高中数学公式总结:高中数学函数公式总结
高中数学概念公式大全
高中数学概念公式大全一、 三角函数1、以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=xr ,csc α=y r ; 2、同角三角函数的关系中,平方关系是:222222 倒数关系是:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα; 相除关系是:αααcos sin =tg ,αααsin cos =ctg ; 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限;如:=-)23sin(απαcos -,)215(απ-ctg =αtg ,=-)3(απtg αtg -; 4、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心;5、三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈;6、=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos=±)(βαtg βαβαtg tg tg tg ⋅± 1 7、二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -; 8、三倍角公式是:sin3α=αα3sin 4sin 3- cos3α=ααcos 3cos 43-9、半角公式是:sin 2α=2cos 1α-± cos 2α=2cos 1α+± tg 2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +;10、升幂公式是:2cos2cos 12αα=+ 2sin 2cos 12αα=-; 11、降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=; 12、万能公式:sin α=21222ααtg tg + cos α=212122ααtg tg +- tg α=21222ααtg tg - 13、sin βα+sin βα-=βα22sin sin -,cos βα+cos βα-=βα22sin cos -=αβ22sin cos -;14、)60sin()60sin(sin 400ααα+-=α3sin ;)60cos()60cos(cos 400ααα+-=α3cos ;)60()60(00ααα+-tg tg tg =α3tg ;15、ααtg ctg -=α22ctg ; 16、sin180=415-; 17、特殊角的三角函数值:18、正弦定理是其中R 表示三角形的外接圆半径:R Cc B b A a 2sin sin sin === 19、由余弦定理第一形式,2b =B ac c a cos 222-+ 由余弦定理第二形式,cosB=acb c a 2222-+ 20、△ABC 的面积用S 表示,外接圆半径用R 表示,内切圆半径用r 表示,半周长用p 表示则:① =⋅=a h a S 21;② ==A bc S sin 21; ③C B A R S sin sin sin 22=;④R abc S 4=; ⑤))()((c p b p a p p S ---=;⑥pr S =21、三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…22、在△ABC 中,B A B A sin sin <⇔<,…23、在△ABC 中:-tgC B)+tg(A -cosC B)+cos(A sinC=B)+sin(A == 2cos 2sin C B A =+ 2sin 2cos C B A =+ 22C ctg B A tg =+ tgC tgB tgA tgC tgB tgA ⋅⋅=++24、积化和差公式:①)]sin()[sin(21cos sin βαβαβα-++=⋅, ②)]sin()[sin(21sin cos βαβαβα--+=⋅, ③)]cos()[cos(21cos cos βαβαβα-++=⋅,④)]cos()[cos(21sin sin βαβαβα--+-=⋅;25、和差化积公式: ①2cos 2sin2sin sin y x y x y x -⋅+=+, ②2sin 2cos 2sin sin y x y x y x -⋅+=-, ③2cos 2cos 2cos cos y x y x y x -⋅+=+, ④2sin 2sin 2cos cos y x y x y x -⋅+-=-; 二、 函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n ;二次函数c bx ax y ++=2的图象的对称轴方程是ab x 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,;用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()( 顶点式;2、 幂函数nm x y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、 函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞;三、 反三角函数1、x y arcsin =的定义域是-1,1,值域是]22[ππ,-,奇函数,增函数; x y arccos =的定义域是-1,1,值域是]0[π,,非奇非偶,减函数; arctgx y =的定义域是R,值域是)22(ππ,-,奇函数,增函数; arcctgx y =的定义域是R,值域是)0(π,,非奇非偶,减函数;2、当x x x x x ==-∈)cos(arccos )sin(arcsin ]11[,时,,; 221)cos(arcsin 1)sin(arccos x x x x -=-=,x x x x arccos )arccos(arcsin )arcsin(-=--=-π,2arccos arcsin π=+x x对任意的R x ∈,有: 2)()()()(ππ=+-=--=-==arcctgx arctgx arcctgx x arcctg arctgx x arctg xarcctgx ctg x arctgx tg ,, 当x arctgx ctg x arcctgx tg x 1)(1)(0==≠,时,有:; 3、最简三角方程的解集:{}{}{}{}。
高二数学知识点及公式总结5篇
高二数学知识点及公式总结5篇第一篇:高二数学必备知识点及公式总结1.函数的概念及其性质函数是一种特殊的关系,它将一组自变量的值映射到另一组因变量的值上。
函数的三要素为定义域、值域和对应关系。
常见的函数有一次函数、二次函数、指数函数、对数函数等,不同的函数具有不同的性质。
常见函数的公式:一次函数:y = kx + b二次函数:y = ax^2 + bx + c指数函数:y = a^x (a > 0, a ≠ 1)对数函数:y = loga(x) (a > 0, a ≠ 1)2.三角函数及其应用三角函数是指正弦函数、余弦函数、正切函数等。
由于三角函数具有周期性、奇偶性、单调性等特点,因此在物理、工程、数学等领域中被广泛应用。
三角函数的公式:正弦函数:y = sinx余弦函数:y = cosx正切函数:y = tanx割函数:y = secx余割函数:y = cotx3.微积分基础微积分是研究函数变化的过程的一门学科,包括导数和积分两个方面。
导数表示函数在某一点的变化率,积分则表示函数在一段区间内的累积变化量。
微积分在自然科学、社会科学、工程技术等领域中均有广泛应用。
微积分的公式:导数公式:f'(x) = lim├_(∆x→0) (f(x + ∆x) - f(x))/∆x积分公式:∫_a^b f(x)dx = lim├_n→∞ □(□(□(Δx )))Σ▒f(xi)Δx第二篇:高二数学解析几何知识点及公式总结1.向量及其运算向量是数学中的一种对象,具有大小和方向两个要素。
向量的运算包括加、减、数乘、点乘等,可以用来描述物体的运动、力的作用等。
向量运算的公式:向量加法: A + B = (Ax + Bx, Ay + By)向量减法: A - B = (Ax - Bx, Ay - By)向量数乘: kA = (kAx, kAy)向量点乘:A·B = |A||B|cosθ2.平面及直线的方程平面是空间内的一种二维图形,可以通过点和法向量来确定。
高中必背88个数学公式3篇
高中必背88个数学公式数学公式是学习数学的基础,掌握数学公式可以帮助我们更好地理解和应用数学知识。
在高中数学学习中,有许多重要的数学公式需要掌握,下面是88个高中数学必背的公式,希望对大家的学习有所帮助。
1. 一次函数的解析式:y=kx+b2. 二次函数的解析式:y=ax^2+bx+c (a≠0)3. 三角函数的正弦定理:a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)4. 三角函数的余弦定理:a^2=b^2+c^2-2bccosA5. 三角函数的正切定理:tanA=(a+b)/(a-b),其中b为切点到直角边的距离6. 直线一般式:Ax+By+C=07. 直线斜截式:y=kx+b8. 直线截距式:y=kx+b9. 圆的标准式:(x-a)^2+(y-b)^2=r^210. 圆的一般式:x^2+y^2+Dx+Ey+F=011. 平移变换:f(x-a)+b12. 对称变换:f(-x)13. 缩放变换:kf(x)14. 一元二次方程:ax^2+bx+c=0 (a≠0)15. 四则运算公式:a+b=b+a,a-b=-(b-a),ab=ba,a/b≠b/a,(a+b)c=ac+bc16. 开平方公式:(a+b)^2=a^2+2ab+b^2,(a-b)^2=a^2-2ab+b^217. 完全平方公式:a^2+2ab+b^2=(a+b)^2,a^2-2ab+b^2=(a-b)^218. 因式分解公式:x^2-y^2=(x+y)(x-y),a^2-b^2=(a+b)(a-b)19. 同底数幂的乘除法:a^m*a^n=a^(m+n),a^m/a^n=a^(m-n)20. 同底数幂的幂次方:(a^m)^n=a^(mn)21. 十进制、二进制、八进制、十六进制:十进制N=(a[n]*10^n)+(a[n-1]*10^(n-1))+...+a[0]*10^0,二进制N=(a[n]*2^n)+(a[n-1]*2^(n-1))+...+a[0]*2^0,八进制N=(a[n]*8^n)+(a[n-1]*8^(n-1))+...+a[0]*8^0,十六进制N=(a[n]*16^n)+(a[n-1]*16^(n-1))+...+a[0]*16^022. 分数通分公式:a/b+c/d=(ad+bc)/bd23. 分数加减法:a/b±c/d=[(ad±bc)/bd]24. 分数乘法:a/b×c/d=(ac/bd)25. 分数除法:a/b÷c/d=(ad/bc)26. 多项式加减法:(a+b)+c=a+(b+c),(a+b)−c=a+(−c+b)27. 多项式乘法:(a+b)(c+d)=ac+ad+bc+bd28. 向量的模:|a|=\sqrt(a[1]^2+a[2]^2+...+a[n]^2)29. 向量的点乘:a·b=|a||b|cosθ (θ为a、b之间的夹角)30. 向量的叉乘:a×b=|a||b|sinθ (θ为a、b之间的夹角)31. 三角函数的倒数关系:sinx/cscx=cosx/secx=tanx/cotx=132. 三角函数的和差化积:sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb∓sinasinb33. 三角函数的倍角公式:sin2x=2sinxcosx,cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x,tan2x=(2tanx)/(1-tan^2x)34. 三角函数的半角公式:sin(x/2)=±√[(1-cosx)/2],cos(x/2)=±√[(1+cosx)/2],tan(x/2)=±√[(1-cosx)/(1+cosx)]35. 三角函数的和化积公式:sinx+siny=2sin[(x+y)/2]cos[(x-y)/2],sinx-siny=2cos[(x+y)/2]sin[(x-y)/2],cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2],cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]36. 反三角函数的定义域和值域:arcsinx∈[-π/2,π/2],arccosx∈[0,π],arctanx∈[-π/2,π/2]37. 常用极限:lim(x→0)[(sinx)/x]=1,lim(x→0)[(1-cosx)/x]=0,lim(x→0)[(e^x-1)/x]=1,lim(x→∞)[(1+1/x)^x]=e38. 对数的性质:loga1=0,logaa=1,loga(ab)=logaa+logab,loga(a/b)=logaa−logab,loga(b^n)=nlogab39. 反比例函数的性质:y=k/x,原点位于直线y=x和y=-x的交点上;当x<0时,y<0;当x>0时,y>0;当x=0时,y不存在40. 一元二次不等式:ax^2+bx+c>0 (a>0)41. 一元二次方程的公式解:x=[-b±√(b^2-4ac)]/2a42. 复数的加减乘除:(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)−(c+di)=(a−c)+(b−d)i,(a+bi)(c+di)=(ac−bd)+(ad+bc)i,(a+bi)/(c+di)=[(ac+bd)/(c^2+d^2)]+[(bc−ad)/(c^2+d^2)]i43. 平面直角坐标系中点公式:[(x1+x2)/2,(y1+y2)/2]44. 垂直平分线公式:(x-x1)^2+(y-y1)^2=(x-x2)^2+(y-y2)^245. 线段长度公式:√[(x2-x1)^2+(y2-y1)^2]46. 直线的斜率公式:k=(y2-y1)/(x2-x1)47. 直线的法线斜率公式:k=-1/k48. 直线的斜截式公式:y=kx+b49. 直线的截距式公式:y=kx+b50. 直线的一般式公式:Ax+By+C=051. 点到直线的距离公式:d=|(Ax1+By1+C)/√(A^2+B^2)|52. 圆心坐标公式:(a,b)53. 圆的半径公式:r=√[(x-a)^2+(y-b)^2]54. 圆的标准方程公式:(x-a)^2+(y-b)^2=r^255. 圆的一般方程公式:x^2+y^2+Dx+Ey+F=056. 平移变换公式:f(x-a)+b57. 对称变换公式:f(-x)58. 缩放变换公式:kf(x)59. 函数复合公式:f(g(x))60. 函数的奇偶性判断公式:f(-x)=±f(x)61. 关于y轴对称公式:f(-x)=f(x)62. 关于x轴对称公式:f(x)=-f(-x)63. 虚函数公式:f(x)≠064. 函数单调性判断公式:当f'(x)>0时,f(x)单调递增;当f'(x)<0时,f(x)单调递减65. 平均数公式:(a1+a2+...+an)/n66. 中位数公式:当n为奇数时,中位数为第(n+1)/2个数;当n为偶数时,中位数为第n/2个数和第(n/2+1)个数的平均数67. 众数公式:出现次数最多的数即为众数68. 极差公式:最大值与最小值的差69. 方差公式:[(x1-平均数)^2+(x2-平均数)^2+...+(xn-平均数)^2]/n70. 标准差公式:√[方差]71. 等差数列求和公式:S=(a1+an)n/272. 等差数列通项公式:an=a1+(n-1)d73. 等比数列求和公式:S=a1(1-q^n)/(1-q)74. 等比数列通项公式:an=a1q^(n-1)75. 两点之间的距离公式:√[(x2-x1)^2+(y2-y1)^2]76. 点到直线的距离公式:d=|(Ax1+By1+C)/√(A^2+B^2)|77. 反比例函数公式:y=k/x78. 指数函数公式:y=a^x79. 对数函数公式:y=logax80. 三角函数公式:sinx=opp/hyp,cosx=adj/hyp,tanx=opp/adj81. 正弦函数奇偶性公式:sin(-x)=-sinx82. 余弦函数奇偶性公式:cos(-x)=cosx83. 正切函数奇偶性公式:tan(-x)=-tanx84. 对数函数奇偶性公式:loga(-x)不存在85. 指数函数奇偶性公式:a^(-x)不存在86. 三角函数的区间解:sin^-1x+2kπ∈[-π/2+kπ,π/2+kπ],cos^-1x+2kπ∈[0+kπ,π+kπ],tan^-1x+2kπ∈[-π/2+kπ,π/2+kπ]87. 三角函数的正负解:tanx正角的解为[0,π/2),余角的解为[π/2,π);tanx负角的解为(π/2,π),余角的解为(π,3π/2]88. 一元二次方程的判别式公式:Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程有两个不相等的虚数根。
高中数学18个求导公式
高中数学18个求导公式1. 一次函数求导公式:y' = ax + b2. 二次函数求导公式:y'' = 2ax + b3. 三次函数求导公式:y''' = 6ax² + 2bx + c4. 常数求导公式:y' = 05. 幂函数求导公式:dy/dx = a(x^(a-1))6. 对数函数求导公式:y' = 1/x7. 三角函数求导公式:sin x : y' = cos xcos x : y' = -sin xtan x : y' = sec² x8. 指数函数求导公式:y' = e^x9. 高次多项式求导公式:根据指数规律求导:(a_nx^n+a_(n-1)x^(n-1)+...+a_1x+a_0)' = n*a_nx^(n-1)+(n-1)*a_(n-1)x^(n-2)+...+a_110. 复合函数求导公式:f(g(x))' = g'(x) * f'(g(x))11. 逆函数求导公式:y' = 1 / (f'(y))12. 隐函数求导公式:dy/dx = (dy/du) * (du/dx)13. 雅可比矩阵求导公式:y' = [dF/dx, dF/dy]14. 极坐标求导公式:y' = (x'*cosθ + y'*sinθ) / r15. 参数方程求导公式:dy/dt = [(dy/dx) * (dx/dt) + (dy/dy) * (dy/dt)]16. 椭圆方程求导公式:x' = -a*sinα / c17. 积分求导公式:dy/dx = f(x)18. 微分求导公式:y' = lim (h→0) (f(x+h)-f(x))/h。
高中数学公式大全归纳
高中数学公式大全归纳以下是高中数学中常用的一些公式大全的归纳:一、三角函数1. 正弦函数:sinθ = 对边/斜边2. 余弦函数:cosθ = 邻边/斜边3. 正切函数:tanθ = 对边/邻边4. 余切函数:ctgθ = 邻边/对边5. 正割函数:secθ = 对角/斜边6. 余割函数:cscθ = 对角/对边7. 半角公式:sinθ/2 = 正弦函数值/28. cosθ/2 = 余弦函数值/29. tanθ/2 = 正切函数值/210. ctgθ/2 = 余切函数值/2二、指数函数1. 指数函数:a^x = 对数函数值/ln(a)2. 幂指数函数:x^y = 指数函数值/ln(x)3. 自然指数函数:n^x = 指数函数值/ln(n)三、对数函数1. 对数函数:log2(x) = 底数指数函数值2. 对数函数:log10(x) = 底数指数函数值3. 对数函数:log(x,y) = 对数函数值/ln(y)4. 换底数对数函数:xlnx = 对数函数值/ln(新底数)5. 扩展对数函数:log2(x), log10(x), log(x,y) 等都是对数函数四、三角恒等变换公式1. sin(2θ) = 2sinθcosθ2. cos(2θ) = 2cos2θ - 13. tan(2θ) = 2tanθ/(1 - tan2θ)4. ctg(2θ) = (1 - cot2θ)/(1 + cot2θ)5. sec(2θ) = 2sec2θ - 16. csc(2θ) = 2csc2θ - 1五、导数与微分1. f"(x) = 导数2. g"(x) = 微分3. f(x) = g(x) + h(x) 时,f"(x) = g"(x) + h"(x)4. f(x) = ln(x) 时,f"(x) = 1/x5. f(x) = sin(x) 时,f"(x) = cos(x)6. g(x) = f(x) + c 时,g"(x) = f"(x) + c以上是高中数学常用的一些公式,希望能够帮助到您。
高中数学知识点总结及公式大全
高中数学知识点总结及公式大全一、代数1.一次函数及相关知识一次函数的一般式方程为y=kx+b,其中k为斜率,b为截距。
与x轴交点:x=-b/k与y轴交点:y=b斜率的计算: k=(y2-y1)/(x2-x1)2.二次函数及相关知识二次函数的一般式方程为y=ax^2+bx+c,其中a≠0。
二次函数的顶点坐标为:(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。
二次函数的判别式为Δ=b^2-4ac,当Δ>0时,二次函数有两个实数解;当Δ=0时,二次函数有一个重复实数根;当Δ<0时,二次函数无实数解。
3.指数函数及对数函数指数函数的一般式方程为y=a^x,其中a>0且a≠1。
对数函数的一般式方程为y=logax,其中a>0且a≠1。
对数函数的性质:loga1=0,loga(a^x)=x,a^(logax)=x4.幂函数幂函数的一般式方程为y=x^a,其中a为常数。
5.绝对值函数绝对值函数的一般式方程为y=|x|。
6.组合函数组合函数即将一个函数的输出值作为另一个函数的输入值得到的新函数。
例如,若f(x)和g(x)均为函数,则(f∘g)(x)=f(g(x))。
7.多项式及相关知识n次多项式的一般式为:y=a_nx^n+a_(n-1)x^(n-1)+...+a1x+a0多项式的除法:对于多项式f(x)÷g(x),若g(x)≠0,则商多项式为q(x)、余式为r(x)且f(x)=g(x)q(x)+r(x)多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd8.解方程二元一次方程组求解:通过消元法、代入法、加减消去法等方法求解一元二次方程求解:可以通过配方法、公式法、因式分解等方法求解复杂方程求解:可以通过讨论函数单调性、先化为一次函数或二次函数等方法求解9.不等式一元一次不等式的解法:利用加减法、乘除法、绝对值法等方法求解一元二次不等式的解法:先将不等式化为标准形式,然后通过讨论函数的单调性、绘制函数图像、代数法等方法求解10.排列与组合排列:当n个人中取m个人,且彼此不考顺序,则排列数用P(m,n)表示,其计算公式为:P(m,n)=n!/(n-m)!组合:当n个人中取m个人,彼此不考顺序,则组合数用C(m,n)表示,其计算公式为:C(m,n)=n!/(m!(n-m)!)11.数列与数学归纳法数列的概念:数列是按一定顺序排列的一组数。
高中数学公式大全(最整理新版)
高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。
解为 x = b/a。
2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。
解为 x =[b ± sqrt(b^2 4ac)] / 2a。
3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。
解为x = [b ± sqrt(b^2 3ac)] / 3a。
4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。
解为x = [b ± sqrt(b^2 4ac)] / 2a。
5. 分式方程:分子和分母均为多项式。
解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。
6. 二元一次方程组:由两个一元一次方程组成的方程组。
解法为消元法或代入法。
7. 二元二次方程组:由两个一元二次方程组成的方程组。
解法为消元法或代入法。
8. 三元一次方程组:由三个一元一次方程组成的方程组。
解法为消元法或代入法。
9. 等差数列:首项为 a1,公差为 d。
第 n 项为 an = a1 + (n 1)d。
前 n 项和为 Sn = n/2(a1 + an)。
10. 等比数列:首项为 a1,公比为 q。
第 n 项为 an = a1q^(n 1)。
前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。
二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。
(2)圆:圆心为 (a, b),半径为 r。
圆的方程为 (x a)^2 +(y b)^2 = r^2。
(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。
椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。
(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。
高一函数公式汇总
高一函数公式汇总(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一函数公式汇总整个高中的数学都是围绕函数进行考察的,而函数都是围绕基本初等函数进行相关的变形进行相关的考察的,所以必须从基本初等函数下手,来解决函数中的相关问题,找到突破口,今天本店铺在这给大家整理了高一函数相关知识,接下来随着本店铺一起来看看吧!高一函数公式三角函数公式两角和公式sin(A+B)= sinAcosB+cosAsinBsin(A-B)= sinAcosB-cosAsinBcos(A+B)= cosAcosB-sinAsinBcos(A-B)= cosAcosB+sinAsinBtan(A+B)= (tanA+tanB)/(1-tanAtanB)tan(A-B)= (tanA-tanB)/(1+tanAtanB)cot(A+B)= (cotAcotB-(1)/(cotB+cotA)cot(A-B)= (cotAcotB+(1)/(cotB-cotA)倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA?CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a ? tan(π/3+a)? tan(π/3-a)半角公式sin(A/(2)= √{(1--cosA)/2}cos(A/(2)= √{(1+cosA)/2}tan(A/(2)= √{(1--cosA)/(1+cosA)}cot(A/(2)= √{(1+cosA)/(1-cosA)}tan(A/(2)= (1--cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b)= 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b)= 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b)= 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b)= -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b)= -1/2X[cos(a+b)-cos(a-b)] cos(a)cos(b)= 1/2X[cos(a+b)+cos(a-b)]sin(a)cos(b)= 1/2X[sin(a+b)+sin(a-b)]cos(a)sin(b)= 1/2X[sin(a+b)-sin(a-b)]诱导公式sin(-a)= -sin(a)cos(-a)= cos(a)sin(π/2-a)= cos(a)cos(π/2-a)= sin(a)sin(π/2+a)= cos(a)cos(π/2+a)= -sin(a)sin(π-a)= sin(a)cos(π-a)= -cos(a)sin(π+a)= -sin(a)cos(π+a)= -cos(a)tgA=tanA = sinA/cosA万能公式sin(a)= [2tan(a/(2)] / {1+[tan(a/(2)]^2}cos(a)= {1-[tan(a/(2)]^2} / {1+[tan(a/(2)]^2} tan(a)= [2tan(a/(2)]/{1-[tan(a/(2)]^2}其它公式a?sin(a)+b?cos(a)= [√(a^2+b^(2)]Xsin(a+c)[其中,tan(c)=b/a]a?sin(a)-b?cos(a)= [√(a^2+b^(2)]Xcos(a-c)[其中,tan(c)=a/b]1+sin(a)= [sin(a/(2)+cos(a/(2)]^2;1-sin(a)= [sin(a/(2)-cos(a/(2)]^2;;其他非重点三角函数csc(a)= 1/sin(a)sec(a)= 1/cos(a)双曲函数sinh(a)= [e^a-e^(-a)]/2cosh(a)= [e^a+e^(-a)]/2tg h(a)= sin h(a)/cos h(a)如何学好高一的函数?第一、要培养自己坚强的战斗意志,要有坚定的信念和执着的精神,要有吃苦耐劳的精神。
高中必修一二数学公式总结大全
高中必修一二数学公式总结大全一、数学公式的作用与价值数学公式作为数学知识的精华和核心,承载着丰富的数学内涵和深刻的数学思想,对于学习和理解整个数学体系起着至关重要的作用。
高中必修一二数学公式集中体现了高中数学课程的重点和难点,具有重要的理论和应用价值。
深入全面地了解和掌握高中必修一二数学公式,将对学生的数学学习和数学素养起到非常重要的促进作用。
二、高中必修一数学公式总结1. 一次函数方程:y=kx+b2. 二次函数方程:y=ax^2+bx+cx=-b±√(b^2-4ac)/2a3. 指数和对数:a^m*a^n=a^(m+n)(a^m)^n=a^(mn)a^0=1a^-m=1/a^mloga(mn)=logam+loganloga(m/n)=logam-loganloga(1/m)=-logamlogam/n=nlogam4. 三角函数:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ∓sinαsinβtan(α±β)=(tanα±tanβ)/(1∓tanαtanβ)sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α三、高中必修二数学公式总结1. 二次函数:抛物线的一般方程y=ax^2+bx+c抛物线的顶点坐标为:(-b/2a,c-b^2/4a)2. 三角函数:三角函数的诱导公式tanx=sinx/cosx四、对高中必修一二数学公式的个人理解高中数学是数学学科的一个重要阶段,在这一阶段学生需要系统、全面地学习各种数学知识,数学公式作为数学知识的核心之一,对于学生打下坚实的数学基础至关重要。
高中必修一二数学公式凝聚了教育部数学教学大纲的精华,每个公式都有其独特的数学内涵和广阔的应用空间。
学生要想在高中数学学习中取得好成绩,必须充分理解和掌握这些数学公式,灵活应用于解决实际问题。
高中数学公式大全总结
高中数学公式大全总结高中数学公式大全总结如下:1. 基本公式:- 指数函数:f(x) = a^x,其中 a 为正数。
- 对数函数:f(x) = log_a(x),其中 a 为非零正数。
- 三角函数:- 正弦函数:f(x) = sin(x),其中 x 为角度。
- 余弦函数:f(x) = cos(x),其中 x 为角度。
- 正切函数:f(x) = tan(x),其中 x 为角度。
- 割函数:f(x) = csc(x),其中 x 为角度。
- 半角函数:f(x) = sin(x)/cos(x),其中 x 为半角。
- 函数图像:- 指数函数:形如 f(x) = a^x 的图像通常呈现出指数型增长。
- 对数函数:形如 f(x) = log_a(x) 的图像通常呈现出对数型增长。
- 三角函数:三角函数的图像通常呈现出周期性的变化。
- 不等式:- a + b > c 当且仅当 a > c 且 b > c。
- 对于任意实数 a、b、c,总有 a + b + c = 3a + 2b + c。
- 对于任意整数 a、b,总有 a + b = b + a。
2. 微积分:- 导数:- 导数的定义:f"(x) = lim(Δx->0) [f(x + Δx) - f(x)] / Δx。
- 导数的四则运算法则:- 链式法则:f"(x) = g"(h) + g"(x) * f"(h)。
- 乘积法则:f"(x) * g"(x) = f(x) * g"(x) + f"(x) * g(x)。
- 加积法则:f"(x) + g"(x) = f(x) + g(x)。
- 偏导数的定义:对于任意函数 f(x),总有 f"(x) = lim(Δx->0) [f(x + Δx) - f(x)] / Δx。
高中数学必备公式汇总
高中数学必备公式汇总在高中数学的学习中,公式是解题的基础和关键。
熟练掌握各种公式,能够让我们在解题时更加得心应手,提高解题的效率和准确性。
下面为大家汇总了高中数学中一些必备的公式。
一、函数相关公式1、一次函数:y = kx + b(k 为斜率,b 为截距)2、二次函数:y = ax²+ bx + c(a ≠ 0),其顶点坐标为(b/2a, (4ac b²)/4a) ,对称轴为 x = b/2a3、反比例函数:y = k/x(k 为常数)二、三角函数公式1、同角三角函数基本关系:sin²α +cos²α = 1,tanα =sinα/cosα2、诱导公式:sin(π +α) =sinα,cos(π +α) =cosα,sin(α) =sinα,cos(α) =cosα 等3、和差角公式:sin(α ± β) =sinαcosβ ± cosαsinβ,cos(α ± β) =cosαcosβ ∓ sinαsinβ4、二倍角公式:sin2α =2sinαcosα,cos2α =cos²α sin²α =2cos²α1 =1 2sin²α,tan2α =2tanα/(1 tan²α)三、数列相关公式1、等差数列通项公式:an = a1 +(n 1)d,前 n 项和公式:Sn =n(a1 + an)/2 = na1 + n(n 1)d/22、等比数列通项公式:an = a1q^(n 1),前 n 项和公式:当q ≠ 1 时,Sn = a1(1 q^n)/(1 q);当 q = 1 时,Sn = na1四、导数相关公式1、(C)'= 0(C 为常数)2、(x^n)'= nx^(n 1)3、(sin x)'= cos x4、(cos x)'= sin x5、(ln x)'= 1/x6、(e^x)'= e^x五、向量相关公式1、向量的数量积:a·b =|a||b|cosθ2、向量的模:|a| =√(x²+ y²)(a =(x, y))3、向量的加法:a + b =(x1 + x2, y1 + y2)4、向量的减法:a b =(x1 x2, y1 y2)六、立体几何相关公式1、长方体的体积:V = lwh(l 为长,w 为宽,h 为高)2、正方体的体积:V = a³(a 为棱长)3、圆柱的体积:V =πr²h(r 为底面半径,h 为高)4、圆锥的体积:V =1/3πr²h5、球的体积:V =4/3πr³6、球的表面积:S =4πr²七、概率相关公式1、古典概型概率:P(A) = A 包含的基本事件数/基本事件总数2、互斥事件概率:P(A + B) = P(A) + P(B)3、独立事件概率:P(AB) = P(A)P(B)八、统计相关公式1、平均数:x=(x1 + x2 ++ xn)/n2、方差:s²=(x1 x)²+(x2 x)²++(xn x)²/n3、标准差:s =√s²以上只是高中数学中的一部分必备公式,同学们在学习过程中要理解公式的推导过程,多做练习,熟练运用这些公式来解决各种数学问题。
高中数学公式大全总结必背公式
高中数学公式大全总结必背公式1. 代数公式1.1 一次函数公式- 点斜式方程:$y-y_1=m(x-x_1)$- 斜截式方程:$y=mx+c$- 两点式方程:$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$1.2 二次函数公式- 一般式方程:$y=ax^2+bx+c$- 顶点式方程:$y=a(x-h)^2+k$- 标准式方程:$y=a(x-p)(x-q)$1.3 等差数列公式- 第n项:$a_n=a_1+(n-1)d$- 前n项和:$S_n=\frac{n}{2}(a_1+a_n)$- 第n项与首项之差:$a_n-a_1=(n-1)d$1.4 等比数列公式- 第n项:$a_n=a_1q^{n-1}$- 前n项和:$S_n=\frac{a_1(q^n-1)}{q-1}$2. 几何公式2.1 圆的公式- 圆的面积公式:$S=\pi r^2$- 圆的周长公式:$C=2\pi r$2.2 三角形公式- 三角形面积公式:$S=\frac{1}{2}ab\sin C$- 三角形周长公式:$C=a+b+c$- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2=a^2+b^2-2ab\cos C$2.3 矩形公式- 矩形面积公式:$S=lw$- 矩形周长公式:$C=2(l+w)$- 矩形对角线长度公式:$d=\sqrt{l^2+w^2}$3. 微积分公式3.1 导数公式- 常数函数导数:$(k)'=0$- 幂函数导数:$(x^n)'=nx^{n-1}$- 指数函数导数:$(a^x)'=a^x\ln a$- 对数函数导数:$(\log_a{x})'=\frac{1}{x\ln a}$- 三角函数导数:$(\sin x)'=\cos x$, $(\cos x)'=-\sin x$, $(\tan x)'=\sec^2 x$3.2 积分公式- 幂函数积分:$\int x^n\ dx=\frac{1}{n+1}x^{n+1}+C$, ($n\neq -1$)- 指数函数积分:$\int e^x\ dx=e^x+C$- 三角函数积分:$\int \sin x\ dx=-\cos x+C$, $\int \cos x\ dx=\sin x+C$以上是部分高中数学公式的总结,希望能帮到你!记得多加练习和积累哦!。
高中数学公式大全(必备版)
高中数学公式大全(必备版)高中数学公式大全(必备版)篇一篇二篇三公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2k π+α)=sin α (k ∈Z)cos(2k π+α)=cos α (k ∈Z)tan(2k π+α)=tan α (k ∈Z)cot(2k π+α)=cot α (k ∈Z)公式二:设α为任意角,π +α的三角函数值与α的三角函数值之间的关系:sin( π+α)=-sin αcos( π+α)=-cos αtan( π+α)=tan αcot( π+α)=cot α公式三:任意角α与 - α的三角函数值之间的关系:sin(- α)=-sin α1cos(- α)=cos αtan(- α)=-tan αcot(- α)=-cot α公式四:利用公式二和公式三可以得到π- α与α的三角函数值之间的关系:sin( π- α)=sin αcos( π- α)=-cos αtan( π- α)=-tan αcot( π- α)=-cot α公式五:利用公式一和公式三可以得到2π- α与α的三角函数值之间的关系:sin(2 π- α)=-sin αcos(2 π- α)=cos αtan(2 π- α)=-tan αcot(2 π- α)=-cot α公式六:π/2 ±α及 3π/2 ±α与α的三角函数值之间的关系:sin( π/2+ α)=cos αcos( π/2+ α)=-sin αtan( π/2+ α)=-cot α2cot( π/2+ α)=-tan αsin( π/2- α)=cos αcos( π/2- α)=sin αtan( π/2- α)=cot αcot( π/2- α)=tan αsin(3 π/2+ α)=-cos αcos(3 π/2+ α)=sin αtan(3 π/2+ α)=-cot αcot(3 π/2+ α)=-tan αsin(3 π/2- α)=-cos αcos(3 π/2- α)=-sin αtan(3 π/2- α)=cot αcot(3 π/2- α)=tan α( 以上 k∈Z)注意:在做题时,将a 看成锐角来做会比较好做。
高中数学公式大全,高考复习必备
高中数学公式大全,高考复习必备以下是我整理的部分高中数学公式大全※基本初等函数【一次函数】-定义:形如y=ax+b(a≠0)的函数叫做一次函数。
-图象:一次函数的图象是一条直线,斜率为a,截距为b。
-性质:一次函数是奇函数,满足f(-x)=-f(x)。
【二次函数】-定义:形如y=ax^2+bx+c(a≠0)的函数叫做二次函数。
-图象:二次函数的图象是一条抛物线,对称轴为x=-b/2a,顶点为(-b/2a,f(-b/2a))。
-性质:二次函数是偶函数,满足f(-x)=f(x)。
【指数函数】-定义:形如y=a^x(a>0,a≠1)的函数叫做指数函数。
-图象:指数函数的图象经过点(0,1),当a>1时,图象在y轴右侧单调递增,在y轴左侧单调递减;当0<a<1时,图象在y轴右侧单调递减,在y轴左侧单调递增。
-性质:指数函数满足f(x+y)=f(x)*f(y),f(x-y)=f(x)/f(y),f(x*y)=(f(x))^y。
【对数函数】-定义:形如y=log_a x(a>0,a≠1)的函数叫做对数函数。
-图象:对数函数的图象经过点(1,0),当a>1时,图象在x轴右侧单调递增,在x轴左侧无定义域;当0<a<1时,图象在x轴右侧单调递减,在x轴左侧无定义域。
-性质:对数函数满足log_a(xy)=log_a x+log_a y,log_a(x/y)=log_a x-log_a y,log_a x^y=y*log_a x。
【幂函数】-定义:形如y=x^a(a≠0)的函数叫做幂函数。
-图象:幂函数的图象根据a的正负和奇偶有不同的情况。
当a>0时,图象在第一象限和第三象限;当a<0时,图象在第二象限和第四象限。
当a是奇数时,图象关于原点对称;当a是偶数时,图象关于y轴对称。
-性质:幂函数满足(x^a)^b=x^(ab),(xy)^a=x^a*y^a。
【根号函数】-定义:形如y=√x或者y=x^(1/2)的函数叫做根号函数。
高中数学《函数》常用公式
高中数学《函数》常用公式1.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.2.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 3.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.4.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.5.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=; 两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称. 6.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.7.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.8.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.9.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.11.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.12.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 13.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim 1x g x f x→==. 14.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ; (5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.15.分数指数幂(1)m n a=(0,,a m n N *>∈,且1n >). (2)1mn mn a a-=(0,,a m n N *>∈,且1n >). 16.根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩. 17.有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.18.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.19.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 20.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log aa a M M N N=-; (3)log log ()n a a M n M n R =∈. 21.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.22. 对数换底不等式及其推广若0a >,0b >,0x >,1x a≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数. , (2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n ++<.(2)2log log log 2a a am n m n +<.。
高中数学常用公式大全
高中数学常用公式大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。
- 若A⊆ B,则A中的元素都在B中。
- n个元素的集合的子集个数为2^n个,真子集个数为2^n - 1个。
二、函数。
1. 函数的定义域。
- 分式函数y=(f(x))/(g(x)),g(x)≠0。
- 偶次根式函数y = √(f(x)),f(x)≥slant0。
2. 函数的单调性。
- 设x_1,x_2∈[a,b]且x_1 < x_2,对于函数y = f(x)。
- 若f(x_1),则y = f(x)在[a,b]上单调递增。
- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上单调递减。
3. 函数的奇偶性。
- 对于函数y = f(x),定义域关于原点对称。
- 若f(-x)=f(x),则y = f(x)是偶函数。
- 若f(-x)= - f(x),则y = f(x)是奇函数。
4. 一次函数y=kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)。
5. 二次函数y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。
- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
6. 指数函数y = a^x(a>0,a≠1)- 当a>1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
7. 对数函数y=log_a x(a>0,a≠1,x>0)- 当a>1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。
高考数学常考的重要公式大全
高考数学常考的重要公式大全高中数学常用公式大全1.y=c y=02. y=α^μ y=μα^(μ-1)3. y=a^x y=a^x lna y=e^x y=e^x4. y=loga,x y=loga,e/x y=lnx y=1/x5. y=sinx y=cosx6. y=cosx y=-sinx7. y=tanx y=(secx)^2=1/(cosx)^28. y=cotx y=-(cscx)^2=-1/(sinx)^29. y=arc sinx y=1/√(1-x^2)10.y=arc cosx y=-1/√(1-x^2)11.y=arc tanx y=1/(1+x^2)12.y=arc cotx y=-1/(1+x^2)13.y=sh x y=ch x14.y=ch x y=sh x15.y=thx y=1/(chx)^216.y=ar shx y=1/√(1+x^2)高考数学必考公式知识点1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:1.等差数列中:S奇=na中,例如S 13 =13a 72.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4.等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q6.数列的终极利器,特征根方程。
高中数学公式大全总结免费
高中数学公式大全总结免费从其中一个顶点向一个边引一条线,交另一边上某一点,则这个图形变成有一条公共边且另一组边在同一直线上的两个三角形。
有六个内角,其中公共边与另一组在同一直线上的边相交形成的两个角中,每一个角都是一个三角形的一个内角,且是另一个三角形的一个外角……另外还有大于平角小于周角的角。
正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1一个园,弧长和半径相等时所对应的角度是1弧度.弧度和角度的换算关系:弧度*180/(2*π)=角度诱导公式★常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学公式总结:高中数学函数公式总结高中数学函数知识点总结
(1)高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称是的一次函数。
②当=0时,称是的正比例函数。
(3)高中函数的一次函数的图象及性质
①把一个函数的自变量与对应的因变量的值分别作为点的
横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数=的图象是经过原点的一条直线。
③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。
④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。
(4)高中函数的二次函数:
①一般式:,对称轴是
顶点是;
②顶点式:,对称轴是顶点是;
③交点式:,其中,是抛物线与x轴的交点
(5)高中函数的二次函数的性质
①函数的图象关于直线对称。
②时,在对称轴左侧,值随值的增大而减少;在对称轴右侧;的值随值的增大而增大。
当时,取得最小值
③时,在对称轴左侧,值随值的增大而增大;在对称轴右侧;的值随值的增大而减少。
当时,取得最大值
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。
9高中函数的图形的对称
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随
着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。
(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的
约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。
长期坚持,不断训练,幼儿说话胆量也在不断提高。