机械能守恒定律练习题
高中机械能守恒定律练习题及讲解
高中机械能守恒定律练习题及讲解一、选择题1. 一个物体在水平面上以一定速度运动,若忽略空气阻力和摩擦力,该物体的机械能将:A. 增加B. 减少C. 保持不变D. 无法确定2. 一个物体从静止开始自由下落,不考虑空气阻力,其重力势能和动能的变化情况是:A. 重力势能减少,动能增加B. 重力势能增加,动能减少C. 重力势能和动能都增加D. 重力势能和动能都减少3. 一个物体在竖直平面内做匀速圆周运动,若忽略空气阻力,其机械能:A. 增加B. 减少C. 保持不变D. 先增加后减少二、填空题4. 当一个物体从一定高度自由下落时,其重力势能转化为______。
5. 一个物体在水平面上以匀速直线运动,若忽略摩擦力,其机械能______。
三、简答题6. 解释为什么在没有外力作用的情况下,一个物体在水平面上滚动时,其机械能保持不变。
7. 一个物体在竖直方向上做自由落体运动时,其势能和动能如何转换?四、计算题8. 一个质量为2kg的物体从10米高处自由下落,忽略空气阻力,求物体落地时的动能。
9. 一个质量为5kg的物体在水平面上以3m/s的速度滚动,求物体的动能。
五、分析题10. 描述一个场景,其中物体的机械能不守恒,并解释原因。
11. 讨论在实际生活中,哪些因素可能导致机械能不守恒,并给出相应的例子。
六、实验题12. 设计一个实验来验证机械能守恒定律,并描述实验步骤和预期结果。
13. 如果在实验中观察到机械能不守恒的现象,请分析可能的原因。
七、论述题14. 论述机械能守恒定律在物理学中的重要性及其在工程学中的应用。
15. 探讨机械能守恒定律在解决实际问题时的局限性和适用范围。
通过这些练习题,学生可以加深对机械能守恒定律的理解,并学会如何应用这一定律来解决实际问题。
高中物理机械能守恒定律100题(带答案)
一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
(完整版)机械能守恒定律练习题及其答案
机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
高考物理《机械能守恒定律》真题练习含答案
高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
人教版高中物理必修二 8.4 机械能守恒定律 练习(含答案)
机械能守恒定律练习一、单选题1.下列所述的物体在运动过程中满足机械能守恒的是( )A. 跳伞运动员张开伞后,在空中匀速下降B. 忽略空气阻力,物体竖直上抛C. 火箭升空过程D. 拉着物体沿光滑斜面匀速上升【答案】B【解析】解:A、跳伞运动员在空中匀速下降,动能不变,重力势能减小,因机械能等于动能和势能之和,则机械能减小。
故A错误。
B、忽略空气阻力,物体竖直上抛,只有重力做功,机械能守恒,故B正确。
C、火箭升空,动力做功,机械能增加。
故C错误。
D、物体沿光滑斜面匀速上升,动能不变,重力势能在增加,所以机械能在增大。
故D错误。
故选:B。
物体机械能守恒的条件是只有重力或者是弹簧弹力做功,或看物体的动能和势能之和是否保持不变,即采用总量的方法进行判断。
解决本题的关键掌握判断机械能是否守恒的方法,1、看是否只有重力做功。
2、看动能和势能之和是否不变。
2.安徽芜湖方特水上乐园是华东地区最大的水上主题公园。
如图为彩虹滑道,游客先要从一个极陡的斜坡落下,接着经过一个拱形水道,最后达到末端。
下列说法正确的是( )A. 斜坡的高度和拱形水道的高度差要设计合理,否则游客经过拱形水道的最高点时可能飞起来B. 游客从斜坡的最高点运动到拱形水道最高点的过程中,重力一直做正功C. 游客从斜坡下滑到最低点时,游客对滑道的压力最小D. 游客从最高点直至滑到最终停下来过程中,游客的机械能消失了【答案】A【解析】解:A、斜坡的高度和拱形水道的高度差要设计合理,不能让游客经过拱形水A正确;B、游客从斜坡的最高点运动到拱形水道最高点的过程中,游客的位置是先降低后升高,所以重力先做正功后做负功,故B错误;C、游客从斜坡上下滑到最低点时,加速度向上,处于超重状态,游客对滑道的压力最大,故C错误;D、游客从最高点直至滑到最终停下来过程中,游客的机械能没有消失,而是转化为其他形式的能(内能),故D错误。
故选:A。
高点运动到拱形水道最高点的过程中,游客是先降低后升高的;游客在最低点时,其加速度向上,游客处于超重状态;整个过程是符合能量守恒的,机械能不是消失,而是转化为其它形式的能。
高中物理机械能守恒定律专题练习(带详解)
高中物理机械能守恒定律专题练习(带详解)一、多选题1.如图所示,轻杆一端固定一小球,绕另一端O 点在竖直面内做匀速圆周运动,则( )A .轻杆对小球的作用力方向始终沿杆指向O 点B .小球在最高点处,轻杆对小球的作用力可能为0C .小球在最低点处,小球所受重力的瞬时功率为0D .小球从最高点到最低点的过程中,轻杆对小球一直做负功2.如图甲所示,在距离地面高为0.18h m =的平台上有一轻质弹簧,其左端固定在竖直挡板上,右端与质量1m kg =的小物块相接触(不粘连),平台与物块间动摩擦因数040μ=.,OA 长度等于弹原长,A 点为BM 中点.物块开始静止于A 点,现对物块施加一个水平向左的外方F ,大小随位移x 变化关系如图乙所示.物块向左运动050x m =.到达B 点,到达B 点时速度为零,随即撤去外力F ,物块被弹回,最终从M 点离开平台,落到地面上N 点,取210/g m s =,则( )A .弹簧被压缩过程中外力F 做的功为78J .B .弹簧被压缩过程中具有的最大弹性势能为60J .C .整个运动过程中克服摩擦力做功为60J .D .MN 的水平距离为036m .3.如图所示,轻弹簧的一端悬挂在天花板上,另一端固定一质量为m 的小物块,小物块放在水平面上,弹簧与竖直方向夹角为θ=30o 。
开始时弹簧处于伸长状态,长度为L ,现在小物块上加一水平向右的恒力F 使小物块向右运动距离L ,小物块与地面的动摩擦因数为μ,重力加速度为g ,弹簧始终在弹性限度内,则此过程中分析正确的是( )A .小物块和弹簧系统机械能改变了(F-μmg )LB .弹簧的弹性势能可能先减小后增大接着又减小再增大C .小物块在弹簧悬点正下方时速度最大D .小物块动能的改变量等于拉力F 和摩擦力做功之和4.一质量为m 的物体,以13g 的加速度减速上升h 高度,不计空气阻力,则( ) A .物体的机械能不变B .物体的动能减少13mghC .物体的机械能增加23mgh D .物体的重力势能增加mgh5.下列说法中正确的是( )A .某种形式的能减少,一定存在其他形式的能增加B .因为能量守恒,所以“能源危机”是不可能的C .能量耗散表明,在能源的利用过程中,能量在数量上并未减少,但在可利用的品质上降低了D .能源的利用受能量耗散的制约,所以能源的利用是有条件的,也是有代价的 6.如图所示,由电动机带动着倾角θ=37°的足够长的传送带以速率v=4m/s 顺时针匀速转动,一质量m=2kg 的小滑块以平行于传送带向下'2v m s =/的速率滑上传送带,已知小滑块与传送带间的动摩擦因数78μ=,取210/g m s =,sin370.60cos370.80︒=︒=,,则小滑块从接触传送带到与传送带相对静止静止的时间内下列说法正确的是A .重力势能增加了72JB .摩擦力对小物块做功为72JC .小滑块与传送带因摩擦产生的内能为252JD.电动机多消耗的电能为386J7.在高台跳水比赛中,质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降h的过程中,下列说法正确的是(g为当地的重力加速度)()A.他的重力势能减少了mghB.他的动能减少了FhC.他的机械能减少了(F﹣mg)hD.他的机械能减少了Fh8.如图所示,斜面固定在水平面上,轻质弹簧一端固定在斜面顶端,另一端与物块相连,弹簧处于自然长度时物块位于O点,物块与斜面间有摩擦.现将物块从O点拉至A点,撤去拉力后物块由静止向上运动,经O点到达B点时速度为零,则物块从A运动到B的过程中()A.经过位置O点时,物块的动能最大B.物块动能最大的位置与AO的距离无关C.物块从A向O运动过程中,弹性势能的减少量等于动能与重力势能的增加量D.物块从O向B运动过程中,动能的减少量大于弹性势能的增加量9.航空母舰可提供飞机起降,一飞机在航空母舰的水平甲板上着陆可简化为如图所示模型,飞机钩住阻拦索减速并沿甲板滑行过程中A.阻拦索对飞机做正功,飞机动能增加B.阻拦索对飞机做负功,飞机动能减小C.空气及摩擦阻力对飞机做正功,飞机机械能增加D.空气及摩擦阻力对飞机做负功,飞机机械能减少10.如图所示,质量相等、材料相同的两个小球A、B 间用一劲度系数为k 的轻质弹簧相连组成系统,系统穿过一粗糙的水平滑杆,在作用在B 上的水平外力F 的作用下由静止开始运动,一段时间后一起做匀加速运动,当它们的总动能为4E k 时撤去外力F,最后停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力.则在从撤去外力F 到停止运动的过程中,下列说法正确的是( )A.撤去外力F 的瞬间,弹簧的伸长量为F2kB.撤去外力F 后,球A、B 和弹簧构成的系统机械能守恒C.系统克服摩擦力所做的功等于系统机械能的减少量D.A 克服外力所做的总功等于2E k二、单选题11.长为L的轻绳悬挂一个质量为m的小球,开始时绳竖直,小球与一个倾角θ=45°的静止三角形物块刚好接触,如图所示.现在用水平恒力F向左推动三角形物块,直至轻绳与斜面平行,此时小球的速度速度大小为v,重力加速度为g,不计所有的摩擦.则下列说法中正确的是( )A.上述过程中,斜面对小球做的功等于小球增加的动能B.上述过程中,推力F做的功为FLC.上述过程中,推力F做的功等于小球增加的机械能D.轻绳与斜面平行时,绳对小球的拉力大小为mgsin45°12.市面上出售一种装有太阳能电扇的帽子(如图所示).在阳光的照射下,小电扇快速转动,能给炎热的夏季带来一丝凉爽.该装置的能量转化情况是()A.太阳能→电能→机械能B.太阳能→机械能→电能C.电能→太阳能→机械能D.机械能→太阳能→电能13.自动充电式电动车的前轮装有发电机,发电机与蓄电池连接.骑车者用力蹬车或电动车自动滑行时,发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现使车以500J的初动能在粗糙的水平路面上自由滑行,第一次关闭自充电装置,其动能随位移变化关系如图线①所示;第二次启动自充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是()A.500J B.300J C.250J D.200J14.如图所示,一小孩从公园中粗糙的滑梯上自由加速滑下,其能量的变化情况是()A.重力势能减少,动能不变,机械能减少B.重力势能减少,动能增加,机械能减少C.重力势能减少,动能增加,机械能增加D.重力势能减少,动能增加,机械能守恒15.有关功和能,下列说法正确的是( )A.力对物体做了多少功,物体就具有多少能B.物体具有多少能,就一定能做多少功C.物体做了多少功,就有多少能量消失D.能量从一种形式转化为另一种形式时,可以用功来量度能量转化的多少16.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,Av,C的初速度方向沿斜面水平,大由静止释放,B的初速度方向沿斜面向下,大小为v。
机械能守恒定律练习题
机械能守恒定律练习题机械能守恒定律练习题机械能守恒定律是物理学中非常重要的一个定律,它描述了一个封闭系统中机械能的守恒。
在这篇文章中,我们将通过一些练习题来深入理解这个定律。
练习题1:自由落体问题假设一个物体从高度为h的地方自由落下,求它在落地前的速度。
解答:根据机械能守恒定律,物体的机械能在整个过程中保持不变。
在高度为h处,物体的机械能只有势能,即mgh,其中m为物体的质量,g为重力加速度。
在物体落地时,它的势能为0,因此速度最大。
根据机械能守恒定律,有mgh = 0.5mv^2,其中v为物体的速度。
解方程可得v = sqrt(2gh)。
练习题2:弹簧振子问题一个质量为m的物体放在一个劲度系数为k的弹簧上,求物体振动的周期。
解答:在弹簧振子的运动过程中,机械能守恒。
当物体位于最大位移处时,它的机械能只有势能,即0.5kx^2,其中x为物体相对平衡位置的位移。
当物体经过平衡位置时,它的机械能只有动能,即0.5mv^2,其中v为物体的速度。
根据机械能守恒定律,有0.5kx^2 = 0.5mv^2。
由于振动是周期性的,物体在一个周期内的位移和速度都会重复。
因此,我们可以将x和v表示为振动的角频率ω和振幅A的函数,即x = Asin(ωt)和v = Aωcos(ωt),其中t为时间。
将这两个式子代入机械能守恒的方程,化简可得k/m = ω^2,即ω = sqrt(k/m)。
振动的周期T为2π/ω,因此T = 2πsqrt(m/k)。
练习题3:滑块问题一个质量为m的滑块沿着光滑的水平面上有一段固定的轨道,轨道的高度为h,滑块从轨道的最高点释放,求滑块离开轨道时的速度。
解答:在滑块沿着轨道下滑的过程中,机械能守恒。
在滑块位于最高点时,它的机械能只有势能,即mgh。
在滑块离开轨道时,它的势能为0,速度最大。
根据机械能守恒定律,有mgh = 0.5mv^2。
解方程可得v = sqrt(2gh)。
练习题4:斜面问题一个质量为m的物体沿着一个倾角为θ的光滑斜面下滑,斜面的高度差为h,求物体离开斜面时的速度。
机械能守恒练习题
机械能守恒练习题一、选择题1. 机械能守恒的条件是()A. 物体只受重力作用B. 物体只受重力和弹簧弹力作用C. 物体只受重力和摩擦力作用D. 物体只受重力和电场力作用2. 在机械能守恒的情况下,下列哪个说法是正确的?()A. 物体的动能和势能之和不变B. 物体的动能和势能之和可以变化C. 物体的动能保持不变D. 物体的势能保持不变3. 一个物体从高处自由落下,不考虑空气阻力,其机械能()A. 增加B. 减少C. 保持不变D. 先增加后减少4. 一个物体在水平面上做匀速直线运动,其机械能()A. 增加B. 减少C. 保持不变D. 无法确定5. 一个物体在竖直方向上做匀速直线运动,其机械能()A. 增加B. 减少C. 保持不变D. 无法确定二、填空题6. 当物体只受重力作用时,其______能守恒。
7. 机械能守恒定律表明,在没有非保守力做功的情况下,物体的______能和______能之和保持不变。
8. 一个物体从静止开始自由下落,其动能逐渐______,而势能逐渐______。
9. 在机械能守恒的情况下,物体的总机械能等于______。
10. 机械能守恒定律适用于______系统。
三、简答题11. 解释为什么在没有摩擦力的情况下,一个物体在斜面上下滑时,其机械能守恒。
12. 描述一个实验来验证机械能守恒定律,并说明实验步骤和预期结果。
四、计算题13. 一个质量为2kg的物体从10米高处自由落下,忽略空气阻力。
求物体落地时的速度和动能。
五、论述题14. 论述机械能守恒定律在实际应用中的重要性,并给出两个不同领域的应用实例。
六、实验设计题15. 设计一个实验来探究在不同质量的物体从同一高度自由落下时,机械能守恒的情况。
描述实验步骤、所需器材及预期结果。
七、判断题16. 在机械能守恒的情况下,物体的势能转化为动能,但总机械能保持不变。
()17. 一个物体在竖直方向上做匀速直线运动时,其机械能不守恒。
机械能守恒定律20个经典例题
机械能守恒定律20个经典例题1. 一个自由下落的物体从高度为h的位置落下,求其落地时的速度。
2. 一个滑轮系统由两个具有质量m1和m2的物体组成,当重物体从高处下降时,轻物体向上移动,求两物体的速度。
3. 一个弹簧的质量为m,常数为k,以速度v0压缩然后释放,求弹簧完全恢复到原始长度时的速度。
4. 一个小球从高处以速度v0斜抛,求其在达到最高点时的势能和动能之比。
5. 一个车从高处滑下,求其到达底部时的速度,考虑摩擦力。
6. 一个物体通过一个光滑的圆环,从高度为h的位置滑下,求运动到底部时的速度。
7. 一个铅球从离地面h高度自由落下,碰到地面后反弹,求其在反弹过程中的最大速度。
8. 一个摆球从一端释放,沿着弧形轨道下落,求其到达底部时的速度。
9. 一个滑雪者从高处滑下,当他到达平地时,速度增加了多少?10. 一个人从高处跳下,同时手中还握着一个小球,求小球离地面的最高点的高度。
11. 一个汽车从静止开始加速,当它以速度v通过某个点时,它的动能是多少?12. 一个小球沿着一个弯曲的竖直轨道滑下,求它到达底部时的速度。
13. 一个手摇的发电机通过人工劳动产生机械能,当手摇的速度加快时,机械能会增加还是减少?14. 一个步行者从A点向B点走一段距离,再从B点向A点折回,最终回到A点,求他在整个过程中消耗的机械能。
15. 一个台球从静止开始撞击另一个台球,求第二个台球的速度。
16. 一个物体在竖直弹簧下方的静止球面上滚下,求它离开球面时的动能。
17. 一个重物体和一个轻物体通过一个有摩擦的斜面下滑,求它们到达底部时的速度。
18. 一个子弹以速度v穿过一个质量为M的物块,物块开始以速度V向前滑动,求子弹的速度。
19. 一个人用带有质量m的活塞上下移动,带动一个无摩擦的活塞,求人的努力和活塞的速度之间的关系。
20. 一个滚动大理石从山坡上滚下,求与水平面接触时的速度。
机械能守恒定律练习题
1.质点在恒力作用下,从静止开始做匀加速直线运动,则质点的动能()A.与它的位移成正比B.与它的运动时间成正比C.与它的运动速度成正比D.与它的加速度成正比2.关于物体所受的合外力、合外力做功和动能变化的关系,下列正确的是()A.如果物体所受的合外力为零,那么,合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.关于做功和物体动能变化的关系,正确的是()A.只要动力对物体做功,物体的动能就增加B.只要物体克服阻力做功,它的动能就减少C.外力对物体做功的代数和等于物体的末动能与初动能之差D.动力和阻力都对物体做功,物体的动能一定变化4.关于重力势能的下列说法中正确的是()A.重力势能的大小只由重物本身决定B.重力势能恒大于零C.在地面上的物体,它具有的重力势能一定等于零D.重力势能实际上是物体和地球所共有的5.关于重力势能与重力做功的下列说法中正确的是()A.物体克服重力做的功等于重力势能的增加B.在同一高度,将物体以初速V0向不同的方向抛出,从抛出到落地过程中,重力做的功相等,物体所减少的重力势能一定相等C.重力势能等于零的物体,不可能对别的物体做功D.用手托住一个物体匀速上举时,手的支持力做的功等于克服重力做的功与物体所增加的重力势能之和6.若物体m沿不同的路径Ⅰ和Ⅱ从A滑到B,如图1所示,则重力所做的功为()A.沿路径Ⅰ重力做功最大B.沿路径Ⅱ重力做功最大C.沿路径Ⅰ和Ⅱ重力做功一样大D.条件不足不能判断7.以地面为参考平面,从地面竖直上抛两个质量不等的物体(不计空气阻力),它们的初动能相等。
当它们上升到同一高度时,具有相等的()A.重力势能B.动能C.机械能D.速率8.下列说法正确的是()A.擦力对物体做功,其机械能必减少B.外力对物体做功,其机械能必不守恒C.做变速运动的物体可能没有力对它做功D.物体速度增加时,其机械能可能减少9.假设一架战斗机正在空中某一高度做匀速飞行,另一架空中加油机给其加油,如图,加油后战斗机仍以原来的高度和速度做匀速飞行,则战斗机的()A.动能增加,势能减少,机械能不变B.动能不变,势能不变,机械能不变C.动能减少,势能不变,机械能减少D.动能增加,势能增加,机械能增加10.关于机械能是否守恒的叙述,正确的是()A.作匀速直线运动的物体的机械能一定守恒B.作匀速度运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.只有重力对物体做功,物体机械能一定守恒11.一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2 m/s,则下列说法正确的是()A.手对物体做功12J B.合外力对物体做功12JC.合外力对物体做功2J D.物体克服重力做功10 J12.如图所示,桌面离地高h,质量为m的小球从离桌面高H处自由落下,不计空气阻力,设桌面为零势面,则小球触地前的瞬间机械能为()A.mgh B.mgHC.mg(H+h) D.mg(H-h)13.如图利用传送带将货物匀速传送到高处的过程中,货物的总机械能____(选填“增大”或“减小”);相对于传送带上的货物来说,站在地面上的人是____的。
机械能守恒定律经典同步练习题及答案
机械能守恒定律经典同步练习题及答案1、一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度为2 m/s,则正确的说法是:B.合外力对物体做功12J。
2、机械能不守恒的情况有:A.在空气中匀速下落的降落伞和B.物体沿光滑圆弧面下滑。
3、航天员进行素质训练时,抓住秋千杆由水平状态向下摆,到达竖直状态的过程中,航天员所受重力的瞬时功率变化情况是:D。
先减小后增大。
4、如图2所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:C、10J。
5、关于力对物体做功以及产生的效果,正确的说法是:C.物体克服某个力做功时,这个力对物体来说是动力和D.某个力对物体做正功时,这个力对物体来说是动力。
6、物体沿直线运动的v-t关系如图所示,已知在第1秒内合外力对物体做的功为W,则(A)从第1秒末到第3秒末合外力做功为4W,(B)从第3秒末到第5秒末合外力做功为-2W,(C)从第5秒末到第7秒末合外力做功为W,(D)从第3秒末到第4秒末合外力做功为-0.75W。
7、如图,卷扬机的绳索通过定滑轮用力F拉位于粗糙面上的木箱,使之沿斜面加速向上移动。
在移动过程中,正确的说法是:A.F对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和。
8、如图所示,静止在水平桌面的纸带上有一质量为0.1kg 的小铁块,它离纸带的右端距离为0.5m,铁块与纸带间动摩擦因数为0.1.现用力向左以2m/s2的加速度将纸带从铁块下抽出,求:(不计铁块大小,铁块不滚动)(1)将纸带从铁块下抽出需要多长时间?(2)纸带对铁块做多少功?9、一辆氢气燃料汽车质量为m=2.0×10kg,发动机额定输出功率为80kW。
在平直公路上行驶时,所受阻力为车重的0.1倍。
汽车从静止开始先匀加速启动,加速度大小为a=1.0m/s2.当汽车达到额定输出功率后,汽车保持功率不变,继续加速行驶了800m,直到获得最大速度后才匀速行驶。
《机械能守恒定律》-习题集
《机械能守恒定律》习题集基础训练1.下列实例中的物体,哪些机械能发生了变化( ) A .跳伞运动员在空中匀速下降B .滑雪运动员自高坡顶上自由下滑(不计空气阻力和摩擦)C .汽车在水平路面上匀速行驶D .集装箱被吊车匀速地吊起2.下列物体中,机械能守恒的是( ) A .做平抛运动的物体 B .匀速下落的降落伞C .光滑曲面上自由运动的物体D .被吊车匀速吊起的集装箱3.从离地面h 高度以初速度v 0竖直上抛一个质量为m 的小球,如图所示,取地面为零势能面,忽略空气阻力,则物体着地时具有的机械能是( )A .mghB .mgh +C .D .-mgh4.一个人站在距地面高为h 的阳台上,以相同的速率v 0分别把三个球竖直向下,竖直向上,水平抛出,不计空气阻力,则三球落地时的速率( )A .上抛球最大B .下抛球最大C .平抛球最大D .三球一样大5.两物体质量之比为1︰3,它们距离地面高度之比也为1︰3,让它们自由下落,它们落地时的动能之比为( )A .1︰3B .1︰9C .3︰1D .9︰1 6.小球自高为h 的斜槽轨道的顶端A 开始下滑,如图所示,设小球在下滑过程中机械能守恒,小球到达轨道底端B 时的速度大小是( )ABCD .7.以10m/s 的初速度从10m 高的塔上抛出一颗石子,石子落地时速度大小为 m/s 。
(不计空气阻力,g 取10m/s 2)8.如图所示,桌面距地面0.8m ,一物体质量为2kg ,放在距桌面0.4m 的支架上。
(1)以地面为零势能位置,计算物体具有的势能,并计算物体由支架下落到桌面过程中,势能减少多少?(2)以桌面为零势能位置,计算物体具有的势能,并计算物体由支架下落到桌面过程中,势能减少多少?202mv 202mv 22mv9.如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时其一端下落,则铁链刚脱离滑轮的瞬间的速度为多大?10.在轻杆的中点A 和一个端点B 各固定一个质量相同的小球,将杆的另一端点O 用绞链(光滑)固定。
高中物理第八章机械能守恒定律专项训练题(带答案)
高中物理第八章机械能守恒定律专项训练题单选题1、如图(a)所示,一个可视为质点的小球从地面竖直上抛,小球的动能E k随它距离地面的高度ℎ的变化关系如图(b)所示,取小球在地面时的重力势能为零,小球运动过程中受到的空气阻力大小恒定,重力加速度为g,则下列说法正确的是()A.小球的质量为2E0gℎ0B.小球受到空气阻力的大小为E0gℎ0C.上升过程中,小球的动能等于重力势能时,小球距地面的高度为47ℎ0D.下降过程中,小球的动能等于重力势能时,小球的动能大小为E02答案:CAB.上升阶段,根据能量守恒2E0=fℎ0+mgℎ0下降阶段,根据能量守恒E0+fℎ0=mgℎ0联立解得,小球的质量为m=3E0 2gℎ0小球受到空气阻力的大小为f=E0 2ℎ0故AB错误;C.上升过程中,小球的动能等于重力势能时,根据能量守恒2E0=E k1+mgℎ+fℎ=2mgℎ+fℎ解得小球距地面的高度为ℎ=47ℎ0故C正确;D.下降过程中,小球的动能等于重力势能时,设此时高度ℎ1,根据能量守恒mgℎ0=E k2+mgℎ1+f(ℎ0−ℎ1)=2E k2+fℎ0−fℎ1即3E0 2=2E k2+E02−fℎ1解得小球的动能大小E k2=E0+fℎ12不等于E02,故D错误。
故选C。
2、下列有关力对物体做功的说法正确的是( )A.静摩擦力一定不做功B.如果外力对物体做功为零,则物体一定处于静止状态C.物体受到的外力越大则外力对物体所做的功越大D.物体在运动过程中,若受力的方向总是垂直于速度的方向,则此力不做功答案:DA.静摩擦力也可以做功,如物体随倾斜传送带向上运动,物体受到静摩擦力做功,故A错误;B.如匀速下落的小球,外力对物体做功为零,物体不是处于静止状态,故B错误;C.物体受到的外力对物体所做功的大小和力、位移和力位移夹角有关,故C错误;D.物体在运动过程中,若受力的方向总是垂直于速度的方向,则此力不做功,故D正确。
故选D。
机械能守恒定律典型例题
机械能守恒定律典型例题一、单物体在重力作用下的机械能守恒1. 例题- 质量为m = 1kg的物体从离地面h = 5m高处以初速度v_0= 10m/s水平抛出,不计空气阻力,求物体落地时的速度大小。
2. 解析- (1)首先分析物体的运动过程,物体在平抛运动过程中,只有重力做功。
- (2)取地面为零势能面,根据机械能守恒定律E_1=E_2。
- (3)物体抛出时的机械能E_1包括动能E_k1和重力势能E_p1。
- 动能E_k1=(1)/(2)mv_0^2=(1)/(2)×1×10^2 = 50J。
- 重力势能E_p1=mgh = 1×10×5=50J。
- 所以E_1=E_k1 + E_p1=50 + 50 = 100J。
- (4)物体落地时的机械能E_2只有动能E_k2(因为重力势能E_p2 = 0)。
- (5)由E_1=E_2,即100=(1)/(2)mv^2,解得v=√(frac{2×100){1}} =10√(2)m/s。
二、系统内物体间机械能守恒(轻绳连接)1. 例题- 如图所示,一轻绳跨过定滑轮,两端分别系着质量为m_1和m_2的物体(m_1,m_2开始时静止在地面上,当m_1由静止释放下落h高度时(m_1未落地),求此时m_2的速度大小。
(不计滑轮质量和摩擦)2. 解析- (1)对于m_1和m_2组成的系统,只有重力做功,系统机械能守恒。
- (2)设m_1下落h高度时,m_1和m_2的速度大小均为v。
- (3)以地面为零势能面,系统初始机械能E_1为m_1的重力势能m_1gh。
- (4)系统末态机械能E_2为m_1的动能(1)/(2)m_1v^2、m_1的重力势能m_1g(h - h)(此时m_1相对于初始位置下降了h),以及m_2的动能(1)/(2)m_2v^2和m_2的重力势能m_2gh。
- (5)根据机械能守恒定律E_1=E_2,即m_1gh=(1)/(2)m_1v^2+(1)/(2)m_2v^2+m_2gh。
机械能守恒定律练习题(含答案)全文编辑修改
精选全文完整版可编辑修改机械能守恒定律复习测试题1.在如图所示的实验中,小球每次从光滑斜面的左端A自由滑下,每次都能到达右端与A等高的B点.关于其原因,下列说法中正确的是()A.是因为小球总是记得自己的高度B.是因为小球在运动过程中,始终保持能量守恒C.是因为小球在运动过程中,始终保持势能守恒D.是因为小球在运动过程中,始终保持动能守恒2.下面的物体中,只具有动能的是(),只具有势能的是(),既具有动能又具有势能的是().(以地面为参考平面)A.停在地面上的汽车B.在空中飞行的飞机C.被起重机吊在空中静止的货物D.压缩的弹簧E.正在水平铁轨上行驶的火车3.在伽利略的理想斜面实验中,小球停下来的高度为h1与它出发时的高度h2相同,我们把这一事实说成是“有某一量守恒”,下列说法正确的是()A.小球在运动的过程中速度是守恒的B.小球在运动的过程中高度是守恒的C.小球在运动的过程中动能是守恒的D.小球在运动的过程中能量是守恒的4.质量是2kg的物体,受到24N竖直向上的拉力,由静止开始运动,经过F5s;求:①5s内拉力的平均功率②5s末拉力的瞬时功率(g取10m/s2)mg5.如图所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R=0.4m,一小球停放在光滑水平轨道上,现给小球一个v0=5m/s的初速度,求:小球从C点抛出时的速度(g取10m/s2).RV0A B6.如图,长l=80cm的细绳上端固定,下端系一个质量m=100g的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2.机械能守恒参考答案1、B 解析:小球在运动过程中守恒的“东西”是能量.2、答案:E CD B3.D4.【解析】物体受力情况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有F -mg=ma解得 =a 2m/s 25s 内物体的位移221at s ==2.5m 所以5s 内拉力对物体做的功W =FS =24×25=600J5s 内拉力的平均功率为5600==t W P =120W 5s 末拉力的瞬时功率P =Fv =Fat =24×2×5=240W5.【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221C mv R mgh mv += 解得=C v 3m/s 6.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k =∆.机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv 整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=- 在最低点时绳对小球的拉力大小图5-2-5N N mg mg mg lv mmg T 2101.022)60cos 1(202=⨯⨯==-+=+=。
机械能守恒定律习题(含答案)
图 2 图3 《机械能守恒》 第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。
)1、关于机械能是否守恒的叙述,正确的是( ) A .做匀速直线运动的物体机械能一定守恒 B .做变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .若只有重力对物体做功,物体的机械能一定守恒2、质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h ) 3、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k 随高度h 变化的图象A 、物体的重力势能E p 随速度v 变化的图象B 、物体的机械能E 随高度h 变化的图象C 、物体的动能E k 随速度v 的变化图象D ,可能正确的是( )4、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为 ( ) A .1:4 B .1:3 C .1:2 D .1:15、如图3所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过 桌边的定滑轮与质量为M 的砝码相连,已知M =2m ,让绳拉直后使砝码 从静止开始下降h (小于桌面)的距离,木块仍没离开桌面,则砝码的速率为( )A .31gh 6 B .mgh C .gh 2D .gh 332图1图46、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( ) A .FL sin θ B .mgL cos θ C .mgL (1-cos θ) D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。
完整版机械能守恒定律测试题及答案
机械能守恒定律测试题1.下列说法正确的是 ( )A .如果物体(或系统)所受到的合外力为零,则机械能一定守恒B .如果合外力对物体(或系统)做功为零,则机械能一定守恒C .物体沿固定光滑曲面自由下滑过程中,不计空气阻力,机械能一定守恒D .做匀加速运动的物体,其机械能可能守恒2.如图所示,木板O A 水平放置,长为L ,在A 处放置一个质量为m 的物体,现绕O 点缓慢抬高到A '端,直到当木板转到与水平面成α角时停止转动.这时物体受到一个微小的干扰便开始缓慢匀速下滑,物体又回到O 点,在整个过程中( )A .支持力对物体做的总功为m g L s i n αB .摩擦力对物体做的总功为零C .木板对物体做的总功为零D .木板对物体做的总功为正功3、设一卫星在离地面高h 处绕地球做匀速圆周运动,其动能为1K E ,重力势能为1P E 。
与该卫星等质量的另一卫星在离地面高2h 处绕地球做匀速圆周运动,其动能为2K E ,重力势能为2P E 。
则下列关系式中正确的是( )A .1K E >2K EB .1P E >2P EC .2211P K P K E E E E +=+D .11K PE E +< 22K P E E +4.质量为m 的物体,由静止开始下落,由于空气阻力,下落的加速度为g 54,在物体下落h 的过程中,下列说法正确的是( )A .物体动能增加了mgh 54B .物体的机械能减少了mgh 54C .物体克服阻力所做的功为mgh 51D .物体的重力势能减少了mgh5.如图所示,木板质量为M ,长度为L ,小木块的质量为m ,水平地面光滑,一根不计质量的轻绳通过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ.开始时木块静止在木板左端,现用水平向右的力将m 拉至右端,拉力至少做功为( )A .mgL μB .2mgL μC .2mgLμD .gL m M )(+μ6.如图所示,一轻弹簧左端固定在长木板2m 的左端,右端与小木块1m 连接,且1m 、2m 及 2m 与地面之间接触面光滑,开始时1m 和2m 均静止,现同时对1m 、2m 施加等大反向的 水平恒力1F 和2F ,从两物体开始运动以后的整个过程中,对1m 、2m 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是( ) A .由于1F 、2F 等大反向,故系统机械能守恒B .由于1F 、2F 分别对1m 、2m 做正功,故系统动能不断增加C .由于1F 、2F 分别对1m 、2m 做正功,故系统机械能不断增加D .当弹簧弹力大小与1F 、2F 大小相等时,1m 、2m 的动能最大7.如图所示,滑雪者由静止开始沿斜坡从A点自由滑下,然后在水平面上前进至B 点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m ,A 、B 两点间的水平距离为L .在滑雪者经过A B 段的过程中,摩擦力所做的功( )A .大于mgL μB .小于mgL μC .等于mgL μD .以上三种情况都有可能8.嫦娥一号奔月旅程的最关键时刻是实施首次“刹车”减速.如图所示,在接近月球时,嫦娥一号将要利用自身的火箭发动机点火减速,以被月球引力俘获进入绕月轨道.这次减速只有一次机会,如果不能减速到一定程度,嫦娥一号将一去不回头离开月球和地球,漫游在更加遥远的深空;如果过分减速,嫦娥一号则可能直接撞击月球表面.该报道的图示如下.则下列说法正确的是( )A .实施首次“刹车”的过程,将使得嫦娥一号损失的动能转化为势能,转化时机械能守恒.B .嫦娥一号被月球引力俘获后进入绕月轨道,并逐步由椭圆轨道变轨到圆轨道.C .嫦娥一号如果不能减速到一定程度,月球对它的引力将会做负功.D .嫦娥一号如果过分减速,月球对它的引力将做正功,撞击月球表面时的速度将很大9、如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体A 、B 的质量都为m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律练习题
1.将质量为100 kg的物体从地面提升到10 m高处,在这个过程中,下列说法中正确的是(取g=10 m/s2)( )
A.重力做正功,重力势能增加1.0×104 J
B.重力做正功,重力势能减少1.0×104 J
C.重力做负功,重力势能增加1.0×104 J
D.重力做负功,重力势能减少1.0×104 J
2.如图所示,在光滑水平面上有一物体,它的左端接连着一轻弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去力F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是( )
A.弹簧的弹性势能逐渐减少
B.弹簧的弹性势能逐渐增加
C.弹簧的弹性势能先增加后减少
D.弹簧的弹性势能先减少后增加
3.如图所示,一原长为L的轻质弹簧固定于天花板上的O点,一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,此过程中无机械能损失,则下列说法正确的是( ) A.由A到C的过程中,动能和重力势能之和不变
B.由B到C的过程中,弹性势能和动能之和不变
C.由A到C的过程中,物体m的机械能守恒
D.由B到C的过程中,物体与弹簧组成的系统机械能守恒
4.质点A从某一高度开始自由下落的同时,由地面竖直上抛质量相等的质点B(不计空气阻力).两质点在空中相遇时的速率相等,假设A、B互不影响,继续各自的运动.对两物体的运动情况,以下判断正确的是( )
A.相遇前A、B的位移大小之比为1∶1
B.两物体落地速率相等
C.两物体在空中的运动时间相等
D.落地前任意时刻两物体的机械能都相等
5.如图所示,一根长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,
此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为( ) A.h B.1.5 h C.2 h D.2.5 h
6.一个质量为m的小球,从光滑曲面轨道上的1位置由静止释放,
经过时间t后,沿轨道动行了d的路程到达了2位置,如图所示,
竖直方向距离为h,v与a为小球到达2位置时的瞬时速度和瞬
时加速度,下列表达式正确的是( )
A.d=at2/2 B.h=gt2/2 C.d=v2/(2a) D.h=v2/(2g)
7.如图所示,质量、初速度大小都相同的A、B、C三个小球,在同一水平面上,A球竖直上抛,B球以倾斜角θ斜向上抛,空气
阻力不计,C球沿倾角为θ的光滑斜面上滑,
它们上升的最大高度分别为h A、h B、h C,则( )
A.h A=h B=h C B.h A=h B<h C C.h A=h B>h C D.h A=h C>h B
8.将一小球竖直上抛,经过一段时间后落回原处,小球上升阶段的速度-时间图线如图所示,设空气阻力大小恒定,则下列说法中正确的是( ) A.初速度和末速度大小相等
B.上升过程中和下降过程中重力的平均功率大小相等
C.上升过程中和下降过程中机械能变化量相等
D.t=4 s时小球落回抛出点
9.如图所示是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系有物体A、B,且m A=2m B,从图示位置由静止开始释放物体A,当物体B达到半圆顶点时,求绳的张力对物体B所做的功.
10.右端连有光滑弧形槽的水平桌面AB长L=1.5 m,如图所示.将一个质量为m=0.5 kg的木块在F=1.5 N的水平拉力作用下,从桌面上的A端由静止开始向右运动,木块到达B端时撤去拉力F,木块与水平桌面间的动摩擦因数μ=0.2,取g=10 m/s2.求:
(1)木块沿弧形槽上升的最大高度;(2)木块沿弧形槽滑回B端后,在水平桌面
上滑动的最大距离.。