12 杂环化合物《有机化学》

合集下载

黑龙江省哈三中高中化学有机化学竞赛辅导第十二章杂环化合物

黑龙江省哈三中高中化学有机化学竞赛辅导第十二章杂环化合物

黑龙江省哈三中高中化学有机化学竞赛辅导第十二章杂环化合物第十二章杂环化合物一、定义和分类分子中含有由碳原子和其它原子共同组成的环的化合物称为杂环化合物。

杂环中的非碳原子称为杂原子,最常见的杂原子有N 、O 、S 等。

象环醚、内酯、环酐及内酰胺等似乎也应属于杂环化合物。

但是,由于这些环状化合物容易开环形成脂肪族化合物,其性质又与相应的脂肪族化合物类似,因此,一般不放在杂环化合物中讨论。

本章讨论的是环系比较稳定,并且在性质上具有一定芳香性的杂环化合物。

根据环数的多少分为单杂环和多杂环;单杂环又可根据成环原子数的多少分为五元杂环及六元杂环等;多杂环稠杂环、桥杂环及螺杂环,其中以稠杂环较为常见。

二、命名杂环化合物的名称包括杂环母体及环上取代基两部分。

杂环母环的命名有音译法和系统命名法2种。

音译法:是用外文谐音汉字加“口”偏旁表示杂环母环的名称。

如呋喃等。

系统命名法:是把杂环看作杂原子转换了相应碳环中的碳原子,命名时以相应的碳环为母体,在碳环名称前加上杂原子的名称,称为“某(杂)某”。

如吡啶称为氮(杂)苯,喹啉称为1-氮(杂)萘。

杂环母环的编号规则(1)含1个杂原子的杂环,从杂原子开始用阿拉伯数字或从靠近杂原子的碳原子开始用希腊字母编号。

(2)如有几个不同的杂原子时,则按O 、S 、-NH-、-N=的先后顺序编号,并使杂原子的编号尽可能小。

(3)有些稠杂环母环有特定的名称和编号原则。

杂环的命名如下:2-硝基吡咯 4-甲基吡啶 2-甲基-5-苯基噻唑α-硝基吡咯γ-甲基吡啶3-甲基-8-羟基喹啉1-甲基-7-氯异喹啉1-甲基-2-巯基咪唑 2-呋喃甲醛(糠醛) 2-噻吩磺酸 3-吡啶甲酰胺α-呋喃甲醛α-噻吩磺酸β-吡啶甲酰胺三、五元杂环化合物(一)吡咯、呋喃和噻吩1、结构与芳香性吡咯环的4个碳原子和1个氮原子都以SP 2杂化轨道成键。

环上各原子以σ键相连成平面环状结构。

氮原子的P 轨道(有2个电子)与各碳原子的4个P 轨道相互侧面重叠,并垂直于σ键所在的平面,形成了具有6个π电子的闭合共轭体系。

《有机化学》杂环化合物

《有机化学》杂环化合物
噁唑
N H Pyrrole
吡咯
N
N H Imidazole
咪唑
N O Isoxazole
异噁唑
N N H Pyrazole
吡唑
S
Thiophene
噻吩
N
S Thiazole
噻唑
N S Isothiazole
异噻唑
4
六元环
含一个杂原子:
N Pyridine
吡啶
OБайду номын сангаас
Pyran
吡喃
含两个杂原子:
N N Pyridazine
在所有的杂环母核中,凡是具有共轭双键体系的五 元环和六元环,都具有芳香性。
五个原子分享六个π电子,电子离域使环上各碳原 子的电子云密度相对升高,这类杂环进行亲电性取 代比苯容易。
呋喃
噻吩
吡咯
11
六元杂环化合物:吡啶 •氮原子sp2杂化 •构成芳香体系的是π-π共轭。 •由于氮原子的电负性较强,使 环上碳原子的电子云密度相对 降低,亲电性取代反应比苯要 难,主要在间位。
N
300 oC
H2SO4, SO3 N 230 oC, 24 h
Br
N
-溴吡啶
SO3H
N
-吡啶磺酸
KNO3 + H2SO4
NO2
N
Fe, 300 oC
N -硝基吡啶
16
亲核取代比苯容易,主要发生在α位上。
了解
N
+ NaNH2 100℃
N
H2O NHNa
N NH2
当α 或 γ位上有易离去基时,较弱的亲核试剂就能 发生亲核取代反应。
代基的杂原子编号为1,并使另一个杂原子的编号

有机化学基础知识点杂环化合物的合成与反应

有机化学基础知识点杂环化合物的合成与反应

有机化学基础知识点杂环化合物的合成与反应有机化学是研究含碳的化合物以及其反应机理的学科。

杂环化合物是其中一类重要的有机化合物,由多个不同的原子构成的环状结构赋予其特殊的性质和活性。

本文将重点介绍杂环化合物的合成与反应。

一、杂环化合物的合成1. 环状结构的直接合成直接合成是指通过无需过多中间步骤,直接将杂环结构形成的方法。

最常见的有两种:环内缩合与环外缩合。

环内缩合是通过分子内的反应实现环状结构的形成。

例如,可以通过两个官能团的内部反应,如酰胺和酰胺之间的内酰胺化反应,形成含有杂环结构的化合物。

环外缩合是通过分子间的反应实现环状结构的形成。

例如,可以通过偶氮化物和亲电试剂的反应,形成含有杂环结构的化合物。

2. 环状结构的间接合成间接合成是指通过多步反应,将不同的官能团转化为杂环结构。

这种方法更加灵活,可以根据具体需求选择不同的反应路径。

常见的方法有:(1) 拉曼反应:通过烷基金属物与芳香酮之间的反应,将芳香酮上的羰基还原成羟基,形成杂环结构。

(2) 脱水环化反应:通过脱水反应形成环状结构。

最常见的是使用酸催化剂将醇或酸上的羟基与相邻的官能团上的氢原子进行消除反应,形成杂环结构。

(3) 杂环化合物的可溶性和稳定性增大,可使用催化剂或光催化反应进行合成。

二、杂环化合物的反应1. 变性反应杂环化合物可以通过一系列的变性反应进行官能团的转换。

例如,通过酸催化或碱催化的酯水解反应,将酯转化为醇或酸;通过羟胺或胺与酸酐或酰氯的反应,形成酰胺或酰脲。

2. 变位反应变位反应是杂环化合物中常见的反应之一,通过杂环结构上的元素进行位置的变化。

例如,通过环内亲电试剂的攻击,实现环内碳-氧的位置变化,形成环内醇或环内醚。

3. 开环反应通过开环反应,可以将杂环化合物打开,形成更加简单的化合物。

其中最常见的是酸性水解和碱性水解反应,将杂环结构上的官能团裂解成独立的官能团。

综上所述,杂环化合物的合成与反应是有机化学中重要的研究领域。

有机化学第12章 杂环化合物

有机化学第12章 杂环化合物

生物碱
存在于植物体内的一类碱性含氮有机化合物称为生物碱。
HO O
CH3 N H O-C-CH 952年确定结构。)
H O-C H
C H3O
颠茄碱(阿托品)
CH=C H2
N N CH3
N 金鸡纳碱(奎宁)
烟碱(尼古丁)
有芳香性
有芳香性
12.3 五元杂环化合物
12.3.1 呋喃
存在于松木焦油中,为无色液体,难溶于水,易溶于有机溶剂。其蒸汽遇 有被盐酸浸过的松木时,即呈绿色(叫松木反应,鉴别呋喃的存在)。
工业上用糠醛(-呋喃甲醛)制备:
(1)呋喃的制备
• 实验室采用糠酸加热脱羧制得:
(2)化学性质
呋喃具有芳香性,较苯活泼,容易发生取代反应;还有一定程度的不饱和 化合物的性质(发生加成反应)。
芳香性强弱的次序
苯 > 噻吩 呋喃 112 离域能:152
取代反应活性的次序
>
吡咯
>
88
62 KJ/mol
位电子 云密度 -0.10
• 吡咯 > 呋喃 > 噻吩 > 苯 -0.03 -0.06 0 (不一致)
(2)六元杂环化合物——吡啶
氮原子与碳原子处在同一平面。 吡啶的结构与苯相似,符合休克尔规则,具有芳香性。
第12章 杂环化合物
一般把除碳以外的成环原子叫杂原子,常见的杂原子有氧、硫和氮:
• 环系中可含一个、两个或多个相同或不同的杂原子。
•环可以有三元环、四元环、五元环、六元环或更大,可以 是稠合的环。
• 杂环化合物种类繁多,约占全部已知有机化合物的 三分之一。
• 已经学过的杂环化合物:
• 本章介绍的是具有不同芳香性的杂环化合物(简称芳杂 化合物)。

有机化学中的杂环化合物

有机化学中的杂环化合物

有机化学中的杂环化合物有机化学是研究含有碳元素的化合物的科学,而杂环化合物则是其中的一个重要分支。

杂环化合物指含有不同种类的原子构成的环状分子结构,较为复杂且具有广泛的应用领域。

本文将介绍杂环化合物的特点、合成方法以及其在药物研发、材料科学等领域的应用。

一、杂环化合物的特点杂环化合物相对于纯碳环化合物而言,在结构上更加多样化复杂。

其分子结构中含有不同种类的原子,例如氧、氮、硫等,这些原子的加入使得杂环化合物具有更多的化学性质和应用价值。

与其它类型的有机化合物相比,杂环化合物不仅具有较高的化学活性,还表现出更多的生物活性,因此在医药领域中具有重要的地位。

二、杂环化合物的合成方法1. 环加成反应:环加成反应是最常用的合成杂环化合物的方法之一。

该反应通过在分子中引入一个或多个非常活泼的碳原子,进而使其与分子内的其它部分发生反应,从而形成杂环结构。

环加成反应的应用十分广泛,不仅可以用于合成天然产物和药物分子,也可以用于构建新型材料等领域。

2. 脱水缩合反应:脱水缩合反应是另一种常用的杂环化合物合成方法。

在这类反应中,两个或多个分子通过脱水缩合形成新的分子,并在过程中形成杂环结构。

这种方法的优点是原料易得且反应条件温和,适用于大规模合成。

3. 氧化反应:氧化反应是一种引入氧原子的方法,常用于合成含有杂环结构的化合物。

具体来说,通过选择合适的氧化剂,可以将杂环化合物中的氢原子氧化为羟基或羰基等含氧官能团,从而形成具有新特性的分子结构。

三、杂环化合物在药物研发中的应用由于其特殊的结构和多样的化学性质,杂环化合物在药物研发中具有广阔的应用前景。

大量的已上市药物以及正在研发的新药都含有杂环结构。

杂环化合物在这一领域的应用主要表现在两个方面:1. 抗肿瘤药物:许多抗肿瘤药物都是杂环化合物,其通过与癌细胞中的特定酶或DNA结合,从而抑制癌细胞的生长和分裂。

其中,典型的例子包括含有异喹啉、吡嗪等杂环结构的药物。

这些药物的研发和应用使得抗癌治疗取得了重大突破。

有机化学基础知识点整理杂环化合物的性质与应用

有机化学基础知识点整理杂环化合物的性质与应用

有机化学基础知识点整理杂环化合物的性质与应用杂环化合物是有机化学中一类具有杂原子(通常是氮、氧、硫等非碳原子)构成的环状分子。

它们具有多种独特的性质和广泛的应用。

本文将整理一些重要的有机化学基础知识点,涵盖杂环化合物的性质和应用。

一、杂环化合物的命名和结构杂环化合物的命名使用通常的有机化学命名法,如官能团命名法、光谱法等。

其结构通常由杂原子和碳原子组成,可以包含一个或多个杂环。

其中,氮杂环化合物如吡嗪、噻吩和咪唑等具有广泛的结构多样性和化学活性。

二、杂环化合物的性质1. 杂环化合物的稳定性:杂环化合物中的杂原子可以增加分子的稳定性,一些杂环化合物比它们的同系物更稳定。

例如,咪唑酮比噻唑酮更稳定,这是由于含氮原子的电子亲和力高于含硫原子的电子亲和力。

2. 杂环化合物的化学反应:杂环化合物中的杂原子可以参与许多重要的化学反应,如亲电取代、亲核取代、氧化还原等。

以氮杂环化合物为例,它们可以发生亲电取代反应,如芳香性亲电取代、加成反应等。

3. 杂环化合物的光学性质:杂环化合物中存在的共轭体系可以产生有趣的光学性质,如荧光、蓝光发射等。

研究人员利用这些性质开发出许多发光材料,应用于有机光电子器件、荧光探针等领域。

三、杂环化合物的应用1. 杂环化合物在药物领域的应用:许多杂环化合物具有药理活性,并被用作药物的活性成分。

例如,噻唑类和咪唑类化合物具有抗菌和抗肿瘤活性,吡唑类和吡唑酮类化合物被广泛应用于抗癌药物研究。

2. 杂环化合物在染料领域的应用:杂环化合物可以用作染料分子的基础结构,赋予染料分子良好的色谱性能和稳定性。

它们在纺织、油墨和染料敏化太阳能电池等领域有广泛应用。

3. 杂环化合物在有机电子器件中的应用:杂环化合物具有优异的载流子传输性能和独特的光学性质,因此被广泛应用于有机发光二极管(OLED)、有机太阳能电池和有机场效应晶体管等器件中。

四、结语本文对有机化学基础知识中的杂环化合物的性质和应用进行了整理和阐述。

大学有机化学 第二版 叶非 袁光耀主编 课后习题答案第12章

大学有机化学 第二版 叶非 袁光耀主编 课后习题答案第12章
思考题 12-1 思考题 12-2 思考题 12-3 思考题 12-4
第 12 章 杂环化合物
(1) α-呋喃乙酸 (2) α-噻吩磺酸 (3) 4-甲基咪唑 吡咯 > 呋喃 > 噻吩 > 苯 > 四氢吡咯>吡啶>苯胺>吡咯 习题
12-1 (1) 2,4-二甲基噻唑 (2) N-甲基吡咯 (3) 5-溴-2-呋喃甲酸 (4) 3,5-二甲基吲哚 (5) 3,5-二溴吡啶 (6) 8-羟基喹啉 (7) 6-氨基嘌呤 (8) 2,3-吡啶二甲酸 (9) 2-氨基嘧啶 12-2
3-呋喃甲醛
12-3
12-4 (1) 六氢吡啶>氨>吡啶>吡咯 (2) 甲胺>γ-甲基吡啶>吡啶>苯胺 12-5 (1) 加入盐酸,吡啶与盐酸成盐,过滤后得甲苯 (2) 加苯磺酰氯,与六氢吡啶生成沉淀,过滤后得吡啶 (3) 加入浓硫酸,与噻吩生成噻吩磺酸而溶于硫酸中,分液得苯 12-6
12-8 2-呋喃甲醛 或

大学无机化学 第十二章 杂环化合物总结

大学无机化学 第十二章 杂环化合物总结
三元杂环 四元杂环 五元杂环 七元杂环
O
O
O O
(环氧乙烷) (β-丙内酯)
H N
O NH
(氮杂环丙烷) (β-丙内酰胺)
(顺丁烯二酸酐) (氧杂桌)
N H
(1H-氮杂桌)
多杂原子环 或多杂环
O N H N
1-氧-4-氮杂环己烷
奎宁环
1.2 芳香杂环化合物的分类
杂化化合物特指: 环状化合物具有芳香结构(闭合共轭体系),一定程度的 稳定性。
吡 咯 N( 孤 电 子 对参与共轭,所 以碱性较弱)
N O
<
N S
N
N H 吡咯N(孤电子对参与 共轭,所以碱性较弱)
<
1,2-唑与1,3-唑都有未成键孤电子对,所以都有碱性。
2 唑类杂化的反应--亲电取代反应
唑的反应性比呋喃、噻吩、吡咯差,这是因为分子中多了一个 吡啶N,使共轭体系的电子云密度降低,所以亲电反应活性降低。
CH3
4
3 O 2 1
Br Br
2-甲基-5-硝基-1-(2’-羟 乙基)吡咯
5
2,3-二溴呋喃
(2) 五元杂环苯并体系
4 5 6 7 O 1 3 2
5 6 7 S 1 4 3 2
5 6 7 N H1 4 3 2
苯并呋喃 (benzofuran)
苯并噻吩 (benzothiophene)
苯并吡咯 吲哚 (indole)
磺化须强烈条件下进行反应
HO3S S
N S
S O3 + 浓 H2S O4
N
S
发烟 H 2S O4 , HgS O 4
N
N
(90 %)
250℃
HO3S

杂环化合物和生物碱-有机化学

杂环化合物和生物碱-有机化学

溶解1份吡咯、呋喃及噻吩,分别需要17、 35、700份的水。 当五元杂环上连有羟基时,溶解度增大。
如: O
H3C O OH
S
S
OH
(1:35)
(1:20)
(1:700)
(1:16)
3. 杂环化合物的化学性质 (1)、亲电取代反 应
N H O S
HNO3
I2 NaOH
吡咯、呋喃、噻吩 α位取代
I
第四节 稠杂环化合物
稠杂环化合物是指苯环与杂环稠合或杂环与杂环稠合在一起的化 合物。常见的有喹啉、吲哚和嘌呤。
泳衣品牌
3 2 d ★ c
N
a b
N
1
N
★ b 2 a 3
N1
S
N
吡啶并[2,3-d]嘧啶
咪唑并[2,1-b] 噻唑
第二节
五元杂环化合物
五元杂环化合物包括含有1个杂原子的五元杂 环和含2个杂原子的五元杂环。 一、含1个杂原子的五元杂环化合物 1.结构
4 5 1N 3 2
4 5 3 2 4 5 3 2
OH
2.亲电取代反应
Cl2, AlCl 3 100 ℃ Br2, 浮石催化 300 ℃ 气相
Cl
3 氯吡啶
N
Br
3 溴吡啶
N
NO2
N
浓 H2SO4 HgSO4 催化, ℃ 220 混酸 300 ℃
3 硝基吡啶
N
SO3H
吡啶 3 磺酸
N
3.氧化还原反应
(1)氧化反应
COOH N β 吡啶甲酸(烟酸) HNO 3 N COOH N α 吡啶甲酸
由于吡啶环的N上在环外有一孤对电子,故吡啶环上的电荷分布不均。

有机化学精品课件——杂环化合物

有机化学精品课件——杂环化合物

杂环化合物在材料科学中具有广泛的应用,因为它们可以提供优良的物理和化学性能。例如,聚酰亚胺、聚醚醚酮等杂环高分子材料在航空航天、电子和汽车等领域广泛应用。
杂环化合物作为材料合成的关键组分,能够提高材料的耐热性、耐腐蚀性和机械性能等,同时降低生产成本和提高生产效率。
杂环化合物的研究进展与展望
05
在亲电反应机理中,试剂的性质和杂环化合物上的取代基的性质都会影响反应的进程和产物的生成。因此,在选择合适的试剂和反应条件时,需要考虑这些因素。
亲核反应机理是指反应过程中,试剂首先进攻杂环化合物上的电子云密度较高的部位,从而形成负碳离子中间体。然后,负碳离子中间体再与试剂发生反应,形成新的键,最终生成产物。
杂环化合物的应用
04
杂环化合物在药物合成中具有广泛的应用,因为它们具有独特的化学结构和生物活性。例如,嘧啶衍生物在抗肿瘤药物中发挥重要作用,喹啉衍生物具有抗菌和抗癌活性。
杂环化合物作为药物合成中的关键中间体,可用于合成多种类型的药物,如抗高血压药物、抗病毒药物和抗癌药物等。
VS
杂环化合物在农药合成中具有不可替代的地位,因为它们可以提供高效、低毒、低残留的农药。例如,吡啶衍生物可用于合成除草剂和杀虫剂,嘧啶衍生物可用于合成杀菌剂和杀虫剂。
杂环化合物作为农药合成的关键组分,能够提高农药的生物活性、选择性和稳定性,从而降低对环境和人体的危害。
杂环化合物在染料合成中具有重要作用,因为它们可以提供鲜艳的色彩和优良的染色性能。例如,偶氮染料和酞菁染料等杂环染料在纺织品、皮革和纸张等领域广泛应用。
杂环化合物作为染料合成的关键组分,能够提高染料的色牢度和稳定性,同时降低生产成本和对环境的污染。
杂环化合物的物理性质与其结构密切相关,如熔点、沸点、溶解度等。

《有机化学》章节目录

《有机化学》章节目录

《有机化学》章节目录绪论1.有机化合物的定义2有机化合物的特性2.1有机化合物组成单元的特点-----有机化合物种类繁多2.2 有机化合物结构上的特点-----同分异构现象2.3 有机化合物性质上的特点-----易燃难溶反应慢3 有机化合物中的共价键4 有机化合物的结构4.1分子的结构4.2 分子间作用力5有机化合物的分类5.1 碳架分类5.1.1开链化合物5.1.2碳环化合物5.2官能团分类6 有机化学中的酸碱概念6.1酸碱的电离理论6.2酸碱质子理论6.3酸碱电子理论7 现代有机合成手段7.1有机热反应7.2有机光反应7.3有机电合成7.4有机声化学7.5有机微波化学反应8现代光谱技术8.1 红外光谱8.2 紫外光谱8.3 核磁共振谱8.4 质谱阅读材料-文献与有机化学学习参考第一章烷烃和环烷烃1.1烷烃和环烷烃的通式和构造异构1.1.1 烷烃和环烷烃的通式1.1.2 烷烃和环烷烃的构造异构1.1.3 分子式、构造式和构造简式1.2烷烃和环烷烃的命名1.2.1伯、仲、叔、季碳原子与伯、仲、叔氢原子1.2.2 烷基的概念1.2.3 烷烃的命名1.2.4 环烷烃的命名1.3 烷烃和环烷烃的结构1.3.1 烷烃的结构1.3.2 环烷烃的结构与环的稳定性1. 4 烷烃和环烷烃的构象1.4.1 乙烷的构象1.4.2 丁烷的构象1.4.3 环己烷的构象1.4.4 取代环己烷的构象1.5烷烃和环烷烃的物理性质1.5.1 沸点1.5.2 熔点1.5.3相对密度1.5.4溶解度1.5.5折射率1.6烷烃和环烷经的化学性质1.6.1自由基取代反应1.6.2氧化反应1.6.3异构化反应1.6.4裂化反应1.6.5小环环烷烃的加成反应1.7 烷烃和环烷烃的主要来源和制法1.7.1烷烃和环烷烃的来源——石油和天然气1.7.2烷烃和环烷烃的制法第二章烯烃和二烯烃2.1 烯烃的分类异构和命名2.1.1 烯烃的分类2.1.2 烯烃的结构2.1.3 烯烃的命名(2.2 烯烃的物理性质2.3烯烃的来源和制法2.3.1烯烃的来源2.3.2 烯烃的制法2.4 烯烃的反应2.4.1烯烃的催化加氢2.4.2 烯烃的亲电加成2.4.3 烯烃的自由基加成反应2.4.4烯烃的氧化反应2.4.5 烯烃的硼氢化反应2.4.6 烯烃α-氢取代反应2.4.7烯烃的聚合反应2.5 共轭二烯烃2.5.1共轭二烯烃的结构2.5.2共轭二烯烃的共轭现象2.5.3共轭二烯烃的反应2.5.4共轭体系与共轭二烯烃加成反应历程2.6 异戊二烯和橡胶阅读材料:烯烃的复分解反应第三章炔烃3.1 炔烃的结构3.2 炔烃的异构和命名3.3 炔烃的物理性质3.4 炔烃的化学性质3.4.1 叁键碳上氢原子的活泼性(弱酸性) 3.4.2 加成反应3.4.3 氧化反应3.4.4 聚合反应3.5 重要的炔烃-乙炔阅读材料:导电聚合物——聚乙炔第四章芳烃及非苯芳烃4.1 苯的结构4.1.1 苯的凯库勒式4.1.2苯分子结构的近代概念4.1.3苯的结构的表示方法4.2苯的异构现象和命名4.2.1 苯的异构现象4.2.2 命名4.3 芳烃的来源和制法4.4芳烃的物理性质4.5芳烃的化学性质4.5.1 亲电取代反应4.5.2 苯的加成和氧化反应4.5.3芳烃侧链反应4.6 苯环上亲电取代反应的规律4.6.1 定位效应4.6.2定位规律的理论解释4.6.3苯的二元取代产物的定位规律4.6.4 定位规律在合成中的应用4.7 多环芳烃4.8非苯芳烃4.9 重要的化合物阅读材料:苯的发现和苯分子结构学说第五章立体化学5.1 手性和对映体5.2 分子的对称因素5.3 旋光性和比旋光度5.3.1 旋光性5.3.2 旋光仪与比旋光度5.4 含一个手性碳原子的化合物5.4.1 手性碳原子5.4.2 外消旋体5.5 构型的表示方法、构型的确定和构型的标记5.5.1 构型的表示方法5.5.2 构型的标记5.6 含有多个手性碳原子化合物的立体异构5.7 含假不对称碳原子的分子5.8 外消旋体的拆分5.9 不对称合成(手性合成)5.10含手性碳原子的化合物的对映异构阅读材料:诺贝尔化学奖与手性化合物第六章卤代烃6.1 卤代烃的分类、命名6.2 卤代烃的制法6.3卤代烃的物理性质6.4 卤代烃的化学性质6.4.1亲核取代反应6.4.2消除反应6.4.3与金属作用6.4.4 还原反应6.5 卤代烃的亲核取代反应机理6.5.1双分子亲核取代反应机理6.5.2 单分子亲核取代反应机理6.5.3影响亲核取代反应的因素6.6卤代烃的消除反应机理6.7 卤代烯烃和卤代芳烃6.8重要的卤代烃阅读材料:饮水中卤代烃第七章醇和醚7.1 醇的结构、分类和命名7.1.1醇的结构7.1.2醇的分类和命名7.2 醇的来源与制备7.2.1醇的工业来源与制备7.3醇的物理性质7.4醇的化学性质7.4.1 羟基中氢的反应7.4.2 醇的氧化与脱氢反应7.4.3醇羟基的亲核取代反应7.4.4 醇的脱水反应7.4.5成酯反应7.4.6多元醇的特殊性质7.5 重要的醇7.6醚的结构、分类与命名7.6.1醚的结构、分类7.6.2 醚的命名7.7醚的来源与制备7.7.1由醇脱水7.7.2威廉姆逊(Williamson)合成法7.7.3乙烯基醚的制取7.8醚的物理性质7.9醚的化学性质7.9.1形成8.1.2酚的命名8.2酚的来源与制备8.2.1酚的天然来源8.2.2人工合成法8.2.3 卤代芳烃水解法8.2.4 重氮盐水解法8.3酚的物理性质8. 4酚的化学性质8.4.1酚羟基的反应8.4.2、与三氯化铁的反应8.4.3、芳环上的反应8.4.4、氧化反应8.4.5、还原反应8.4.6、酚的其它反应8. 5重要的酚8.6醌的结构和命名8.7醌的来源与制备8.8醌的化学性质9.8.1加成反应8.8.2.还原反应8.9重要的醌阅读材料:超分子化学第三代主体----杯芳烃第九章醛、酮9.1 醛和酮的结构9.2醛和酮的分类和命名9.2.1 醛酮的分类9.2.2 醛酮的命名9.3.醛酮的制备方法9.3.1由烯烃和炔烃制备9.3.2 由同碳二卤代物水解制备9.3.3 由醇氧化或脱氢反应制备9.3.4 由芳烃制备9.3.5 由酰氯制备9.3.6 由腈制备9.4醛酮的物理性质9.5化学性质9.5.1 亲核加成反应9.5.2 羰基α-H的反应9.5.3 醛酮的氧化和还原9.6重要的醛、酮第十章羧酸及其衍生物10.1 羧酸的结构、分类和命名10.1.1 羧酸的结构10.1.2 羧酸的分类和命名10.2 羧酸的制法10.2.1 氧化法10.2.2 水解法10.2.3 Grignard试剂与CO2作用10.3 羧酸的物理性质10.4 羧酸的化学性质10.4.1羧酸的酸性和电子效应10.4.2 羰基的还原反应10.4.3 脱羧反应10.4.4羧酸衍生物的生成10.4.5 a-氢原子的反应10.5 取代酸10.5.1 卤代酸10.5.2 羟基酸10.6 重要的羧酸10.7 羧酸衍生物的命名10.8 羧酸衍生物的制法10.8.1 酰氯的制法10.8.2 酸酐的制法10.8.3 羧酸酯的制法10.8.4 酰胺的制法10.8.5 腈的制法10.9 羧酸衍生物的物理性质10.10 羧酸衍生物的化学性质10.10.1 酰基碳上的亲核取代(加成-消除)反应10.10.2 水解10.10.3 醇解10.10.4 氨解10.10.5 酸解10.10.6 与Grignard试剂的反应10.10.7 还原10.10.8 氧化10.10.9霍夫曼(Hofmann)降解10.11 重要的羧酸衍生物10.12 油脂和蜡(Oil and Wax)10.12.1 油脂的组成和结构10.12.2 油脂的性质10.12.3 蜡10.13碳酸衍生物10.13.1 碳酰氯10.13.2 碳酰胺10.13.3胍10.14 腈及其衍生物10.14.1腈10.14.2 异腈10.14.3 异氰酸酯阅读材料:共轭二油酸第十一章b-二羰基化合物11.1 烯醇式和酮式的互变异构11.1.1 酸和碱对烯醇式和酮式的互变异构的影响11.1.2 化合物结构对烯醇式和酮式的互变异构的影响11.1.3 b-二羰基化合物的酸性和烯醇负离子的稳定性11.2 乙酰乙酸乙酯的合成及其应用11.2.1 克莱森(酯)缩合反应(Claisen condensation) 11.2.2 乙酰乙酸乙酯在有机合成上的应用11.3 丙二酸酯的合成及在有机合成中的应用11.4碳负离子的亲核加成反应及在有机合成上的应用11.4.1麦克尔反应(Michael reaction)11.4.2瑞佛马斯基反应11.4.3克脑文盖尔反应11.4.4达尔森反应11.4.5普尔金反应阅读材料:β-二羰基化合物的应用第十二章含氮化合物12.1 硝基化合物的分类、结构和命名12. 2硝基化合物的制备12.3 物理性质12.4 化学性质12.4.1 酸性12.4.2 缩合反应12.4.3 还原反应12.4.4 硝基对苯环邻、对位基团的影响12.5 胺的结构、分类和命名12.5.1的结构12.5.2 胺的分类和命名12.6 胺的制法12.6.1 氨或胺的烃基化12.6.2 硝基化合物的部分还原12.6.3 腈和酰胺的还原12.6.4 霍夫曼(Hofmann)降解反应12.6.5 盖布瑞尔(Gabriel)合成法12.6.6 醛或酮的氨化还原12.7 胺的物理性质12.8 胺的化学性质12.8.1 胺的碱性12.8.2烷基化反应12.8.3 酰基化反应12.8.4 磺酰化反应12.8.5 与亚硝酸反应12.8.6 氧化反应12.8.7 芳胺芳环上的反应12.9 季铵盐与季铵碱12.9.1 季铵盐12.9.2 季铵碱12.10 重氮盐的制备及其结构12.11 重氮盐的反应及其应用12.11.1 放氮反应12.11.2 留氮反应12.12 偶氮化合物和偶氮染料12.13 重氮甲烷12.14 叠氮化合物第十三章杂环化合物13.1 杂环化合物的分类和命名13.2 五元杂环化合物13.2.1 含有一个杂原子的五元杂环体系13.2.2 含有两个杂原子的五元杂环体系13.2.3 五元稠杂环体系13.3 六元杂环化合物13.3.1 含有一个杂原子的六元杂环体系13.3.2 含有两个杂原子的六元杂环体系13.3.3六元稠杂环体系阅读材料:生物碱第十四章天然化合物----糖,氨基酸,萜及甾族化合物14.1 糖14.1.1 单糖14.1.2 双糖14.1.3多糖14.2 氨基酸14.2.1氨基酸的结构、命名和分类14.2.2 氨基酸的制法14.2.3氨基酸的性质14.3 萜类14.3.1萜的涵义和异戊二烯规律14.3.2 萜的分类和命名14.4 甾族化合物14.4.1甾的基本结构和命名14.4.2甾族化合物的结构14.4.3甾族的种类阅读材料:米勒人工合成氨基酸。

有机化学杂环化合物

有机化学杂环化合物

有机化学杂环化合物有机化学杂环化合物是由碳以外的元素(通常是氮、氧或硫)组成的化合物,其中至少一个炭原子和这些元素原子形成共价键。

这些化合物常常作为药物、染料、及其它重要化合物的基础结构。

一、常见的有机化学杂环化合物及其特性1. 含氮杂环化合物:其中最常见的是吡咯烷(pyrrolidine)及其衍生物。

这类化合物可以吸收紫外线,常用作苯乙酮的合成中间体,制药、农药、染料等各方面应用广泛。

2. 含氧杂环化合物:其中最常见的是吡喃(furan)。

在生物体内有重要的作用,如可用于合成DNA(脱氧核糖核酸)和RNA (核糖核酸)的成分。

3. 含硫杂环化合物:其中最常见的是噻吩(thiophene)。

它们通常具有很好的电子传导性质,可以用作半导体材料、涂料和染料等领域。

二、有机化学杂环化合物的制备方法1. Hantzsch合成法:Hantzsch合成法是常见的含氮杂环化合物制备方法,为β-二酮与1,4-二胺或是1,3-二醇反应,生成相应的杂环化合物。

2. Paal-Knorr合成法:Paal-Knorr反应是一种常见的含硫或含氧杂环化合物制备方法,用有官能基的酮或羧酸与无官能基化合物反应生成对应杂环化合物。

3. Pinner反应:Pinner反应是一种含氮杂环化合物制备方法,用苯酸酰氯与硫酸铵塔反应得到相应的吡啶盐。

三、应用领域1. 作为药物:含杂环化合物在药物领域中占据重要地位,如吉非替尼(alectinib)、西妥昔单抗(rituximab)等,广泛用于治疗肺癌等疾病。

2. 作为染料:有机化学杂环化合物可作为重要的染料合成中间体,用于制作多种颜色的染料。

3. 作为涂料:有机化学杂环化合物可用于制作防腐涂料和抗紫外线涂料等。

总之,有机化学杂环化合物是重要的有机化合物之一,具有广泛的应用领域,对于其制备、性质和应用的研究具有重要意义。

有机化学中的环状化合物与杂环化合物

有机化学中的环状化合物与杂环化合物

有机化学中的环状化合物与杂环化合物有机化学是研究有机物质及其变化规律的学科,其中环状化合物与杂环化合物是其重要研究对象。

环状化合物是由碳原子构成的环状结构,而杂环化合物中则包含了除碳原子外的其他原子。

本文将介绍环状化合物与杂环化合物的特点、分类和应用。

一、环状化合物环状化合物由碳原子通过共用电子对形成环状结构,具有独特的性质和应用价值。

根据环状碳原子的数目,环状化合物可分为单环、双环、多环等不同类型。

1. 单环化合物单环化合物中,碳原子形成一个闭合的环状结构。

最简单的单环化合物是环丙烷,分子式为C3H6,其分子结构呈三角形。

单环化合物通常具有较高的稳定性和惰性。

2. 双环化合物双环化合物由两个或多个环状碳原子结构连接而成。

最常见的双环化合物是环己烷,分子式为C6H12,由两个共用一个碳原子的环丙烷环组成。

双环化合物的稳定性和反应性较单环化合物有所不同,常用于合成、催化等领域。

3. 多环化合物多环化合物指由三个或三个以上的环状碳原子结构连接而成,可以形成多种复杂的分子结构。

多环化合物常常具有复杂的空间构型和多样的活性。

例如,萜烯类化合物就是一类多环化合物,其分子结构包含多个环状碳原子结构,具有重要的药学、生物活性。

二、杂环化合物杂环化合物是指除了碳原子外,还含有其他原子(如氮、氧、硫等)的环状化合物。

杂环化合物在有机化学中具有广泛的应用和研究价值。

1. 含氧杂环化合物含氧杂环化合物中,环状结构中含有一个或多个氧原子。

其中,最常见的含氧杂环化合物是环己酮,分子式为C6H10O,它含有一个氧原子和一个六元环。

含氧杂环化合物在药物合成、涂料、溶剂等方面具有广泛的应用。

2. 含氮杂环化合物含氮杂环化合物是有机化学中研究较为深入的一类杂环化合物,其环状结构中含有一个或多个氮原子。

最著名的含氮杂环化合物是吡咯烷,分子式为C4H5N,它由一个由四个碳原子和一个氮原子构成的环状结构组成。

含氮杂环化合物在农药、染料、药物等领域具有重要的应用价值。

有机化学杂环化合物

有机化学杂环化合物

活性部位
02
由于杂原子的存在,亲核取代反应也可能发生在杂原子位置,
形成新的杂环化合物。
反应机理
03
亲核试剂首先与杂环化合物形成σ络合物,然后进行质子转移,
生成取代产物。
加成反应
01
电性影响
杂环化合物的电性受其杂原子的电负性和电子云密度影响,使得加成反
应在杂环化合物中具有特定的选择性。
02
加成位置
加成反应一般发生在杂环的电子云密度较高区域,通常是杂原子的邻位
配位化学:杂环化合物 中的非碳原子可提供孤 对电子,与金属离子形 成配位键,因此可作为 配体应用于配位化学和 金属有机化学中。
总之,杂环化合物是一 类具有丰富多样性结构 和性质的有机化合物, 其研究不仅有助于深化 对有机化学基本规律的 认识,还能为相关领域 提供广泛的应用前景。
02
五元杂环化合物
呋喃(furan)
嘧啶(pyrimidine)
结构特征
嘧啶是一个含有两个氮原子的六元杂环化合物,其分子内具有共轭 双键体系。
合成与应用
嘧啶类化合物可通过多种合成方法获得,如Pinner反应等。嘧啶及 其衍生物在生物医药领域具有广泛应用,如抗病毒药物、抗癌药物 等。
生物活性
许多嘧啶类化合物具有显著的生物活性,可作为核酸碱基的类似物 ,干扰核酸的合成与代谢,从而发挥治疗作用。
芳香性
呋喃具有芳香性,由于其分子中 含有一个氧原子,使得其电子云 密度分布较为均匀,呈现出特殊
的稳定性。
合成与应用
呋喃可以通过多种合成方法得到, 并在有机合成中作为重要的中间体 。它可以发生诸多反应,如亲电取 代反应、加成反应等。
物理性质
呋喃为无色液体,具有特殊的气味 ,微溶于水,易溶于有机溶剂。

有机化学(2018年科学出版社出版的图书)

有机化学(2018年科学出版社出版的图书)

作者简介
黄怡:女,1963年出生,浙江省丽水市人,咸阳师范学院化学系副教授、博士,主要从事生物医用高分子材 料的研究。
图书目录
前言 第1章绪论 第2章烷烃 第3章对映异构 第4章单烯烃和脂环烃 第5章炔烃和二烯烃 第6章芳烃 第7章有机化合物结构鉴定的现代物理方法简介 第8章卤代烃 第9章醇、酚、醚 第10章醛和酮
该教材共有19章,主要介绍了烷烃、对映异构、单烯烃、卤代烃、醇酚醚等有机化学的基本知识、基本原理 和基本技能。
成书过程
修订情况
修订背景
出版工作
有机化学课程是化学专业学生的必修课,也是材料科学、生命科学、环境科学、医学、食品科学、农学等学 科的专业基础课。通过有机化学的学习,掌握有机化学的基本知识、基本原理和基本技能,培养科学态度、分析 问题的方法和解决问题的能力,为学习后续课程及从事化学教学与科研工作打下基础。故编者遵循相关的编写原 则修订了《有机化学》。
2018年7月1日,《有机化学》由科学出版社出版。
内容简介
《有机化学》共有19章,按官能团分章的形式编排,包括绪论、烷烃、对映异构、单烯烃和脂环烃、炔烃和 二烯烃、芳烃,有机化合物结构鉴定的现代物理方法简介、卤代烃,醇酚醚、醛和酮、羧酸、按酸街生物、含氮 有机化合物、含硫和含磷有机化合物,元素有机化合物、周环反应、杂环化合物、糖、氨基酸和蛋白质。每章章 首介绍该章学习要求,并以背景问题引出该章知识,正文中有例题和思考题,章后有适量习题。
有机化学(2018年科学出版社出版的 图书)
2018年科学出版社出版的图书
01 成书过程
03 教材目录
目录
02 内容简介 04 教学资源
05 教材特色
07 图书目录
目录

有机化学中的杂环化合物

有机化学中的杂环化合物

有机化学中的杂环化合物有机化学是研究有机化合物的性质、结构、合成和反应等的科学分支。

而杂环化合物则是在有机分子中含有除碳外的杂原子(如氧、氮、硫等)构成的环状结构。

这一类化合物具有多样的结构和广泛的应用,本文将对有机化学中的杂环化合物进行探讨。

一、氧杂环化合物氧杂环化合物指的是含有氧原子构成环状结构的有机分子。

常见的氧杂环化合物包括环氧烷、苯并呋喃等。

环氧烷由一个氧原子与两个碳原子构成一个环,具有高度的环张力,因此容易发生开环反应。

环氧烷被广泛应用于有机合成和药物合成领域,例如苯并环氧丙烷常用于合成激素类药物。

二、氮杂环化合物氮杂环化合物是指含有氮原子构成环状结构的有机分子。

常见的氮杂环化合物包括吡咯、吡啶等。

吡咯是一个五元环,它的稳定性较高,广泛存在于许多生物分子中,如生物色素和药物中。

吡啶是一个六元环,具有较高的稳定性和广泛的应用领域,常用于药物合成和染料合成等。

三、硫杂环化合物硫杂环化合物是指含有硫原子构成环状结构的有机分子。

常见的硫杂环化合物包括噻吩、噻唑等。

噻吩是一个五元环,具有平面构型和较高的稳定性,被广泛应用于染料和光电材料合成等领域。

噻唑是一个五元环,并且带有一个取代基,常见于医药领域的药物中,具有广谱的生物活性和药理学特性。

结语有机化学中的杂环化合物是一类具有重要地位和广泛应用的化合物。

氧杂环化合物、氮杂环化合物和硫杂环化合物都具有不同的结构和性质,各自在合成化学、药物化学、材料化学等领域中扮演着重要的角色。

对这些杂环化合物的深入研究和应用将为有机化学的发展作出重要贡献。

以上就是有机化学中的杂环化合物的简要介绍,希望能够对您有所帮助。

《有机化学(第二版)》第12章:杂环化合物与生物碱

《有机化学(第二版)》第12章:杂环化合物与生物碱
Br2/ CH3COOH N
OH Br2 / CCl4 HO HO
Br N
OH Br
NH2
20℃
NH2
OH
N
室室
+
N
Br HO
N
19:46
③亲核取代反应
发生在α位 发生在 位
19:46
④氧化与还原反应
氧化难、 氧化难、还原易
19:46
(哌啶)
19:46
4、重要的衍生物 、 ①维生素pp 维生素
维生素pp促进组织新陈代谢,降低血中胆固醇。 维生素 促进组织新陈代谢,降低血中胆固醇。体内缺 促进组织新陈代谢 乏维生素pp时 乏维生素 时,可引起糙皮病
19:46
②异烟肼(雷米封) 异烟肼(雷米封)
治疗结核病的良好药物
19:46
③维生素B6 维生素
维生素B 维生素 6是蛋白质代谢过程中的必需物质
N
H O
H
19:46
3、化学性质 、 ①碱性
19:46
碱性大小:脂肪族胺> 碱性大小:脂肪族胺>氨>吡啶>苯胺 吡啶>
(CH3)3N > NH3
> N
> N
NH2
19:46
②亲电取代反应
发生在β位 发生在 位
19:46
若吡啶环上有第一类定位基时, 若吡啶环上有第一类定位基时 , 能使吡啶环 活化, 能使亲电取代反应较容易进行, 并且取代 活化 , 能使亲电取代反应较容易进行 , 位置由第一类定位基决定。 位置由第一类定位基决定。
19:46
N H
吲哚
N H
咔唑
19:46
Br2
0℃ N H
Br
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Br
(80%)
O
O Cl2
-40℃ , CH3COOH
Cl
O
(64%)
Br2
CH3COOH
Br
S
(78%)
S Cl2
50℃
Cl
S
(36%)
I2,HgO C6H6, 0℃
I
S
(70%)
吡咯极易卤化生成四卤吡咯。
(2)硝化
呋喃和吡咯很易被氧化,遇无机酸容易发生聚合, 因而不能用硝酸硝化。通常用比较温和的非质子硝化试 剂,如用硝酸乙酰酯
离域能 呋喃、吡咯和噻吩的离域能分别为: 67 kJ·mol-1、 88 kJ·mol-1和117 kJ·mol-1 比苯的离域能(150.5 kJ·mol-1 )低,但比大多数共 轭二烯烃的离域能(约12~28 kJ·mol-1 )要大得多。
芳香性:苯>噻吩>吡咯>呋喃
2、 呋喃、噻吩和吡咯化学性质
有机化学 第12章 杂环化合物
基本要求:
• 1.掌握呋喃、吡咯、噻吩、吡啶、嘧啶、 喹啉、吲哚、嘌呤及其衍生物的命名。
• 2.掌握呋喃、吡咯、噻吩、吡啶的结构 与芳香性的关系,结构与亲电取代反应 活性的关系。
• 3.掌握吡咯和吡啶的酸碱性,呋喃、吡 咯、噻吩、吡啶的亲电取代反应(卤代、 磺化),还原反应,吡啶侧链的氧化反应。
COOH
(烟酸 )
N
HNO3
COOH
COOH
N

COOH △
N
N
吡啶可被催化加氢或用乙醇和钠还原而成为六氢吡啶。
Na + C2H5OH
N
或 H2/Pt ,0.3MPa,25℃
N H
常见吡啶衍生物
CONH2
N
烟酰胺 (维生素pp)
CONHNH2
CH2OH
HO
CH2OH
H3C N
维生素B6
CON(C2H5)2
长春碱(R=CH3);长春新碱(R=CHO); 抗癌药
H3C
N
N
NH2 S
Cl- N +
CH2
CH3
CH2CH2OH
维生素B1
O N
H COOH
CH3 PhCH2CONH
H HS
CH3
青霉素G
四、 六元杂环化合物
1、结构和芳香性
.

·
.N.
sp2杂化
一个闭合的共轭体系 具有芳香性。
符合休克尔4n+2规则
(4)烷基化和酰基化 吡咯烷基化反应时易得混合物,因此用途不大。吡咯 可用乙酐进行酰基化。
(5)呋喃的特殊反应
O
O+
O
O
O
OO O
2.吡咯的特殊反应
碱性极弱,比苯胺的碱性还要弱得多。 含氮化合物的碱性顺序: 仲胺>伯胺>叔胺>氨>苯胺>吡咯 酸性比醇强而比酚弱
+KOH(固?体 )

N
H
-
+H 2 O
CH3COONO2
-5~30℃
O
O
NO2 (35%)
HNO3,H2SO4
S
NO2
NO2 (86%) +
S
S
(14%)
(3)磺化 吡咯和呋喃也不能用硫酸直接磺化,要用温和的非质 子磺化试剂。
N · SO3
- HCl
N
100℃
N
SO3
N
SO3H (90%)
H
H
H
噻吩是这些五元杂环化合物中最稳定的一个, 可在室温下直接磺化: 应用: 苯和噻吩的分离
N
异烟酰肼(雷米封) 抗结核药
N
烟酰二乙胺(可拉明) 中枢神经兴奋药
五、喹啉和异喹啉
N
浓H N 浓H2S
与吡啶类似, 喹啉和异喹啉都有弱碱性(喹啉:
pKb=9.15;异喹啉pKb=8.86)。
喹啉和异喹啉的亲电取代反应(如硝化、磺化、 溴化等)比吡啶容易,亲电试剂主要进攻苯环部分。
亲核取代反应则发生在吡啶环上,其中喹啉主 要在2-位取代,而异喹啉主要在1-位。
呋喃丙胺(抗血吸虫药)
HOOCCH2CH2
CH2COOH
N
CH2NH2
H
卟吩胆色素原; 通过生物体内特定酶的作用可转变成 卟啉、叶绿素和维生素B12等重要生物活性物质
CH2COOH
3-吲哚乙酸(植物生长促进剂)
N H
OH
N
C2H5
N H
H3COOC H3CO
N H
N R HO
C2H5 OCOCH3 COOCH3
1)亲电取代反应 亲电取代反应活性: 吡咯 > 呋喃 > 噻吩 > 苯
注意: 反应主要发生在α-位
E+ z
+H zE
H +E z
烯丙型较稳定
(1)卤化
呋喃、噻吩在室温与氯或溴反应很激烈,得到多卤代物。
若在温和条件下,如用溶剂稀释及采用低温,可得到一卤 代物,不活泼的碘则需在催化剂作用下进行。
Br2
N
O2N
O
CHO
2-甲基-5-乙基呋喃 4-甲基吡啶 5-硝基-2-呋喃甲醛 α-甲基-α’-乙基呋喃 γ-甲基吡啶 α’-硝基-α-呋喃甲醛
②如含有两个不同杂原子,则两杂原子的编号尽 可能小,并使杂原子上连有H原子或取代基的杂原子位 次最小。
H3C N
Br N 1,4-二甲基-5-溴咪唑 CH3
一、命名: 一般采用国际上通用的英文名称的音译法
O
呋喃
N N
嘧啶
S
噻吩
N H
吡咯
N
吡啶
N
喹啉
N
H
吲哚
N
N
N
N
N
N
O
S
H
H
吡唑
咪唑
Pyrazole Imidazole
噁唑 Oxazole
噻唑 Thiazole
①如杂环上有取代基,应从杂原子开始编号,并 尽可能使取代基的位次较小。
CH3
C2H5
O
CH3
N
SO3, H2SO4
HgSO4
Br
N
NO2
N
SO3H
N
注意:
1)亲电取代反应活性: 吡啶 < 苯环<噻吩<呋喃<吡咯
2)吡啶环不能发生傅氏反应。 3)亲电取代反应发生在β位。
3. 氧化还原反应 吡啶比苯稳定,不易被氧化 侧链可氧化生成相应的吡啶甲酸。
CH3
HNO3 , △
Hale Waihona Puke -N或 KMnO4 /OH
2、 吡啶的性质
1)弱碱性 (pKb=8.8) 碱性: 仲胺>伯胺>叔胺>氨>吡啶>苯胺>吡咯
N + HCl
N HCl
吡啶及其衍生物能溶于强酸,用于鉴别、分离与提纯
2) 亲电取代反应
亲电取代反应发生在β位
卤 化:
N
Br2 ,浮石
300℃
硝化 :
N
浓HNO3 ,浓 H2SO4 300℃ ,1天
磺 化:
N
K+
3 糠醛
O CHO
说明 糠醛具有一般醛基的性质,如可以发生银镜反应
KMnO4
O
CHO NaOH
COOH
O
(糠酸 )
NaOH O CHO
O CH2OH +
O COOH
三、一些具有生理活性五元杂环化合物
O
O
O2N
O CH=N N
呋喃唑酮(痢特灵)
O2N O CH=CHCNHCH(CH3)2 O
③若两杂原子不同,则按O、S、N的顺序编号
N CH3 S
5-甲基噻唑
5 6
7 8
4 3
N2 1
喹啉
4 5
6 7
3
2 N1 H
吲哚
1N
6
5
7 N
8 2 N4N
3 H9
嘌呤
④喹啉,吲哚,嘌呤有自己独特的编号方式
二、 五元杂环化合物
1、 结构和芳香性
呋喃、噻吩、吡咯
一个闭合的环状共轭体系 符合休克尔4n+2规则,都具有芳香性
相关文档
最新文档