高中物理万有引力与航天解题技巧分析及练习题(含答案)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理万有引力与航天解题技巧分析及练习题(含答案)及解析
一、高中物理精讲专题测试万有引力与航天
1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:
(1)月球的质量M ;
(2)轨道舱绕月飞行的周期T .
【答案】(1)G
gR M 2
=
(2)2r r
T R g
π=【解析】 【分析】
月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】
解:(1)设月球表面上质量为m 1的物体,其在月球表面有:11
2Mm G
m g R = 1
12
Mm G m g R = 月球质量:G
gR M 2
=
(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m
由牛顿运动定律得: 2
2Mm 2πG m r r T ⎛⎫= ⎪⎝⎭
222()Mm G m r
r T π= 解得:2r
r T R g
π=
2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的
Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为
M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离
为r 时,地球与卫星组成的系统的引力势能为p GMm
E r
=-(取无穷远处的引力势能为
零),忽略地球自转和喷气后飞船质量的変化,问:
(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?
(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度
3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引
力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GM
R
【解析】 【分析】
(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;
(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】
(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动
即:2
2mM v G m R R
=
则飞船的动能为2122k GMm
E mv R
=
=; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:
221211()22GMm GMm
mv mv R h R
-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:
22122GM GM
v v R h R
=+
-
+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312
Mm G
mv R =
则探测器离开飞船时的速度(相对于地心)至少是:32GM
v R
=. 【点睛】
本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.
3.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:
(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;
(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H T
π+(2)
()3
22
4R H GT π+(3)
()2R H R H
T
R
π++ 【解析】
(1)“嫦娥一号”绕月飞行时的线速度大小12π()
R H v T
+=. (2)设月球质量为M .“嫦娥一号”的质量为m .
根据牛二定律得222
4π()()R H Mm
G m R H T +=+
解得23
2
4π()R H M GT
+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2
002Mm V G m R
R =又
23
2
4π()R H M GT
+=. 联立得()2πR H R H
V T
R
++=
4.如图所示是一种测量重力加速度g 的装置。
在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上升到最高点,OP 间的距离为h ,已知引力常量为G ,星球的半径为R ;求:
(1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 1。
【答案】(1)22h
g t
= (2)222hR Gt (3)2hR
【解析】(1)由竖直上抛运动规律得:t 上=t 下=t
由自由落体运动规律: 212
h gt = 22h g t
=
(2)在地表附近: 2Mm
G
mg R
= 22
2
2gR hR M G Gt
== (3)由万有引力提供卫星圆周运动向心力得: 212v Mm G m R R
=
12GM
hR
v R t
=
= 点睛:本题借助于竖直上抛求解重力加速度,并利用地球表面的重力与万有引力的关系求星球的质量。
5.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:
(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;
(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T .
【答案】(1)02tan v t α;(2)03tan 2v GRt απ;
;
(4)2【解析】 【分析】 【详解】
(1) 小球落在斜面上,根据平抛运动的规律可得:
2
00
12tan α2gt y gt x v t v ===
解得该星球表面的重力加速度:
02tan α
v g t
=
(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:
2
GMm
mg R
= 则该星球的质量:
G
gR M 2
= 该星球的密度:
33tan α34423
v M g
GR GRt R ρπππ=
=
=
(3)根据万有引力提供向心力得:
22Mm v G m R R
= 该星球的第一宙速度为:
v =
==
(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:
2R
T v
π=
所以:
22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.
6.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已
知该星球的半径为R,且物体只受该星球的引力作用.求:
(1)该星球表面的重力加速度;
(2)从这个星球上发射卫星的第一宇宙速度.
【答案】(1)
2 0 2 v h
(2)
02
v
R
h
【解析】
本题考查竖直上抛运动和星球第一宇宙速度的计算.
(1) 设该星球表面的重力加速度为g′,物体做竖直上抛运动,则2
2
v g h
='
解得,该星球表面的重力加速度
2
2
v
g
h
'=
(2) 卫星贴近星球表面运行,则
2
v
mg m
R
'=
解得:星球上发射卫星的第一宇宙速度
02
R
v g R v
h
==
'
7.如图所示,A是地球的同步卫星.另一卫星 B的圆形轨道位于赤道平面内.已知地球自转角速度为0
ω,地球质量为M ,B离地心距离为r ,万有引力常量为G,O为地球中心,不考虑A和B之间的相互作用.(图中R、h不是已知条件)
(1)求卫星A的运行周期
A
T
(2)求B做圆周运动的周期
B
T
(3)如卫星B绕行方向与地球自转方向相同,某时刻 A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?
【答案】(1)
2
A
T
π
ω
=(2)3
2
B
r
T
GM
=3)
3
t
GM
r
ω
∆=
-
【解析】
【分析】
【详解】
(1)A的周期与地球自转周期相同
2
A
T
π
ω
=
(2)设B 的质量为m , 对B 由牛顿定律
:
2
22()B
GMm m r r T π= 解得: 32B r T GM
π
= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:
03
t GM
r ω∆=
- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.
8.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .
(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )
【答案】(1)()32
2
12'm m m m =+()
332
2
122m v T G
m m π=+(3)有可能是黑洞 【解析】
试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为
0ω,
有:2101A F m r ω=,2
202B F m r ω=,又A B F F =
设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,12
12
m m r r m +=
① 由万有引力定律得12
2
A m m F G
r = 将①代入得()312
2121
A m m F G m m r =+ 令121'
A m m F G r =,比较可得()
3
2212'm m m m =+② (2)由牛顿第二定律有:2
11
211
'm m v G m r r =③ 又可见星的轨道半径12vT r π
=④ 由②③④得
()
3
32
2
122m v T G
m m π=+ (3)将16s m m =代入
()
332
2
122m v T G m m π=+得()3322226s m v T
G
m m π=+⑤ 代入数据得
()
3
2
2
2 3.56s s m m m m =+⑥
设2s m nm =,(n >0)将其代入⑥式得,()
32
2
2
12 3.561s s
m n m m m m n =
=+⎛⎫+ ⎪⎝⎭
⑦
可见,
()
32
2
26s m m m +的值随n 的增大而增大,令n=2时得
2
0.125 3.561s s s
n m m m n =<⎛⎫+ ⎪⎝⎭
⑧
要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.
考点:考查了万有引力定律的应用
【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计
算
9.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .
(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;
b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12
p m m E G
r
=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?
【答案】(1)3M 0c 2
(2)23
02
4r M GT π=;22GM R c '=
【解析】 【分析】 【详解】
(1)合并后的质量亏损
000(2639)623m M M M ∆=+-=
根据爱因斯坦质能方程
2E mc ∆=∆
得合并所释放的能量
203E M c ∆=
(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律
2
0202Mm G m r r T π⎛⎫= ⎪⎝⎭
解得
23
02
4r M GT
π=
b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律
2102Mm mv
G R ⎛⎫+-= ⎪⎝⎭
解得
22GM R v '
=
因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过
2
2GM R c '
=
10.2017年4月20日19时41分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
22日12时23分,天舟一号货运飞船与天宫二号空间实验室顺利完成首次自动交会对接。
中国载人航天工程已经顺利完成“三步走”发展战略的前两步,中国航天空间站预计2022年建成。
建成后的空间站绕地球做匀速圆周运动。
已知地球质量为M ,空间站的质量为m 0,轨道半径为r 0,引力常量为G ,不考虑地球自转的影响。
(1)求空间站线速度v 0的大小;
(2)宇航员相对太空舱静止站立,应用物理规律推导说明宇航员对太空舱的压力大小等于零;
(3)规定距地球无穷远处引力势能为零,质量为m 的物体与地心距离为r 时引力势能为Ep=-
GMm
r。
由于太空中宇宙尘埃的阻力以及地磁场的电磁阻尼作用,长时间在轨无动力运行的空间站轨道半径慢慢减小到r 1(仍可看作匀速圆周运动),为了修正轨道使轨道半径恢复到r 0,需要短时间开动发动机对空间站做功,求发动机至少做多少功。
【答案】(1) 00
GM
v r =;(2)0;(3) 1022GMm GMm W r r =- 【解析】 【详解】
解:(1)空间站在万有引力作用下做匀速圆周运动,则有:
2
000
200
GMm m v r r = 解得:00
GM
v r =
(2)宇航员相对太空舱静止,即随太空舱一起绕地球做匀速圆周运动,轨道半径与速度和太空舱相同,此时宇航员受万有引力和太空舱的支持力,合力提供向心力
设宇航员质量为m ,所受支持力为N F ,则有:2000200
N GMm m v F r r -= 解得:0N F =
根据牛顿第三定律,宇航员对太空舱的压力大小等于太空舱对宇航员的支持力,故宇航员对太空舱的压力大小等于零
(3) 在空间站轨道由1r 修正到0r 的过程中,根据动能定理有:22011122W W mv mv +=
-万 而:10
()GMm GMm W r r =---万 21211
mv GMm r r = 联立上述方程解得:10
22GMm GMm W r r =-。