文科高考数学必背公式(20200616222626)
高中文科数学公式总结大全
高中文科数学公式总结大全1500字数学是一门基础性学科,它的理论体系和方法论在科学研究和生产实践中扮演着重要角色。
在高中阶段,学习数学有助于培养学生的逻辑思维、分析问题和解决问题的能力。
而数学公式则是数学知识的核心,它们能够帮助我们快速理解和解决问题。
以下是高中文科数学公式的总结大全:1. 代数- 求根公式:二次方程:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$三次方程:$x=\\sqrt[3]{-d+\\sqrt{d^2-4e^3}}+\\sqrt[3]{-d-\\sqrt{d^2-4e^3}}$四次方程:$x=\\pm\\frac{1}{2a}(b\\pm\\sqrt{b^2-4ac}+2\\sqrt{\\frac{2b^2-4ac}{b\\pm\\sqrt{b^2-4ac}}})$- 平方差公式:$(a-b)^2=a^2-2ab+b^2$$(a+b)^2=a^2+2ab+b^2$- 平方和公式:$a^2+b^2=(a+b)^2-2ab$$a^2-b^2=(a+b)(a-b)$- 二次函数顶点坐标:对于二次函数$y=ax^2+bx+c$,其顶点坐标为$(-\\frac{b}{2a}, -\\frac{D}{4a})$ 其中,$D=b^2-4ac$2. 几何- 勾股定理:$c^2=a^2+b^2$- 正弦定理:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$- 余弦定理:$a^2=b^2+c^2-2bc\\cos A$$b^2=a^2+c^2-2ac\\cos B$$c^2=a^2+b^2-2ab\\cos C$- 面积公式:三角形面积:$S=\\frac{1}{2}ab\\sin C$四边形面积:$S=\\frac{1}{2}d_1d_2\\sin\\theta$圆的面积:$S=\\pi r^2$3. 概率与统计- 排列组合:排列:$A_n^m=\\frac{n!}{(n-m)!}$组合:$C_n^m=\\frac{A_n^m}{m!}=\\frac{n!}{m!(n-m)!}$ - 排列公式:重复排列:$P_n=n^n$不重复排列:$P_n^n=n!$- 组合公式:重复组合:$C_{n+m-1}^{m}=\\frac{(n+m-1)!}{m!(n-1)!}$ 不重复组合:$C_n^m=\\frac{n!}{m!(n-m)!}$- 概率公式:概率:$P(A)=\\frac{N(A)}{N(S)}$加法原则:$P(A\\cup B)=P(A)+P(B)-P(A\\cap B)$乘法原则:$P(A\\cap B)=P(A)P(B|A)$4. 三角函数- 弧度与角度的转换:弧度制:$\\theta=\\frac{\\pi}{180}\\times\\text{角度}$角度制:$\\text{角度}=\\frac{180}{\\pi}\\times\\theta$- 三角函数的定义:正弦函数:$\\sin\\theta=\\frac{y}{\\text{半径}}$余弦函数:$\\cos\\theta=\\frac{x}{\\text{半径}}$正切函数:$\\tan\\theta=\\frac{y}{x}$反正弦函数:$\\sin^{-1}(\\frac{y}{\\text{半径}})=\\theta$ 反余弦函数:$\\cos^{-1}(\\frac{x}{\\text{半径}})=\\theta$反正切函数:$\\tan^{-1}(\\frac{y}{x})=\\theta$- 三角函数的平方和与差:$\\sin^2\\theta+\\cos^2\\theta=1$$\\sin(\\theta\\pm\\phi)=\\sin\\theta\\cos\\phi\\pm\\cos\\theta\\sin\\phi$$\\cos(\\theta\\pm\\phi)=\\cos\\theta\\cos\\phi\\mp\\sin\\theta\\sin\\phi$5. 矩阵与行列式- 二阶矩阵的行列式:$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}=ad-bc$- 二元一次方程组的解:设$\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}\eq0$,则方程组的解为$x=\\frac{\\begin{vmatrix} e & b \\\\ f & d\\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$,$y=\\frac{\\begin{vmatrix} a & e \\\\ c & f \\end{vmatrix}}{\\begin{vmatrix} a & b \\\\ c & d \\end{vmatrix}}$- 行列式的性质:交换行列式的两行(列):行列式的值不变某行(列)全部乘以常数k:行列式的值乘以k某行(列)的倍加到另一行(列)上去:行列式的值不变以上只是文科数学常见的一些公式总结,各个学校或老师的教学内容可能会有所不同。
(完整版)高中文科数学公式汇总.docx
高中数学公式汇总(文科)一、三角函数、三角变换、解三角形、平面向量 1、同角三角函数的基本关系式2 2 sinsin cos 1,tan = .2、正弦、余弦的诱导公式k的正弦、 余弦,等于 的同名函数, 前面加上把 看成锐角时该函数的符号;k的正弦、余弦,等于 的余名函数,前2面加上把看成锐角时该函数的符号。
3、和角与差角公式sin( ) sin cos cos sin ;cos( ) cos cosmsin sin;tan()tantan.m1 tan tan4 、二倍角公式sin 2sin cos .cos 2cos2sin22cos21 1 2sin2tan22 tan.1 tan2公式变形:2 cos21 cos2 , cos21 cos2 ;2 2sin 21 cos2 , sin 21 cos2;25 、三角函数的周期 函 数y sin( x ) ,x ∈ R 及 函 数ycos( x) , x ∈ R(A, ω , 为常数,且 A ≠ 0,ω > 0) 的 周 期 T 2) , ; 函 数 y tan( x x k, k Z (A, ω, 为常数, 且 A ≠ 0,ω> 0)2的周期 T.6 函数 ysin( x) 的周期、最值、单调区间、图象变换 7、辅助角公式y a sin xb cosxa 2b 2 sin(x )其中 tan ba8、正弦定理a b c2R .sin Asin B sin C9、余弦定理a 2b 2c 2 2bc cos A ;b 2c 2 a 2 2ca cos B ; c 2a2b22ab cosC .10、三角形面积公式S1ab sin C1bc sin A 1ca sin B .2 2211、三角形内角和定理在△ ABC 中,有 A B CC (A B)二、函数、导数1、函数的单调性(1) 设 x 1、 x 2 [ a, b], x 1 x 2 那么f ( x 1 ) f ( x 2 )f ( x)在[ a, b] 上是增函数;f ( x 1 ) f ( x 2 ) 0 f ( x)在[a, b] 上是减函数 . (2) 设函数 y f ( x) 在某个区间内可导,若 f ( x) 0 ,则 f (x) 为增函数;若 f ( x) 0 ,则 f (x) 为减函数 .2 、函数的奇偶性x ,都有 f ( x)f ( x) ,则 f ( x)对于定义域内任意的 是偶函数;对于定义域内任意的 x ,都有 f ( x) f ( x) ,则 f ( x)是奇函数。
高考文科数学公式汇总(精简版)
三、函数、导数
18、函数的单调性
(1) 设 x1、 x2 [ a,b ], x1 x2 那么 f ( x1) f (x2 ) 0 f ( x)在[ a,b] 上是增函数; f ( x1) f (x2 ) 0 f ( x)在[a, b] 上是减函数 .
(2) 设函数 y f ( x) 在某个区间内可导, 若 f ( x)
1 x
( 1) (u
v)'
u'
v'. ( 2) (uv) '
u 'v uv' . ( 3) ( u ) ' v
u 'v uv' v2 (v
0) .
23、会用导数求单调区间、极值、最值
24、求函数 y f x 的极值的方法是:解方程 f x 0 .当 f x0 0 时:
(1) 如果在 x0 附近的左侧 f x 0 , 右侧 f x 0 , 那么 f x0 是极大值;
奇函数的图象关于原点对称, 偶函数的图象关于 y 轴对称。
20、函数 y f (x) 在点 x0 处的导数的几何意义 函数 y f ( x) 在点 x0 处的导数是曲线 y f ( x) 在 P (x0, f (x0)) 处的切线的斜率 程是 y y0 f ( x0 )( x x0 ) .
f (x0 ) , 相应的切线方
21、几种常见函数的导数
第3页(共 7页)
① C ' 0 ;② ( x n ) ' nx n 1 ;
③ (sin x)' cos x ;④ (cos x) '
sin x ;
⑤ ( a x ) ' a x ln a ;⑥ (e x ) ' e x ;
高中文科数学公式
高中文科数学公式
以下是一些常见的高中文科数学公式:
1.一次函数的方程:y = kx + b,其中 k 为斜率,b 为截距。
2.二次函数的方程:y = ax^2 + bx + c,其中 a、b、c 为常数。
3.立方函数的方程:y = ax^3 + bx^2 + cx + d,其中 a、
b、c、d 为常数。
4.指数函数的方程:y = a^x,其中 a 为底数。
5.对数函数的方程:y = loga(x),其中 a 为底数。
6.三角函数的方程:sin(x)、cos(x)、tan(x)、csc(x)、
sec(x)、cot(x)等。
7.平面几何中的勾股定理:a^2 + b^2 = c^2,其中 a、b、
c 分别为直角三角形的两个直角边和斜边的长度。
8.平面几何中的正弦定理:a/sinA = b/sinB = c/sinC,其中 a、b、c 为三角形的边长,A、B、C为对应的角度。
9.平面几何中的余弦定理:c^2 = a^2 + b^2 - 2abcosC,其中 a、b、c 为三角形的边长,C为夹角。
10.概率计算中的排列公式:P(n, r) = n!/(n-r)!,其中 n 为总数,r 为选取的数目。
以上是一些常见的高中文科数学公式,希望能够帮到你。
文科高考数学必背公式
文科高考数学必背公式在文科高考中,数学是一个重要的科目。
虽然数学不是文科生的强项,但是通过对一些必背公式的掌握,可以在考试中取得更好的成绩。
以下是文科高考数学必背公式。
1. 一次函数的表达式:y = kx + b。
其中,k为斜率,b为截距。
2. 二次函数的标准形式:y = ax² + bx + c。
其中,a、b、c为常数,且a≠0。
3. 二次函数的顶点坐标:顶点的横坐标为x = -b/2a,纵坐标为y = -Δ/4a。
其中,Δ为判别式,Δ = b² - 4ac。
4.一元二次方程的解:解为x=(-b±√Δ)/2a。
5.二次函数的对称轴方程:x=-b/2a。
6. 三角函数的定义:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边。
7. 三角函数的正负关系:sinθ、tanθ在0~π范围内非负,cosθ在π/2时为0,在0~π/2范围内非负,在π/2~π范围内非正。
8. 三角函数的周期性:sin(θ ± 2πn) = sinθ,cos(θ ± 2πn) = cosθ,tan(θ ± πn) = tanθ。
其中,n为整数。
9. 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB。
10. 三角函数的倍角公式:sin2θ = 2sinθcosθ,cos2θ =cos²θ - sin²θ,tan2θ = (2tanθ) / (1 - tan²θ)。
11.平面几何中的相似三角形:对应角相等,对应边成比例。
12.平行线的性质:同位角互等、内错角互补、同旁内角互补。
13. 同余式的性质:如果a≡b (mod m),则a±c≡b±c (mo d m),ac≡bc (mod m)。
文科高考数学必背公式
文科高考数学必背公式 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】文科高考数学必背公式高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高三文科数学公式大全
高三文科数学公式大全数学公式是人类长期生产劳动的经验总结,包含着历代数学家辛勤汗水和智慧,它揭示了数学知识的基本规律,是学生数学认知发展的重要载体。
学习数学,前提就是对公式和定理有着正确透彻的理解。
牢固掌握并灵活运用公式定理是提高数学能力的关键。
以下是店铺为大家精心准备的:高三文科数学公式大全。
欢迎参考阅读!高三文科数学公式大全如下:一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb) tan(a-b)=(tana-tanb)/(1+tana*tanb)。
高考文科数学必记公式 背会这些文科数学不用愁
高考文科数学必记公式背会这些文科数学不用愁高考文科数学必记公式背会这些文科数学不用愁高考数学在文科和理科上面有不同的题目,同时文科数学的难度一般都是低于理科数学的。
不过在题目知识点的考核上大致都是相同的。
对于文科生来说,高考数学有哪些必备的公式呢?背会以下公式高考文科数学就成功一大半了。
高考文科数学必记公式一正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a =b +c -2bc*cosA;sin(A+B)=sinCsin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB+sinBcosAsin2A=2sinAcosAcos2A=2(cosA) -1=(cosA) -(sinA) =1-2(sinA)tan2A=2tanA/[1-(tanA) ] (sinA) +(cosA) =1高考文科数学必记公式二(1)设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)(2)设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα(3)任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα高考文科数学必记公式三倒数关系:tanα cotα=1sinα cscα=1cosα secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin (α)+cos (α)=11+tan (α)=sec (α)1+cot (α)=csc (α)以上就是为各位总结的一些高考文科数学必记的一些公式,当然这些公式都是相对基础的,但是在高考文科数学答题的过程中则会被应用的非常广泛。
文科高考数学必背公式
文科高考数学必背公式 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN文科高考数学必背公式高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高考文科数学必背公式有哪些
高考文科数学必背公式有哪些高考文科数学必背公式有哪些高考数学不光需要多做题,还要掌握一些必背的公式,但数学所学的公式那么多,考生应该背哪些呢?下面是整理的高考数学必备公式,希望对考生有一定的帮助。
高考数学必背公式---三角函数1.两角和与差的三角函数公式:sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)2.二倍角公式:二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosαcos2α=cos (α)-sin (α)=2cos (α)-1=1-2sin (α)tan2α=2tanα/[1-tan (α)]3.半角公式:半角的正弦、余弦和正切公式(降幂扩角公式)sin (α/2)=(1-cosα)/2cos (α/2)=(1+cosα)/2tan (α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)4.万能公式:sinα=2tan(α/2)/[1+tan (α/2)]cosα=[1-tan (α/2)]/[1+tan (α/2)]tanα=2tan(α/2)/[1-tan (α/2)]高考数学必背公式---圆锥曲线1.一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac04.抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py5.直棱柱侧面积 S=c*h 斜棱柱侧面积S=c’*h6.正棱锥侧面积S=1/2c*h’ 正棱台侧面积S=1/2(c+c’)h’7.圆台侧面积S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi*r28.圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l9.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r10.锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h11.斜棱柱体积V=S’L 注:其中,S’是直截面面积, L是侧棱长12.柱体体积公式 V=s*h 圆柱体 V=pi*r2h高考数学必背公式---数列(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
文科高考数学必背公式
;文科高考数学必背公式高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)`tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα"公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:"sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosα:tan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα}sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα[sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
文科高考数学必背公式
文科高考数学必背公式公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-文科高考数学必背公式高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
文科高考数学必背公式
文科高考数学必背公式(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除文科高考数学必背公式高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
文科高考数学必背公式
文科高考数学必背公式Revised on November 25, 2020文科高考数学必背公式高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科高考数学必背公式高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角, 终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角, π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时, 将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时, 得到α的同名函数值, 即函数名不改变;②当k是奇数时, 得到α相应的余函数值, 即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α), k=4为偶数, 所以取sinα。
当α是锐角时, 2π-α∈(270°, 360°),sin(2π-α)<0, 符号为“-”。
所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变, 符号看象限。
公式右边的符号为把α视为锐角时, 角k·360°+α(k ∈Z), -α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。
#各种三角函数在四个象限的符号如何判断, 也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”, 其余全部是“-”;第三象限内切函数是“+”, 弦函数是“-”;第四象限内只有余弦是“+”, 其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦#还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦 ...........+............+............—............—........余弦 ...........+............—............—............+........正切 ...........+............—............+............—........余切 ...........+............—............+............—........同角三角函数基本关系同角三角函数的基本关系式倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。
由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中, 上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α), 可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α), 得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆★另外的记忆方法:正弦三倍角: 山无司令(谐音为三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方余弦三倍角: 司令无山与上同理和差化积公式三角函数的和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差公式三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)★记忆方法:谐音、联想正弦三倍角:3元减4元3角(欠债了(被减成负数), 所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减3元(减完之后还有“余”)☆☆注意函数名, 即正弦的三倍角都用正弦表示, 余弦的三倍角都用余弦表示。