,将相关线段的长度代入计算可得.【解答】解:(1)如图所示,点P即为所求.(2)过点P作PN⊥EF于点N,交AC于点M,∵AC∥BD,∴PM⊥AC,∵AB∥CD,且AB⊥EF,∴四边形ABDC和四边形ABNM是矩形,则MN=AB=1.6,∵AC∥EF,∴△PAC∽△PEF,∴=,即=,解得:PN=3.52.答:灯泡P距离地面的高度为3.52米.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握中心投影的定义和性质及相似三角形的判定与性质等知识点.20.(6分)已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形【分析】由正方形的性质可得AO=CO,BO=DO,AC⊥BD,可得EO=FO,由对角线互相平分的四边形是平行四边形可得四边形AECF是平行四边形,即可证四边形AECF是菱形.【解答】证明:如图,连接AC交BD于点O,∵四边形ABCD是正方形,∴AO=CO,BO=DO,AC⊥BD,∵BE=DF∴DO﹣DF=BO﹣BE∴FO=EO,且AO=CO∴四边形AECF是平行四边形,又∵AC⊥BD∴四边形AECF是菱形【点评】本题考查了正方形的性质,菱形的判定,熟练运用正方形的性质解决问题是本题的关键.21.(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?【分析】(1)设甬道的宽为x米,根据矩形的面积公式列出方程并解答.(2)设车位的月租金上涨a元,则租出的车位数量是(64﹣)个,根据“月租金=每个车位的月租金×车位数”列出方程并解答.【解答】解:(1)设甬道的宽为x米,根据题意得:(52﹣2x)(28﹣2x)=640解得:x=34(舍去)或x=6,答:甬道的宽为6米;(2)设月租金上涨a元,停车场的月租金收入为14400元,根据题意得:(200+a)(64﹣)=14400整理,得a2﹣440a+16000=0解得:a1=400,a2=40答:每个车位的月租金上涨400元或40元时,停车场的月租金收入为14400元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(10分)综合与实践﹣图形变换中的数学问题问題情境:如图1,已知矩形ABOD中,点E,F是AD,BC的中点,连接EF,将矩形ABCD沿FF剪开,得到四边形ABFE和四边形EPCD.(1)求证:四边形EPCD是矩形;操作探究:保持矩形EPCD位置不变,将矩形ABFE从图1的位置开始,绕点E按逆时针方向旋转,设旋转角为α(0°<α<360).操作中,提出了如下问题,请你解答:(2)如图2,当矩形ABFE旋转到点A落在线段EP上时,线段EF恰好经过点D,设DC与AB 相交于点G.判断四边形EAGD的形状,并说明理由;(3)请从A,B两题中任选一题作答我选择A题.A.在矩形ABFE旋转过程中连接线段AP和BP,当AP=BP时,直接写出旋转角α的度数.B.已知矩形ABCD中,AB=10,AD=8.在矩形ABFE旋转过程中,连接线段AP和BP,当AP=BP时,直接写出AP的长.【分析】(1)根据一组对边平行且相等,有一个角是直角的四边形是矩形,可得结论;(2)根据两组对边分别平行四边形可得四边形EAGD是平行四边形,再由一组对边相等,且有一个角是直角可得四边形EAGD是正方形;(3)A、分两种情况:画图形,证明△EAP≌△FBP和△EFP是等边三角形可得结论;B、根据A中的两种情况,作辅助线构建直角三角形,根据勾股定理可得PA的长.【解答】(1)证明:如图1,∵四边形ABCD是矩形,∴AD∥BC,∠C=90°,AD=BC,∵点E,F是AD,BC的中点,∴ED=PC,∴四边形EPCD是矩形;(2)解:如图2,四边形EAGD是正方形,理由是:∵EF∥AB,AE∥GD,∴四边形EAGD是平行四边形,∵E是AD的中点,∴ED=AE,∵∠EAG=90°,∴四边形EAGD是正方形;(3)解:A、如图3,连接PF,∵四边形AEFB是矩形,∴AE=BF,∠EAB=∠FBA,∵PA=PB,∴∠PAB=∠PBA,∴∠EAP=∠FBP,∴△EAP≌△FBP(SAS),∴EP=PF,由旋转得:EP=EF,∴EP=PF=EF,∴△EFP是等边三角形,∴α=∠PEF=60°;如图4,连接PF,∵四边形AEFB是矩形,∴AE=BF,∠EAB=∠FBA=90°,∵PA=PB,∴∠PAB=∠PBA,∴∠EAP=∠FBP,∴△EAP≌△FBP(SAS),∴EP=PF,由旋转得:EP=EF,∴EP=PF=EF,∴△EFP是等边三角形,∴∠PEF=60°∴α=360°﹣∠PEF=300°;综上,当AP=BP时,旋转角α的度数是60°或300°;B、如下图所示,PA=PB,过P作PM⊥AE,交EA的延长线于点M,由A知:∠PEF=60°,∵∠AEF=90°,AE=×=4,∴∠AEN=30°,∴AN=4,EN=2AN=8,∵PE=10,∴PN=10﹣8=2,∵AN∥PM,∴,∴,AM=,Rt△PME中,PM=PE=5,由勾股定理得:PA====2;如图5,PA=PB,过P作PM⊥AE,交AE的延长线于点M,由A知:△PEF是等边三角形,∴∠PEF=60°,∵∠FEM=90°,∴∠PEM=30°,Rt△EPM中,EP=10,∴PM=PE=5,EM=5,∴AM=AE+EM=4+5=9,在Rt△APM中,由勾股定理得:AP====2,当AP=BP时,AP的长是2或2.【点评】本题是四边形的综合题,考查了全等三角形的判定和性质,勾股定理,矩形的性质,正方形的性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.。

【5套打包】太原市初三九年级数学上期末考试测试卷(含答案解析)

【5套打包】太原市初三九年级数学上期末考试测试卷(含答案解析)

九年级(上)数学期末考试试题(含答案)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE 的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a 的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题小组成员很快给出了解答:设原正方形的边长为a,则周长为4a,面积为a2∵另一个正方形的周长为2×4a=8a∴此时边长为2a,面积为(2a)2=4a2≠2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的2倍.虽然甲同学的问题得到了很快的解决,但这一问题的提出触发了其他小组成员的积极思考,进一步乙同学提出:“任意给定一个矩形,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”通过讨论,他们决定先研究:“已知矩形的长和宽分别为m和1,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”,并给出了如下解答过程:设所求矩形的长为x,则根据题意可表示出所求矩形的宽为2(m+1)﹣x那么可建立方程:x•[2(m+1)﹣x]=2m∵判别式△=4m2+4>0∴原方程有解,即结论成立.根据材料解决下列问题(1)若已知一个矩形的长和宽分别为3和1,则是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,请求出此矩形的长和宽;若不存在,请说明理由;(2)若已知一个矩形的长和宽分别为m和1,且一定存在另一个矩形的周长和面积分别是已知矩形周长和面积的k倍,求k的取值范围(写明解答过程).五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移九年级(上)数学期末考试试题(含答案)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE 的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a 的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题小组成员很快给出了解答:设原正方形的边长为a,则周长为4a,面积为a2∵另一个正方形的周长为2×4a=8a∴此时边长为2a,面积为(2a)2=4a2≠2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的2倍.虽然甲同学的问题得到了很快的解决,但这一问题的提出触发了其他小组成员的积极思考,进一步乙同学提出:“任意给定一个矩形,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”通过讨论,他们决定先研究:“已知矩形的长和宽分别为m和1,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”,并给出了如下解答过程:设所求矩形的长为x,则根据题意可表示出所求矩形的宽为2(m+1)﹣x那么可建立方程:x•[2(m+1)﹣x]=2m∵判别式△=4m2+4>0∴原方程有解,即结论成立.根据材料解决下列问题(1)若已知一个矩形的长和宽分别为3和1,则是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,请求出此矩形的长和宽;若不存在,请说明理由;(2)若已知一个矩形的长和宽分别为m和1,且一定存在另一个矩形的周长和面积分别是已知矩形周长和面积的k倍,求k的取值范围(写明解答过程).五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移九年级上册数学期末考试试题【答案】一.选择题(满分30分,每小题3分)1.用因式分解法解方程,下列方法中正确的是()A.(2x﹣2)(3x﹣4)=0,∴2﹣2x=0或3x﹣4=0B.(x+3)(x﹣1)=1,∴x+3=0或x﹣1=1C.(x﹣2)(x﹣3)=2×3,∴x﹣2=2或x﹣3=3D.x(x+2)=0,∴x+2=02.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.3.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=04.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.5.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°6.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数7.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣29.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60 B.60πC.65 D.65π10.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6C.3D.9二.填空题(满分18分,每小题3分)11.如图,双曲线y=与抛物线y=ax2+bx+c交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组0<+bx+c的解集为.12.如图,在△ABC中,M、N分别是AB、AC上的点,MN∥BC,若S△MBC:S△CMN=3:1,则S△AMN:S△ABC=.13.如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是海里.14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y =x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是.16.设△ABC外接圆的半径为R,内切圆的半径为r,内心为I,延长AI交外接圆于D,则AI•ID=.三.解答题(共9小题,满分72分)17.(6分)水果店老板以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,老板决定降价销售.(1)若这种水果每斤售价降低x元,则每天的销售量是斤(用含x的代数式表示,需要化简);(2)销售这种水果要想每天盈利300元,老板需将每斤的售价定为多少元?18.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.19.(6分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.20.(6分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.21.(7分)如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.22.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA 为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.23.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?24.(10分)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.25.(13分)已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD.(1)如图1,当点P在线段OC上时,求证:OP=CD;(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;(3)如图2,抛物线y=﹣x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.参考答案一.选择题1.用因式分解法解方程,下列方法中正确的是()A.(2x﹣2)(3x﹣4)=0,∴2﹣2x=0或3x﹣4=0B.(x+3)(x﹣1)=1,∴x+3=0或x﹣1=1C.(x﹣2)(x﹣3)=2×3,∴x﹣2=2或x﹣3=3D.x(x+2)=0,∴x+2=0【分析】用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.所以第一个正确.故选:A.【点评】此题考查了学生对因式分解方法应用的条件的理解,提高了学生学以致用的能力.2.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,。

2018-2019学年九年级上学期期末数学试题(解析版)

2018-2019学年九年级上学期期末数学试题(解析版)

2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

★试卷3套精选★太原市2018届九年级上学期期末适应性数学试题

★试卷3套精选★太原市2018届九年级上学期期末适应性数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组【答案】A【解析】试题解析:①不相似,因为没有指明相等的角或成比例的边;②不相似,因为只有一对角相等,不符合相似三角形的判定;③相似,因为其四个角均相等,四条边都相等,符合相似的条件;④不相似,虽然其四个角均相等,因为没有指明边的情况,不符合相似的条件;⑤不相似,因为菱形的角不一定对应相等,不符合相似的条件;⑥相似,因为两正五边形的角相等,对应边成比例,符合相似的条件;所以正确的有③⑥.故选A.2.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米【答案】C【分析】根据正切函数可求小河宽PA的长度.【详解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选C.【点睛】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.3.如图,ABC ∆中,70CAB ∠=︒,在同一平面内,将ABC ∆绕点A 旋转到ABC ∆的位置,使得//CC AB ',则BAB '∠的度数为( )A .30B .40︒C .50︒D .70︒【答案】B 【分析】根据//CC AB ',得出∠BAC=∠C ′CA ,利用旋转前后的图形是全等,所以△ACC ′是等腰三角形即可求出∠CC ′A ,∠CC ′A+∠C ′AB=180°即可得出旋转角度,最后得出结果.【详解】解:∵//CC AB '∴∠BAC=∠C ′CA ,∠CC ′A+∠C ′AB=180°∵70CAB ∠=︒∴∠C ′CA=70°∵△ABC 旋转得到△AB ′C ′∴AC=AC′∴∠AC C′=∠AC′C=70°∴∠BAC′=180°-70°=110°∴∠CAC′=40°∴∠BAB′=40°故选:B .【点睛】本题主要考查的是旋转的性质,旋转前后的图形是全等的,正确的掌握旋转的性质的解题的关键. 4.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π 【答案】B【分析】利用圆锥面积=Rr 计算.【详解】Rr =2510, 故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答. 5.如图,在四边形ABCD 中,AD BC ∕∕,点,E F 分别是边,AD BC 上的点,AF 与BE 交于点O ,2,1AE BF ==,则AOE ∆与BOF ∆的面积之比为( )A .12B .14C .2D .4【答案】D【分析】由AD ∥BC ,可得出△AOE ∽△FOB ,再利用相似三角形的性质即可得出△AOE 与△BOF 的面积之比.【详解】:∵AD ∥BC ,∴∠OAE=∠OFB ,∠OEA=∠OBF ,∴~AOE FOB ∆∆,∴所以相似比为2AE BF=, ∴224BOFAOE S S ∆∆==. 故选:D .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键. 6.在等腰直角三角形ABC 中,AB=AC=4,点O 为BC 的中点,以O 为圆心作⊙O 交BC 于点M 、N ,⊙O 与AB 、AC 相切,切点分别为D 、E ,则⊙O 的半径和∠MND 的度数分别为( )A .2,22.5°B .3,30°C .3,22.5°D .2,30°【答案】A 【解析】解:连接OA ,∵AB 与⊙O 相切,∴OD ⊥AB ,∵在等腰直角三角形ABC 中,AB=AC=4,O 为BC 的中点,∴AO ⊥BC ,∴OD ∥AC ,∵O 为BC 的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=1.5°,故选A .【点睛】本题考查切线的性质;等腰直角三角形.7.若关于x 的一元二次方程()22410k x x -++=有两个实数根则k 的取值范围是( ) A .k 6<B .k 6<且2k ≠C .6k ≤且2k ≠D .6k >【答案】C 【分析】由二次项系数非零结合根的判别式△0≥,即可得出关于k 的一元一次不等式组, 解之即可得出结论 . 【详解】解:关于x 的一元二次方程2(2)410k x x -++=有两个不相等的实数根, ∴22044(2)0k k -≠⎧⎨=--≥⎩, 解得:6k ≤且2k ≠.故选:C .【点睛】本题考查了根的判别式以及一元二次方程的定义, 根据二次项系数非零结合根的判别式△0>,列出关于k 的一元一次不等式组是解题的关键 .8.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P→D→Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A.B.C. D.【答案】A【详解】当F在PD上运动时,△AEF的面积为y=12AE•AD=2x(0≤x≤2),当F在DQ上运动时,△AEF的面积为y=12AE•AF=[]14-(2)2x x-=21-+32x x(2<x≤4),图象为:故选A.9.一个高为3 cm的圆锥的底面周长为8π cm,则这个圆锥的母线长度为()A.3 cm B.4 cm C.5 cm D.5π cm【答案】C【分析】由底面圆的周长公式算出底面半径,圆锥的正视图是以母线长为腰,底面圆直径为底的等腰三角形,高、底面半径和母线长三边构成直角三角形,再用勾股定理算出母线长即可.【详解】解:由圆的周长公式2r=8ππ得82rππ==4由勾股定理222l h r=+222234l h r=+=+故选:C.【点睛】本题考查了圆锥的周长公式,圆锥的正视图勾股定理等知识点.10.如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是()A.2 B.3 C.218D.247【答案】C【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB=∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DF FC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理. 11.如图是一根空心方管,它的俯视图是()A.B.C.D.【答案】B【分析】俯视图是从物体的上面看,所得到的图形:注意看到的用实线表示,看不到的用虚线表示.【详解】如图所示:俯视图应该是故选:B.【点睛】本题考查了作图−三视图,解题的关键是掌握看到的用实线表示,看不到的用虚线表示.12.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1 B.0 C.1 D.2【答案】C【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x=2代入方程式即可求解.【详解】解:将x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故选C.【点睛】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.二、填空题(本题包括8个小题)∆的顶点都在方格纸的格点上,则sin A=_______.13.如图,ABC【答案】10 10 【分析】如下图,先构造出直角三角形,然后根据sinA 的定义求解即可. 【详解】如下图,过点C 作AB 的垂线,交AB 延长线于点D设网格中每一小格的长度为1 则CD=1,AD=3∴在Rt △ACD 中,AC=2210AD CD += ∴sinA=101010CD AC == 故答案为:1010. 【点睛】本题考查锐角三角函数的求解,解题关键是构造出直角三角形ACD .14.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为513,那么该矩形的面积为___. 【答案】240【分析】由矩形的性质和三角函数求出AB ,由勾股定理求出AD ,即可得出矩形的面积.【详解】解:如图所示:∵四边形ABCD 是矩形,∴∠BAD=90°,AC=BD=26,∵5sin 13AB ADB BD ∠==, ∴5261013AB =⨯=, ∴2222261024AD BD AB -=-=,∴该矩形的面积为:2410240⨯=;故答案为:240.【点睛】本题考查了矩形的性质、勾股定理、三角函数;熟练掌握矩形的性质,由勾股定理求出AB 和AD 是解决问题的关键.15.在平面直角坐标系中,点O 为原点,抛物线22y x x c =--+与y 轴交于点P ,以OP 为一边向左作正方形OPBC ,点A 为抛物线的顶点,当ABP △是锐角三角形时,c 的取值范围是__________.【答案】21c -<<-或12c <<【分析】首先由抛物线解析式求出顶点A 的坐标,然后再由对称轴可判定△AHP 为等腰直角三角形,故当ABP △是锐角三角形时,12BP <<,即可得出c 的取值范围. 【详解】∵22y x x c =--+ ∴顶点A 的坐标为()1,1c -+令PB 与对称轴相交于点H ,如图所示∴PH=AH ,即△AHP 为等腰直角三角形 ∴当ABP △是锐角三角形时,12BP <<, ∴BP=OP ,P (0,c )∴21c -<<-或12c <<故答案为21c -<<-或12c <<.【点睛】此题主要考查二次函数图象与几何图形的综合运用,解题关键是找出临界点直角三角形,即可得出取值范围.16.已知PA PB 、分别切O 于点A B 、,C 为O 上不同于A B 、的一点,80P ∠=︒,则ACB ∠的度数是_______.【答案】50︒或130︒【分析】连接OA 、OB ,先确定∠AOB ,再分就点C 在AB 上和ABC 上分别求解即可.【详解】解:如图,连接OA 、OB ,∵PA 、PB 分别切O 于A 、B 两点,∴∠PAO=∠PBO=90°∴∠AOB=360°-90°-90°-80°=100°,当点C 1在ABC 上时,则∠AC 1B=12∠AOB=50° 当点C 2在AB B 上时,则∠AC 2B+∠AC 1B=180°,即.∠AC 2B=130°.故答案为50︒或130︒.【点睛】本题主要考查了圆的切线性质和圆周角定理,根据已知条件确定∠AOB 和分类讨论思想是解答本题的关键.17.已知一次函数23y x =-与反比例函数k y x =的图象交于点()2,3P a -,则k =________. 【答案】1【分析】先把P (a−2,3)代入y =2x−3,求得P 的坐标,然后根据待定系数法即可求得.【详解】∵一次函数y =2x−3经过点P (a−2,3),∴3=2(a−2)−3,解得a =5,∴P (3,3),∵点P 在反比例函数k y x=的图象上, ∴k =3×3=1,故答案为1.【点睛】本题考查了一次函数和反比例函数的交点问题,求得交点坐标是解题的关键. 18.如图所示,1n +个边长为1的等边三角形,其中点A ,1C ,2C ,3C ,…n C 在同一条直线上,若记111B C D ∆的面积为1S ,222B C D ∆的面积为2S ,333B C D ∆的面积为3S ,…,n n n B C D ∆的面积为n S ,则n S =______.【答案】344n n + 【分析】由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B 1,B 2,B 3,…B n 在一条直线上,可作出直线BB 1.易求得△ABC 1的面积,然后由相似三角形的性质,易求得S 1的值,同理求得S 2的值,继而求得S n 的值.【详解】如图连接BB 1,B 1B 2,B 2B 3;由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B 1, B 2,B 3,…B n 在一条直线上. ∴S △ABC1=12×1×32=34 ∵B B 1∥AC 1,∴△ BD 1B 1∽ △ AC 1D 1,△BB 1C 1为等边三角形则C 1D 1=BD 1=12;,△C 1B 1D 1中C 1D 13 ∴S 1=12×1233 同理可得21221221==D 2C AC B D B B ; 则22C D =23, ∴S 2=12×2333 同理可得:n-1n n-1n n n n 1==D nC AC BD B B ; ∴n n C D =n 1n +, S n =12×n 1n +×32=344n n +.【点睛】此题考查了相似三角形的判定与性质以及等边三角形的性质.此题难度较大,属于规律性题目,注意辅助线的作法,注意数形结合思想的应用.三、解答题(本题包括8个小题)19.已知,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF DE⊥,垂足为点F,BF与CD交于点G.(1)如图甲,求证:CG CE=;(2)如图乙,连接BD,若42BE=22DG=cos DBG∠的值.【答案】(1)证明见解析;(225.【分析】(1)由正方形的性质得出BC=DC,∠BCG=∠DCE=90°,利用角边角证明△BGC≌△DEC,然后可得出CG=CE;(2)由线段的和差,正方形的性质求出正方形的边长为2,根据勾股定理求出线段BD=6,过点G作GH⊥DB,根据勾股定理可得出HG=DH=2,进而求出BH=4,5Rt△HBG中可求出cos∠DBG的值.【详解】解:(1)∵四边形ABCD是正方形,∴BC=DC,∠BCG=∠DCE=90°,又∵BF⊥DE,∴∠GFD=90°,又∵∠GBC+∠BGC+∠GCB=180°,∠GFD+∠FDG+∠DGF=180°,∠BGC=∠DGF,∴∠CBG=∠CDE,在△BGC和△DEC中,BCG DCE BC DCCBG CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BGC ≌△DEC (ASA ),∴CG=CE ;(2)过点G 作GH ⊥BD ,设CE=x ,∵CG=CE ,∴CG=x ,又∵BE=BC+CE ,DC=DG+GC ,BC=DC , BE=42,DG=22, ∴42−x =22+x ,解得:x=2,∴BC=32,在Rt △BCD 中,由勾股定理得:2222(32)(32)6BD BC DC =+=+=,又易得△DHG 为等腰直角三角形,∴根据勾股定理可得HD=HG=2,又∵BD=BH+HD ,∴BH=6-2=4,在Rt △HBG 中,由勾股定理得:22226225BG BH HG =+=+=,25cos 525BH DBG BG ∴∠===.【点睛】本题综合考查了正方形的性质,全等三角形的判定与性质,同角的余角相等,勾股定理,解直角三角形等知识点,重点掌握全等三角形的判定与性质,难点构建直角三角形求角的余弦值.20.如图,一次函数y kx b =+与反比例函数m y x =的图象交于(4,3)A ,点(2,)B n -两点,交x 轴于点C . (1)求m 、n 的值.(2)请根据图象直接写出不等式m kx b x+>的解集. (3)x 轴上是否存在一点D ,使得以A 、C 、D 三点为顶点的三角形是AC 为腰的等腰三角形,若存在,请直接写出符合条件的点D 的坐标,若不存在,请说明理由.【答案】 (1)12m =,6n =-;(2)4x >或20x -<<;(3)存在,点D 的坐标是(6,0)或(213,0)或(213,0).【分析】(1)先把点A(4,3)代入m y x=求出m 的值,再把A(-2,n)代入求出n 即可; (2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象上方的自变量的取值范围即可; (3)先求出直线AB 的解析式,然后分两种情况求解即可:①当AC=AD 时,②当CD=CA 时,其中又分为点D 在点C 的左边和右边两种情况.【详解】解:(1)∵反比例函数m y x =过点点A(4,3), ∴43m =, ∴12m =,12y x=, 把2x =-代入12y x =得6y =-, ∴6n =-;(2)由图像可知,不等式m kx b x+>的解集为4x >或20x -<<; (3)设直线AB 的解析式为y=kx+b ,把A(4,3),B(-2,-6),代入得4326k b k b +=⎧⎨-+=-⎩, 解得323k b ⎧=⎪⎨⎪=-⎩, ∴332y x =-, 当y=0时,3032x =-, 解得x=2,∴C(2,0),当AC=AD 时,作AH ⊥x 轴于点H ,则CH=4-2=2,∴CD 1=2CH=4,∴OD 1=2+4=6,∴D 1(6,0),当CD=CA 时,∵AC=()22423-+=13,∴D 2(2+13,0),D 3(2-13,0),综上可知,点D 的坐标是(6,0)或(2+13,0)或(2-13,0).【点睛】本题考查了待定系数法求反比例函数和一次函数解析式,利用函数图象解不等式,等腰三角形的性质,坐标与图形的性质,勾股定理,以及分类讨论的数学思想.熟练掌握待定系数法和分类讨论的数学思想是解答本题的关键.21.今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.【答案】(1)详见解析(2)。

〖汇总3套试卷〗太原市2018年九年级上学期数学期末考前模拟试题

〖汇总3套试卷〗太原市2018年九年级上学期数学期末考前模拟试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD=30°,则∠BCD 等于( )A .75°B .95°C .100°D .105°【答案】D 【解析】试题解析:连接,AD,30,OA OD AOD =∠=()11803075.2OAD ∴∠=-= 18075105.BCD ∴∠=-=故选D.点睛:圆内接四边形的对角互补.2.二次函数224y x x =-++,当12x -≤≤时,则( )A .1y 4≤≤B .5y ≤C .45y ≤≤D .1y 5≤≤ 【答案】D【分析】因为224y x x =-++=()2-x-1+5,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵224y x x =-++=()2-x-1+5, ∴当x=1时,y 有最大值5;当x=-1时,y=()2--1-1+5=1;当x=2时,y=()2-2-1+5=4; ∴当12x -≤≤时,1y 5≤≤;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.3.如图的44⨯的网格图,A、B、C、D、O都在格点上,点O是()A.ΔACD的外心B.ΔABC的外心C.ΔACD的内心D.ΔABC的内心【答案】B【分析】连接OA、OB、OC、OD,设网格的边长为1,利用勾股定理分别求出OA、OB、OC、OD的长,根据O点与三角形的顶点的距离即可得答案.【详解】连接OA、OB、OC、OD,设网格的边长为1,∴OA=2232+=13,OB=2232+=13,OC=2232+=13,OD=2221+=5,∵OA=OB=OC=13,∴O为△ABC的外心,故选B.【点睛】本题考查勾股定理的应用,熟练掌握三角形的外心和内心的定义是解题关键.4.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AG GF的值是()A.43B.54C.65D.76【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32 a,∴FM=52 a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.5.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是()书面家庭作业时间(分钟)70 80 90 100 110学生人数(人) 4 7 20 7 2A.众数是90分钟B.估计全校每天做书面家庭作业的平均时间是89分钟人【答案】D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即90902=90,正确;C、平均时间为:140×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.6.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)【答案】D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】7.下列命题:①长度相等的弧是等弧;②任意三点确定一个圆;③相等的圆心角所对的弦相等;④平分弦的直径垂直于弦,并且平分弦所对的两条弧;其中真命题共有( )A.0个B.1个C.2个D.3个【答案】A【分析】由等弧的概念判断①,根据不在一条直线上的三点确定一个圆,可判断②;根据圆心角、弧、弦的关系判断③,根据垂径定理判断④.【详解】①同圆或等圆中,能够互相重合的弧是等弧,故①是假命题;②不在一条直线上的三点确定一个圆,若三点共线,则不能确定圆,故②是假命题;③同圆或等圆中,相等的圆心角所对的弦相等,故③是假命题;④圆两条直径互相平分,但不垂直,故④是假命题;所以真命题共有0个,故选A.【点睛】本题考查圆中的相关概念,熟记基本概念才能准确判断命题真假.8.下列成语描述的事件为随机事件的是()A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高【答案】A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7)B.(2,7)C.(2,﹣9)D.(﹣2,﹣9)【答案】B【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的顶点坐标.【详解】∵抛物线y=﹣x2+4x+3=﹣(x﹣2)2+7,∴该抛物线的顶点坐标是(2,7),本题考查二次函数的顶点式,解答本题的关键是明确题意,利用二次函数的性质解答.10.观察下列四个图形,中心对称图形是()A.B.C.D.【答案】C【分析】根据中心对称图形的定义即可判断.【详解】在平面内,若一个图形可以绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形,根据定义可知,C选项中的图形是中心对称图形.故答案选:C.【点睛】本题考查的知识点是中心对称图形,解题的关键是熟练的掌握中心对称图形.11.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根B.有两个异号的实数根C.有两个不相等的实数根D.没有实数根【答案】A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键. 12.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.二、填空题(本题包括8个小题)13.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为2305h t t=-,那么水流从喷出至回落到水池所需要的时间是__________s.【答案】1【分析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.【详解】水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2得:5t2-30t=0,解得:t1=0(舍去),t2=1.故水流从抛出至回落到地面所需要的时间1s.故答案为:1【点睛】本题考查的是二次函数在实际生活中的应用,关键是正确理解题意,利用函数解决问题,结合实际判断所得出的解.14.二次函数y=23x2的图象如图所示,点A0位于坐标原点,点A1、A2、A3、…、A2018在y轴的正半轴上,点B1、B2、B3、…、B2018在二次函数y=23x2位于第一象限的图象上,若△A0B1A1、△A1B2A2、△A2B3A3、…、△A2017B2018A2018都为等边三角形,则△A2017B2018A2018的边长=____________.【分析】分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1=3 a,BB2=3b,CB3=3c,再根据所求正三角形的边长,分别表示B1,B2,B3的纵坐标,逐步代入抛物线y=23x2中,求a、b、c的值,得出规律.【详解】解:分别过B1,B2,B3作y轴的垂线,垂足分别为A、B、C,设A0A1=a,A1A2=b,A2A3=c,则AB1=32a,BB2=32b,CB3=32c,在正△A0B1A1中,B13,2a),代入y=23x2中,得2a=23×34a2,解得a=1,即A0A1=1,在正△A1B2A2中,B23,1+2b),代入y=23x2中,得1+2b=23×34b2,解得b=2,即A1A2=2,在正△A2B3A3中,B33,3+2c),代入y=23x2中,得3+2c=23×34c2,解得c=3,即A2A3=3,…依此类推由此可得△A2017B1A1的边长=1,故答案为:1.【点睛】本题考查了二次函数的综合运用.关键是根据正三角形的性质表示点的坐标,利用抛物线解析式求正三角形的边长,得到规律.15.已知函数y=kx2﹣2x+1的图象与x轴只有一个有交点,则k的值为_____.【分析】当k=0时,函数为一次函数,满足条件;当k≠0时,利用判别式的意义得到当△=0时抛物线与x轴只有一个交点,求出此时k的值即可.【详解】当k=0时,函数解析式为y=﹣2x+1,此一次函数与x轴只有一个交点;当k≠0时,△=(﹣2)2﹣4k=0,解得k=1,此时抛物线与x轴只有一个交点,综上所述,k的值为0或1.故答案为0或1.【点睛】本题考查了抛物线与x轴的交点问题,注意要分情况讨论.16.如图,ABCD的对角线交于O,点E为DC中点,AC=10cm,△OCE的周长为18cm,则ABCD的周长为____________.【答案】52cm【分析】先利用平行四边形的性质得AO=OC,再利用三角形中位线定理得出BC=2OE,然后根据AC=10cm,△OCE的周长为18cm,可求得BC+CD,即可求得ABCD的周长.【详解】∵ABCD的对角线交于O,点E为DC中点,∴EO是△DBC的中位线,AO=CO,CD=2CE,∴BC=2OE,∵AC=10cm,∴CO=5cm,∵△OCE的周长为18cm,∴EO+CE=18−5=13(cm),∴BC+CD=26cm,∴▱ABCD的周长是52cm.故答案为:52cm.【点睛】本题主要考查平行四边形的性质、三角形中位线定理,熟练掌握平行四边形的性质和三角形中位线定理是解答本题的关键.17.若线段a、b满足12ab,则a+bb的值为_____.【答案】3【分析】由12ab=可得b=2a,然后代入求值.【详解】解:由12ab=可得b=2a,所以22a b a ab a++==32,故答案为3 2 .【点睛】本题考查分式的化简求值,掌握比例的性质是本题的解题关键. 18.数据8,9,10,11,12的方差等于______.【答案】2【分析】根据方差的公式计算即可.【详解】这组数据的平均数为89101112105++++=∴这组数据的方差为()()()()()22222 81091010101110121025S-+-+-+-+-==故答案为2.【点睛】此题主要考查方差的计算,牢记公式是解题关键.三、解答题(本题包括8个小题)19.如图,在A港口的正东方向有一港口B.某巡逻艇从A港口沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶2小时到达港口B.求A,B两港之间的距离(结果保留根号).【答案】A,B间的距离为(62)海里.【分析】过点C作CD⊥AB于点D,根据题意可得,∠ACD=60°,∠BCD=45°,BC=20×2=40,然后根据锐角三角函数即可求出A,B间的距离.【详解】解:如图,过点C作CD⊥AB于点D,根据题意可知:∠ACD=60°,∠BCD=45°,BC=20×2=40,∴在Rt△BCD中,CD=BD=2BC=202,在Rt△ACD中,AD=CD•tan60°=206,∴AB=AD+BD=206+202(海里).答:A,B间的距离为(206+202)海里.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是掌握方向角的定义.20.学习成为现代城市人的时尚,我市图书馆吸引了大批读者,有关部门统计了2018年第四季度到市图书馆的读者的职业分布情况,统计图如图.(1)在统计的这段时间内,共有万人到图书馆阅读.其中商人所占百分比是;(2)将条形统计图补充完整;(3)若今年2月到图书馆的读者共28000名,估计其中约有多少名职工.【答案】(1)16,12.5%;(2)见解析;(3)10500(人).【分析】(1)利用学生数除以其所占的百分比即可得到总人数,然后用商人数除以总人数即可得到商人所占的百分比;(2)根据各职业人数之和等于总人数可得职工的人数,据此可补全图形;(3)利用总人数乘以样本中职工所占百分比即可得到职工人数.【详解】解:(1)这段时间,到图书馆阅读的总人数为425%16÷=(万人),其中商人所占百分比为2100%12.5%16⨯= , 故答案为16 ,12.5% .(2)职工的人数为()164246-++= (万人).补全条形统计图如图所示.(3)估计其中职工人数约为6280001050016⨯= (人). 【点睛】 本题主要考查了条形统计图,扇形统计图及用样本估计总体的知识,能够从两种统计图中整理出解题的有关信息是解题关键.21.在平面直角坐标系中,抛物线2y ax bx c =++经过点A 、B 、C ,已知A (-1,0),B (3,0),C (0,-3).(1)求此抛物线的函数表达式;(2)若P 为线段BC 上一点,过点P 作y 轴的平行线,交抛物线于点D ,当△BCD 面积最大时,求点P 的坐标;(3)若M (m ,0)是x 轴上一个动点,请求出CM+12MB 的最小值以及此时点M 的坐标.【答案】(1)223y x x =--;(2)P (32,32-),面积最大为278;(3)CM+12MB 333+,M 30)【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC 的解析式,设P (a ,a-3),得出PD 的长,列出S △BDC 的表达式,化简成顶点式,即可求解;(3)取G 点坐标为(0),过M 点作MB′⊥BG ,用B′M 代替12BM ,即可得出最小值的情况,再将直线BG 、直线B′C 的解析式求出,求得M 点坐标和∠CGB 的度数,再根据∠CGB 的度数利用三角函数得出最小值B′C 的值.【详解】解:(1)∵抛物线2y ax bx c =++经过点A 、B 、C ,A (-1,0),B (3,0),C (0,-3), 代入表达式,解得a= 1,b=-2,c=-3,∴故该抛物线解析式为:223y x x =--.(2)令2023x x -=-,∴x 1=-1,x 2=3,即B (3,0),设直线BC 的解析式为y=kx+b′,将B 、C 代入得:k=,1,b′=-3,∴直线BC 的解析式为y=x-3,设P (a ,a-3),则D (a ,a 2-2a-3),∴PD=(a-3)-(a 2-2a-3)= -a 2+3aS △BDC =S △PDC +S △PDB =12PD×3 =23327228a ⎛⎫--+ ⎪⎝⎭, ∴当a=32时,△BDC 的面积最大,且为为278,此时P (32,32-);(3)如图,取G 点坐标为(0,连接BG ,过M 点作MB′⊥BG ,∴B′M =12BM , 当C 、M 、B′在同一条直线上时,CM+12MB 最小.可求得直线BG 解析式为:3y x =- ∵B′C ⊥BG故直线B′C 解析式为为3y =+,令y=0,则∴B′C 与x 0)∵,OB=3,∴∠CGB=60°,∴B′C= CGsin ∠CGB=()3332+⨯=3332+, 综上所述:CM+12MB 最小值为333+,此时M (3,0). 【点睛】 此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.22.如图,四边形ABCD 是平行四边形,BE DF 、分别是ABC ADC ∠∠、的平分线,且与对角线AC 分别相交于点E F 、.(1)求证:AE CF =;(2)连结ED FB 、,判断四边形BEDF 是否是平行四边形,说明理由.【答案】 (1)见解析;(2) 是平行四边形;理由见解析.【分析】(1)根据角平分线的性质先得出∠BEC =∠DFA ,然后再证∠ACB =∠CAD ,再证出△ABE ≌△CDF ,从而得出AE =CF ;(2)连接BD 交AC 于O ,则可知OB =OD ,OA =OC ,又AE =CF ,所以OE =OF ,然后依据对角线互相平分的四边形是平行四边形即可证明.【详解】(1)证明:四边形ABCD 是平行四边形,,,//,AB CD ABC CDA AB CD BAC DCA ∴=∠=∠∴∠=∠,BE DF 、分别是ABC ADC ∠∠、的平分线,11,22ABE ABC CDF ADC ∴∠=∠∠=∠ ABE CDF ∴∠=∠,∴()ABE CDF ASA ∆∆≌ ,∴AE CF =(2)是平行四边形;连接BD 交AC 于O ,四边形ABCD 是平行四边形,,AO CO BO DO ∴==AE CF =,AO AE CO CF ∴-=-.即.EO FO =∴四边形BEDF 为平行四边形(对角线互相平分的四边形是平行四边形).【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.23.如图,⊙O 的直径为AB ,点C 在⊙O 上,点D ,E 分别在AB ,AC 的延长线上,DE ⊥AE ,垂足为E ,∠A =∠CDE .(1)求证:CD 是⊙O 的切线;(2)若AB =4,BD =3,求CD 的长.【答案】(1)见解析;(221【分析】(1)连接OC ,根据三角形的内角和得到90EDC ECD ∠+∠︒=,根据等腰三角形的性质得到A ACO ∠∠=,得到90OCD ∠︒=,于是得到结论; (2)根据已知条件得到1=22OC OB AB ==,根据勾股定理即可得到结论. 【详解】(1)证明:连接OC ,∵DE AE ⊥,∴90E ∠︒=,∴90EDC ECD ∠+∠︒=,∵A CDE ∠∠=,∴90A DCE ∠+∠︒=,∵OC OA =,∴A ACO ∠∠=,∴90ACO DCE ∠+∠︒=,∴90OCD ∠︒=,∴OC CD ⊥∵点C 在O 上, ∴CD 是O 的切线(2)解:∵43AB BD =,= , ∴1=22OC OB AB ==, ∴235OD +==,∴ 2221CD OD OC =-=【点睛】本题主要考查切线的判定以及圆和勾股定理,根据题意准确作出辅助线是求解本题的关键.24.如图,在四边形ABCD 中,AD ∥BC ,AB =BC ,对角线AC 、BD 交于点O ,BD 平分∠ABC ,过点D 作DE ⊥BC ,交BC 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若DC =25,AC =4,求OE 的长.【答案】(1)证明见解析;(2)1.【分析】(1)由AD ∥BC ,BD 平分∠ABC ,可得AD =AB ,结合AD ∥BC ,可得四边形ABCD 是平行四边形,进而,可证明四边形ABCD 是菱形,(2)由四边形ABCD 是菱形,可得OC =12AC =2,在Rt △OCD 中,由勾股定理得:OD =1,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.【详解】(1)证明:∵AD ∥BC ,∴∠ADB =∠CBD ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∴∠ADB =∠ABD ,∴AD =AB ,∵AB =BC ,∴AD =BC ,∵AD ∥BC ,∴四边形ABCD 是平行四边形,又∵AB =BC ,∴四边形ABCD 是菱形;(2)解:∵四边形ABCD 是菱形,∴AC ⊥BD ,OB =OD ,OA =OC =12AC =2,在Rt △OCD 中,由勾股定理得:OD 1,∴BD =2OD =8,∵DE ⊥BC ,∴∠DEB =90°,∵OB =OD ,∴OE =12BD =1. 【点睛】本题主要考查菱形的判定定理及性质定理,题目中的“双平等腰”模型是证明四边形是菱形的关键,掌握直角三角形的性质和勾股定理,是求OE 长的关键.25.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个,因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,定价为多少元?【答案】该商品定价60元.【分析】设每个商品定价x 元,然后根据题意列出方程求解即可.【详解】解:设每个商品定价x 元,由题意得:()()4018010522000x x ⎡⎤---=⎣⎦解得150x =,260x =当x=50时,进货180-10(50-52)=200,不符题意,舍去当x=60时,进货180-10(60-52)=100,符合题意.答:当该商品定价60元,进货100个.【点睛】本题主要考查一元一次方程的应用,关键是设出未知数然后列方程求解即可.26.如图,在平面直角坐标系中,ABC ∆三个顶点的坐标分别为A (2,3)、B (1,1)、C (5,1). (1)把ABC 平移后,其中点A 移到点1(5,5)A ,面出平移后得到的111A B C ∆;(2)把111A B C ∆绕点1A 按逆时针方向旋转90︒,画出旋转后得到的122A B C ∆,并求出旋转过程中点1B 经过的路径长(结果保留根号和π).【答案】(1)详见解析;(25 【分析】(1)根据点A 、B 、C 的坐标描点,从而可得到△ABC,利用点A 和1A 的坐标关系可判断△ABC 先向右平移3个单位,再向上平移2个单位得到111A B C ∆,利用此平移规律找到11B C 、的坐标,然后描点即可得到111A B C △;(2)按要求画即可,其中旋转90度是关键,根据弧长公式计算即可.【详解】解:(1)如图,111A B C △即为所求.(2)如图,22A B C 1△即为所求,∵111A B C △绕点1A 按逆时针方向旋转得22A B C 1△,∴点B 经过的路径长是圆心角为90°,半径为:2211125A B =+=的扇形112A B B 的弧长, ∴152542l π=⨯=. 即点B 经过的路径长为5【点睛】本题考查了平移变换、旋转变换,解题关键在于掌握作图法则.27.已知:在ABC 中,AB AC =.(1)求作:ABC 的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若ABC 的外接圆的圆心O 到BC 边的距离为4,6BC =,则O S = .【答案】 (1)见解析;(2) 25π 【分析】(1)作线段,AB BC 的垂直平分线,两线交于点O ,以O 为圆心,OB 为半径作O ,O 即为所求.(2)在Rt OBE 中,利用勾股定理求出OB 即可解决问题.【详解】解:(1)如图O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E .由题意4,3OE BE EC ===,在Rt OBE 中,5OB ==,∴2·525O S ππ==圆. 故答案为25π.【点睛】本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了( ).A .10°B .20°C .30°D .60° 【答案】D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求10分钟分针旋转的度数就简单了.【详解】解:∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟, 则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么10分钟,分针旋转了10×6°=60°,故选:D .【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键.2.一元二次方程2351x x +-=中的常数项是( )A .-5B .5C .-6D .1 【答案】C【分析】将一元二次方程化成一般形式,即可得到常数项.【详解】解:∵2351x x +-=∴2360x x +-=∴常数项为-6故选C .【点睛】本题主要考查了一元二次方程的一般形式,准确的化出一元二次方程的一般形式是解决本题的关键. 3.函数y ax a =-+与a y x=(0a ≠)在同一坐标系中的图象可能是( ) A . B . C . D .【答案】D【分析】根据反比例函数与一次函数的图象特点解答即可.【详解】0a >时,0a -<,y ax a =-+在一、二、四象限,a y x =在一、三象限,无选项符合. 0a <时,0a ->,y ax a =-+在一、三、四象限,a y x=(0a ≠)在二、四象限,只有D 符合;故选:D .【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a 的取值确定函数所在的象限. 4.一元二次方程221x x -=的一次项系数和常数项依次是( )A .1-和1B .1-和1-C .2和1-D .1-和3 【答案】B【解析】根据一元二次方程的一般形式进行选择.【详解】解:2x 2-x=1,移项得:2x 2-x-1=0,一次项系数是-1,常数项是-1.故选:B .【点睛】此题主要考查了一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b 分别叫二次项系数,一次项系数.5.如图,AB 为O 的直径,点C 在O 上,若AB=4,=22AC ,则O 到AC 的距离为( )A .1B .2C .2D .22【答案】C 【分析】连接OC ,BC,过点O 作OD ⊥AC 于D ,可得OD//BC ,利用平行线段成比例可知12AD AO AC AB == 和AD=122AC =,利用勾股定理,可得222AD OD OA ,列出方程222(2)2OD +=, 即可求出OD 的长.【详解】解:连接OC ,BC,过点O 作OD ⊥AC 于D ,∴∠ADO=90°,∵AB 为O 的直径,AB=4,AC ,∴∠ACB=90°,OA=OC=122AB =, ∴OD//BC, ∴12AD AO AC AB ==,∴AD=12AC = 在t R ADO ∆中,222AD OD OA ,∴2222OD +=,解得;故选C.【点睛】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.6.在平面直角坐标系xOy 中,将横纵坐标之积为1的点称为“好点”,则函数||3y x =-的图象上的“好点”共有( )A .1个B .2个C .3个D .4个 【答案】C【分析】分x≥0及x <0两种情况,利用“好点”的定义可得出关于x 的一元二次方程,解之即可得出结论.【详解】当x≥0时,()31x x -=,即:2310x x --=,解得:132x +=,232x -=(不合题意,舍去), 当x <0时,()31x x --=,即:2310x x ++=,解得:3x =,4x =, ∴函数3y x =-的图象上的“好点”共有3个.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x <0两种情况,找出关于x 的一元二次方程是解题的关键.7.抛物线y =ax 2+bx+c (a≠0)形状如图,下列结论:①b >0;②a ﹣b+c =0;③当x <﹣1或x >3时,y >0;④一元二次方程ax 2+bx+c+1=0(a≠0)有两个不相等的实数根.正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】根据抛物线的开口方向、对称轴、顶点坐标和增减性,以及二次函数与一元二次方程的关系逐个进行判断即可.【详解】解:由抛物线开口向上,可知a >1,对称轴偏在y 轴的右侧,a 、b 异号,b <1,因此①不符合题意;由对称轴为x =1,抛物线与x 轴的一个交点为(3,1),可知与x 轴另一个交点为(﹣1,1),代入得a ﹣b+c =1,因此②符合题意;由图象可知,当x <﹣1或x >3时,图象位于x 轴的上方,即y >1.因此③符合题意;抛物线与y =﹣1一定有两个交点,即一元二次方程ax 2+bx+c+1=1(a≠1)有两个不相等的实数根,因此④符合题意;综上,正确的有3个,故选:B .【点睛】本题考查了二次函数的性质和二次函数同一元二次方程的关系,解决本题的关键是正确理解题意,熟练掌握二次函数的性质.8.如图,以,,A B C 为顶点的三角形与以,,D E F 为顶点的三角形相似,则这两个三角形的相似比为( )A .2:1B .3:1C .4:3D .3:2【答案】A 【分析】通过观察图形可知∠C 和∠F 是对应角,所以AB 和DE 是对应边;BC 和EF 是对应边,即可得出结论.【详解】解:观察图形可知∠C 和∠F 是对应角,所以AB 和DE 是对应边;BC 和EF 是对应边,∵BC =12,EF =6,∴2:1BC EF.故选A.【点睛】此题重点考察学生对相似三角形性质的理解,掌握相似三角形性质是解题的关键.9.下列说法正确的是( )A.“概率为1.1111的事件”是不可能事件B.任意掷一枚质地均匀的硬币11次,正面向上的一定是5次C.“任意画出一个等边三角形,它是轴对称图形”是随机事件D.“任意画出一个平行四边行,它是中心对称图形”是必然事件【答案】D【分析】根据不可能事件、随机事件、以及必然事件的定义(即根据事件发生的可能性大小)逐项判断即可.【详解】在一定条件下,不可能发生的事件叫不可能事件;一定会发生的事件叫必然事件;可能发生也可能不发生的事件叫随机事件A、“概率为0.0001的事件”是随机事件,此项错误B、任意掷一枚质地均匀的硬币11次,正面向上的不一定是5次,此项错误C、“任意画出一个等边三角形,它是轴对称图形”是必然事件,此项错误D、“任意画出一个平行四边行,它是中心对称图形”是必然事件,此项正确故选:D.【点睛】本题考查了不可能事件、随机事件、以及必然事件的定义,掌握理解相关定义是解题关键.10.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点.若PB切⊙O于点B,则PB的最小值是()A3B5C.3 D.2【答案】B【分析】由切线的性质可得△OPB是直角三角形,则PB2=OP2﹣OB2,如图,又OB为定值,所以当OP最小时,PB最小,根据垂线段最短,知OP=3时PB最小,然后根据勾股定理即可求出答案.【详解】解:∵PB切⊙O于点B,∴∠OBP=90°,∴PB2=OP2﹣OB2,。

∥3套精选试卷∥2018年太原市九年级上学期期末练兵模拟数学试题

∥3套精选试卷∥2018年太原市九年级上学期期末练兵模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A在反比例函数y=3x(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )A.3 B.2 C.32D.1【答案】C【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB,再根据反比例函数的比例系数k的几何意义得到S△OAB=12|k|,便可求得结果.【详解】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=12|k|=32,∴S△CAB=32,故选C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a 的值为()A.3 B.﹣3 C.13 D.﹣13【答案】B【分析】【详解】∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1+x2=﹣4,x1x2=a.∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即a+1=0,解得,a=﹣1.故选B3.已知下列命题:①对角线互相平分的四边形是平行四边形;②内错角相等;③对角线互相垂直的四边形是菱形;④矩形的对角线相等,其中假命题有()A.1个B.2个C.3个D.4个【答案】B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可.【详解】解:①根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故①是真命题;②两直线平行,内错角相等,故②为假命题;③根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故③是假命题;④根据矩形的性质,矩形的对角线相等,故④是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大.4.如图,在平面直角坐标系中,点A的坐标为()4,3,那么sinα的值是()A.34B.43C.45D.35【答案】D【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解. 【详解】如图,过A作AB⊥x轴于点B,∵A的坐标为(4,3)∴OB=4,AB=3,在Rt△AOB中,2222OA=OB AB=43++∴AB3 sin==OA5α故选:D.【点睛】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.5.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是( )A.开口向上B.对称轴是直线x=1 C.顶点坐标是(-1,3) D.函数y有最小值【答案】B【分析】由抛物线的解析式可求得开口方向、对称轴及顶点坐标,再逐一进行判断即可.【详解】解:A、∵−2<0,∴抛物线的开口向下,故A错误,不符合题意;B、抛物线的对称轴为:x=1,故B正确,符合题意;C、抛物线的顶点为(1,3),故C错误,不符合题意;D、因为开口向下,故该函数有最大值,故D错误,不符合题意.故答案为:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,顶点坐标为(h,k),对称轴为x=h.6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2 -1 0 1 2 …y …0 4 6 6 4 …观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y 随x 增大而增大.其中正确有( )A .1个B .2个C .3个D .4个【答案】C【解析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故③正确.当x=-2时,y=0,根据对称性当抛物线与x 轴的另一个交点坐标为x=×2+2=3.故①;当x=2时,y=4,所以在对称轴的右侧,随着x 增大,y 在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故②错,④对.选C.7.下列事件中,必然发生的事件是( ) A .随意翻到一本书的某页,这页的页码是奇数 B .通常温度降到0℃以下,纯净的水结冰 C .地面发射一枚导弹,未击中空中目标 D .测量某天的最低气温,结果为-150℃ 【答案】B【解析】解:A . 随意翻到一本书的某页,这页的页码是奇数,是随机事件; B . 通常温度降到0℃以下,纯净的水结冰,是必然事件; C . 地面发射一枚导弹,未击中空中目标,是随机事件; D . 测量某天的最低气温,结果为-150℃,是不可能事件. 故选B .8.如图所示的中心对称图形中,对称中心是( )A .1OB .2OC .3OD .4O【答案】B【分析】直接利用中心对称图形的性质得出答案.【详解】解:如图所示的中心对称图形中,对称中心是O 1. 故选:B . 【点睛】本题考查中心对称图形,解题关键是熟练掌握中心对称图形的性质. 9.下列事件中,必然事件是( ) A .2a 一定是正数B .八边形的外角和等于360C.明天是晴天D.中秋节晚上能看到月亮【答案】B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、a2一定是非负数,则a2一定是正数是随机事件;B、八边形的外角和等于360°是必然事件;C、明天是晴天是随机事件;D、中秋节晚上能看到月亮是随机事件;故选B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.已知一个单位向量e,设a、b是非零向量,那么下列等式中正确的是().A.1a ea=;B.e a a=;C.b e b=;D.11a ba b=.【答案】B【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】解:A、左边得出的是a的方向不是单位向量,故错误;B、符合向量的长度及方向,正确;C、由于单位向量只限制长度,不确定方向,故错误;D、左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故选:B.【点睛】本题考查了向量的性质.11.如图,四边形ABCD是正方形,以BC为底边向正方形外部作等腰直角三角形BCE,连接AE,分别交BD,BC于点F,G,则下列结论:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正确的有().A.①③B.②④C.①②D.③④【答案】B【解析】连接AC,交BD于O,过点E作EH⊥BC于H,由正方形的性质及等腰直角三角形的性质可得∠ADF=∠ABD=∠BCE=∠CBE=45°,可得∠ABE=135°,根据外角性质可得∠AFD=∠FAB+∠ABF>45°,利用平角定义可得∠AFB<135°,即可证明∠AFB≠∠ABE,可对①进行判断;由EH⊥BC可证明EH//AB,根据平行线的性质可得∠HEG=∠FAB,根据角的和差关系可证明∠DAF=∠CEG,即可证明△ADF∽△GCE;可对②进行判断,由EH//AB可得△HEG∽△BAG,根据相似三角形的性质即可得出BG=2HG,根据等腰直角三角形性质可得CH=BH,进而可得CG=2BG,可对③进行判断;根据正方形的性质可得OA=BE,∠AOF=∠FBE=90°,利用AAS可证明△AOF≌△EBF,可得AF=EF,可对④进行判断;综上即可得答案.【详解】如图,连接AC,交BD于O,过点E作EH⊥BC于H,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠ADF=∠ABD=∠BCE=∠CBE=45°,∴∠ABE=135°,∵∠AFD=∠BAF+∠ABF=∠BAF+45°>45°,∴∠AFB=180°-∠AFD<135°,∴∠AFB≠∠ABE,∴△AFB与△ABE不相似,故①错误,∵EH⊥BC,∠ABC=90°,∴EH//AB,∴∠HEG=∠FAB,∴∠AFD=∠FAB+∠ABD=45°+∠HEG=∠CEG,又∵∠ADB=∠GCE=45°,∴△ADF∽△GCE,故②正确,∵EH//AB,∴△HEG∽△BAG,∴EH HG AB BG,∵△BCE是等腰直角三角形,∴EH=CH=BH=12BC=12AB,∴HG BG=12,即BG=2HG,∴CH=BH=3HG,∴CG=CH+HG=4HG,∴CG=2BG,故③错误,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠AOF=90°,∠FBE=∠DBC+∠CBE=45°+45°=90°,OA=22AB,BE=22BC,∴∠AOF=∠FBE,OA=BE,在△AOF和△EBF中,AFO BFEAOF FBEOA BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOF≌△EBF,∴AF=EF,故④正确,综上所述:正确的结论有②④,故选:B.【点睛】本题考查正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握相关判定定理及性质是解题关键.12.《孙子算经》中有一道题: “今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xxy-=⎧⎪⎨-=⎪⎩C.4.512x yxy-=⎧⎪⎨-=⎪⎩D.4.512y xyx-=⎧⎪⎨-=⎪⎩【答案】D【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子-木条=4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:木条-12绳子=1,据此列出方程组即可.【详解】由题意可得,4.512y xyx-=⎧⎪⎨-=⎪⎩.故选:D.【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.二、填空题(本题包括8个小题)13.如图,已知点A、B分别在反比例函数y=1x(x>0),y=﹣5x(x>0)的图象上,且OA⊥OB,则OBOA 的值为_____.【答案】5.【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到S△OAC=12,S△OBD=52,再证明Rt△AOC∽Rt△OBD,然后利用相似三角形的性质得到OAOB的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A、B分别在反比例函数y=1x(x>0),y=﹣5x(x>0)的图象上,∴S△OAC=12×1=12,S△OBD=12×|﹣5|=52,∵OA⊥OB,∴∠AOB=90°∴∠AOC+∠BOD=90°,∴∠AOC=∠DBO,∴Rt△AOC∽Rt△OBD,∴AOCOBDSS∆∆=(OAOB)2=1252=15,∴OAOB5.∴OBOA=5.故答案为:5.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在△ABC中,∠ABC = 30°,AB = 3,AC =1,则∠ACB 的度数为____________.【答案】60°或120°.【分析】作AD⊥BC于D,先在Rt△ABD中求出AD的长,解直角三角形求出∠ACD,即可求出答案.【详解】如图,作AD⊥BC于D,如图1,在Rt△ABD中, ∠ABC = 30°,AB = 3,AC =1,∴AD=12AB=3,在Rt△ACD中,sinC=3321ADAC==,∴∠C=60°,即∠ACB=60°,同理如图2,同理可得∠ACD=60°,∴∠ACB=120°.故答案为60°或120°.【点睛】此题主要考查三角函数的应用,解题的关键是根据题意分情况作出图形求解. 15.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有_____千克种子能发芽.【答案】1.1【分析】观察图中的频率稳定在哪个数值附近,由此即可求出作物种子的概率.【详解】解:∵大量重复试验发芽率逐渐稳定在0.11左右,∴10kg种子中能发芽的种子的质量是:10×0.11=1.1(kg)故答案为:1.1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.16.如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,乙楼的高h=_____米(结果保留整数3≈1.7,2≈1.4).【答案】1【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,结合图形计算,得到答案.【详解】解:在Rt△ACD中,tan∠CAD=CD AD,∴CD=AD•tan∠CAD=30×tan30°=3,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案为:1.【点睛】本题考查解直角三角形的应用,要注意利用已知线段和角通过三角关系求解.17.如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.【答案】1【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB≌△AED;然后由全等三角形的对应边相等推知AF=DE、BF=AE,所以EF=AF+AE=1.【详解】解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵90AFB DEAFBA EADAB DA︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=1.故答案为:1.【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.18.如图是小孔成像原理的示意图,点O与物体AB的距离为30cm,与像CD的距离是14cm,//AB CD. 若物体AB的高度为15cm,则像CD的高度是_________cm.【答案】7【分析】根据三角形相似对应线段成比例即可得出答案. 【详解】作OE ⊥AB 与点E ,OF ⊥CD 于点F根据题意可得:△ABO ∽△DCO ,OE=30cm ,OF=14cm ∴OE AB OF CD = 即301514CD = 解得:CD=7cm故答案为7.【点睛】本题考查的是相似三角形的性质,注意两三角形相似不仅对应边成比例,对应中线和对应高线也成比例,周长同样成比例,均等于相似比.三、解答题(本题包括8个小题)19.如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA ,顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭; (1)求抛物线的函数关系式,并确定喷水装置OA 的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1)2724y x x =-++,74米;(2)114米;(3)至少要12⎛⎫+ ⎪ ⎪⎝⎭米. 【分析】(1)根据点B 、C 的坐标,利用待定系数法即可得抛物线的解析式,再求出0x =时y 的值即可得OA 的高度;(2)将抛物线的解析式化成顶点式,求出y 的最大值即可得;(3)求出抛物线与x 轴的交点坐标即可得.【详解】(1)由题意,将点157,,2,224B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得:1154227424b c b c ⎧-++=⎪⎪⎨⎪-++=⎪⎩, 解得274b c =⎧⎪⎨=⎪⎩, 则抛物线的函数关系式为2724y x x =-++, 当0x =时,74y =, 故喷水装置OA 的高度74米; (2)将2724y x x =-++化成顶点式为211(1)4y x =--+, 则当1x =时,y 取得最大值,最大值为114, 故喷出的水流距水面的最大高度是114米; (3)当0y =时,211(1)04x --+=,解得12x =+或102x =-<(不符题意,舍去),故水池的半径至少要12⎛+ ⎝⎭米,才能使喷出的水流不至于落在池外.【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.20.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求M 的坐标;若不存在,请说明理由.【答案】(1)2315344y x x =-+;(2)9;(3)存在点M 的坐标为(315,28)或(1212,77)使△CQM 为等腰三角形且△BQM 为直角三角形【分析】(1)根据抛物线经过A 、B 两点,带入解析式,即可求得a 、b 的值.(2)根据PA=PB ,要求四边形PAOC 的周长最小,只要P 、B 、C 三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM 为直角三角形,便可分为两种情况QM ⊥BC 和QM ⊥BO ,再结合△QBM ∽△CBO ,根据相似比例便可求解.【详解】解:(1)将点A (1,0),B (4,0)代入抛物线23y ax bx =++中,得: 3016430a b a b ++=⎧⎨++=⎩ 解得:34154a b ⎧=⎪⎪⎨⎪=-⎪⎩所以抛物线的解析式为2315344y x x =-+.(2)由(1)可知,抛物线的对称轴为直线52x =.连接BC ,交抛物线的对称轴为点P,此时四边形PAOC的周长最小,最小值为OA+OC+BC=1+3+5=9.(3) 当QM⊥BC时,易证△QBM∽△CBO 所以QM BM OC OB=,又因为△CQM为等腰三角形,所以QM=CM.设CM=x, 则BM=5- x所以534x x-=所以157x.所以QM=CM=157,BM=5- x=207,所以BM:CM=4:3.过点M作NM⊥OB于N,则MN//OC, 所以NM BM BN OC CB OB==,即4374NM BN==,所以1216,77MN BN==,127ON OB BN=-=所以点M的坐标为(1212,77)当QM⊥BO时, 则MQ//OC, 所以QM BQOC OB=, 即34QM BQ=设QM=3t, 则BQ=4t, 又因为△CQM为等腰三角形,所以QM=CM=3t,BM=5-3t又因为QM2+QB2=BM2, 所以(3t)2+(4t)2=(5-3t)2, 解得58 t=MQ=3t=158,32OQ OB BQ=-=, 所以点M的坐标为(315,28).综上所述,存在点M的坐标为(315,28)或(1212,77)使△CQM为等腰三角形且△BQM为直角三角形【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.21.如图,在平面直角坐标系xOy中,已知正比例函数12y x=的图象与反比例函数kyx=的图象交于(,2)A a-,B两点.(1)反比例函数的解析式为____________,点B的坐标为___________;(2)观察图像,直接写出12kxx-<的解集;(3)P是第一象限内反比例函数的图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若POC△的面积为3,求点P的坐标.【答案】(1)y=8x ;(4,2);(2)x <-4或0<x <4;(3)P (,7)或P (2,4). 【分析】(1)把A (a ,-2)代入y=12x ,可得A (-4,-2),把A (-4,-2)代入y=k x ,可得反比例函数的表达式为y=8x,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象,由交点坐标即可求解; (3)设P (m ,8m ),则C (m ,12m ),根据△POC 的面积为3,可得方程12m×|12m-8m |=3,求得m 的值,即可得到点P 的坐标. 【详解】(1)把A (a ,-2)代入y=12x 可得a=-4,∴A (-4,-2),把A (-4,-2)代入y=k x,可得k=8, ∴反比例函数的表达式为y=8x , ∵点B 与点A 关于原点对称,∴B (4,2).故答案为:y=8x ;(4,2); (2)12x-k x<0的解集是x <-4或0<x <4; (3)设P (m ,8m ),则C (m ,12m ), 依题意,得12m•|12m-8m |=3,解得或m=2,(负值已舍去).∴P ( )或P (2,4). 【点睛】 此题考查反比例函数与一次函数的交点问题,解题关键在于掌握反比例函数与一次函数的图象的交点坐标满足两函数的解析式.22.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t = 时,两点停止运动;(2)设△BPQ 的面积面积为S (平方单位)①求S 与t 之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?【答案】(1)1;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+2,当6<t≤1时,S=t2﹣10t+2,②t=3时,△PBQ的面积最大,最大值为3【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案为1.(2)①当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+2.当6<t≤1时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+2.②当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为3.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤1时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为3.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.23.已知关于x 的一元二次方程x 2+x+m ﹣1=1.(1)当m =1时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.【答案】(1)x 1=15-+,x 2=15--(2)m <54 【分析】(1)令m=1,用公式法求出一元二次方程的根即可;(2)根据方程有两个不相等的实数根,计算根的判别式得关于m 的不等式,求解不等式即可.【详解】(1)当m=1时,方程为x 2+x ﹣1=1.△=12﹣4×1×(﹣1)=5>1,∴x 1521-±=⨯,∴x 1152-+=,x 2152--=. (2)∵方程有两个不相等的实数根,∴△>1,即12﹣4×1×(m ﹣1)=1﹣4m+4=5﹣4m >1,∴m 54<. 【点睛】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b 2﹣4ac .24.已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C . (1)画出ABC ∆关于原点成中心对称的111A B C ∆,并写出点1C 的坐标;(2)画出将111A B C 绕点1C 按顺时针旋转90所得的221A B C ∆.【答案】(1)如图所示,111A B G ∆即为所求,见解析,点1C 的坐标为(2,1)--;(2)如图所示,221A B C ∆即为所求.见解析.【解析】()1分别作出三顶点关于原点的对称点,再顺次连接即可得;()2分别作出点1A 、1B 绕点1C 按顺时针旋转90所得的对应点,再顺次连接即可得.【详解】解:(1)如图所示,111A B G ∆即为所求,其中点1C 的坐标为(2,1)--.(2)如图所示,221A B C ∆即为所求.【点睛】此题主要考查了图形的旋转变换,正确得出对应点位置是解题关键.25.如图,抛物线2y ax 2ax c =-+(a≠0)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G .(1)求抛物线的解析式;(2)抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长;(3)在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似?若存在,求出此时m 的值,并直接判断△PCM 的形状;若不存在,请说明理由.【答案】(1)抛物线的解析式为248y x x 433=-++;(2)PM=24m 4m 3-+(0<m <3);(3)存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形. 【解析】(1)将A (3,0),C (0,4)代入2y ax 2ax c =-+,运用待定系数法即可求出抛物线的解析式.(2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,从而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长.(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC ∽△AEM ,②△CFP ∽△AEM ;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.【详解】解:(1)∵抛物线2y ax 2ax c =-+(a≠0)经过点A (3,0),点C (0,4), ∴,解得4a {3c 4=-=. ∴抛物线的解析式为248y x x 433=-++. (2)设直线AC 的解析式为y=kx+b ,∵A (3,0),点C (0,4),∴3k b 0{b 4+==,解得4k {3b 4=-=. ∴直线AC 的解析式为4y x 43=-+. ∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,4m 43-+). ∵点P 的横坐标为m ,点P 在抛物线248y x x 433=-++上, ∴点P 的坐标为(m ,248m m 433-++). ∴PM=PE -ME=(248m m 433-++)-(4m 43-+)=24m 4m 3-+. ∴PM=24m 4m 3-+(0<m <3). (3)在(2)的条件下,连接PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=4m 43-+,CF=m ,PF=248m m 4433-++-=248m m 33-+, 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况: ①若△PFC ∽△AEM ,则PF :AE=FC :EM ,即(248m m 33-+):(3-m )=m :(4m 43-+), ∵m≠0且m≠3,∴m=2316. ∵△PFC ∽△AEM ,∴∠PCF=∠AME .∵∠AME=∠CMF ,∴∠PCF=∠CMF .在直角△CMF 中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM 为直角三角形.②若△CFP ∽△AEM ,则CF :AE=PF :EM ,即m :(3-m )=(248m m 33-+):(4m 43-+),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM为等腰三角形.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为2316或1,△PCM为直角三角形或等腰三角形.26.有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.【答案】(1)13;(2)16.【分析】(1)根据题意画出树状图,根据树状图作答即可;(2)根据树状图作答即可.【详解】解:(1)画树状图得:∵共有12种等可能的结果,取出的3个小球上恰好有2个元音字母的为4种情况,∴P(恰好有2个元音字母)41 123 ==;(2)∵取出的3个小球上全是辅音字母的有2种情况,∴取出的3个小球上全是辅音字母的概率是:21 126=.【点睛】本题考查了概率统计的问题,掌握树状图的性质以及画法是解题的关键.27.甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有两个偶数的概率是多少?(2)取出的3个小球上全是奇数的概率是多少?【答案】(1)13;(2)16.【分析】先画出树状图得到所有等可能的情况数;(1)找出3个小球上恰好有两个偶数的情况数,然后利用概率公式进行计算即可;(2)找出3个小球上全是奇数的情况数,然后利用概率公式进行计算即可.【详解】根据题意,画出如下的“树状图”:从树状图看出,所有可能出现的结果共有12个;(1)取出的3个小球上恰好有两个偶数的结果有4个,即1,4,6;2,3,6;2,4,1;2,5,6;所以P(两个偶数)41 123 ==;(2)取出的3个小球上全是奇数的结果有2个,即1,3,1;1,5,1;所以,P(三个奇数)21 126 ==.【点睛】本题考查的是用树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知一块圆心角为300︒的扇形纸板,用它做一个圆锥形的圣诞帽(接缝忽略不计)圆锥的底面圆的直径是30cm ,则这块扇形纸板的半径是( )A .16cmB .18cmC .20cmD .12cm 【答案】B【分析】利用底面周长=展开图的弧长可得【详解】设这个扇形铁皮的半径为rcm ,由题意得30030180r ππ= 解得r =1.故这个扇形铁皮的半径为1cm ,故选:B .【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.2.如图,四边形ABCD 内接于O ,延长AO 交O 于点B ,连接BE .若100C ∠=︒,50DAE ∠=︒,则E ∠的度数为( )A .50︒B .60︒C .70︒D .80︒【答案】B 【分析】根据圆内接四边形的性质得到∠DAB ,进而求出∠EAB ,根据圆周角定理得到∠EBA=90°,根据直角三角形两锐角互余即可得出结论.【详解】∵四边形ABCD 内接于⊙O ,∴∠DAB=180°﹣∠C=180°﹣100°=80°.∵∠DAE=50°,∴∠EAB=∠DAB-∠DAE=80°-50°=30°.∵AE 是⊙O 的直径,∴∠EBA=90°,∴∠E=90°﹣∠EAB=90°-30°=60°.故选:B .【点睛】本题考查了圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3.已知sinαcosα=18,且0°<α<45°,则sinα-cosα的值为( )A .2B .-2C .34D .±2【答案】B【分析】由题意把已知条件两边都乘以2,再根据sin 2α+cos 2α=1,进行配方,然后根据锐角三角函数值求出cosα与sinα的取值范围,从而得到sinα-cosα<0,最后开方即可得解.【详解】解:∵sinαcosα=18, ∴2sinα•cosα=14, ∴sin2α+cos2α-2sinα•cosα=1-14, 即(sinα-cosα)2=34, ∵0°<α<45°,<cosα<1,0<sinα, ∴sinα-cosα<0,∴sinα-cosα= -2. 故选:B .【点睛】本题考查同角的三角函数的关系,利用好sin 2α+cos 2α=1,并求出sinα-cosα<0是解题的关键. 4.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为 ( )A .7B .8C .9D .10 【答案】A【分析】分别设出枝干和小分支的数目,列出方程,解方程即可得出答案.【详解】设枝干有x 根,则小分支有2x 根根据题意可得:2157x x ++=解得:x=7或x=-8(不合题意,舍去)故答案选择A.【点睛】本题考查的是一元二次方程的应用,解题关键是根据题目意思列出方程.。

{3套试卷汇总}2018年太原市九年级上学期期末学业水平测试数学试题

{3套试卷汇总}2018年太原市九年级上学期期末学业水平测试数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在Rt ABC ∆中,90C ∠=︒,A ∠、B 的对边分别是a 、b ,且满足2220a ab b --=,则tan A 等于( )A .12B .2C .233D .232【答案】B【分析】求出a=2b ,根据锐角三角函数的定义得出tanA=a b,代入求出即可. 【详解】解:a 2-ab-2b 2=0,(a-2b )(a+b )=0,则a=2b ,a=-b (舍去),则tanA=a b=2, 故选:B .【点睛】本题考查了解二元二次方程和锐角三角函数的定义的应用,注意:tanA=A A ∠∠的对边的邻边.2.如图,ADC 是由等腰直角EOG △经过位似变换得到的,位似中心在x 轴的正半轴,已知1EO =,D 点坐标为()2,0D ,位似比为1:2,则两个三角形的位似中心P 点的坐标是( )A .2,03⎛⎫ ⎪⎝⎭B .()1,0C .()0,0D .1,03⎛⎫ ⎪⎝⎭【答案】A【分析】先确定G 点的坐标,再结合D 点坐标和位似比为1:2,求出A 点的坐标;然后再求出直线AG 的解析式,直线AG 与x 的交点坐标,即为这两个三角形的位似中心的坐标..【详解】解:∵△ADC 与△EOG 都是等腰直角三角形∴OE=OG=1∴G 点的坐标分别为(0,-1)∵D 点坐标为D (2,0),位似比为1:2,∴A 点的坐标为(2,2)∴直线AG 的解析式为y=32x-1 ∴直线AG 与x 的交点坐标为(23,0) ∴位似中心P 点的坐标是2,03⎛⎫⎪⎝⎭. 故答案为A .【点睛】 本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键.3.一条排水管的截面如图所示,已知排水管的半径5OB =,水面宽8AB =,则截面圆心O 到水面的距离OC 是( )A .2B .3C .23D .2.5【答案】B 【解析】根据垂径定理求出BC ,根据勾股定理求出OC 即可.【详解】解:OC AB ⊥,OC 过圆心O 点, 118422BC AC AB ∴===⨯=, 在Rt OCB ∆中,由勾股定理得:2222543OC OB BC =-=-,故选:B .【点睛】本题考查了勾股定理和垂径定理的应用;由垂径定理求出BC 是解决问题的关键.4.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个【答案】B 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx +c=0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b +c=0,∴a +2a +c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.5.下列事件中,属于必然事件的是( )A .任意画一个正五边形,它是中心对称图形B .某课外实践活动小组有13名同学,至少有2名同学的出生月份相同C .不等式的两边同时乘以一个数,结果仍是不等式D .相等的圆心角所对的弧相等【答案】B【分析】根据随机事件、必然事件、不可能事件的定义,分别进行判断,即可得到答案.【详解】解:A 、正五边形不是中心对称图形,故A 是不可能事件;B 、某课外实践活动小组有13名同学,至少有2名同学的出生月份相同,是必然事件,故B 正确;C 、不等式的两边同时乘以一个数,结果不一定是不等式,是随机事件,故C 错误;D 、在同圆或等圆中,相等的圆心角所对的弧相等,故D 是随机事件,故D 错误;故选:B .【点睛】本题考查了随机事件、必然事件、不可能事件的定义,解题的关键是熟练掌握定义,正确的进行判断. 6.如图,在⊙O 中,弦AB =6,半径OC ⊥AB 于P ,且P 为OC 的中点,则AC 的长是( )A .2 3B .3C .4D .2 2【答案】A【分析】根据垂径定理求出AP ,根据勾股定理求出OP ,求出PC ,再根据勾股定理求出即可.【详解】解:连接OA ,∵AB =6,OC ⊥AB ,OC 过O ,∴AP =BP =12AB =3, 设⊙O 的半径为2R ,则PO =PC =R ,在Rt △OPA 中,由勾股定理得:AO 2=OP 2+AP 2,(2R )2=R 2+32,解得:R 3,即OP =PC 3,在Rt △CPA 中,由勾股定理得:AC 2=AP 2+PC 2,AC 2=32+32,解得:AC =3故选:A .【点睛】考核知识点:垂径定理.构造直角三角形是关键.7.如图,在ABC ∆中,90ACB ∠=︒,30A ∠=︒,4AB =,以点B 为圆心,BC 长为半径画弧,交边AB 于点D ,则阴影区域的面积为( )A.2433πB.4433πC.2233πD.4233π【答案】C【分析】根据直角三角形的性质得到AC=3BC=2,∠B=60︒,根据扇形和三角形的面积公式即可得到结论.【详解】∵在Rt△ABC中,∠ACB=90︒,∠A=30︒,AB=4,∴BC=12AB=2,AC224223-=B=60︒,∴阴影部分的面积=S△ACB−S扇形BCD=123-2602360π⋅=2233π,故选:C.【点睛】本题考查了扇形面积的计算,含30︒角的直角三角形的性质,正确的识别图形是解题的关键8.已知命题“关于x的一元二次方程210x nx++=必有两个实数根”,则能说明该命题是假命题的n的一个值可以是()A.1 B.2 C.3 D.4【答案】A【分析】根据判别式的意义,当m=1时,△<0,从而可判断原命题为是假命题.【详解】,解:△=n2-4,当n=1时,△<0,方程没有实数根,当n=2时,△=0,方程有两个相等的实数根,当n=3时,△>0,方程有两个不相等的实数根,当n=4时,△>0,方程有两个不相等的实数根,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.已知AB、CD是⊙O的两条弦,AB∥CD,AB=6,CD=8,⊙O的半径为5,则AB与CD的距离是()A .1B .7C .1或7D .无法确定【答案】C 【分析】由于弦AB 、CD 的具体位置不能确定,故应分两种情况进行讨论:①弦AB 和CD 在圆心同侧;②弦AB 和CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB =8,CD =6,∴AE =4,CF =3,∵OA =OC =5,∴由勾股定理得:EO =2254-=3,OF =2253-=4,∴EF =OF ﹣OE =1;②当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,EF =OF+OE =1,所以AB 与CD 之间的距离是1或1.故选:C .【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧. 也考查了勾股定理及分类讨论的思想的应用.10.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( ) A .2560(1)1850x += B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++= 【答案】D【解析】第一个月是560,第二个月是560(1+x ),第三月是560(1+x )2,所以第一季度总计560+560(1+x )+560(1+x )2=1850,选D.11.如图,AD 是△ABC 的中线,点E 在AD 上,AD =4DE ,连接BE 并延长交AC 于点F ,则AF :FC 的值是( )A .3:2B .4:3C .2:1D .2:3【答案】A 【分析】过点D 作DG ∥AC, 根据平行线分线段成比例定理,得FC=1DG ,AF=3DG ,因此得到AF :FC 的值. 【详解】解:过点D 作DG ∥AC ,与BF 交于点G .∵AD=4DE ,∴AE=3DE ,∵AD 是△ABC 的中线, ∴12BD BC = ∵DG ∥AC ∴33AF AE DE DG DE DE===,即AF=3DG 12DG BD FC BC ==,即FC=1DG , ∴AF :FC=3DG :1DG=3:1.故选:A .【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键. 12.已知点P(x ,y)在第二象限,|x|=6,|y|=8,则点P 关于原点的对称点的坐标为( ) A .(6,8)B .(﹣6,8)C .(﹣6,﹣8)D .(6,﹣8)【答案】D【分析】根据P 在第二象限可以确定x ,y 的符号,再根据|x|=6,|y|=8就可以得到x ,y 的值,得出P 点的坐标,进而求出点P 关于原点的对称点的坐标.【详解】∵|x|=6,|y|=8,∴x =±6,y =±8,∵点P 在第二象限,∴x <0,y >0,∴x =﹣6,y =8,即点P 的坐标是(﹣6,8),关于原点的对称点的坐标是(6,﹣8),故选:D .【点睛】主要考查了平面直角坐标系中各个象限的点的坐标的符号特点和对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题(本题包括8个小题)13.在△ABC 中,∠ABC=90°,已知AB=3,BC=4,点Q 是线段AC 上的一个动点,过点Q 作AC 的垂线交直线AB 于点P ,当△PQB 为等腰三角形时,线段AP 的长为_____. 【答案】53或1. 【解析】当△PQB 为等腰三角形时,有两种情况,需要分类讨论:①当点P 在线段AB 上时,如图1所示.由三角形相似(△AQP ∽△ABC )关系计算AP 的长;②当点P 在线段AB 的延长线上时,如图2所示.利用角之间的关系,证明点B 为线段AP 的中点,从而可以求出AP .【详解】解:在Rt △ABC 中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,当点P 在线段AB 上时,如题图1所示:∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB=PQ ,由(1)可知,△AQP ∽△ABC , ∴,PA PQ AC BC = 即3,54PB PB -= 解得:43PB =, ∴45333AP AB PB =-=-=; 当点P 在线段AB 的延长线上时,如题图2所示:∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB=BQ.∵BP=BQ ,∴∠BQP=∠P ,∵90,90BQP AQB A P ,∠+∠=∠+∠= ∴∠AQB=∠A ,∴BQ=AB ,∴AB=BP ,点B 为线段AP 中点,∴AP=2AB=2×3=1.综上所述,当△PQB 为等腰三角形时,AP 的长为53或1. 故答案为53或1.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.已知关于x 的方程x 2-3x+m=0的一个根是1,则m=__________.【答案】1【解析】试题分析:∵关于x 的方程230x x m -+=的一个根是1,∴1﹣3×1+m=0,解得,m=1,故答案为1.考点:一元二次方程的解.15.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与x 轴只有一个交点;乙:图象的对称轴是直线3x =;丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式__________.【答案】2(3)y x =--(答案不唯一)【解析】利用二次函数的顶点式解决问题即可.【详解】由题意抛物线的顶点坐标为(3,0),设抛物线的解析式为y =a (x ﹣3)1.∵开口向下,可取a=-1,∴抛物线的解析式为y=-(x ﹣3)1.故答案为y=-(x ﹣3)1(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,正方形ABCD 内接于⊙O ,⊙O 的半径为6,则AB 的长为__________.【答案】3π【分析】同圆或等圆中,两弦相等,所对的优弧或劣弧也对应相等,据此求解即可.【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∴AB =BC =CD =AD ,∴AB 的长等于⊙O 周长的四分之一,∵⊙O 的半径为6,∴⊙O 的周长=26⨯⨯π=12π,∴AB 的长等于3π,故答案为:3π.【点睛】本题主要考查了圆中弧与弦之间的关系,熟练掌握相关概念是解题关键.17.如图,在ABC ∆中,D ,E 分别是AB ,AC 上的点,AF 平分BAC ∠,交DE 于点G ,交BC 于点F ,若AED B ∠=∠,且:3:2AG GF =,则:DE BC =_______.【答案】3:1【分析】根据题意利用相似三角形的性质即相似三角形的对应角平分线的比等于相似比即可解决问题.【详解】解:∵∠DAE=∠CAB ,∠AED=∠B ,∴△ADE ∽△ACB ,∵GA ,FA 分别是△ADE ,△ABC 的角平分线, ∴DE AG BC AF=(相似三角形的对应角平分线的比等于相似比),AG :FG=3:2, ∴AG :AF=3:1,∴DE:BC=3:1,故答为3:1.【点睛】本题考查相似三角形的判定和性质、解题的关键是灵活运用所学知识解决问题,属于中考常考题型,难度一般.18.若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有_____件合格品.【答案】1.【分析】用总数×抽检时任抽一件西服成品为合格品的概率即可得出答案.【详解】200×0.9=1,答:200件西服中大约有1件合格品故答案为:1.【点睛】本题主要考查合格率问题,掌握合格产品数=总数×合格率是解题的关键.三、解答题(本题包括8个小题)19.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?【答案】(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.20.计算:2cos30°-tan45° 【答案】-1.【分析】分别计算特殊角三角函数值和算术平方根,然后再计算加减法.【详解】原式=211-11=-1.考点:实数的混合运算,特殊角的三角函数的混合运算.21. (1)解方程: 2210x x --=;(2)计算: 26045cos tan ︒-︒.【答案】(1)1211x x ==;(2)-3【分析】(1)先依次写出a 、b 、c 的值,再求出△的值,最后代入公式计算即可;(2)分别计算特殊角的三角函数值和算术平方根,再依据有理数的混合运算计算即可.【详解】解:(1):∵2210,x x --=∴1,2,1a b c ==-=-,∴22(2)41(1)804b ac --∆⨯-=⨯==>-,∴x ==1=即1211x x ==(2)原式= 12132⨯--, 113=--3=-.【点睛】本题考查利用公式法解一元二次方程,特殊角的三角函数值的混合运算和算术平方根.(1)中熟记一元二次方程的求根公式是解题关键;(2)中熟记特殊角的三角函数值是解题关键.22.如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙O 相交于点F .若EF 的长为2π,则图中阴影部分的面积为_____.【答案】S 阴影=2﹣2π. 【分析】由切线的性质和平行四边形的性质得到BA ⊥AC ,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE ,根据弧长公式求出弧长,得到半径,即可求出结果.【详解】如图,连接AC ,∵CD 与⊙A 相切,∴CD ⊥AC ,在平行四边形ABCD 中,∵AB=DC,AB ∥CD ∥BC ,∴BA ⊥AC ,∵AB=AC,∴∠ACB=∠B=45°,∵AD ∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE ,∴EF EC =∴EF 的长度为45=1802R ππ 解得R=2, S 阴=S △ACD-S 扇形=2214522-=2-23602ππ⨯⨯【点睛】此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.23.如图,已知△ABC 为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC ,S △A'B'C'=4S △ABC ;(尺规作图,保留作图痕迹,不写作法)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF ∽△D'E'F'.【答案】(1)作图见解析;(2)证明见解析.【分析】(1)分别作A'C'=2AC 、A'B'=2AB 、B'C'=2BC 得△A'B'C'即可.(2)根据中位线定理易得△DEF ∽△CAB ,△D'E'F'∽△C'A'B',故可得△DEF ∽△D'E'F'.【详解】解:(1)作线段A'C'=2AC 、A'B'=2AB 、B'C'=2BC ,得△A'B'C'即为所求.证明:∵A'C'=2AC 、A'B'=2AB 、B'C'=2BC ,∴△ABC ∽△A′B′C′, ∴2'''''()4A B C ABC S A B S AB==; (2)证明:∵D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,∴DE =12AC ,DF =12BC ,EF =12AB , ∴△DEF ∽△CAB ,同理:△D'E'F'∽△C'A' B',由(1)可知:△ABC ∽△A′B′C′,∴△DEF ∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.24.如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.(1)若围成的面积为180 m2,试求出自行车车棚的长和宽;(2)能围成面积为200 m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.【答案】(1)长和宽分别为18 m,10 m;(2)不能,理由见解析【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【详解】解:(1)设AB=x,则BC=38-2x.根据题意,得x(38-2x)=180,解得x1=10,x2=9.当x=10时,38-2x=18;当x=9时,38-2x=20>19,不符合题意,舍去.答:若围成的面积为180 m2,自行车车棚的长和宽分别为18 m,10 m.(2)不能,理由如下:根据题意,得x(38-2x)=200,整理,得x2-19x+100=0.∵Δ=b2-4ac=361-400=-39<0,∴此方程没有实数根.∴不能围成面积为200 m2的自行车车棚.【点睛】本题考查一元二次方程的应用,熟练掌握计算法则是解题关键.25.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?【答案】(1)AB :1230y x =+(010)x ≤≤;CD :22200y x= (44)x ≥ ;(2)有效时间为2分钟 . 【解析】分析:(1)、利用待定系数法分别求出函数解析式;(2)、将y=40分别代入两个函数解析式分别求出x 的值,然后进行做差得出答案.详解:(1)设线段AB 所在的直线的解析式为y 1=k 1x+30, 把B (10,2)代入得,k 1=2,∴AB 解析式为:y 1=2x+30(0≤x≤10). 设C 、D 所在双曲线的解析式为y 2=, 把C (44,2)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=(x≥44);(2)将y=40代入y 1=2x+30得:2x+30=40,解得:x=5,将y=40代入y 2=得:x=1. 1﹣5=2. 所以完成一份数学家庭作业的高效时间是2分钟.点睛:本题主要考查的就是函数图像的基本应用问题,属于基础题型.求函数解析式的时候我们用的就是待定系数法,在设函数关系式的时候一定要正确.26.求值2sin3010cos604tan 45+-:【答案】2.【分析】先将三角函数值代入,再根据混合运算顺序依此计算可得.【详解】原式=112104122⨯+⨯-⨯ 2=【点睛】本题主要考查了特殊角的三角函数值,解题的关键是熟练掌握各特殊角的三角函数值.27.已知:如图,正方形,ABCD E 为边AD 上一点,ABE ∆绕点A 逆时针旋转90后得到ADF ∆. ()1如果65AEB ∠=,求DFE ∠的度数;()2BE 与DF 的位置关系如何?说明理由.,详见解析【答案】(1)20°,(2)BG DF【分析】(1)根据旋转的性质可知△AFD≌△AEB,则有AE=AF,∠DAF=90°,∠AEB=∠DFA=65°,然后利用∠DFE=∠DFA-∠EFA即可求出答案.(2)由旋转的性质得∠EBA=∠FDA,通过等量代换即可得出∠DFA+∠EBA=90°,即BG⊥DF.【详解】解:(1)根据旋转的性质可知:△AFD≌△AEB,即AE=AF,∠DAF=90°,∠AEB=∠DFA=65°,∴∠AFE=45°,∴∠DFE=∠DFA-∠EFA=20°(2)延长BE与DF相交于点G.∵∠DAF=90°,∴∠DFA+∠ADF=90°,∵∠EBA=∠FDA,∴∠DFA+∠EBA=90°,∴BG⊥DF,即BE与DF互相垂直.【点睛】本题主要考查旋转的性质和全等三角形的性质,掌握全等三角形的性质是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ). A .中国女排一定会夺冠B .中国女排一定不会夺冠C .中国女排夺冠的可能性比较大D .中国女排夺冠的可能性比较小 【答案】C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】∵中国女排夺冠的概率是80%,∴中国女排夺冠的可能性比较大故选C.【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义.2.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( )A .40 m/sB .20 m/sC .10 m/sD .5 m/s 【答案】C 【解析】当y=5时,则21520x =,解之得10x =(负值舍去),故选C 3.如图,是反比例函数3y x =与7y x -=在x 轴上方的图象,点C 是y 轴正半轴上的一点,过点C 作//AB x 轴分别交这两个图象与点A 和点B ,P 和Q 在x 轴上,且四边形ABPQ 为平行四边形,则四边形ABPQ 的面积等于( )A .20B .15C .10D .5【答案】C【解析】分别过A 、B 作AD 、BE 垂直x 轴,易证≅ADQ BEP ,则平行四边形ABPQ 的面积等于矩形ADEB 的面积,根据反比例函数比例系数k 的几何意义分别求得矩形ADOC 和矩形BEOC 的面积,相加即可求得结果.【详解】解:如图,分别过A 、B 作AD 、BE 垂直x 轴于点D 、点E ,则四边形ADEB 是矩形,易证≅ADQ BEP ,∴=ABPQ S S 矩形ABED ,∵点A 在反比例函数3y x =上, 由反比例函数比例系数k 的几何意义可得:S 矩形ADOC =|k|=3,同理可得:S 矩形BEOC =7,∴=ABPQ S S 矩形ABED = S 矩形ADOC +S 矩形BEOC =3+7=10,故选:C .【点睛】本题考查了反比例函数比例系数k 的几何意义,熟练运用比例系数k 的几何意义是解决本题的关键. 4.若一元二次方程2220x kx k -+=的一个根为1x =-,则其另一根是( )A .0B .1C .1-D .2 【答案】C【分析】把1x =-代入方程求出k 的值,再解方程即可.【详解】∵一元二次方程2220x kx k -+=的一个根为1x =-∴212(1)0k k -⨯-+=解得1k =-∴原方程为2210x x ++=解得121x x ==-故选C【点睛】本题考查一元二次方程的解,把方程的解代入方程即可求出参数的值.5.如图是二次函数y =ax 2+bx+c (a≠1)的图象的一部分,给出下列命题:①a+b+c =1;②b >2a ;③方程ax 2+bx+c =1的两根分别为﹣3和1;④当x <1时,y <1.其中正确的命题是( )A .②③B .①③C .①②D .①③④【答案】B 【分析】利用x=1时,y=1可对①进行判断;利用对称轴方程可对②进行判断;利用对称性确定抛物线与x 轴的另一个交点坐标为(-3,1),则根据抛物线与x 轴的交点问题可对③进行判断;利用抛物线在x 轴下方对应的自变量的范围可对④进行判断.【详解】∵x =1时,y =1,∴a+b+c =1,所以①正确;∵抛物线的对称轴为直线x =﹣2b a=﹣1, ∴b =2a ,所以②错误;∵抛物线与x 轴的一个交点坐标为(1,1),而抛物线的对称轴为直线x =﹣1,∴抛物线与x 轴的另一个交点坐标为(﹣3,1),∴方程ax 2+bx+c =1的两根分别为﹣3和1,所以③正确;当﹣3<x <1时,y <1,所以④错误.故选:B .【点睛】本题考查的是抛物线的性质及对称性,掌握二次函数的性质及其与一元二次方程的关系是关键. 6.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位【答案】B 【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B .【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.已知关于x 的分式方程1m x -=1的解是非负数,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1且m≠0D .m ≥-1【答案】C【解析】分式方程去分母得:m=x-1,解得x=m+1,由方程的解为非负数,得到m+1≥0,且m+1≠1,解得:m ≥-1且m≠0,故选C .8.方程()55x x x -=-的根是( )A .5x =B .0x =C .15=x ,20x =D .15=x ,21x = 【答案】D【分析】先移项然后通过因式分解法解一元二次方程即可.【详解】()5(5)0x x x ---= ()(1)50x x --=10x -=或50x -=121,5x x ∴==故选:D .【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.9.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .3B .5C .233D .25 【答案】D【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=AD AB =2210=25, 故选D .10.对于方程223x x =,下列说法正确的是( ) A .一次项系数为3B .一次项系数为-3C .常数项是3D .方程的解为3x = 【答案】B【分析】先把方程化为一元二次方程的一般形式,再求出其一次项系数、二次项系数及常数项即可.【详解】∵原方程可化为2x 2−3x =0,∴一次项系数为−3,二次项系数为2,常数项为0,方程的解为x=0或x=32, 故选:B .【点睛】本题考查的是一元二次方程的一般形式,熟知一元二次方程ax 2+bx +c =0(a ≠0)中,ax 2叫做二次项,a 叫做二次项系数;bx 叫做一次项;c 叫做常数项是解答此题的关键.11.关于抛物线y =x 2﹣6x+9,下列说法错误的是( )A .开口向上B .顶点在x 轴上C .对称轴是x =3D .x >3时,y 随x 增大而减小【答案】D【分析】直接利用二次函数的性质进而分别分析得出答案.【详解】解:22693y x x x , 则a=1>0,开口向上,顶点坐标为:(3,0),对称轴是x=3,故选项A ,B ,C 都正确,不合题意;x >3时,y 随x 增大而增大,故选项D 错误,符合题意.故选:D .【点睛】此题主要考查了二次函数的性质,正确掌握相关性质是解题关键.12.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根, 所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.二、填空题(本题包括8个小题)13.双曲线y 1、y 2在第一象限的图象如图,14y x=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =1,则y 2的解析式是【答案】y 2=6x. 【分析】根据14y x=,过y 1上的任意一点A ,得出△CAO 的面积为2,进而得出△CBO 面积为3,即可得出y 2的解析式. 【详解】解:∵14y x =,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,S △AOB =1, ∴△CBO 面积为3,∴xy=6,∴y 2的解析式是:y 2=6x.故答案为:y 2=6x. 14.如果将抛物线22y x =-平移,顶点移到点P (3,-2)的位置,那么所得新抛物线的表达式为___________.【答案】22(3)2=--y x【解析】抛物线y=−2x ²平移,使顶点移到点P(3,-2)的位置,所得新抛物线的表达式为y=−2(x -3)²-2.故答案为y=−2(x -3)²-2.15. “蜀南竹海位于宜宾市境内”是_______事件;(填“确定”或“随机”)【答案】确定【分析】根据“确定定义”或“随机定义”即可解答.【详解】“蜀南竹海是国家AAAA 级旅游胜地,位于宜宾市境内”,所以是确定事件.故答案为:确定.【点睛】本题考查必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,确定事件包括必然事件、不可能事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,.16.函数y =x 的取值范围是________. 【答案】x ≥-1且x ≠1.【分析】根据二次根式的被开方数非负和分式的分母不为0可得关于x 的不等式组,解不等式组即可求得答案.【详解】解:根据题意,得1010x x +≥⎧⎨-≠⎩,解得x ≥-1且x ≠1. 故答案为x ≥-1且x ≠1.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,难度不大,属于基础题型.17.已知A ∠为锐角,且cos A =,则A ∠度数等于______度. 【答案】30【分析】根据锐角三角函数值即可得出角度.【详解】∵cos302=°,A ∠为锐角 ∴A ∠=30°。

(汇总3份试卷)2018年太原市九年级上学期数学期末复习能力测试试题

(汇总3份试卷)2018年太原市九年级上学期数学期末复习能力测试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知四边形 ABCD 内接于⊙O ,AB 是⊙O 的直径,EC 与⊙O 相切于点 C ,∠ECB=35°, 则∠D 的度数是( )A .145°B .125°C .90°D .80°【答案】B 【解析】试题解析:连接.OC∵EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选B.点睛:圆内接四边形的对角互补.2.如图,将ABC ∆绕着点C 按顺时针方向旋转20︒,B 点落在'B 位置,A 点落在'A 位置,若''AC A B ⊥,则BAC ∠的度数是 ( )A .50︒B .60︒C .70︒D .80︒【答案】C【解析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC ⊥A’B’可得∠BAC=∠A’=90°-20°=70°, 故选择C.【点睛】本题考查了旋转的性质.3.如果53x y x +=,那么y x =( ) A .85 B .38 C .32 D .23【答案】D【分析】直接利用已知进行变形进而得出结果. 【详解】解:∵53x y x +=, ∴3x+3y =5x ,则3y =2x , 那么y x =23. 故选:D .【点睛】本题考查了比例的性质,正确将已知变形是解题的关键.4.己知⊙O 的半径是一元二次方程2340x x --=的一个根,圆心O 到直线l 的距离6d =.则直线l 与⊙O 的位置关系是A .相离B .相切C .相交D .无法判断【答案】A【分析】在判断直线与圆的位置关系时,通常要得到圆心到直线的距离,然后再利用d 与r 的大小关系进行判断;在直线与圆的问题中,充分利用构造的直角三角形来解决问题,直线与圆的位置关系:①当d >r 时,直线与圆相离;②当d=r 时,直线与圆相切;③当d <r 时,直线与圆相交.【详解】∵2340x x --=的解为x=4或x=-1,∴r=4,∵4<6,即r <d ,∴直线l 和⊙O 的位置关系是相离.故选A.【点睛】本题主要考查了直线与圆的位置关系,一元二次方程的定义及一般形式,掌握直线与圆的位置关系,一元二次方程的定义及一般形式是解题的关键.5.对于非零实数a b 、,规定11a b b a ⊕=-,若()22x 11⊕-=,则x 的值为 A .56 B .54 C .32 D .16- 【答案】A【解析】试题分析:∵11a b b a ⊕=-,∴()1122x 12x 12⊕-=--. 又∵()22x 11⊕-=,∴1112x 12-=-. 解这个分式方程并检验,得5x 6=.故选A . 6.如果函数22y x x m =--+的图象与x 轴有公共点,那么m 的取值范围是( )A .1mB .1m <C .1m >-D .1m ≥-【答案】D【分析】根据二次函数与一元二次方程的关系,利用根的判别式即可得出答案.【详解】∵函数22y x x m =--+的图象与x 轴有公共点, 224(2)4(1)440b ac m m ∴-=--⨯-⨯=+≥ ,解得1m ≥- .故选:D .【点睛】本题主要考查二次函数与x 轴的交点问题,掌握根的判别式是解题的关键.7.已知△ABC 与△DEF 相似且对应周长的比为4:9,则△ABC 与△DEF 的面积比为A .2:3B .16:81C .9:4D .4:9【答案】B【解析】直接根据相似三角形周长的比等于相似比,面积比等于相似比的平方解答.【详解】解:∵△ABC 与△DEF 相似且对应周长的比为4:9,∴△ABC 与△DEF 的相似比为4:9,∴△ABC 与△DEF 的面积比为16:81.故选B【点睛】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比,面积的比等于相似比的平方. 8.将抛物线23y x =如何平移得到抛物线23(2)3y x =+-( )A .向左平移2个单位,向上平移3个单位;B .向右平移2个单位,向上平移3个单位;C .向左平移2个单位,向下平移3个单位;D .向右平移2个单位,向下平移3个单位.【答案】C【分析】根据二次函数图象的平移规律“左加右减,上加下减”即可得出答案.【详解】根据二次函数的平移规律可知,将抛物线23y x =向左平移2个单位,再向下平移3个单位即可得到抛物线23(2)3y x =+-,故选:C .【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.9.把抛物线2–y x =先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是( ) A .()212y x =-++B .()212y x =-+-C .()212y x =---D .()=+-2y x 12 【答案】B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=-x 1的顶点坐标为(0,0),先向左平移1个单位再向下平移1个单位后的抛物线的顶点坐标为(-1,-1),所以,平移后的抛物线的解析式为y=-(x+1)1-1.故选:B .【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.10.对于反比例函数4y x=-,下列说法错误的是( ) A .它的图象分别位于第二、四象限B .它的图象关于y x =成轴对称C .若点1(2,)A y -,2(1,)B y -在该函数图像上,则12y y <D .y 的值随x 值的增大而减小【答案】D【分析】根据反比例函数的性质对各选项逐一分析即可. 【详解】解:反比例函数4y x =-,40k =-<,图像在二、四象限,故A 正确. 反比例函数k y x=,当0k >时,图像关于y x =-对称; 当k 0<时,图像关于y x =对称,故B 正确当0x <时,y 的值随x 值的增大而增大,21-<-,则12y y <,故C 正确在第二象限或者第四象限,y 的值随x 值的增大而增大,故D 错误故选D【点睛】本题主要考查了反比例函数的性质.11.若ABC ∆与DEF ∆的相似比为1:4,则ABC ∆与DEF ∆的周长比为( )A .1:2B .1:3C .1:4D .1:16【答案】C【分析】根据相似三角形的性质解答即可.【详解】解:∵ABC ∆与DEF ∆的相似比为1:4,∴ABC ∆与DEF ∆的周长比为:1:4.故选:C.【点睛】本题考查了相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.12.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt △ABC 中,AC =k ,∠ACB =90°,∠ABC =30°,延长CB 至点M ,在射线BM 上截取线段BD ,使BD =AB ,连接AD ,依据此图可求得tan75°的值为( )A .23-B .23C .13+D 31【答案】B 【解析】在直角三角形ABC 中,利用30度所对的直角边等于斜边的一半表示出AB 的长,再利用勾股定理求出BC 的长,由CB+BD 求出CD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出所求即可.【详解】在Rt △ABC 中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°3k ,∴∠CAD=∠CAB+∠BAD=75°,在Rt △ACD 中3,则tan75°=tan ∠CAD=CD AC =3k 2k k+3 故选B【点睛】 本题考查了解直角三角形,熟练掌握三角函数是解题的关键.二、填空题(本题包括8个小题)13.如图,抛物线y=ax 2与直线y=bx+c 的两个交点坐标分别为A (-2,4),B (1,1),则不等式ax 2>bx+c 的解集是_________.【答案】x <-2或x >1【分析】根据图形抛物线2y ax =与直线bx c =+的两个交点情况可知,不等式2ax bx c >+的解集为抛物线的图象在直线图象的上方对应的自变量x 的取值范围.【详解】如图所示: ∵抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()()2411A B -,,,, ∴二次函数图象在一次函数图象上方时,即不等式2ax bx c >+的解集为:2x <-或1x >.故答案为:2x <-或1x >.【点睛】本题主要考查了二次函数与不等式组.解答此题时,利用了图象上的点的坐标特征来解不等式. 14.如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3…A n ,将抛物线y =x 2沿直线L :y =x 向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M 1,M 2,M 3,…M n 都在直线L :y =x 上;②抛物线依次经过点A 1,A 2,A 3…A n ,则顶点M 2020的坐标为_____.【答案】(4039,4039)【分析】根据抛物线的解析式结合整数点的定义,找出点A n 的坐标为(n ,n 2),设点M n 的坐标为(a ,a ),则以点M n 为顶点的抛物线解析式为y=(x-a )2+a ,由点A n 的坐标利用待定系数法,即可求出a 值,将其代入点M n 的坐标即可得出结论.【详解】∵抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…,A n ,…,∴点A n 的坐标为(n ,n 2).设点M n 的坐标为(a ,a ),则以点M n 为顶点的抛物线解析式为y =(x ﹣a )2+a ,∵点A n (n ,n 2)在抛物线y =(x ﹣a )2+a 上,∴n 2=(n ﹣a )2+a ,解得:a =2n ﹣1或a =0(舍去),∴M n 的坐标为(2n ﹣1,2n ﹣1),∴M 2020的坐标为(4039,4039).故答案为:(4039,4039).【点睛】本题考查了二次函数图象与几何变换、一次函数图象上点的坐标特征以及待定系数法求二次函数解析式,根据点A n 的坐标利用待定系数法求出a 值是解题的关键.15.抛物线21y x =-的顶点坐标是______________.【答案】 (0,-1)【分析】抛物线的解析式为:y=ax 2+k ,其顶点坐标是(0,k ),可以确定抛物线的顶点坐标.【详解】抛物线21y x =-的顶点坐标是(0,-1).16.已知25a b =,则2a b a +=___________. 【答案】92【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【详解】解:∵25a b =,设a=2k,b=5k, ∴245922a b k k a k ++== 【点睛】本题考查了比例的性质,属于简单题,设k 法是解题关键.17.如图,在▱ABCD 中,点E 在DC 边上,若12DE EC =,则BF EF的值为_____.【答案】32【分析】由DE 、EC 的比例关系式,可求出EC 、DC 的比例关系;由于平行四边形的对边相等,即可得出EC 、AB 的比例关系,易证得EFC ∽BFA ,可根据相似三角形的对应边成比例求出BF 、EF 的比例关系.【详解】解:12DE EC =,23EC DC ∴=;四边形ABCD 是平行四边形,//AB CD ∴,AB CD =;ABF ∴∽CEF ; BF AB EF EC ∴=; 32AB CD EC EC ==, 32BF EF ∴=. 故答案为:32. 【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定和性质.灵活利用相似三角形性质转化线段比是解题关键.18.分解因式3218m m -=____________.【答案】2(3)(3)m m m -+【分析】先提取公因式,再利用平方差公式即可求解.【详解】3218m m -=22(9)2(3)(3)m m m m m -=-+故答案为:2(3)(3)m m m -+.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.三、解答题(本题包括8个小题)19.如图,要设计一幅宽为20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为504cm 2,彩条的宽应是多少cm .【答案】1cm .【分析】设每个彩条的宽度为xcm ,根据剩余面积为504cm 2,建立方程求出其解即可.【详解】设每个彩条的宽度为xcm ,由题意,得(30﹣2x )(20﹣2x )=504,解得:x 1=24(舍去),x 2=1.答:每个彩条的宽度为1cm .【点睛】本题考查一元二次方程的应用,解题的关键是根据剩余面积=总面积-彩条面积列出方程.20.某公司2017年产值2500万元,2019年产值3025万元(1)求2017年至2019年该公司产值的年平均增长率;(2)由(1)所得结果,预计2020年该公司产值将达多少万元?【答案】(1)这两年产值的平均增长率为10%;(2)预计2020年该公产值将达到3327.5万元.【分析】(1)先设出增长率,再根据2019年的产值列出方程,解方程即可得出答案;(2)根据(1)中求出的增长率乘以2019年的产值,再加上2019年的产值,即可得出答案.【详解】解:设增长率为x ,则2018年()25001x +万元,2019年()225001x +万元. 则()2250013025x +=,解得0.110%x ==,或 2.1x =-(不合题意舍去).答:这两年产值的平均增长率为10%.(2)()3025110%3327.5⨯+=(万元).故由(1)所得结果,预计2020年该公产值将达到3327.5万元.【点睛】本题考查的是一元二次方程的应用——增长率问题,解题关键是根据题意列出方程.21.如图:已知▱ABCD ,过点A 的直线交BC 的延长线于E ,交BD 、CD 于F 、G .(1)若AB =3,BC =4,CE =2,求CG 的长;(2)证明:AF 2=FG×FE .【答案】(1)1;(2)证明见解析【解析】(1)根据平行四边形的性质得到AB ∥CD ,证明△EGC ∽△EAB ,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG ∽△BFA ,△AFD ∽△EFB ,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EGC ∽△EAB , ∴CG EC AB EB =,即2324CG =+, 解得,CG =1;(2)∵AB ∥CD ,∴△DFG ∽△BFA ,∴FG DF FA FB=,∴AD∥CB,∴△AFD∽△EFB,∴AF DF FE FB=,∴FG AFFA FE=,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.22.如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.【答案】(1)见解析;(2)8 833π-【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,证出∠DCO=90°,则CD⊥OC,即可得出结论;(2)证明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出CD=3OC=43,图中阴影部分的面积=△OCD的面积-扇形OBC的面积,代入数据计算即可.【详解】证明:连接OC,如图所示:∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵CA=CD,BC=BD,∴∠A=∠D=∠BCD,又∵OA=OC,∴∠ACO=∠A ,∴∠ACO=∠BCD ,∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,∴CD ⊥OC ,∵OC 是⊙O 的半径,∴CD 与⊙O 相切;(2)解:∵AB=8,∴OC=OB=4,由(1)得:∠A=∠D=∠BCD ,∴∠OBC=∠BCD+∠D=2∠D ,∵∠BOC=2∠A ,∴∠BOC=∠OBC ,∴OC=BC ,∵OB=OC ,∴OB=OC=BC ,∴∠BOC=60°,∵∠OCD=90°,∴∠D=90°-60°=30°,∴∴图中阴影部分的面积=△OCD 的面积-扇形OBC 的面积=122604360 π83π. 【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键.23.2019年鞍山市出现了猪肉价格大幅上涨的情况,经过对我市某猪肉经销商的调查发现,当猪肉售价为60元/千克时,每天可以销售80千克,日销售利润为1600元(不考虑其他因素对利润的影响):售价每上涨1元,则每天少售出2千克;若设猪肉售价为x 元/千克,日销售量为y 千克.(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若物价管理部门规定猪肉价格不高于68元/千克,当售价是多少元/千克时,日销售利润最大,最大利润是多少元.【答案】(1)y =200﹣2x ;(2)售价是68元/千克时,日销售利润最大,最大利润是1元【分析】(1)根据售价每上涨1元,则每天少售出2千克即可列出函数关系式;(2)根据(1)所得关系式,销售利润=每千克的利润×销售量列出二次函数关系式,再求出最值即可.【详解】解:(1)根据题意,得设猪肉进价为a元/千克,(60﹣a)×80=1600,解得a=40,y=80﹣2(x﹣60)=200﹣2x.答:y与x的函数解析式为:y=200﹣2x.(2)设售价为x元时,日销售利润为w元,根据题意,得w=(x﹣40)(200﹣2x)=﹣2x2+280x﹣8000;=﹣2(x﹣70)2+1800∵﹣2<0,当x<70时,w随x的增大而增大,∵物价管理部门规定猪肉价格不高于68元/千克,∴x=68时,w有最大值,最大值为1.答:当售价是68元/千克时,日销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的应用,解决本题的关键是掌握销售问题的数量关系.24.一个不透明的口袋中有1个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,1.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.【答案】(1)12;(2)23【分析】(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的乒乓球球面上的数之和是正数的结果数,然后根据公式求解.【详解】(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率21 42 ==;故答案为12;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率82 123 ==.【点睛】本题考查了列表法与树状图法,解题的关键是掌握列表法与树状图法求公式.25.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.(1)画树状图或列表,写出点P所有可能的坐标;(2)求出点P在以原点为圆心,5为半径的圆上的概率.【答案】(1)列表见解析,P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)1 8【分析】(1)用列表法列举出所有可能出现的情况,注意每一种情况出现的可能性是均等的,(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),由概率公式即可得出答案.【详解】(1)由列表法列举所有可能出现的情况:因此点P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),∴点P在以原点为圆心,5为半径的圆上的概率为21 168.【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,利用这种方法注意每一种情况出现的可能性是均等的.26.如图所示,四边形ABCD中,AD∥BC,∠A=90°,∠BCD<90°,AB=7,AD=2,BC=3,试在边AB 上确定点P的位置,使得以P、C、D为顶点的三角形是直角三角形.【答案】在线段AB上且距离点A为1、6、27处.【分析】分∠DPC=90°,∠PDC=90,∠PDC=90°三种情况讨论,在边AB上确定点P的位置,根据相似三角形的性质求得AP的长,使得以P、A、D为顶点的三角形是直角三角形.【详解】(1)如图,当∠DPC=90°时,∴∠DPA+∠BPC=90°,∵∠A=90°,∴∠DPA+∠PDA=90°,∴∠BPC=∠PDA,∵AD∥BC,∴∠B=180°-∠A=90°,∴∠A=∠B,∴△APD∽△BCP,∴AD AP BP BC=,∵AB=7,BP=AB-AP,AD=2,BC=3,∴273APAP=-,∴AP2﹣7AP+6=0,∴AP=1或AP=6,(2)如图:当∠PDC=90°时,过D点作DE⊥BC于点E,∵AD//BC,∠A=∠B=∠BED=90°,∴四边形ABED是矩形,∴DE=AB=7,AD=BE=2,∵BC=3,∴EC=BC-BE=1,在Rt△DEC中,DC2=EC2+DE2=50,设AP=x,则PB=7﹣x,在Rt△PAD中PD2=AD2+AP2=4+x2,在Rt△PBC中PC2=BC2+PB2=32+(7﹣x)2,在Rt△PDC中PC2=PD2+DC2,即32+(7﹣x)2=50+4+x2,解方程得:27x=.(3)当∠PDC =90°时,∵∠BCD <90°,∴点P 在AB 的延长线上,不合题意;∴点P 的位置有三处,能使以P 、A 、D 为顶点的三角形是直角三角形,分别在线段AB 上且距离点A 为1、6、27处. 【点睛】本题考查了相似三角形的判定与性质及勾股定理,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;解题时要认真审题,选择适宜的判定方法,熟练掌握相似三角形的判定定理并运用分类讨论的思想是解题关键.27.如图,已知AB 是O 的直径,点C 在O 上,过点C 的直线与AB 的延长线交于点P ,,2AC PC COB PCB =∠=∠.()1求证:PC 是的切线; ()2求证:12BC AB =;()3点M 是弧AB 的中点,CM 交AB 于点N ,若8AB =,求MN MC ⋅的值.【答案】(1)详见解析;(2)详见解析;(3)1.【分析】(1)根据圆周角定理,易得∠PCB+∠OCB=90︒,即OC ⊥CP ,故PC 是⊙O 的切线; (2)连接MA ,MB ,由圆周角定理可得∠ACM=∠BCM ,进而可得△MBN ∽△MCB ,故2BM MN MC =⋅;代入数据即可求得答案.【详解】()1OA OC =,CAO ACO ∴∠=∠,又22COB CAO ACO ACO COB PCB ∠=∠+∠=∠∠=∠,,ACO PCB ∴∠=∠,又AB 是O 的直径,90ACO OCB ∴∠+∠=︒,90PCB OCB ∴∠+∠=︒,即OC CP ⊥, OC 是O 的半径,PC ∴是O 的切线;()2AC PC =,CAP P ∴∠=∠,CAP ACO PCB P ∴∠=∠=∠=∠,又,COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠,COB CBO ∴∠=∠,BC OC ∴=, 12BC AB =∴; ()3连接MA MB ,,点M 是AB 的中点,∴AM BM =,ACM BCM ∴∠=∠,ACM ABM ∠=∠,BCM ABM ∠=∠∴,BMN BMC ∠=∠,MBNMCB ∴, BM MN MC BM∴=2∴=⋅,BM MN MC又AB是O的直径,AM BM=,90,∴∠=︒=,AMB AM BMAB=,8BM∴=232∴⋅==.MN MC BM【点睛】此题主要考查圆的切线的判定及圆周角定理的运用和相似三角形的判定和性质的应用,证得2=⋅是解题的关键.BM MN MC九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△OAB与△OCD是以点0为位似中心的位似图形,相似比为1:2,∠OCD=90 ,CO=CD.若B(2,0),则点C的坐标为( )A.(2,2) B.(1,2) C.(2,22)D.(2,1)【答案】A【解析】连接CB.∵∠OCD=90°,CO=CD,∴△OCD是等腰直角三角形,∴∠COB=45°.∵△OAB与△OCD是位似图形,相似比为1:2,∴2OB=OD,△OAB是等腰直角三角形.∵2OB=OD,∴点B为OD的中点,∴BC⊥OD.∵B(2,0),∴OB=2,∵△OAB是等腰直角三角形,∴∠COB=45°.∵BC⊥OD,∴△OBC是等腰直角三角形,∴BC=OB=2,∴点C的坐标为(2,2).故选A.2.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意;B 、既是轴对称图形又是中心对称图形,故本选项符合题意;C 、是轴对称图形,不是中心对称图形,故本选项不合题意;D 、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:B .【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的概念是解决此题的关键.3.在二次函数2y x 2x 1=-++的图像中,若y 随x 的增大而增大,则x 的取值范围是A .x 1<B .x 1>C .x 1<-D .x 1>- 【答案】A【解析】∵二次函数2y x 2x 1=-++的开口向下,∴所以在对称轴的左侧y 随x 的增大而增大.∵二次函数2y x 2x 1=-++的对称轴是b 2x 12a 2(1)=-=-=⨯-, ∴x 1<.故选A .4.已知Rt △ABC 中,∠C=90º,AC=4,BC=6,那么下列各式中,正确的是( )A .sinA=23B .cosA=23C .tanA=23D .tanB=23【答案】D【分析】本题可以利用锐角三角函数的定义以及勾股定理分别求解,再进行判断即可.【详解】∵∠C =90°,BC =6,AC =4,∴AB 2264213+=A、sinA=31313BCAB=,故此选项错误;B、cosA=213ACAB=,故此选项错误;C、tanA=32BCAC=,故此选项错误;D、tanB=AC2BC3=,故此选项正确.故选:D.【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,熟练应用锐角三角函数的定义是解决问题的关键.5.如图,在⊙O中,点A、B、C在圆上,∠AOB=100°,则∠C=()A.45°B.50°C.55°D.60°【答案】B【分析】利用同弧所对的圆周角是圆心角的一半,求得圆周角的度数即可;【详解】解:∵AB AB=,∴∠C=12∠AOB,∵∠AOB=100°,∴∠C=50°;故选:B.【点睛】本题主要考查了圆周角定理,掌握圆周角定理是解题的关键. 6.下列命题正确的是( )A.圆是轴对称图形,任何一条直径都是它的对称轴B.平分弦的直径垂直于弦,并且平分弦所对的弧C .相等的圆心角所对的弧相等,所对的弦相等D .同弧或等弧所对的圆周角相等【答案】D【分析】根据圆的对称性、圆周角定理、垂径定理逐项判断即可.【详解】解:A .圆是轴对称图形,它有无数条对称轴,其对称轴是直径所在的直线或过圆心的直线,此命题不正确;B . 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,此命题不正确;C . 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,此命题不正确;D . 同弧或等弧所对的圆周角相等,此命题正确;故选:D .【点睛】本题考查的知识点是圆的对称性、圆周角定理以及垂径定理,需注意的是对称轴是一条直线并非是线段,而圆的两条直径互相平分但不一定垂直.7.PA ,PB 是O 的两条切线,A ,B 为切点,直线OP 交O 于C ,D 两点,交AB 于点E ,AF 为O 的直径,下列结论中不正确的是()A .AP PB =B .BC BF = C .PE AB ⊥D .ABP AOP ∠=∠【答案】B 【解析】根据切线的性质和切线长定理得到PA=PB ,∠APE=∠BPE ,OA PA ⊥,易证△PAE ≌△PBE ,得到E 为AB 中点,根据垂径定理得PE AB ⊥;通过互余的角的运算可得ABP AOP ∠=∠.【详解】解:∵PA ,PB 是O 的两条切线,∴AP PB =,∠APE=∠BPE ,故A 选项正确,在△PAE 和△PBE 中,PA PB APE BPE PE PE =⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PBE (SAS ),∴AE=BE ,即E 为AB 的中点,∴CD AB ⊥,即PE AB ⊥,故C 选项正确,∴90∠+∠=︒AOP OAE∵A 为切点,∴OA PA ⊥,则90∠+∠=︒PAE OAE ,∴∠PAE=∠AOP ,又∵AP PB =,∴∠PAE=∠ABP ,∴ABP AOP ∠=∠,故D 选项正确,故选B .【点睛】本题主要考查了切线长定理、全等三角形的判定和性质、垂径定理的推论及互余的角的运算,熟练掌握这些知识点的运用是解题的关键.8.⊙O 的半径为4,点P 到圆心O 的距离为d ,如果点P 在圆内,则d ( )A .2d <B .=4dC .4d >D .4d 0≤<【答案】D【解析】根据点与圆的位置关系判断得出即可.【详解】∵点P 在圆内,且⊙O 的半径为4,∴0≤d<4,故选D .【点睛】本题考查了点与圆的位置关系,点与圆的位置关系有3种.设⊙O 的半径为r ,点P 到圆心的距离OP=d ,则有:①点P 在圆外⇔d >r ,②点P 在圆上⇔d=r ,③点P 在圆内⇔d <r .9.将二次函数y =2x 2﹣4x+5的右边进行配方,正确的结果是( )A .y =2(x ﹣1)2﹣3B .y =2(x ﹣2)2﹣3C .y =2(x ﹣1)2+3D .y =2(x ﹣2)2+3 【答案】C【解析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y =2(x 2﹣2x )+5,配方得,y =2(x 2﹣2x+1)+5﹣2,即y =2(x ﹣1)2+1.故选:C .【点睛】 本题考查二次函数的三种形式,一般式:y=ax2+bx +c ,顶点式:y=a(x-h)2+k ;两根式:y= ()12).a x x x x --( 10.如图,在平行四边形ABCD 中,E 为AB 的中点,F 为AD 上一点,EF 交AC 于点G ,2,4,3AF cm DF cm AG cm ===,则AC 的长为( )A .14cmB .15cmC .16cmD .463cm 【答案】B 【分析】延长CB ,FE 交于H ,由AFE BHE ∆≅∆,AFGCHG ∆∆,即可得出答案.【详解】如图所示,延长CB 交FG 与点H∵四边形ABCD 为平行四边形∴BC=AD=DF+AF=6cm ,BC ∥AD∴∠FAE=∠HBE又∵E 是AB 的中点∴AE=BE在△AEF 和△BEH 中 FAE HBE AE BE AEF BEH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEF ≌△BEH(ASA)∴BH=AF=2cm∴CH=8cm∵BC ∥CD∴∠FAG=∠HCG又∠FGA=∠CGH∴△AGF ∽△CGH ∴2184AG AF CG CH === ∴CG=4AG=12cm∴AC=AG+CG=15cm故答案选择B.【点睛】本题考查了全等三角形的判定以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解决本题的关键.11.如图是一根空心方管,它的俯视图是( )A .B .C .D .【答案】B【分析】俯视图是从物体的上面看,所得到的图形:注意看到的用实线表示,看不到的用虚线表示.【详解】如图所示:俯视图应该是故选:B .【点睛】本题考查了作图−三视图,解题的关键是掌握看到的用实线表示,看不到的用虚线表示.12.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A.4.4 B.4 C.3.4 D.2.4 【答案】D【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.二、填空题(本题包括8个小题)13.如图,AE,AD,BC分别切⊙O于点E、D和点F,若AD=8cm,则△ABC的周长为_______cm.【答案】16【解析】∵AE,AD,BC分别切O于点E. D和点F,∴AD=AC,DB=BF,CE=CF,∴AB+BC+AC=AB+BF+CF+AC=AB+BD+CE+AC=AD+AE=2AD=16cm,故答案为:16.14.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:___(写出一个即可),【答案】∠ACP=∠B(或AP AC AC AB=).【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB ,∴当∠ACP=∠B 时,△ACP ∽△ABC ; 当AP AC AC AB =时,△ACP ∽△ABC . 故答案为:∠ACP=∠B (或AP AC AC AB =). 【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.15.方程220x x -=的解是 .【答案】122,0x x ==【解析】解:,122,0x x ==.16.在△ABC 中,若AB =5,BC =13,AD 是BC 边上的高,AD =4,则tanC =_____.【答案】25或14【分析】先根据勾股定理求出BD 的长,再分高AD 在△ABC 内部和外部两种情况画出图形求出CD 的长,然后利用正切的定义求解即可.【详解】解:在直角△ ABD 中,由勾股定理得:BD =2254-=3,若高AD 在△ABC 内部,如图1,则CD =BC ﹣BD =10,∴tanC =42105AD CD ==; 若高AD 在△ABC 外部,如图2,则CD =BC+BD =16,∴tanC =41164AD CD ==. 故答案为:25或14.【点睛】本题考查了勾股定理和锐角三角函数的定义,属于常见题型,正确画出图形、全面分类、熟练掌握基本知识是解答的关键.17.已知三个边长分别为2cm ,3cm ,5cm 的正方形如图排列,则图中阴影部分的面积为_____.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太原市2017~2018学年第一学期九年级期末考试数学试卷考试时间:2018年2月1日 上午8:00—9:30说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应的位置 1.一元二次方程x 2+4x=0的一根为x=0,另一根为A.x=2B.x=-2C.x=4D.x=-4 【答案】D 【解析】()21240400,4x x x x x x +=∴+=∴==-2.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为 A.1 B.-1 C 12 D .-12【答案】B【解析】∵反比例函数2y x =的图象经过点(-2,m)∴212m m =∴=-- 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是【答案】B4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是 A13 B 16 C 19 D 23【答案】A 【解析】共有9种等可能的结果,在一次游戏中两人手势相同有3种情况 ∴在一次游戏中两人手势相同的概率是31935.如图,△ABC 中,点D,E 分别在AB,AC 边上,DE//BC,若AD=2DB,则△ADE 与△ABC 的面积比为 A23 B 49 C 25D 35【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=(23)2=496.下列四个表格表示的变量关系中,变量y 是x 的反比例函数的是【答案】C【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案7.在平面直角坐标系中,将四边形OABC 四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是A 与原四边形关于x 轴对称 B.与原四边形关于原点位似,相似比为1:2 C.与原四边形关于原点中心对称 D.与原四边形关于原点位似,相似比为2:1 【答案】D【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k.8,股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x 满足的方程是A.(1+10%)(1-x)2=1B.(1-10%)(1+x)2=1C.(1-10%)(1+2x)=1D.(1+10%)(1-2x)=1 【答案】A【解析】(1+10%)(1-x)2=1;9.如图是一个几何体的三视图,则该几何体可能是下列的【答案】A【注意】左视图左内右外10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为A.4B.6C.12D.24 【答案】C【解析】∵矩形ABCD ∽矩形A B C D ''''∴9030129023024AB BC a A B B C a =∴=∴=''''++⨯ 二、填空题(本大题含5个小题,每小题2分,共10分)把结果直接填在横线上11.反比例函数3-y x=的图象位于坐标系的第_________________象限 【答案】二、四 【解析】当k>0时,两支曲线分别位于第一、三象限内,在图象所在的每一象限内,Y 随X 的增大而减小; 当k<0时,两支曲线分别位于第二、四象限内,在图象所在的每一象限内,Y 随X 的增大而增大;两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形 ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.【答案】20 (第12题图)【解析】过点A 作AE ⊥BC 于E ,AF ⊥CD 于F ,∵两条纸条宽度相同,∴AE=AF .∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ▱ABCD =BC•AE=CD•AF.AE=AF .∴BC=CD ,∴四边形ABCD 是菱形.∵菱形四边相等∴四边形ABCD 的周长为4AB=2013.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________ 【答案】35-【解析】∵M 为线段AD 的黄金分割点,AM >DM ∴51AM AD -=35DM DA -=同理可得35DN DB -=∠MDN =∠ADB ∴MND ADB ∆∆ ∴MN DMAB DA=即2MN =∴35MN =14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是:在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 【答案】1:4【解析】设红球m 个,白球y 个,根据大量反复试验下频率稳定值即概率可得60300mm n=+ 化简得4m n =∴袋中红、白两种颜色小球的数量比应为m:n=1:4 15.如图,点A,C 分别在反比例函数4-y x= (x<0)与9y x = (x>0)的图象上,若四边形OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________ 【答案】B(0,1366) 【解析】如图,作AD ⊥x 轴,垂足为D ,CE ⊥x 轴,垂足为E. 约定49,,,A m C n m n ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭(m<0,n>0) 由k 字形结论可得AD ODOE CE =即49m m nn--=化简得mn=-6 再根据平行四边形坐标特点相邻之和减相对可得00490B B x m n y m n =+-=⎧⎪⎨=-+-⎪⎩∴1366,6,666B m n y =-===- ∴B(0,1366) 三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程 16.解下列方程:(每题4分,共8分) (1)x 2-8x+1=0;DE解:移项得:x 2-8x=-1 配方得:x 2-8x+42=-1+42 即(x-4)2=15直接开平方得415x -=±∴原方程的根为12415,415x x ==(2)x(x-2)+x-2=0解:提取公因式(x-2)得(x-2)(x+1)=0 ∴原方程的根为122,1x x ==-17.(本题6分)已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证:四边形ADEF 是正方形.【解析】∵矩形ABCD ∴∠D=∠DAB=90°,∵EF ⊥AB ∴∠F=90° ∴四边形ADEF 是矩形 ∵∠D=90°∴ED ⊥DA∵AE 平分∠DAB ,EF ⊥AB ∴ED=EF ∴四边形ADEF 是正方形 18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C 在同一直线上) (1)图1中线段AD 是点A 处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE 分别是点A,B 处的木杆在路灯照射下的影子,其中DE ∥AB,点O 是路灯的俯视图,请在图2中画出表示点C 处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A 的距离为2m,AD=2.4m,OB=1.5m,则点B 处木杆的影子线段BE 的长为___________m【解析】(1)如图1,线段BE,CF 即为所求(太阳光是平行光,考查平行投影)(2)如图2,线段CG 即为所求;(考查点投影) ⑶1.8 ∵DE//AB ∴OA OB OD OE =即2 1.51.822.4 1.5OA OB BE m OA OD OB BE BE=∴=∴=++++19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y 万元,x 个月还清,且y 是x 的反比例函数,其图象如图所示(1)求y 与x 的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?【解析】(1)设y 与x 之间的函数关系式为ky x=(k ≠0). 根据题意,得点(120,0.5)在k y x =的图象上,∴0.5120k=解得k=60∴y 与x 之间的函数关系式为60y x(x>0) (2)90;∵王叔叔每月偿还贷款本金y 万元,x 个月还清∴贷款金额xy=60万元 ∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元) (3)2000元=0.2万元 根据题意,得y=0.2,x=300由图,y ≤2000的图像位于Ⅱ区域即x ≥300 ∴至少需要300个月还清.20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.【解析】转动转盘两次所有可能出现的结果列表如下:由列表可知共有12种结果,每种结果出现的可能性相同ⅡⅠ0.2300小明恰好展示“唱歌”和“演奏”才艺的结果有2种:(1, 4),(4,1)所以小明恰好展示“唱歌”和“演奏”才艺的概率是21=.12621.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?解:设这种商品的涨价x元,根据题意,得(40-30+x)(600-10x)=10000即(10+x)(60-x)=1000 ()()x x++-=+=⨯=106070(205070,20501000)解得x1=10,x2=40∴售价为40+10=50或40+40=80∵售价在40元至60元范围内∴售价应定为50元答:售价应定为50元.22.(本题12分)综合与实践:问题情境:如图1,矩形ABCD中,BD为对角线,AD k=,且k>1.将△ABD以B为旋转中心,按顺时针方向旋AB转,得到△FBE(点D的对应点为点E,点A的对应点为点F),直线EF交直线AD于Array点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF相似,这个三角形是_______,它与△ABF的相似比为______(用含k的式子表示);【答案】(1)△DBE;21:1k+【解析】本题考查子母牵手模型 由旋转性质可得△ABD ≌△FBE ∴BA=BF,BD=BE ,∠ABD=∠FBE ∴,AB BFABF DBE BD BE=∠=∠ ∴△ABF ∽△DBE ∵ADk AB=∴△DBE 与△ABF 相似比为211BD k AB += 数学思考:(2)如图2,当点E 落在DC 边的延长线上时,点F 恰好落在矩形ABCD 的对角线BD 上,此时k 的值为______ 3【解析】由旋转性质可得△ABD ≌△FBE∴BD=BE ,AD=FE ∵ 矩形ABCD ∴AD=BC ∴EF=BC ∵BD FE DE BC =(等面积转换) ∴BD=DE ∴等边三角形BDE∴tan 603AD AB==实践探究(3)如图3,当点E 恰好落在BC 边的延长线上时,求证:CE=FG; 【解析】(首推方法2) 方法1:常规法 设EF 与BD 交于点O由旋转性质可得△ABD ≌△FBE ∴∠ADB=∠FEB,BD=BE,AD=FE,∵四边形ABCD 是矩形,AD//BC,AD=BC ∴∠ADB=∠DBC,∠FEB=∠EGD ∠ADB=∠EGD,∠FEB=∠DBC OD= OG, OE=OBOD+OB=OG+OE,即BD=GEA B∵BD=BE ∴BE= EG∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE 方法2面积法由旋转性质可得△ABD ≌△FBE ∴∠BAD=∠BFE,BA=BF,AD=FE, ∵四边形ABCD 是矩形,AD//BC,AB=DC ∴BDE BGE S S BE DC GE BF ∆∆=∴= ∵BA=BF, AB=DC ∴DC=BF ∴BE=GE∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE (4)当k=43时,在△ABD 绕点B 旋转的过程中,利用图4探究下面的问题 请从A,B 两题中任选一题作答,我选择 A:当AB 的对应边FB 与AB 垂直时,直接写出DGAB的值. 【答案】1733或 【解析】如图B:当AB 的对应边FB 在直线BD 上时,直接写出DG AB的值 【答案】51063或【解析】如图 情况1:4m3mm3m3m3mFDG3mEB425cos 5255236AD FD m ADB GD m BD GD GD mDG AB m ∠==∴=∴=∴==情况2:48cos 105101033AD FD mADB GD m BD GD GD DG m AB m ∠==∴=∴=∴==23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(k ≠0)的图象上(1)判断四边形OBAC 的形状,并证明. 【解析】(1)四边形OBAC 是菱形 证明:过点A 作AE ⊥x 轴于点E∵A(-2,4)∴ OE=2, AE=4 ∵B(-5,0)∴BE= OB- OE= 3 在Rt △ABE 中,由勾股定理得22AE BE +=5∴ AB= BO∵△AOB 沿AO 折叠,点B 的对应点是点C ∴AB= AC, OB= OC ∴AB= OB= AC = OC.4mCG∴四边形OBAC 是菱形 (2)直接写出反比例函数ky x=(k ≠0)的表达式. 【答案】12y x=【解析】20(5)3,4004C A O B C A O B x x x x y y y y =+-=-+--==+-=+-= ∴C (3,4)∵C 恰好落在反比例函数k y x =的图象上∴4123k k =∴=∴12y x = (3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题 请从A,B 两题中任选一题作答,我选择___________ A:若点B 的对应点B’恰好落在反比例函数ky x= (k ≠0)的图象上,求m 的值,并直接写出此时S 的值【解析】连接BB’△OAB 沿y 轴向下平移得到△OA’B', BB’∥y 轴,BB’=m∵B(-5,0)∴点B'的横坐标为-5将x=-5代入12y x=.得y=-2.4 B'(-5,-2,4),BB’=2.4,即m=2.4 B:若S=12OAB S ∆,求m 的值; 【解析】连接AA ′并延长AA’交x 轴于点H,设A'B',A’O′交OB 于点M,N 则AA ′=m,由平移可知∠MAN=∠BAO,AH ⊥OB,A’M∥AB, ∴△A’MN ∽△ABO2122A MN ABO S A H A H S AH AH '''⎛⎫==∴= ⎪⎝⎭∵AH=4, ∴22A H '=∴AA’=AH -A’H=4- 2,即m=4- 22(4)如图3,连接BC,交AO 于点D,点P 是反比例函数ky x= (k ≠0)的图象上的一点, 请从A,B 两题中任选一题作答,我选择____________A:在x 轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由; 【答案】存在,点P 与Q 的坐标如下:P 1(6,2)与Q 1(7,0); P 2(6,-2)与Q 2(-7,0); P 3(-6,-2)与Q 3(-7,0);【解析】由题意D 为AO 中点∵A(-2,4) ∴D (-1,2)设Q (t ,0),P (12,m m) OP 为对角线:()016127002Q O P D Q O P D x x x x t m m t y y y y m ⎧=+-∴=+--=⎧⎪⇒⎨⎨==+-∴=+-⎩⎪⎩∴P 1(6,2)与Q 1(7,0) OD 为对角线:0(1)161270202P O D Q P O D Q x x x x m t tm t y y y y m =+-∴=+--=--⎧=⎧⎪⇒⎨⎨=-=+-∴=+-=⎩⎪⎩∴P 2(6,-2)与Q 2(-7,0); PD 为对角线:(1)06127020Q P D O Q P D O x x x x t m m t y y y y m =+-∴=+--⎧=-⎧⎪⇒⎨⎨=-=+-∴=+-⎩⎪⎩∴P 3(-6,-2)与Q 3(-7,0) B:在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由 【答案】存在,点Q 的坐标如下()()()12344,22664,10,5,(262,64)Q Q Q Q ----【解析】先求P 点坐标,分别过O 、A 作直线交12y x=于 P 1,P 2,P 3,P 4设P 2P 4所在直线为y=kx ,P 2(m ,n )∴n=mk 由A(-2,4)易得tan ∠1=tan ∠2=12则12n k m ==直线12y x =与12y x =联立解得6666x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩∴((2426,6,26,6P P -- 222260262Q A P O x x x x =+-=-+=,2246064Q A P O y y y y =+-==∴()22664Q 同理4(262,64)Q -- 设P 1P 3所在直线为12y x =+b 将A(-2,4)代入可得b=5 152y x =+与12y x =联立解得122,16x x y y =-=⎧⎧⎨⎨=-=⎩⎩∴()()132,6,12,1P P --()112024Q P O A x x x x =+-=+--= 116042Q P O A y y y y =+-=+-= ∴()14,2Q同理()310,5Q --。

相关文档
最新文档