高中数学公式大全及总结

合集下载

高中数学常用公式及常用结论-大全

高中数学常用公式及常用结论-大全

高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x NM f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a m x f b m x ⇔+=-()()f a b m x f m x ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(2)当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上l o g ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=. 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b= a ·(λb ); (3)(a +b )·c= a ·c +b ·c . 59.平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a=11(,)x y ,b=22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b=|a ||b|cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 62.平面向量的坐标运算(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a=(,),x y R λ∈,则λa=(,)x y λλ.(5)设a=11(,)x y ,b=22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式cos θ=(a =11(,)x y ,b=22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a=11(,)x y ,b=22(,)x y ,且b ≠0,则 A||b ⇔b=λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+. (3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m=(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m=(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式:22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)绝对值不等式:b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程. ②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b -=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02pCF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212|||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔//AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.//AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p a b x y =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++ .121.射影公式 已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量) 128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅= (m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式dd =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=. (平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤). 注:规定1!0=.152.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n n n n n nA A A ++=-; (5)11m m m n n nA A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)n n n r n n n n C C C C C 2210=++++++ .(7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m mn nA m C =⋅! . 157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n nnn p n p n n n m p m C C C N mm=⋅⋅=-. (4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =. (7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.159.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- . 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为。

高中数学常用公式及知识点总结

高中数学常用公式及知识点总结

高中数学常用公式及知识点总结高中数学是一门重要的学科,也是一门需要深入理解和记忆大量公式和知识点的科目。

下面将对高中数学常用的公式和知识点进行总结,方便同学们复习和记忆。

一、代数知识点和常用公式1. 平方差公式:(a+b)(a-b)=a²-b²2. 二次方程求根公式:对于ax²+bx+c=0,若Δ=b²-4ac>0,则方程有两个不相等实根;若Δ=0,则方程有一个重根;若Δ<0,则方程无实根。

3. 高中数学中常见的一元二次方程:ax²+bx+c=0,其中a≠0。

4. 因式分解公式:a²-b²=(a+b)(a-b)5. 一次函数方程 y=ax+b,其中a为斜率,b为截距。

6. 二次函数方程 y=ax²+bx+c,其中a为抛物线开口方向和形状,b为对称轴方向上的平移,c为抛物线的位置偏移量。

7. 幂函数方程y=axⁿ,其中a为比例系数,n为指数。

8. 对数函数方程y=logₐx,其中a为底数,x为真数,y为对数。

二、几何知识点和常用公式1. 直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

即a²+b²=c²(a,b为两边,c为斜边)。

2. 等腰三角形的两底角相等,两腰相等。

3. 正弦定理:对于任意三角形ABC,设边长为a、b、c,角A、B、C的对边分别为a、b、c,则有sinA/a=sinB/b=sinC/c。

4. 余弦定理:对任意三角形ABC,设边长为a、b、c,角A、B、C的对边分别为a、b、c,则有c²=a²+b²-2abcosC。

5. 计算圆的面积公式:πr²,其中r为圆的半径。

6. 计算圆的周长公式:2πr,其中r为圆的半径。

7. 计算椭圆的面积公式:πab,其中a、b为椭圆的半长轴和半短轴。

8. 计算长方体的体积公式:V=lwh,其中l、w、h为长方体的长、宽、高。

高中数学必考公式全总结(超详细)

高中数学必考公式全总结(超详细)

高中数学必考公式全总结(超详细)高中数学必考公式全总结(超详细)1. 代数基础- 求根公式:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 平方差公式:$(a+b)^2=a^2+2ab+b^2, (a-b)^2=a^2-2ab+b^2$- 完全平方公式:$a^2-b^2=(a+b)(a-b), a^3-b^3=(a-b)(a^{n-1}+...+b^{n-1})$ 二次函数相关 - 标准形式:$y=ax²+bx+c(a≠0)$- 顶点坐标: $(-\frac{b}{(2a)},-\frac{\Delta}{4a})$- 对称轴: $x=-\dfrac b {2a}$- 判别式:$ \Delta=b²-4ac $当$\Delta>0$,有两个实根;当$\Delta=0$,有一个重根;当$\Delta<0$,无实根。

三角函数相关正弦定理:$\dfrac{sinA}{AB}=\dfrac{sinB}{BC}=\dfrac{sinC}{AC}=k(k为常数)$余弦定理:$cosA=\dfrac {b²+c²-a²} {2bc}, cosB=…, cosC=…$正切定义:tan A = $\dfrac {\textup{o}} {\textup{邻}},tan B = …,tan C = …$ 导数与微分导数定义:$\lim_{h→0}\dfrac{(f(x+h)-f(x))}{h}$ 或者$f'(x)=lim_{Δx→0}\dfrac{\vartriangle y }{\vartriangle x}(或\dif f(x))$常见导函数:$(e^{ax})'=ae^{ax},(\ln x)'=\dfrac1{x},(log_ax)'=\dfrac1{xln a},(sin x)'=cos x,(cos x)'=-sin x,(tan x)'=sec ^ 2x,(cotan x)′=-csc ^2x,$等。

高中数学所有公式大总结

高中数学所有公式大总结

高中数学所有公式大总结高中数学涉及的公式很多,不同的章节和知识点都有对应的公式,掌握这些公式是解题的基础。

下面将对高中数学中常用的各个章节的公式进行总结。

1. 代数基本公式:- 二次方程的根公式:对于二次方程ax^2+bx+c=0,根的公式为x=(-b±√(b^2-4ac))/(2a)。

- 一次方程求解公式:对于一次方程ax+b=0,解为x=-b/a。

- 直线的斜率公式:对于直线y=kx+b,其斜率为k。

- 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

- 等比数列通项公式:对于等比数列an=a1*r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。

2. 平面几何公式:- 长方形面积公式:面积为长乘以宽,即A=lw。

- 正方形面积公式:面积为边长的平方,即A=s^2。

- 三角形面积公式:面积为底乘以高的一半,即A=1/2bh。

- 三角形海伦公式:对于已知三角形三边长a、b、c,其面积可以由海伦公式计算:A=√(s(s-a)(s-b)(s-c)),其中s为半周长(s=(a+b+c)/2)。

- 直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。

3. 解析几何公式:- 两点之间的距离公式:对于平面上两点的坐标分别为(x1, y1)和(x2, y2),两点之间的距离为d=√((x2-x1)^2+(y2-y1)^2)。

- 点到直线的距离公式:对于直线Ax+By+C=0和平面上的点P(x0, y0),点P 到直线的距离为d=|Ax0+By0+C|/√(A^2+B^2)。

- 两直线夹角的余弦公式:对于直线y=k1x+b1和直线y=k2x+b2,两直线夹角的余弦为cosθ=(k1k2+1)/√((k1^2+1)(k2^2+1))。

4. 概率与统计公式:- 事件的概率公式:对于事件A,其概率表示为P(A)。

高中数学必考公式全总结

高中数学必考公式全总结

高中数学必考公式全总结高中数学中有很多公式需要掌握,以下是一些必考的公式总结:1.二次函数相关公式:- 一般式:y = ax^2 + bx + c-顶点式:y=a(x-h)^2+k- 根的公式:x = (-b ± √(b^2 - 4ac)) / 2a- 判别式:Δ = b^2 - 4ac-顶点坐标:(h,k)-对称轴方程:x=-b/(2a)2.三角函数相关公式:- 正弦定理:a / sin(A) = b / sin(B) = c / sin(C)- 余弦定理:c^2 = a^2 + b^2 - 2abcos(C)- 正切定理:tan(A) = b / a- 余切定理:cot(A) = a / b- 二倍角公式:sin(2A) = 2sin(A)cos(A), cos(2A) = cos^2(A) - sin^2(A)3.平面几何相关公式:-面积公式:-三角形:S=(1/2)*底边*高-任意多边形:S=(1/2)*外接圆半径*周长-图形周长公式:-矩形:P=2(a+b)-圆:C=2πr-圆相关公式:-面积:S=πr^2-弧长:L=2πr*(θ/360°)-扇形面积:A=(πr^2*θ)/360°4.概率与统计相关公式:-排列组合公式:-排列数:A(n,m)=n!/(n-m)!-组合数:C(n,m)=n!/(m!*(n-m)!)-期望:E(x)=∑(x*p(x)),其中x为随机变量,p(x)为其概率- 方差:Var(x) = ∑((x - E(x))^2 * p(x))5.线性代数相关公式:-行列式:- 2阶:det(A) = ad - bc- 3阶:det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) -n阶:通过拉普拉斯展开等方法计算-矩阵乘法:若A为m×n矩阵,B为n×p矩阵,则AB为m×p矩阵-基础矩阵求逆:若A为可逆矩阵,则A的逆矩阵为A^-1,满足AA^-1=A^-1A=I(单位矩阵)以上只是一部分高中数学中的必考公式,还有许多其他重要的公式需要掌握。

高中数学所有公式大总结

高中数学所有公式大总结

高中数学所有公式大总结高中数学是一门重要的学科,其中涉及了许多公式和定理。

这些公式和定理帮助学生解决各种数学问题,以及在日常生活中应用数学知识的能力。

一、代数公式:1. 一元二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,其求根公式为 x = (-b ±√(b^2 - 4ac)) / (2a)。

2. 因式分解公式:将一个多项式进行因式分解,以简化计算或解决方程的过程。

3. 比例与相似性公式:包括比例的定义、比例的性质以及相似三角形的性质和判定方法。

4. 二项式定理:展开一个二项式的幂,即(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,n) * a^0 * b^n。

二、几何公式:1. 直角三角形的勾股定理:对于直角三角形,满足a^2 + b^2 = c^2,其中a和b是直角边,c是斜边。

2. 三角函数的基本关系:包括正弦定理、余弦定理和正切定理,用于解决三角形的边长和角度之间的关系。

3. 圆的面积和周长公式:圆的面积公式为A = πr^2,圆的周长公式为C = 2πr,其中r是圆的半径。

4. 三角形的面积公式:三角形的面积公式为A = 1/2 * b * h,其中b是底边长,h是对应的高。

三、微积分与导数:1. 导数的定义与性质:导数表示函数在某一点的变化率,可以用于求函数的极值、曲线的切线等问题。

2. 基本导数公式:例如常数函数的导数为0,幂函数的导数为n * x^(n-1),指数函数的导数为e^x。

3. 导数的四则运算法则:包括求和、差、乘积和商的导数法则,用于求复合函数的导数。

四、概率与统计公式:1. 排列组合公式:包括排列数公式P(n,r) = n! / (n-r)!和组合数公式C(n,r) = n! / (r! * (n-r)!),用于计算事件的可能性。

2. 期望与方差公式:期望表示随机变量的平均值,方差表示随机变量的离散程度,用于描述随机事件的分布情况。

高中数学公式知识归纳总结

高中数学公式知识归纳总结

高中数学公式知识归纳总结在高中数学学习过程中,我们不可避免地会接触到各种各样的数学公式。

这些公式在解决数学问题时起着重要的作用,掌握它们对我们的学习和考试至关重要。

本文将对高中数学常见的公式进行归纳总结,以便日后复习和应用。

一、代数公式1. 平方差公式对于任意实数a、b,有:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这个公式在解决平方和、平方差问题时经常用到。

利用平方差公式,我们可以方便地计算方程的展开式。

2. 二次根式公式(√a ±√b)² = a ± 2√ab + b(a ± b)(a ∓ b) = a² - b²这个公式在二次根式的加减、乘除中非常常见。

掌握这些公式可以简化计算过程,提高解题效率。

3. 比例公式设a/b = c/d,且b ≠ 0,则称a、b、c、d满足比例公式。

利用比例公式,我们可以求解未知量或者构建等式,解决实际问题。

4. 勾股定理对于直角三角形,设两直角边长分别为a、b,斜边长为c,则有:a² + b² = c²这是直角三角形中最基本的定理,广泛应用于解决与直角三角形相关的问题。

5. 三角函数公式正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a² = b² + c² - 2bc*cosA正切定理:tanA = sinA/cosA这些公式是解决三角函数和三角关系问题的重要工具,对于理解三角学的概念和计算角度、边长等具有重要意义。

二、几何公式1. 等腰三角形的高设等腰三角形边长为a,底边长为b,则高h满足:h = √(a² - (b/2)²)2. 圆的周长和面积设圆的半径为r,则圆的周长C和面积S分别为:C = 2πrS = πr²这些公式是求解圆的周长和面积时经常用到的基本公式。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全一、代数1.一次函数及相关知识一次函数的一般式方程为y=kx+b,其中k为斜率,b为截距。

与x轴交点:x=-b/k与y轴交点:y=b斜率的计算: k=(y2-y1)/(x2-x1)2.二次函数及相关知识二次函数的一般式方程为y=ax^2+bx+c,其中a≠0。

二次函数的顶点坐标为:(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

二次函数的判别式为Δ=b^2-4ac,当Δ>0时,二次函数有两个实数解;当Δ=0时,二次函数有一个重复实数根;当Δ<0时,二次函数无实数解。

3.指数函数及对数函数指数函数的一般式方程为y=a^x,其中a>0且a≠1。

对数函数的一般式方程为y=logax,其中a>0且a≠1。

对数函数的性质:loga1=0,loga(a^x)=x,a^(logax)=x4.幂函数幂函数的一般式方程为y=x^a,其中a为常数。

5.绝对值函数绝对值函数的一般式方程为y=|x|。

6.组合函数组合函数即将一个函数的输出值作为另一个函数的输入值得到的新函数。

例如,若f(x)和g(x)均为函数,则(f∘g)(x)=f(g(x))。

7.多项式及相关知识n次多项式的一般式为:y=a_nx^n+a_(n-1)x^(n-1)+...+a1x+a0多项式的除法:对于多项式f(x)÷g(x),若g(x)≠0,则商多项式为q(x)、余式为r(x)且f(x)=g(x)q(x)+r(x)多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd8.解方程二元一次方程组求解:通过消元法、代入法、加减消去法等方法求解一元二次方程求解:可以通过配方法、公式法、因式分解等方法求解复杂方程求解:可以通过讨论函数单调性、先化为一次函数或二次函数等方法求解9.不等式一元一次不等式的解法:利用加减法、乘除法、绝对值法等方法求解一元二次不等式的解法:先将不等式化为标准形式,然后通过讨论函数的单调性、绘制函数图像、代数法等方法求解10.排列与组合排列:当n个人中取m个人,且彼此不考顺序,则排列数用P(m,n)表示,其计算公式为:P(m,n)=n!/(n-m)!组合:当n个人中取m个人,彼此不考顺序,则组合数用C(m,n)表示,其计算公式为:C(m,n)=n!/(m!(n-m)!)11.数列与数学归纳法数列的概念:数列是按一定顺序排列的一组数。

高中数学必考公式全总结!

高中数学必考公式全总结!

高中数学必考公式全总结!高中数学是高中阶段最为重要的一门学科之一,掌握好数学的基本知识和公式是非常重要的。

下面是高中数学必考的一些常用公式的全面总结:1.同底数幂相乘:a^m*a^n=a^(m+n)2.同底数幂相除:a^m/a^n=a^(m-n)3. 幂的乘法公式:(a^m)^n = a^(mn)4.幂的除法公式:(a/b)^m=a^m/b^m5. 乘法公式:(a + b)(c + d) = ac + ad + bc + bd6. 二次根式乘积:√a * √b = √(ab)7.二次根式商:√a/√b=√(a/b)8. 二次根式的积:√(ab) = √a * √b9.二次根式的商:√(a/b)=√a/√b10.平方差公式:(a+b)(a-b)=a^2-b^211. 三角函数的平方和公式:sin^2θ + cos^2θ = 112. 三角函数的平方差公式:sin^2θ - cos^2θ = sin2θ13. 三角函数的和差公式:sin(α ± β) = sinαcosβ ±cosαsinβ14. 三角函数的积化和差公式:cosαcosβ = 1/2[cos(α +β) + cos(α - β)]15. 三角函数的积化和差公式:sinαsinβ = 1/2[cos(α - β) - cos(α + β)]此外,还有一些高中数学中需要掌握的重要公式:16. 三角函数的倒数关系:sinθ = 1/cscθ,cosθ = 1/secθ,tanθ = 1/cotθ17. 三角函数的商化积公式:tanθ = sinθ/cosθ,cotθ =cosθ/sinθ18.弧度与角度转换公式:弧度=(π/180)×角度,角度=(180/π)×弧度19. 二次方程求根公式:对于ax² + bx + c = 0,其中a≠0,则有x = (-b ± √(b² - 4ac)) / (2a)20.弧长公式:s=rθ21.扇形面积公式:A=(θ/360°)×πr²22.圆柱体体积公式:V=πr²h23.球体积公式:V=(4/3)πr³24.圆锥体体积公式:V=(1/3)πr²h25.向量的模长公式:∥a∥=√(a₁²+a₂²+a₃²)。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1. 代数1.1 代数运算1.1.1 加法运算•加法运算法则:如果a、b是实数,则a + b = b + a1.1.2 减法运算•减法运算法则:如果a、b是实数,则a - b ≠ b - a1.1.3 乘法运算•乘法运算法则:如果a、b是实数,则a * b = b * a1.1.4 除法运算•除法运算法则:如果a、b是实数且b≠0,则a / b ≠ b / a1.2 一元二次方程1.2.1 一元二次方程的定义•一元二次方程的标准形式为:ax^2 + bx + c = 0,其中a、b、c是已知实数,且a≠0。

1.2.2 一元二次方程求解公式•一元二次方程的求解公式为:x = (-b ± √(b^2 - 4ac)) / 2a1.3 等差数列1.3.1 等差数列的定义•等差数列是指一个数列中,从第二项起,每一项与它的前一项的差都相等。

1.3.2 等差数列的通项公式•等差数列的通项公式为:an = a1 + (n - 1)d,其中a1是首项,d是公差,n是项数。

1.4 等比数列1.4.1 等比数列的定义•等比数列是指一个数列中,从第二项起,每一项与它的前一项的比都相等。

1.4.2 等比数列的通项公式•等比数列的通项公式为:an = a1 * r^(n - 1),其中a1是首项,r是公比,n是项数。

2. 几何2.1 平面几何2.1.1 直线与平面的位置关系•平面与直线的位置关系有三种情况:平面与直线相交、平面与直线平行、平面与直线重合。

2.1.2 平行线的性质•平行线的性质包括:平行线不相交、平行线上的任意两点到另一平行线的距离相等、平行线的斜率相等。

2.2 空间几何2.2.1 点、直线、平面的位置关系•点、直线、平面的位置关系有三种情况:点在直线上、点在平面上、直线与平面的位置关系。

2.2.2 空间几何中的立体图形•空间几何中的立体图形包括:球体、立方体、圆锥、圆柱、棱柱等。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。

(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。

(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。

(4)根与系数的关系:x1+x2=-b/ax1*x2=c/a,注:韦达定理。

(5)判别式1)b2-4a=0,注:方程有相等的两实根。

2)b2-4ac\u003e0,注:方程有一个实根。

3)b2-4ac\u003c0,注:方程有共轭复数根。

2、三角函数公式(1)两角和公式sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa;cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb+sinasinb;tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb);ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。

(2)倍角公式tan2a=2tana/(1-tan2a);ctg2a=(ctg2a-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

(3)半角公式sin(a/2)=√((1-cosa)/2);sin(a/2)=-√((1-cosa)/2);cos(a/2)=√((1+cosa)/2);cos(a/2)=-√((1+cosa)/2);tan(a/2)=√((1-cosa)/((1+cosa));tan(a/2)=-√((1-cosa)/((1+cosa));ctg(a/2)=√((1+cosa)/((1-cosa));ctg(a/2)=-√((1+cosa)/((1-cosa))。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

两角和公式1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/ 2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb等差数列1、等差数列的通项公式为:an=a1+(n-1)d (1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2 k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1*q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq 等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.抛物线1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。

高中数学公式大全总结

高中数学公式大全总结

高中数学公式大全总结高中数学公式大全总结如下:1. 基本公式:- 指数函数:f(x) = a^x,其中 a 为正数。

- 对数函数:f(x) = log_a(x),其中 a 为非零正数。

- 三角函数:- 正弦函数:f(x) = sin(x),其中 x 为角度。

- 余弦函数:f(x) = cos(x),其中 x 为角度。

- 正切函数:f(x) = tan(x),其中 x 为角度。

- 割函数:f(x) = csc(x),其中 x 为角度。

- 半角函数:f(x) = sin(x)/cos(x),其中 x 为半角。

- 函数图像:- 指数函数:形如 f(x) = a^x 的图像通常呈现出指数型增长。

- 对数函数:形如 f(x) = log_a(x) 的图像通常呈现出对数型增长。

- 三角函数:三角函数的图像通常呈现出周期性的变化。

- 不等式:- a + b > c 当且仅当 a > c 且 b > c。

- 对于任意实数 a、b、c,总有 a + b + c = 3a + 2b + c。

- 对于任意整数 a、b,总有 a + b = b + a。

2. 微积分:- 导数:- 导数的定义:f"(x) = lim(Δx->0) [f(x + Δx) - f(x)] / Δx。

- 导数的四则运算法则:- 链式法则:f"(x) = g"(h) + g"(x) * f"(h)。

- 乘积法则:f"(x) * g"(x) = f(x) * g"(x) + f"(x) * g(x)。

- 加积法则:f"(x) + g"(x) = f(x) + g(x)。

- 偏导数的定义:对于任意函数 f(x),总有 f"(x) = lim(Δx->0) [f(x + Δx) - f(x)] / Δx。

高中数学公式总结大全

高中数学公式总结大全

高中数学公式总结大全高中数学是一个基础而重要的学科,其中包含了众多的公式和定理。

下面是我为您总结的高中数学公式大全(只列出了常用和重要的公式,因篇幅限制可能无法完全涵盖全部公式):-----------------一、代数运算1. 二次根式的乘除公式:(a√b) ×(c√b)= ac√b, (a√b)÷(c√b)= a÷c√b2. 幂的乘除公式:a^n × a^m = a^(n+m), a^n ÷ a^m = a^(n-m)3. 平方差公式:(a-b)² = a² - 2ab + b²4. 平方和公式:(a+b)² = a² + 2ab + b²5. 完全平方公式:a² - 2ab + b² = (a - b)²6. 立方差公式:(a-b)³ = a³ - 3a²b + 3ab² - b³7. 立方和公式:(a+b)³ = a³ + 3a²b + 3ab² + b³8. a² - b² = (a+b)(a-b)9. 二次方程的求根公式:对于 ax² + bx + c = 0 的一元二次方程,x = (-b ± √(b²-4ac)) / 2a10. 二次三角恒等式:(sinθ)² + (cosθ)² = 111. 二次三角恒等式:1 + (tanθ)² = (secθ)²12. 二次三角恒等式:1 + (cotθ)² = (cscθ)²13. 对数运算公式:log_a(xy) = log_a(x) + log_a(y), log_a(x/y) = log_a(x) - log_a(y) log_a(x^n) = nlog_a(x), log_a(1/x) = -log_a(x)14. 指数运算公式:a^x × a^y = a^(x+y), a^x ÷ a^y = a^(x-y)(a^x)^y = a^(xy), (ab)^x = a^x × b^x二、平面几何1. 圆的周长公式:C = 2πr或C = πd2. 圆的面积公式:A = πr²3. 锐角三角函数:sinθ = 对边/斜边, cosθ = 邻边/斜边, tanθ = 对边/邻边4. 余角三角函数:cscθ = 1/sinθ, secθ = 1/cosθ, cotθ = 1/tanθ5. 三角恒等式:sin(90°-θ) = cosθ, cos(90°-θ) = sinθ, tan(90°-θ) = cotθ6. 直角三角形勾股定理:a² + b² = c²或c = √(a² + b²)7. 正弦定理:a/sinA = b/sinB = c/sinC8. 余弦定理:a² = b² + c² - 2bc·cosA9. 面积公式:面积S = 0.5 ×底 ×高三、空间几何1. 简单体积公式:直方体 V = l × w × h正方体 V = a³圆柱体V = πr²h球体V = (4/3)πr³2. 简单表面积公式:直方体表面积 A = 2lw + 2lh + 2wh正方体表面积 A = 6a²圆柱体侧面积A = 2πrh圆柱体全面积A = 2πr(r+h)球体表面积A = 4πr²四、概率与统计1. 排列公式:n个元素取r个排列的情况总数为 P(n,r) = n!/(n-r)!2. 组合公式:n个元素取r个组合的情况总数为 C(n,r) = n!/(r!(n-r)!)3. 随机事件概率公式:P(A) = n(A)/n(S)4. 条件概率公式:P(A|B) = P(AB)/P(B), P(B|A) = P(AB)/P(A)5. 独立事件概率公式:P(A∩B) = P(A) × P(B)六、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d2. 等差数列前n项和公式:Sn = n/2 × (a1 + an) = n/2 × (2a1 + (n-1)d)3. 等比数列通项公式:an = a1 × q^(n-1)4. 等比数列前n项和公式:Sn = a1 × (1-q^n) / (1-q), q≠1五、其他1. 三角函数导数:(sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec²x2. 指数函数导数:(a^x)' = a^x × ln(a), (e^x)' = e^x3. 对数函数导数:(log_ax)' = 1 / (x × ln(a)), (lnx)' = 1 / x4. 反三角函数导数:(sin⁻¹x)' = 1 / √(1-x²), (cos⁻¹x)' = -1 / √(1-x²), (tan⁻¹x)' = 1 / (1+x²)-----------------这只是高中数学公式的一小部分,在学习过程中会遇到更多的公式和定理,希望以上总结对您有所帮助。

高中数学所有公式总结

高中数学所有公式总结

高中数学所有公式总结高中数学涉及的公式非常多,以下是一些重要的公式总结:1. 代数公式:- 二次方程的求根公式:对于ax^2 + bx + c = 0,求根公式为x = (-b ± √(b^2 - 4ac)) / 2a。

- 因式分解公式:a^2 - b^2 = (a + b)(a - b),(a + b)^2 = a^2 +2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2。

- 三角恒等式:sin^2θ + cos^2θ = 1,tanθ = sinθ / cosθ,cotθ = 1 / tanθ。

2. 几何公式:- 面积公式:矩形的面积为长×宽,三角形的面积为底×高/2,圆的面积为πr^2,正方体的表面积为6a^2,球的表面积为4πr^2。

- 周长和周率:矩形的周长为2(长+宽),三角形的周长为a+b+c,圆的周长为2πr。

- 三角函数的定义:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边。

3. 微积分公式:- 导数公式:若y = f(x),则导数dy/dx表示y对x的变化率。

常见函数导数公式:(c)' = 0,(x^n)' = nx^(n-1),(sinx)' = cosx,(cosx)' = -sinx。

- 积分公式:若F'(x) = f(x),则∫f(x)dx = F(x) + C。

常见函数的积分公式:∫kdx = kx + C,∫x^n dx = (x^(n+1))/(n+1) + C,∫sinx dx = -cosx + C,∫cosx dx = sinx + C。

- 微分中值定理:对于函数f(x)在[a, b]上连续且在(a, b)上可导,存在c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)。

4. 概率与统计公式:- 排列组合公式:n个元素中取r个的排列数为A(n, r) = n! / (n-r)!,组合数为C(n, r) = n! / (r!(n-r)!)。

高中数学常用公式及知识点总结

高中数学常用公式及知识点总结

高中数学常用公式及知识点总结一、代数与函数1. 一次函数:y = kx + b,其中k为斜率,b为截距。

2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

3. 三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

4. 幂函数:y = x^n,其中n为常数。

5. 对数函数:y = loga(x),其中a为底数,x为真数。

6. 复数:形式为a+bi,其中a为实部,b为虚部,i为虚数单位。

7. 不等式:常见的不等式有一元一次不等式、一元二次不等式和绝对值不等式。

二、几何与图形1. 平面几何基本公式:包括点、线、面的基本概念和性质,如点到直线的距离、直线的斜率等。

2. 三角形:包括三角形的周长、面积、勾股定理等。

3. 圆:包括圆的周长、面积、弧长、扇形面积等。

4. 直线与圆的位置关系:包括相交、相切、相离等情况。

5. 空间几何基本公式:包括空间点、直线、平面的基本概念和性质,如点到平面的距离、直线与平面的位置关系等。

6. 立体几何:包括长方体、正方体、棱柱、棱锥、球体等的表面积和体积计算公式。

三、概率与统计1. 概率:包括事件、样本空间、概率的计算公式,如加法原理、乘法原理等。

2. 离散型随机变量:包括随机变量的期望、方差等。

3. 连续型随机变量:包括随机变量的概率密度函数、累积分布函数等。

4. 统计:包括样本、总体、统计量、抽样等的基本概念和性质,如均值、标准差、相关系数等。

四、数列与数学归纳法1. 等差数列:包括等差数列的通项公式、前n项和公式等。

2. 等比数列:包括等比数列的通项公式、前n项和公式等。

3. 数学归纳法:包括数学归纳法的基本思想和应用。

五、数论与整除性质1. 质数与合数:质数只能被1和自身整除,合数能被除了1和自身之外的数整除。

2. 最大公因数与最小公倍数:最大公因数是两个或多个整数共有的因数中最大的一个,最小公倍数是能被两个或多个整数整除的最小的一个数。

高三数学知识点归纳公式总结大全

高三数学知识点归纳公式总结大全

高三数学知识点归纳公式总结大全在高中数学学科中,高三是学生进阶阶段,需要掌握并熟练运用各种数学知识点和公式。

下面将归纳总结一些常见的高三数学知识点和公式供大家参考。

一、函数与方程1. 一次函数的一般式:y = kx + b2. 一次函数的斜率公式:k = (y₂ - y₁) / (x₂ - x₁)3. 二次函数标准式:y = ax² + bx + c4. 二次函数顶点坐标:(h, k)5. 二次函数轴对称线方程:x = -b / (2a)6. 完全平方公式:(a + b)² = a² + 2ab + b²、(a - b)² = a² - 2ab + b²7. 平方差公式:a² - b² = (a + b)(a - b)8. 一元二次方程求根公式:x = (-b ± √(b² - 4ac)) / (2a)9. 一元二次方程判别式:Δ = b² - 4ac二、三角函数与解三角形1. 正弦定理:a / sinA = b / sinB = c / sinC2. 余弦定理:c² = a² + b² - 2abcosC3. 正切定理:tanA = sinA / cosA4. 角平分线长度公式:BD = 2abcos(0.5C) / (a + b)5. 角平分线定理:AB / AC = BD / DC6. 海伦公式:S = √[p(p-a)(p-b)(p-c)],其中p = (a+b+c) / 27. 外接圆半径公式:R = a / (2sinA)三、概率与统计1. 组合公式:C(n, m) = n! / (m!(n-m)!)2. 排列公式:A(n, m) = n! / (n-m)!3. 乘法原理:若事件A有m种可能结果,事件B有n种可能结果,则两个事件的组合结果有m * n种可能性。

高中数学公式及知识点总结大全

高中数学公式及知识点总结大全

高中数学公式及知识点总结大全高中数学是一门基础性强的科目,学好高中数学对于通识科学和深入学习其他专业课程都有很大帮助。

下面将为大家总结高中数学中的常用公式和知识点。

一、函数1、基本函数公式:①y=kx:直线函数,其中k为斜率,x为自变量,y为因变量。

②y=x²:二次函数,开口朝上,开口为a。

③y=-x²:二次函数,开口朝下,开口为-a。

④y=√x:开口朝上的平方根函数,变化率最大的点为(0,0)。

⑤y=-√x:开口朝下的平方根函数,没有定义域对应值为负数。

⑥y=a⁽ˣ⁾:指数函数,a>0且a≠1,a>1开口朝上,0<a<1开口朝下,变化率最大的点为(0,1)。

⑦y=logₐx:对数函数,a>0且a≠1,其中a称为底数,x称为实参,y称为虚参,定义域为x>0,变化速率最大的点为(1,0)。

2、函数的性质:①奇偶性:对于函数f(x),若f(-x)=f(x),则称f(x)为偶函数;若f(-x)=-f(x),则称f(x)为奇函数。

二次函数和正弦、余弦函数平移后仍为自身即线对称的,即偶函数。

②单调性:单调递增指自变量增大时,因变量也增大,反之为单调递减。

③最值点:函数图像上最高点和最低点,即最大值和最小值,由函数的导数为0时得到。

④零点:函数值为0的点。

⑤导数:函数在一点的切线斜率,表示为y=Δy/Δx,y'=f⁽x⁾表示x变化一单位,函数值变化的速率。

二、三角函数1、基本定义:弧度制:弧长等于半径的一部分。

三角函数:正弦、余弦、正切、余切、正割、余割2、基本公式:①正弦函数:y=Asin(Bx+C)+D②余弦函数:y=Acos(Bx+C)+D③正切函数:y=Atan(Bx+C)+D3、三角函数的运算:①和差化积公式:sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb-正bsinasinb②积化和差公式:sinacosb=1/2[cos(a-b)+cos(a+b)],sinasinb=1/2[cos(a-b)-cos(a+b)],cosacosb=1/2[cos(a+b)+cos(a-b)],sinacosb=1/2[sin(a+b)+sin(a-b)]4、三角函数的图像:正弦函数的图像为一条周期为$2π$的连续的曲线,最大值为1,最小值为-1;余弦函数也是周期为$2π$的连续曲线,最大值为1,最小值为-1;正切函数为无界函数,当$x=kπ-1/2π(k∈Z)$时,函数值不存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式大全及总结高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2sin———·cos———2 2α+β α-βsinα-sinβ=2cos———·sin———2 2α+β α-βcosα+cosβ=2cos———·cos———2 2α+β α-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比 G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”复数代数形式三角形式a+bi=c+di a=c,b=d(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)-(c+di)=(a-c)+(b-d)i(a+bi)(c+di )=(ac-bd)+(bc+ad)ia+bi=r(cosθ+isinθ)r1=(cosθ1+isinθ1)?r2(cosθ2+isinθ2)=r1?r2〔cos(θ1+θ2)+isin(θ1+θ2)〕〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)k=0,1,……,n-1解析几何1、直线两点距离、定比分点直线方程|AB|=| ||P1P2|=y-y1=k(x-x1)y=kx+b两直线的位置关系夹角和距离或k1=k2,且b1≠b2l1与l2重合或k1=k2且b1=b2l1与l2相交或k1≠k2l2⊥l2或k1k2=-1 l1到l2的角l1与l2的夹角点到直线的距离2.圆锥曲线圆椭圆标准方程(x-a)2+(y-b)2=r2圆心为(a,b),半径为R一般方程x2+y2+Dx+Ey+F=0其中圆心为( ),半径r(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系(2)两圆的位置关系用圆心距d与半径和与差判断椭圆焦点F1(-c,0),F2(c,0)(b2=a2-c2)离心率准线方程焦半径|MF1|=a+ex0,|MF2|=a-ex0双曲线抛物线双曲线焦点F1(-c,0),F2(c,0)(a,b>0,b2=c2-a2)离心率准线方程焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0)焦点F准线方程坐标轴的平移这里(h,k)是新坐标系的原点在原坐标系中的坐标。

1.集合元素具有①确定性②互异性③无序性2.集合表示方法①列举法②描述法③韦恩图④数轴法3.集合的运算⑴ A∩(B∪C)=(A∩B)∪(A∩C)⑵ Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB4.集合的性质⑴n元集合的子集数:2n真子集数:2n-1;非空真子集数:2n-2高中数学概念总结一、函数1、若集合A中有n 个元素,则集合A的所有不同的子集个数为,所有非空真子集的个数是。

二次函数的图象的对称轴方程是,顶点坐标是。

用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即,和(顶点式)。

2、幂函数,当n为正奇数,m为正偶数,m<n时,其大致图象是3、函数的大致图象是由图象知,函数的值域是,单调递增区间是,单调递减区间是。

二、三角函数1、以角的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P到原点的距离记为,则sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。

2、同角三角函数的关系中,平方关系是:,,;倒数关系是:,,;相除关系是:,。

3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。

如:, = ,。

4、函数的最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。

相关文档
最新文档