机械毕业设计英文外文翻译588柱塞式液压缸、起重器和柱塞
机械毕业设计英文外文翻译58拆装小车概述
附录附录A英文科技文献Disassembly Automotive OverviewCar shortly after the invention of the automobile repair and then had the industry. In order to convenient maintenance,with jack lifting machine maintenance tools to appear. The early simple columnar foundation type hydraulic lifting machine,is greatly raised than it was still early jack and the function of the test bench,this early lifting machine can rotate function in lifting the car later,rotating 360 °. Maybe you often go to a car maintenance,now still use the lift machine to provide daily vehicle maintenance service,this kind of lifting machine has largely work for 75 years.Along with the development of the car industry,simple columnar type elevator machine design,the limitation of shows up soon. If only in car around for testing maintenance work of words,the lifting machine will be enough,but this lifting machine and the central pillar of the hoist boom would hamper into the bottom of the car most area. For simple columnar type elevator machine of these limitations,engineers have put forward a lot of lifting machine design scheme and a lot of improvement work. Now,lifting machine selection scope of great,have foundation type,spots,cut the type,type of parallel four edges form,portable,simple columnar type,double column type,four-column type,driving type,contact the car battery,symmetric,the symmetric,small trip,big lift,queue,and other various type of lifting machine design. Some lifting machine may also.In the market can see different types of different size,lifting machine,there are some particularly suitable for engaged in special type of maintenance work,there are a few lifting machine for some other maintenance work.Double column spots car battery lifting machine is contact a widespread adoption of lifting machine,in recent years all new sales lifting machine,at least two-thirds are this type. This design is very popular,there are several reasons: one is the lifting machine installation quick,do not need a wide range of excavation,also do not need to enterprise's whole layout some permanent changes. 2 it is the diversity of function,a double column spots car battery lifting machine with almost all can be used for the car maintenance work. The lifting of the machine and contact the layout of cantilever pad,making maintenance technician can easily into the bottom of the car,the car in operation and maintenance. Therefore,almost all major liftingmachine manufacturers to at least one type of production double column spots type elevator machine.In recent years,I had a booming industry,especially the car industry,DuoNian to cars into the ordinary families dream has become a reality. Vehicle repair industry has got to develop,all kinds of maintenance equipment needs rapid expansion. Auto lift machine is necessary maintenance,is also the most important maintenance machinery.Auto lift machine is the role of the need of repair car level to the appropriate height,so that maintenance workers in car chassis of automobile maintenance. Below Auto lift machine such as mentioned above,the main divided into pillar type and shear type two kinds,no matter which kind of,the demand from both sides to car level synchronization up,and can't happen migration. And car chassis below must be empty. To facilitate the maintenance workers homework. This requires auto lift machine lifting device must be on both sides of the separation of both sides,and rise or fall must be synchronous. Because of the weight of the car generally very big,and lift for special smoothly,so auto lift machine typically use the hydraulic drive system. Besides the requirement from a certain range from cars both sides synchronous lifting the decline and car,also requires its can make cars at any height to stop and to keep still,so that different height of the workers in maintenance,at different location can adjust height,the most convenient for repair,so hydraulic system must have positioning keep function. In addition for car weight is very big,once hydraulic system failure,lifting machine for arm in car the force of gravity will decline rapidly to pull off the maintenance workers may be the life security threats,lifting the car on and broke the danger. So in order to prevent this happens,lifting machine must have mechanical locking devices,mechanical locks were installed in by lifting cylinder piston rod and the top and lifting arm connected pin shaft on the two root jagged rack,installation of the oil cylinder to the outside of the rack is stationary. And can the pin shaft do certain Angle,to the swing of the separation of the two root rack and mesh. When lifting arm in positioning state or hydraulic system failure,hydraulic below a certain value,dynamic rack will of its own gravity and spring under the action of forces and still rack meshing,mechanical locked,increased the lifting the security of the machine.Nearly 20 years the world lifting machine industry has changed greatly. RT (off-road tires lifting machine) and AT the whole earth to lifting machine () of the rapid development of products,broke original product and market structure,economic development and market in the fierce competition in the world,the impact of lifting machine market further integration trend. At present the lifting machine years sales has the world around us $7.5 billion. The mainproducers for the United States,Japan,Germany,France,Italy,etc,the world's top companies have more than 10 factories,mainly concentrated in the North America,Japan (Asia) and Europe.The United States is lifting machine main producer countries,it is one of the largest in the world market. But because Japan,Germany lifting machine rapid development of industry and RT and AT the rise of American manufacturers,products have in the s to 70 s,the world leading position in the field of possession is gradually weakened,so as to form the United States,Japan and Germany tripartite balance of power. In recent years the United States economy picks up,market,foreign manufacturers are active to participate in the competition. The strength of the American manufacturers also improved,TeLeiKeSi elevator company that is the rise of examples. TeLeiKeSi elevator company predecessor is the colin lifting depots. Since 1995,through a series of the merger activity,has become one of the world's top companies.Japan from the 1970 s become lifting machine production country,product quality and quantity improve soon,have been exported to European and American markets,annual production ranked first in the world. Since 1992,due to the yen's appreciation,domestic infrastructure investment dropped and the Asian financial crisis,the annual output to drop. At present,the market demand for years for 3000 units or so.Europe is a large market potential,European industrial nations lifting machine is the exporter,but also the important importer. Germany is the largest European market,followed by Britain,France,Italy and other countries. In Germany AT products market share,liebherr accounted for 53%,16%,DE lafugelufu horse) 14%,many fields and TeLeiKeSi each account for 10% and 5%.Lifting machine manufacture the wind of the combined with the auto industry is very similar,in the car industry,general motors,ford,BMW,Mercedes,Renault,public companies are on the way to unite,the two industries has been one of the world market. In the world to mature market for market share and maintain growth,shortcut is to buy rival,the long-term goal is to win the world market dominance. In the elevator industry,in a sense,into the world market means that into North America,Japan (Asia) and Europe market.附录B 文献翻译拆装小车概述汽车发明后不久便有了汽车维修的行业。
轴类毕业设计英文翻译、外文文献翻译
ShaftSolid shafts. As a machine component a shaft is commonly a cylindrical bar that supports and rotates with devices for receiving and delivering rotary motion and torque .The crankshaft of a reciprocating engine receive its rotary motion from each of the cranks, via the pistons and connecting roads (the slider-crank mechanisms), and delivers it by means of couplings, gears, chains or belts to the transmission, camshaft, pumps, and other devices. The camshafts, driven by a gear or chain from the crankshaft, has only one receiver or input, but each cam on the shaft delivers rotary motion to the valve-actuating mechanisms.An axle is usually defined as a stationary cylindrical member on which wheels and pulleys can rotate, but the rotating shafts that drive the rear wheels of an automobile are also called axles, no doubt a carryover from horse-and-buggy days. It is common practice to speak short shafts on machines as spindles, especially tool-carrying or work-carrying shafts on machine tools.In the days when all machines in a shop were driven by one large electric motor or prime mover, it was necessary to have long line shafts running length of the shop and supplying power, by belt, to shorter couter shafts, jack shafts, or head shafts. These lineshafts were assembled form separate lengths of shafting clampled together by rigid couplings. Although it is usually more convenient to drive each machine with a separate electric motor, and the present-day trend is in this direction, there are still some oil engine receives its rotary motion from each of the cranks, via the pistons and connecting roads (the slider-crank mechanisms) , and delivers it by means of couplings, gears, chains or belts to the transmission, camshaft, pumps, and other devices. The camshafts, driven by a gear or chain from the crankshaft, has only one receiver or input, but each cam on the shaft delivers rotary motion to the valve-actuating mechanisms.An axle is usually defined as a stationary cylindrical member on which wheels and pulleys can rotate, but the rotating shafts that drive the rear wheels of an automobile are also called axles, no doubt a carryover from horse-and-buggy days. It is common practice to speak short shafts on machines as spindles, especially tool-carrying or work-carrying shafts on machine tools.In the days when all machines in a shop were driven by one large electric motor or prime mover, it was necessary to have long line shafts running length of the shop and supplying power, by belt, to shorter coutershafts, jackshafts, or headshafts. These line shafts were assembled form separatelengths of shafting clampled together by rigid couplings. Although it is usually more convenient to drive each machine with a separate electric motor, and the present-day trend is in this direction, there are still some situation in which a group drive is more economical.A single-throw crankshaft that could be used in a single-cylinder reciprocating engine or pump is shown in Figure 21. The journals A andB rotate in the main bearings,C is the crankpin that fits in a bearing on the end of the connecting rod and moves on a circle of radius R about the main bearings, whileD andE are the cheeks or webs.The throw R is one half the stroks of the piston, which is connected, by the wrist pin, to the other end of the connecting rod and guided so as to move on a straight path passing throw the axis XX. On a multiple-cylinder engine the crankshaft has multiple throws---eight for a straight eight and for a V-8---arranged in a suitable angular relationship.Stress and strains. In operation, shafts are subjected to a shearing stress, whose magnitude depends on the torque and the dimensions of the cross section. This stress is a measure of resistance that the shaft material offers to the applied torque. All shafts that transmit a torque are subjected to torsional shearing stresses.In addition to the shearing stresses, twisted shafts are also subjected to shearing distortions. The distorted state is usually defined by the angle of twist per unit length; i.e., the retation of one cross section of a shaft relative to another cross section at a unit distance from it.Shafts that carry gears and pulleys are bent as well as twisted, and the magniude of the bending stresses, which are tensile on the convex side of the bend and compressive on the concave side, will depend on the load, the distance between the bearings of the shaft cross section.The combination of bending and twisting produces a state of stress in the shaft that is more complex than the state of pure shears produced by torsion alone or the state of tension-compression produced by bending alone.To the designer of shaft it is important to know if the shaft is likely to fail because of an excessive normal stress. If a piece of chalk is twisted, it will invariably rupture on a plane at about 45 degrees to the axis. This is because the maximum tensile stresses act on this plane, and chalk is weak in tension. Steel shafting is usually designed so that the maximum shearing stress produced by bending and torsion is less than a specified maximum.Shafts with circular cross sections are easier to produce in the steel mill, easier to machine, andeasier to support in bearings than shafts with other cross section; there is seldom any need for using noncircular shapes. In addition, the strength and stiffness, both in bending and torsion, are more easily calculated for circular shafts. Lastly, for a given amount of materials the circular shafts has the smallest maximum shearing stress for a given torque, and the highest torsional rigidity.The shearing in a circular shaft is highest at the surface and drops off to zero at the axis. This means that most of the torque is carried by the material on and near the surface.Critical speeds. In the same way that a violin string vibrates when stroked with a bow, a cylindrical shaft suspended between two bearings has a natural frequency of lateral vibration. If the speed of revolution of the shaft coincides with the natural frequency, the shaft experience a whirling critical speed and become noisy. These speeds are more likely to occur with long, flexible shafts than with short, stiff ones. The natural frequency of a shaft can be raised by increasing its stiffness.If a slender rod is fixed to the ceiling ta one end and supports a heavy disk at the other end, the disk will oscillate back and forth around the rod axis like a torsion pendulum if given an initial twist and let go. The frequency of the oscillations will depend on the torsional stiffness of the rod and the weight of the disk; the stiffer the rod and the lighter the disk the higher the frequency. Similar torsional oscillations can occur in the crankshafts of reciprocating engines, particularly those with many crank throws and a heavy flywheel. Each crank throw and part of the associated connecting rod acts like a small flywheel, and for the crankshaft as a whole, there are a number of ways or modes in which there small flywheels can oscillate back and forth around the shaft axis in opposition to one another and to the main flywheel. For each of these modes there corresponds a natural frequency of oscillation.When the engine is operating the torques delivered to the crankshaft by the connecting rods fluctuate, and if the crankshaft speed is such that these fluctuating impulses are delivered at a speed corresponding to one of the natural torsional frequencies of the shaft, torsional oscillations will be superimposed on the rotary motion of the shafts. Such speed are known as torsional critical speeds, and they can cause shaft failures. A number of devices to control the oscillations of crankshafts have been invented.Flexible shafts. A flexible shaft consists of a number of superimposed tightly wound right-and left-hand layers of helically wound wires wrapped about a single center wire or mandrel. The shaft is connected to source of power and the driven member by special fittings attached to the end of theshaft. Flexible easings of metallic or nonmetallic materials, which guide and protect the shaft and retain the lubricant, are also available. Compared with solid shafts, flexible shafts can be bent to much smaller radii without being overstressed.For transmitting power around corners and for considerable distances flexible shafts are usually cheaper and more convenient than belts, chains, or gears. Most speedometers on automobiles are driven by flexible shafts running from the transmission to the dashboard. When a valve, a switch, or other control devices is in a hard-to-reach location, it can be operated by a flexible shaft from a more convenient position. For portable tools such as sanders, grinders, and drilling machines, flexible shafts are practically indispensable.KEY, SPLINES AND PINSKeys, splines, and pins. When power is being transmitted from a machine member such as a coupling, a gear, a flywheel, or a pulley to the shaft on which it is mounted, means must be provided for preventing relative motion between the shaft and the member. On helical and bevel gears, relative movement along the shaft caused by the thrust(axial) loads is prevented by a step in the shaft or by having the gear contact the bearing directly or through a tubular spacer. When axial loads are incidental and of small magnitude, the members are kept from sliding along the shaft by means of a set screw. The primary purpose of keys, splines, and pins is to prevent relative rotary movement.A commonly used type of key has a square cross section and is sunk half in the shaft and half in the hub of the other member. If the key is made of steel(which is commonly the case)of the same strength as the shaft and has a width and depth equal to one fourth of the shaft diameter(this proportion is closely approximated in practice) then it will have the same torque capacity as the solid shaft if its length is 1.57 times that of the shaft diameter. Another common type of key has a rectangular cross section with a depth to width ratio of 0.75. Both of these keys may either be straight or tapered in depth. The straight keys fit snugly on the sides of the key ways only, the tapered keys on all sides. Gib-head keys are tapered keys with a projection on one end to facilitate removal.Woodruff keys are widely used on machine tools and motor vehicles. The key is a segment of adisk and fits in a keyway in the shaft that is with a special milling cutter. Though the extra depth of these keys weakens the shaft considerably, it prevents any tendency of the key to rotate or move axially. Woodruff keys are particularly suitable for tapering shaft ends.Because they weaken the shafts less, keys with straight or tapered circular cross sections are sometimes used in place of square and rectangular keys, but the keyways, half in the shaft and half in the shaft and half in the hub, must be cut with a drill after assembly,and interchangeability of parts is practically impossible. When a large gear blank is made by shrinking a high-strength rim on a cheaper cast center, circular keys, snugly fitted, are frequently used to ensure a permanent connection.Splines are permanent keys integral with the shaft, fitting in keyways cut in the hub. The dimensions of splined fittings are standardized for both permanent (press) fits and sliding fits. The teeth have either straight or involute profiles;the latter are stronger, more easily measured, and have a self-centring action when twisted.Tapered circular pins can be used to restrain shaft-mounted members from both axial and rotary movement. The pin fits snugly in a reamed tapered hole that is perpendicular to the shaft surface. A number of straight pins that grip by deforming elastically or plastically when driven into straight holes are commercially available.All the keys and pins that have been described are standard driving devices. In some cases they inadequate, and unorthodox means must be employed. For driving small gear in which there is no room between the bore and the roots of the teeth for a longitudinal keyway, a transverse radial slot on the end of the gear can be made to fit a radial protuberance on the shaft. For transmitting moderate loads, a cheaper and effective connection can be made by forming a series of longitudinal serrations on the shaft with a knurling tool and pressing the shaft into the hole in the driven member, it will cut grooves in the hole and provide, in effect, a press-fitted splined connection. Press and shrink fits are also used, and they can provide surprisingly firm connections, but the dimensions of the connected member must be closely controlled.轴实心轴轴作为机械零件通常是一根圆柱形杆,用来支撑部件并随部件一起转动以接受和传递转动和扭矩。
【机械专业中文翻译】液压缸
毕业设计(论文)外文资料翻译系部:机械工程系专业:机械工程及自动化姓名:学号:外文出处:HYDRAULICS ANDPNEUMATICS TRANSMISSIONPage38--44附件: 1.外文资料翻译译文;2.外文原文。
指导教师评语:该同学查阅大量资料,完成翻译。
译文正确地表达了原文的意义、概念描述符合汉语的习惯,语句通畅,层次很清晰。
成绩评定为优。
签名:年月日附件1:外文资料翻译译文液压缸3.1 液压缸的分类及基本计算液压缸是液压传动系统中应用最多的执行元件,它将油液的压力能转换为机械能,实现往复直线运动或摆动,输出力或扭矩;其作用方式可分为单作用式和双作用式两种,单作用式液压缸只能实现单用运动,即压力油只是通向液压缸的一腔,而反方向运动则必须依靠外力来实现,如复位弹簧力,自重或其它外部作用;双作用式液压缸在两个方向上的运动都由油压力推动来实现,可实现双向运动。
液压缸可以看作是直线马达(或摆动马达),其单位位移排量即为液压缸的有效面积A ,当液压缸的回油压力为零且不计损失时,输出速度v 等于输入注量q 除以排量A,输出推力F 等于输入压力p 乘以排量A,即输入液压功率pq 等于输入机械功率Fv 。
液压缸有多种结构,但根据其具体结构特点可分为活塞式、柱塞式和摆动式三类基本形式,除此以外,还有在基本形式上发展起来各种特殊用途的组合液压缸,下面分别予以介绍。
3.1.1 活塞式液压缸活塞式液压缸可分为双杆式和单杆式两种结构形式,其安装方式有缸筒固定和活塞杆固定两种形式。
3.1.1.1 双杆活塞式液压缸图3.1所示为双杆活塞式液压缸的工作原理图,活塞两侧都有活塞杆伸出。
当两活塞杆直径相同,供油压力和流量不变时,活塞式液压缸在两个方向上的运动速度和推力都相等,即 )(422d D q A q v v -==πηην (3.1) ηπm p p d D F ))((42122--= (3.2)图3.1 双杆活塞式液压缸式中 v----液压缸的运动速度)/(s m ;F ----液压缸的推力)(N ;νη----液压缸的容积效率;m η----液压缸的机械效率;q ----液压缸的流量)/(3s m ;A ----液压缸的有效工作面积)(2m ;p 1----进油压力)(Pa ;2p ----回油压力)(Pa ; D ----活塞直径)(m ;d ----活塞杆直径)(m 。
柱塞泵毕业设计外文文献翻译
柱塞泵毕业设计外⽂⽂献翻译利⽤神经⽹络预测轴向柱塞泵的性能Mansour A Karkoub a, Osama E Gad a, Mahmoud G Rabie ba--就读于科威特的科威特⼤学⼯程与⽯油学院b--就读于埃及开罗的军事科技⼤学摘要本⽂推导了应⽤于轴向柱塞泵(斜轴式)的神经⽹络模型。
该模型采⽤的数据是由⼀个实验装置获得的。
这个正在进⾏的研究的⽬的是降低柱塞泵在⾼压下⼯作时的能量损耗。
然⽽,在最初我们要做⼀些研究来预测当前所设计的泵的响应。
神经⽹络模型具有前反馈的结构,并在测验过程中使⽤Levenberg-Marquardt优化技术。
该模型能够准确地预测柱塞泵的动态响应。
1、简介可变排量轴向柱塞泵是在流体动⼒系统中经常要⽤到的重要设备,如液压动⼒供应控制和静液压传动驱动器的控制。
本装置具有变量机制和功率-重量⽐特性,使其最适合于⾼功率电平的控制。
所设计的这种轴向柱塞泵拥有可靠性和简便的特点,然⽽其最重要的特征是可以变量输出。
⼈们在轴向柱塞泵领域已经做了很多研究,但是本⽂将只论述⼀下少数⼏⼈所做的贡献。
Kaliafetis和Costopoulos[5]⽤调压器研究了轴向柱塞变量泵的静态和动态特性。
所提出的模型的精确度依赖于制造商提供的动态运⾏曲线等数据。
他们得出结论,运⾏条件对泵的动态⾏为是⾮常关键的,⽽泵的动态⾏为可以通过减⼩压⼒设定值进⾏改善。
Harris等⼈[4]模拟和测量了轴向柱塞泵的缸体压⼒和进油流量脉动。
Kiyoshi和Masakasu[7]研究了斜盘式变量输送的轴向柱塞泵在运⾏时刻的实验上和理论上的静态和动态特性。
并提出了⼀种新的⽅法来预测泵在运⾏过程中的响应。
也对研究泵特性的新⽅法的有效性进⾏了实验验证,实验中使⽤了⼀个有宽、短⽽深的凹槽的配流盘。
Edge和Darling[2]研究了液压轴向柱塞泵的缸体压⼒和流量。
这个得出的模型经过了实验检验。
对于配流盘、缸体上设计的退⼑槽和泵的流量脉动对泵特性的影响都进⾏了验证。
机械专业中英文对照(完整版)1
机械专业英语词汇陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical—spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination 气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel后角clearance angle龙门刨削planing主轴spindle主轴箱headstock卡盘chuck加工中心machining center车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻forge压模stamping焊weld拉床broaching machine拉孔broaching装配assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical—electrical integration 气压air pressure pneumatic pressure 稳定性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺纹thread螺旋helix键spline销pin滚动轴承rolling bearing滑动轴承sliding bearing弹簧spring制动器arrester brake十字结联轴节crosshead联轴器coupling链chain皮带strap精加工finish machining粗加工rough machining变速箱体gearbox casing腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor集成电路integrate circuit挡板orifice plate残余应力residual stress套筒sleeve扭力torsion冷加工cold machining电动机electromotor汽缸cylinder过盈配合interference fit热加工hotwork摄像头CCD camera倒角rounding chamfer优化设计optimal design工业造型设计industrial moulding design有限元finite element滚齿hobbing插齿gear shaping伺服电机actuating motor铣床milling machine钻床drill machine镗床boring machine步进电机stepper motor丝杠screw rod导轨lead rail组件subassembly可编程序逻辑控制器Programmable Logic Controller PLC电火花加工electric spark machining电火花线切割加工electrical discharge wire - cutting相图phase diagram热处理heat treatment固态相变solid state phase changes有色金属nonferrous metal陶瓷ceramics 合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical—spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy 动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheelAssembly line 组装线Layout 布置图Conveyer 流水线物料板Rivet table 拉钉机Rivet gun 拉钉枪Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs。
DOC-机械专业毕业设计外文翻译--什么是液压-液压系统
DOC-机械专业毕业设计外文翻译--什么是液压-液压系统What is Hydraulic?A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, no parts and hydraulic oil. The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump. Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement. Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic valves can be divided into the village of force control valve, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be dividedinto the hydraulic valve control switch valve, control valve and set thevalue of the ratio control valve. Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oildollars. Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories.Hydraulic principleIt consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called "hydraulic press"; the said oil-filled "hydraulic machine." Each of the two liquida sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascal's law, small piston to the pressure of the pressure through the liquid passed to the large piston, pistontop will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P = F1/SI, Can be the same size in all directions to the transmission of liquid. "By the large piston is also equivalent to the inevitable pressure P. If the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2 = PxS2Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of asmaller force, the piston will be in great force, for which thehydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel.History of the development of hydraulicAnd air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of theworld's first hydraulic press. Media work in 1905 will be replaced byoil-water and further improved.World War I (1914-1918) after the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century Constantine (G • Constantimsco) fluctuations of the ener gy carried out by passing theoretical and practical research; in 1910 on the hydraulic transmission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development.The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan thanEurope and the United States and other countries for nearly 20 years later. Before and after in1955, the rapid development of Japan's hydraulic drive, set up in 1956, "Hydraulic Industry." Nearly 20 to 30 years, the development of Japan's fast hydraulic transmission, a world leader.Hydraulic transmission There are many outstanding advantages, it is widely used, such as general workers. Plastic processing industry, machinery, pressure machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel industry metallurgical machinery, lifting equipment, such as roller adjustment device; civil waterprojects with flood control the dam gates and devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship deck crane (winch), the bow doors, bulkhead valves, such as the sternthruster ; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military-industrial control devices used in artillery, ship anti-rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices.什么是液压,一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、无件和液压油。
汽车起重机毕业设计外文翻译
本科毕业设计(论文)外文翻译译文题目:使用智能液压缸增加起重机的稳定性学院:机电学院专业:机械设计制造及其自动化学生姓名:XXX学号:**********指导教师:XXX完成时间:2017年3月12日From:Hitchcox, Alan. Smart cylinders stabilize cranes[J]. Hydraulics & Pneumatics; Cleveland (Sep 12, 2013): n/a.Smart cylinders stabilize cranesHitchcox, Alan.ASM International, Penton Media, OTP Industrial Solutions(formerly Ohio Transmission & Pump Co)Abstract:It's not unusual for cranes to reach 100 ft or more into the air at major construction sites. Traditionally, cranes are transported to a work area and assembled on-site. More recently, as truck-mounted cranes become bigger and more powerful, they have found favor because they are quicker to set up than traditional cranes. Truck-mounted cranes have a telescoping hydraulic boom mounted on commercial truck chassis. Their portability and lower setup costs have led to their widespread use at construction and utility sites around the world. But as loads get heavier and lifting distances become higher, designers of truck-mounted cranes must provide the stability to ensure that safety remains the top priority.Truck-mounted cranes use outrigger systems to ensure stable operation. The outriggers extend from the main body of the truck and contact the ground several feet away from the truck. This distributes the crane's load over a much larger area, thereby increasing stability. Manitowoc Company Inc., Manitowoc, Wis., takes this a step further by using smart cylinders in the A-frame outrigger systems of its National Crane line of truck-mounted cranes. The crane's hydraulic system is driven from a power takeoff on the truck's transmission. The crane operator then runs all crane functions through a series of lever-operated valves at a control station.The ELA is an externally mounted LDT that uses Hall-effect technology to sense the location of a magnet embedded in the cylinder's piston through the cylinder's carbon steel barrel. A microprocessor then assigns an analog voltage to the magnet's corresponding absolute position. For example, when the cylinder is fully retracted; the voltage may be 0.55 V. As the cylinder extends, the voltage gradually increases until 4.5 V is reached at full extension.Accuracy of the transducer is typically +-0.5 mm (0.02 in.) - more than adequate for most mobile equipment. That position is then sent to the ECM and compared to the known maximum horizontal extension. After this, an indication is given to the operator about the outrigger state. The position update happens within milliseconds.Full TextIt's not unusual for cranes to reach 100 ft or more into the air at major construction sites. Traditionally, cranes are transported to a work area and assembled on-site. More recently, as truck-mounted cranes become bigger and more powerful, they have found favor because they are quicker to set up than traditional cranes. Truck-mounted cranes have a telescoping hydraulic boom mounted on commercial truck chassis. Their portability and lower setup costs have led to their widespread use at construction and utility sites around the world. But as loads get heavier and lifting distances become higher, designers of truck-mounted cranes must provide the stability to ensure that safety remains the top priority.Truck-mounted cranes use outrigger systems to ensure stable operation. The outriggers extend from the main body of the truck and contact the ground several feet away from the truck. This distributes the crane's load over a much larger area, thereby increasing stability. Manitowoc Company Inc., Manitowoc, Wis., takes this a step further by using smart cylinders in the A-frame outrigger systems of its National Crane line of truck-mounted cranes. The crane's hydraulic system is driven from a power takeoff on the truck's transmission. The crane operator then runs all crane functions through a series of lever-operated valves at a control station.An important function for lifting, moving, and lowering heavy loads is to ensure that outrigger beams are properly positioned. The outriggers are attached to the truck frame and are extended downward by hydraulic cylinders at an angle to create an A-frame structure that is wider at its base than at the top. This provides a stable framework to level and support the loaded and extended crane.Adding smarts to outriggersFor the past several years, National Crane has added outrigger-monitoring systems (OMSs) to its cranes. With the OMS, operators monitor the horizontal extension of the crane's outriggers at a control station. The OMS used with A-frame model cranes includes an ELAposition-sensing linear-displacement transducer (LDT) from Rota Engineering, Dallas, an electronic control module (ECM), and bicolor indication LEDs at each station.The ELA is an externally mounted LDT that uses Hall-effect technology to sense the location of a magnet embedded in the cylinder's piston through the cylinder's carbon steel barrel. A microprocessor then assigns an analog voltage to the magnet's corresponding absolute position. For example, when the cylinder is fully retracted; the voltage may be 0.55 V. As the cylinder extends, the voltage gradually increases until 4.5 V is reached at full extension. Accuracy of the transducer is typically +-0.5 mm (0.02 in.) - more than adequate for most mobile equipment. That position is then sent to the ECM and compared to the known maximum horizontal extension. After this, an indication is given to the operator about the outrigger state. The position update happens within milliseconds.Mark Hoffman, of Rota Engineering, pointed out that because mobile equipment has a human operator, position feedback from cylinders generally only needs to be within hundredths of an inch. Put simply, he says that magnetostrictive LDTs are overkill for most mobile-equipment applications. He suggests that an LDT with slightly less precision, but substantially lower cost, would enable designers to provide cylinder position feedback more often - not just for the most critical applications that justify high cost.Simple electronic displayThe electronic control module on the A-frame units serves only to monitor the position of the outriggers and provide feedback to the operator. As the analog voltage from the ELA transducer is read into the ECM, it sends a signal to a set of bicolor LEDs - one set per operator's station. The indications available are:Red for system error (sensor out of range, electrical short, etc.).Blinking red to indicate the operator is not at a valid working position as directed by the operation manual.Green to inform the operator that full horizontal extension has been accomplished. The ECM can be configured through the use of a service tool to also help diagnose any issues related to the OMS.Made for mobileDesigned for use with mobile equipment, the ELA transducer matches this application well because of several physical and intrinsic attributes. The most important of these is theability to mount the sensor along the exterior of the hydraulic outrigger-cylinder barrel. Although the cylinder gains added functionality, in many cases it retains the same form and fit as the original cylinder; the smart cylinder is essentially a drop-in replacement. The envelope in which the cylinder is mounted does not change. Only additional harnessing and the ECM are added - plus there are minor physical changes to the rear stabilizers.The cylinder bores used in A-frame outriggers range from 3 to 4.5 in. Strokes may be as long as of 66.9 in., depending on lifting capacity. According to Hoffman added, "Eliminating the expense of gun-drilling the piston rod and machining the end cap reduces the cost of creating this smart cylinder. The cylinder's structural integrity remains the same, and it is easier to assemble, install, and service than cylinders with magnetostrictive sensors."Other positive attributes: the Hall-effect sensor is noncontact for long service life, its temperature rating is high, it performs well in high shock and vibration applications, and its aluminum housing resists damage from impact and corrosion. The external transducer can be replaced in the field without difficulty.Cylinders can be supplied with magnets already fitted, so that if the stroke-sensing function is required later, the transducer can easily be added. The magnet assembly for the EL transducer is designed to match the bore of the cylinder. A slot is milled into the piston to accommodate the magnet assembly. Service life is not a factor because the magnet assembly is made of the same quality as piston-wear rings.A different kind of linear sensorModel ELA linear-displacement transducers (LDTs) use Hall-effect technology and mount externally to mobile hydraulic cylinders. Unlike other types of in-cylinder LDTs, they can be used in double-ended cylinders. They can also be used effectively in steering and long-stroke cylinders, where gun drilling can become cost prohibitive and are easily field replaceable.Hall-effect LDTs can be manufactured for strokes exceeding 50 ft and for use 20,000 ft below the surface of the ocean and other demanding environments.Hall-effect technologyLDTs from Rota Engineering use a microprocessor that transmits and receives signals from Hall-effect chips mounted to a printed-circuit board. The circuit board is contained within a stainless-steel or aluminum housing, depending on application requirements. Apiston-mounted magnet causes a voltage drop when it passes over the Hall-effect chip. The microprocessor calculates the position of the Hall-effect chip and correlates the voltage drop to a proportional voltage, current, PWM, or CANbus output.Hoffman explains, "Hall-effect sensors do not have as high a resolution as magnetostrictive sensors, which can achieve resolution measured in ten-thousandths of an inch. Hall-effect LDTs, however, generally have resolution of 0.012 to 0.020 in. The tighter resolution of magnetostrictive LDTs is needed for many process applications, such as a rolling mill. Most of the time, though, 0.020-in. resolution is more than sufficient for mobile hydraulic applications."An additional benefit of the Hall-effect technology is small size. In most instances, the pin-to-pin dimension of a cylinder need not be increased to accommodate a Hall-effect LDT. Also, the surface-mount technology tolerates high levels of vibration, and potting can provide additional vibration resistance.For more information, contact Rota Engineering at (972) 359-1041, or visit . For information on Manitowoc's truck-mounted cranes and other products, visit www.manitowoc.译自:希契科克斯,艾伦. 使用智能液压缸增加起重机的稳定性[J]. 液压与气动技术;克利夫兰(2013年9月12日):n/a使用智能液压缸增加起重机的稳定性希契科克斯,艾伦ASM国际片通媒体,OTP工业解决方案(以前俄亥俄州传输和泵有限公司)摘要:在大型的建筑工地上起重机将重物举至空中100英尺及以上的情况并不罕见。
机械设计专业英语
机械设计专业英语机械设计专业英语圆柱螺旋扭转弹簧cylindroid helical-coil torsion spring圆柱螺旋压缩弹簧cylindroid helical-coil compression spring 圆柱凸轮cylindrical cam圆柱蜗杆cylindrical worm圆柱坐标操作器cylindrical coordinate manipulator圆锥螺旋扭转弹簧conoid helical-coil compression spring 圆锥滚子tapered roller圆锥滚子轴承tapered roller bearing圆锥齿轮机构bevel gears圆锥角cone angle原动件driving link约束constraint约束条件constraint condition约束反力constraining force跃度jerk跃度曲线jerk diagram运动倒置kinematic inversion运动方案设计kinematic precept design运动分析kinematic analysis运动副kinematic pair运动构件moving link运动简图kinematic sketch运动链kinematic chain运动失真undercutting运动设计kinematic design运动周期cycle of motion运动综合kinematic synthesis运转不均匀系数coefficient of velocity fluctuation运动粘度kenematic viscosity载荷load载荷—变形曲线load—deformation curve 载荷—变形图load—deformation diagram 窄V 带narrow V belt毡圈密封felt ring seal展成法generating张紧力tension 张紧轮tension pulley振动vibration振动力矩shaking couple振动频率frequency of vibration振幅amplitude of vibration正切机构tangent mechanism正向运动学direct (forward) kinematics正弦机构sine generator, scotch yoke织布机loom正应力、法向应力normal stress制动器brake直齿圆柱齿轮spur gear直齿锥齿轮straight bevel gear直角三角形right triangle直角坐标操作器Cartesian coordinate manipulator直径系数diametral quotient直径系列diameter series直廓环面蜗杆hindley worm直线运动linear motion直轴straight shaft质量mass质心center of mass执行构件executive link; working link质径积mass-radius product智能化设计intelligent design, ID中间平面mid-plane中心距center distance中心距变动center distance change中心轮central gear中径mean diameter终止啮合点final contact, end of contact周节pitch周期性速度波动periodic speed fluctuation 周转轮系epicyclic gear train肘形机构toggle mechanism轴shaft轴承盖bearing cup轴承合金bearing alloy轴承座bearing block轴承高度bearing height轴承宽度bearing width轴承内径bearing bore diameter轴承寿命bearing life轴承套圈bearing ring轴承外径bearing outside diameter轴颈journal轴瓦、轴承衬bearing bush轴端挡圈shaft end ring轴环shaft collar轴肩shaft shoulder轴角shaft angle轴向axial direction轴向齿廓axial tooth profile轴向当量动载荷dynamic equivalent axial load轴向当量静载荷static equivalent axial load 轴向基本额定动载荷basic dynamic axial load rating轴向基本额定静载荷basic static axial load rating轴向接触轴承axial contact bearing轴向平面axial plane轴向游隙axial internal clearance轴向载荷axial load轴向载荷系数axial load factor轴向分力axial thrust load主动件driving link主动齿轮driving gear主动带轮driving pulley转动导杆机构whitworth mechanism转动副revolute (turning) pair转速swiveling speed ; rotating speed转动关节revolute joint转轴revolving shaft转子rotor转子平衡balance of rotor装配条件assembly condition锥齿轮bevel gear锥顶common apex of cone锥距cone distance锥轮bevel pulley; bevel wheel锥齿轮的当量直齿轮equivalent spur gear of the bevel gear 锥面包络圆柱蜗杆milled helicoids worm准双曲面齿轮hypoid gear子程序subroutine 子机构sub-mechanism自动化automation自锁self-locking自锁条件condition of self-locking自由度degree of freedom, mobility总重合度total contact ratio总反力resultant force总效率combined efficiency; overall efficiency组成原理theory of constitution组合齿形composite tooth form组合安装stack mounting组合机构combined mechanism阻抗力resistance最大盈亏功maximum difference work between plus and minus work纵向重合度overlap contact ratio纵坐标ordinate组合机构combined mechanism最少齿数minimum teeth number最小向径minimum radius作用力applied force坐标系coordinate frame行星轮变速装置planetary speed changing devices行星轮系planetary gear train形封闭凸轮机构positive-drive (or form-closed) cam mechanism虚拟现实virtual reality虚拟现实技术virtual reality technology, VRT虚拟现实设计virtual reality design, VRD虚约束redundant (or passive) constraint许用不平衡量allowable amount of unbalance许用压力角allowable pressure angle许用应力allowable stress; permissible stress 悬臂结构cantilever structure悬臂梁cantilever beam循环功率流circulating power load旋转力矩running torque旋转式密封rotating seal旋转运动rotary motion选型type selection压力pressure压力中心center of pressure压缩机compressor压应力compressive stress压力角pressure angle牙嵌式联轴器jaw (teeth) positive-contact coupling雅可比矩阵Jacobi matrix摇杆rocker液力传动hydrodynamic drive液力耦合器hydraulic couplers液体弹簧liquid spring液压无级变速hydraulic stepless speed changes液压机构hydraulic mechanism一般化运动链generalized kinematic chain 移动从动件reciprocating follower移动副prismatic pair, sliding pair移动关节prismatic joint移动凸轮wedge cam盈亏功increment or decrement work应力幅stress amplitude应力集中stress concentration应力集中系数factor of stress concentration 应力图stressdiagram应力—应变图stress-strain diagram优化设计optimal design油杯oil bottle油壶oil can油沟密封oily ditch seal有害阻力useless resistance有益阻力useful resistance有效拉力effective tension有效圆周力effective circle force有害阻力detrimental resistance余弦加速度运动cosine acceleration (or simple harmonic) motion预紧力preload原动机primer mover圆带round belt圆带传动round belt drive圆弧齿厚circular thickness 圆弧圆柱蜗杆hollow flank worm 圆角半径fillet radius圆盘摩擦离合器disc friction clutch圆盘制动器disc brake原动机prime mover原始机构original mechanism圆形齿轮circular gear圆柱滚子cylindrical roller圆柱滚子轴承cylindrical roller bearing圆柱副cylindric pair圆柱式凸轮步进运动机构barrel (cylindric) cam圆柱螺旋拉伸弹簧cylindroid helical-coil extension spring凸轮cam凸轮倒置机构inverse cam mechanism凸轮机构cam , cam mechanism凸轮廓线cam profile凸轮廓线绘制layout of cam profile凸轮理论廓线pitch curve凸缘联轴器flange coupling图册、图谱atlas图解法graphical method推程rise推力球轴承thrust ball bearing推力轴承thrust bearing退刀槽tool withdrawal groove退火anneal陀螺仪gyroscopeV 带V belt外力external force外圈outer ring外形尺寸boundary dimension万向联轴器Hooks coupling ; universal coupling外齿轮external gear弯曲应力beading stress弯矩bending moment腕部wrist往复移动reciprocating motion往复式密封reciprocating seal网上设计on-net design, OND微动螺旋机构differential screw mechanism 位移displacement 位移曲线displacement diagram位姿pose , position and orientation稳定运转阶段steady motion period稳健设计robust design蜗杆worm蜗杆传动机构worm gearing蜗杆头数number of threads蜗杆直径系数diametral quotient蜗杆蜗轮机构worm and worm gear蜗杆形凸轮步进机构worm cam interval mechanism蜗杆旋向hands of worm蜗轮worm gear涡圈形盘簧power spring无级变速装置stepless speed changes devices无穷大infinite系杆crank arm, planet carrier现场平衡field balancing向心轴承radial bearing向心力centrifugal force相对速度relative velocity相对运动relative motion相对间隙relative gap象限quadrant橡皮泥plasticine细牙螺纹fine threads销pin消耗consumption小齿轮pinion小径minor diameter橡胶弹簧balata spring修正梯形加速度运动规律modified trapezoidal acceleration motion修正正弦加速度运动规律modified sine acceleration motion斜齿圆柱齿轮helical gear斜键、钩头楔键taper key泄漏leakage谐波齿轮harmonic gear谐波传动harmonic driving谐波发生器harmonic generator 斜齿轮的当量直齿轮equivalent spur gear of the helical gear心轴spindle行程速度变化系数coefficient of travel speed variation行程速比系数advance-to return-time ratio 行星齿轮装置planetary transmission行星轮planet gear平衡机balancing machine平衡品质balancing quality平衡平面correcting plane平衡质量balancing mass平衡重counterweight平衡转速balancing speed平面副planar pair, flat pair平面机构planar mechanism平面运动副planar kinematic pair平面连杆机构planar linkage平面凸轮planar cam平面凸轮机构planar cam mechanism平面轴斜齿轮parallel helical gears普通平键parallel key其他常用机构other mechanism in common use起动阶段starting period启动力矩starting torque气动机构pneumatic mechanism奇异位置singular position起始啮合点initial contact , beginning of contact气体轴承gas bearing千斤顶jack嵌入键sunk key强迫振动forced vibration切齿深度depth of cut曲柄crank曲柄存在条件Grashoff`s law曲柄导杆机构crank shaper (guide-bar) mechanism曲柄滑块机构slider-crank (or crank-slider) mechanism 曲柄摇杆机构crank-rocker mechanism曲齿锥齿轮spiral bevel gear曲率curvature曲率半径radius of curvature曲面从动件curved-shoe follower曲线拼接curve matching曲线运动curvilinear motion曲轴crank shaft驱动力driving force驱动力矩driving moment (torque)全齿高whole depth权重集weight sets球ball球面滚子convex roller球轴承ball bearing球面副spheric pair球面渐开线spherical involute球面运动spherical motion球销副sphere-pin pair球坐标操作器polar coordinate manipulator 燃点spontaneous ignition热平衡heat balance; thermal equilibrium人字齿轮herringbone gear冗余自由度redundant degree of freedom柔轮flexspline柔性冲击flexible impulse; soft shock柔性制造系统flexible manufacturing system; FMS柔性自动化flexible automation润滑油膜lubricant film润滑装置lubrication device润滑lubrication润滑剂lubricant三角形花键serration spline三角形螺纹V thread screw三维凸轮three-dimensional cam三心定理Kennedy`s theorem砂轮越程槽grinding wheel groove砂漏hour-glass少齿差行星传动planetary drive with small teeth difference设计方法学design methodology设计变量design variable设计约束design constraints深沟球轴承deep groove ball bearing生产阻力productive resistance 升程rise升距lift螺旋角helix angle螺旋线helix ,helical line绿色设计green design ; design for environment马耳他机构Geneva wheel ; Geneva gear马耳他十字Maltese cross脉动无级变速pulsating stepless speed changes脉动循环应力fluctuating circulating stress 脉动载荷fluctuating load铆钉rivet迷宫密封labyrinth seal密封seal密封带seal belt密封胶seal gum密封元件potted component密封装置sealing arrangement面对面安装face-to-face arrangement面向产品生命周期设计design for product`s life cycle, DPLC 名义应力、公称应力nominal stress模块化设计modular design, MD模块式传动系统modular system模幅箱morphology box模糊集fuzzy set模糊评价fuzzy evaluation模数module摩擦friction摩擦角friction angle摩擦力friction force摩擦学设计tribology design, TD摩擦阻力frictional resistance摩擦力矩friction moment摩擦系数coefficient of friction摩擦圆friction circle磨损abrasion ;wear; scratching末端执行器end-effector目标函数objective function耐腐蚀性corrosion resistance耐磨性wear resistance挠性机构mechanism with flexible elements挠性转子flexible rotor内齿轮internal gear内齿圈ring gear内力internal force内圈inner ring能量energy能量指示图viscosity逆时针counterclockwise (or anticlockwise) 啮出engaging-out 啮合engagement, mesh, gearing啮合点contact points啮合角working pressure angle啮合线line of action啮合线长度length of line of action啮入engaging-in牛头刨床shaper凝固点freezing point; solidifying point扭转应力torsion stress扭矩moment of torque扭簧helical torsion spring诺模图NomogramO 形密封圈密封O ring seal盘形凸轮disk cam盘形转子disk-like rotor抛物线运动parabolic motion疲劳极限fatigue limit疲劳强度fatigue strength偏置式offset偏( 心) 距offset distance偏心率eccentricity ratio偏心质量eccentric mass偏距圆offset circle偏心盘eccentric偏置滚子从动件offset roller follower偏置尖底从动件offset knife-edge follower 偏置曲柄滑块机构offset slider-crank mechanism拼接matching评价与决策evaluation and decision频率frequency平带flat belt平带传动flat belt driving平底从动件flat-face follower平底宽度face width 平分线bisector平均应力average stress平均中径mean screw diameter平均速度average velocity平衡balance可靠度degree of reliability可靠性reliability可靠性设计reliability design, RD空气弹簧air spring空间机构spatial mechanism空间连杆机构spatial linkage空间凸轮机构spatial cam空间运动副spatial kinematic pair空间运动链spatial kinematic chain空转idle宽度系列width series框图block diagram雷诺方程Reynolds‘s equation离心力centrifugal force离心应力centrifugal stress离合器clutch离心密封centrifugal seal理论廓线pitch curve理论啮合线theoretical line of action隶属度membership力force力多边形force polygon力封闭型凸轮机构force-drive (or force-closed) cam mechanism力矩moment力平衡equilibrium力偶couple力偶矩moment of couple连杆connecting rod, coupler连杆机构linkage连杆曲线coupler-curve连心线line of centers链chain链传动装置chain gearing链轮sprocket ; sprocket-wheel ; sprocket gear ; chain wheel 联组V 带tight-up V belt联轴器coupling ; shaft coupling两维凸轮two-dimensional cam临界转速critical speed六杆机构six-bar linkage龙门刨床double Haas planer轮坯blank轮系gear train螺杆screw螺距thread pitch螺母screw nut螺旋锥齿轮helical bevel gear螺钉screws螺栓bolts螺纹导程lead螺纹效率screw efficiency螺旋传动power screw螺旋密封spiral seal螺纹thread (of a screw)螺旋副helical pair螺旋机构screw mechanism基本额定寿命basic rating life基于实例设计case-based design,CBD 基圆base circle基圆半径radius of base circle基圆齿距base pitch基圆压力角pressure angle of base circle 基圆柱base cylinder基圆锥base cone急回机构quick-return mechanism急回特性quick-return characteristics急回系数advance-to return-time ratio 急回运动quick-return motion棘轮ratchet棘轮机构ratchet mechanism棘爪pawl极限位置extreme (or limiting) position极位夹角crank angle between extreme (or limiting) positions 计算机辅助设计computer aided design, CAD计算机辅助制造computer aided manufacturing, CAM计算机集成制造系统computer integrated manufacturing system, CIMS计算力矩factored moment; calculation moment 计算弯矩calculated bending moment加权系数weighting efficient加速度acceleration加速度分析acceleration analysis加速度曲线acceleration diagram尖点pointing; cusp尖底从动件knife-edge follower间隙backlash间歇运动机构intermittent motion mechanism减速比reduction ratio减速齿轮、减速装置reduction gear减速器speed reducer减摩性anti-friction quality渐开螺旋面involute helicoid渐开线involute渐开线齿廓involute profile渐开线齿轮involute gear渐开线发生线generating line of involute渐开线方程involute equation渐开线函数involute function渐开线蜗杆involute worm渐开线压力角pressure angle of involute渐开线花键involute spline简谐运动simple harmonic motion键key键槽keyway交变应力repeated stress交变载荷repeated fluctuating load交叉带传动cross-belt drive交错轴斜齿轮crossed helical gears胶合scoring角加速度angular acceleration角速度angular velocity角速比angular velocity ratio角接触球轴承angular contact ball bearing 角接触推力轴承angular contact thrust bearing角接触向心轴承angular contact radial bearing角接触轴承angular contact bearing铰链、枢纽hinge校正平面correcting plane接触应力contact stress接触式密封contact seal阶梯轴multi-diameter shaft结构structure结构设计structural design截面section节点pitch point节距circular pitch; pitch of teeth节线pitch line节圆pitch circle节圆齿厚thickness on pitch circle节圆直径pitch diameter节圆锥pitch cone节圆锥角pitch cone angle解析设计analytical design紧边tight-side紧固件fastener径节diametral pitch径向radial direction径向当量动载荷dynamic equivalent radial load径向当量静载荷static equivalent radial load 径向基本额定动载荷basic dynamic radial load rating径向基本额定静载荷basic static radial load tating径向接触轴承radial contact bearing径向平面radial plane径向游隙radial internal clearance径向载荷radial load径向载荷系数radial load factor径向间隙clearance静力static force静平衡static balance静载荷static load静密封static seal局部自由度passive degree of freedom矩阵matrix矩形螺纹square threaded form锯齿形螺纹buttress thread form矩形牙嵌式离合器square-jaw positive-contact clutch绝对尺寸系数absolute dimensional factor绝对运动absolute motion绝对速度absolute velocity 均衡装置load balancing mechanism抗压强度compression strength开口传动open-belt drive开式链open kinematic chain开链机构open chain mechanism高度系列height series功work工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment公法线common normal line公共约束general constraint公制齿轮metric gears功率power功能分析设计function analyses design共轭齿廓conjugate profiles共轭凸轮conjugate cam构件link鼓风机blower固定构件fixed link; frame固体润滑剂solid lubricant关节型操作器jointed manipulator惯性力inertia force惯性力矩moment of inertia ,shaking moment 惯性力平衡balance of shaking force惯性力完全平衡full balance of shaking force惯性力部分平衡partial balance of shaking force惯性主矩resultant moment of inertia惯性主失resultant vector of inertia冠轮crown gear广义机构generation mechanism广义坐标generalized coordinate轨迹生成path generation轨迹发生器path generator滚刀hob滚道raceway滚动体rolling element滚动轴承rolling bearing滚动轴承代号rolling bearing identification code滚针needle roller滚针轴承needle roller bearing滚子roller滚子轴承roller bearing滚子半径radius of roller滚子从动件roller follower滚子链roller chain滚子链联轴器double roller chain coupling 滚珠丝杆ball screw 滚柱式单向超越离合器roller clutch过度切割undercutting函数发生器function generator函数生成function generation含油轴承oil bearing耗油量oil consumption耗油量系数oil consumption factor赫兹公式H. Hertz equation合成弯矩resultant bending moment合力resultant force合力矩resultant moment of force黑箱black box横坐标abscissa互换性齿轮interchangeable gears花键spline滑键、导键feather key滑动轴承sliding bearing滑动率sliding ratio滑块slider环面蜗杆toroid helicoids worm环形弹簧annular spring缓冲装置shocks; shock-absorber灰铸铁grey cast iron回程return回转体平衡balance of rotors混合轮系compound gear train积分integrate机电一体化系统设计mechanical-electrical integration system design机构mechanism 机构分析analysis of mechanism机构平衡balance of mechanism机构学mechanism机构运动设计kinematic design of mechanism机构运动简图kinematic sketch of mechanism机构综合synthesis of mechanism机构组成constitution of mechanism机架frame, fixed link机架变换kinematic inversion机器machine机器人robot机器人操作器manipulator机器人学robotics技术过程technique process技术经济评价technical and economic evaluation技术系统technique system机械machinery机械创新设计mechanical creation design, MCD机械系统设计mechanical system design, MSD机械动力分析dynamic analysis of machinery机械动力设计dynamic design of machinery 机械动力学dynamics of machinery机械的现代设计modern machine design机械系统mechanical system机械利益mechanical advantage机械平衡balance of machinery机械手manipulator机械设计machine design; mechanical design 机械特性mechanical behavior机械调速mechanical speed governors机械效率mechanical efficiency机械原理theory of machines and mechanisms机械运转不均匀系数coefficient of speed fluctuation机械无级变速mechanical stepless speed changes基础机构fundamental mechanism端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge对称循环应力symmetry circulating stress对心滚子从动件radial (or in-line ) roller follower对心直动从动件radial (or in-line ) translating follower对心移动从动件radial reciprocating follower对心曲柄滑块机构in-line slider-crank (or crank-slider) mechanism多列轴承multi-row bearing多楔带poly V-belt多项式运动规律polynomial motion多质量转子rotor with several masses惰轮idle gear额定寿命rating life额定载荷load ratingII 级杆组dyad发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm法向力normal force反馈式组合feedback combining反向运动学inverse ( or backward) kinematics反转法kinematic inversion反正切Arctan范成法generating cutting仿形法form cutting方案设计、概念设计concept design, CD 防振装置shockproof device飞轮flywheel飞轮矩moment of flywheel非标准齿轮nonstandard gear非接触式密封non-contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy分度线reference line; standard pitch line分度圆reference circle; standard (cutting) pitch circle分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone 分析法analytical method封闭差动轮系planetary differential复合铰链compound hinge复合式组合compound combining复合轮系compound (or combined) gear train 复合平带compound flat belt复合应力combined stress复式螺旋机构Compound screw mechanism 复杂机构complex mechanism杆组Assur group干涉interference刚度系数stiffness coefficient刚轮rigid circular spline钢丝软轴wire soft shaft刚体导引机构body guidance mechanism刚性冲击rigid impulse (shock)刚性转子rigid rotor刚性轴承rigid bearing刚性联轴器rigid coupling高度系列height series高速带high speed belt高副higher pair格拉晓夫定理Grashoff`s law根切undercutting公称直径nominal diameter阿基米德蜗杆Archimedes worm安全系数safety factor; factor of safety安全载荷safe load凹面、凹度concavity扳手wrench板簧flat leaf spring半圆键woodruff key变形deformation摆杆oscillating bar摆动从动件oscillating follower摆动从动件凸轮机构cam with oscillating follower 摆动导杆机构oscillating guide-bar mechanism 摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile摆线运动规律cycloidal motion摆线针轮cycloidal-pin wheel包角angle of contact保持架cage背对背安装back-to-back arrangement背锥back cone ;normal cone背锥角back angle背锥距back cone distance比例尺scale比热容specific heat capacity闭式链closed kinematic chain闭链机构closed chain mechanism臂部arm变频器frequency converters变频调速frequency control of motor speed 变速speed change变速齿轮change gear ; change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear标准直齿轮standard spur gear表面质量系数superficial mass factor表面传热系数surface coefficient of heat transfer表面粗糙度surface roughness并联式组合combination in parallel并联机构parallel mechanism并联组合机构parallel combined mechanism 并行工程concurrent engineering并行设计concurred design, CD不平衡相位phase angle of unbalance不平衡imbalance (or unbalance)不平衡量amount of unbalance不完全齿轮机构intermittent gearing波发生器wave generator波数number of waves补偿compensation参数化设计parameterization design, PD残余应力residual stress操纵及控制装置operation control device槽轮Geneva wheel槽轮机构Geneva mechanism ;Maltese cross槽数Geneva numerate槽凸轮groove cam侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism 差速器differential 常用机构conventional mechanism; mechanism in common use车床lathe承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle齿厚tooth thickness齿距circular pitch齿宽face width齿廓tooth profile齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack齿轮插刀pinion cutter; pinion-shaped shaper cutter齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack-shaped shaper cutter 齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio冲床punch传动比transmission ratio, speed ratio传动装置gearing; transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft串联式组合combination in series串联式组合机构series combined mechanism串级调速cascade speed control创新innovation ; creation创新设计creation design垂直载荷、法向载荷normal load唇形橡胶密封lip rubber seal磁流体轴承magnetic fluid bearing从动带轮driven pulley从动件driven link, follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel打包机packer打滑slipping 带传动belt driving带轮belt pulley带式制动器band brake单列轴承single row bearing单向推力轴承single-direction thrust bearing 单万向联轴节single universal joint单位矢量unit vector当量齿轮equivalent spur gear; virtual gear 当量齿数equivalent teeth number; virtual number of teeth当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导热性conduction of heat导程lead导程角lead angle等加等减速运动规律parabolic motion; constant acceleration and deceleration motion 等速运动规律uniform motion; constant velocity motion等径凸轮conjugate yoke radial cam等宽凸轮constant-breadth cam等效构件equivalent link等效力equivalent force等效力矩equivalent moment of force等效量equivalent等效质量equivalent mass等效转动惯量equivalent moment of inertia 等效动力学模型dynamically equivalent model底座chassis低副lower pair点划线chain dotted line(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal碟形弹簧belleville spring顶隙bottom clearance定轴轮系ordinary gear train; gear train with fixed axes动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity动力润滑dynamic lubrication动平衡dynamic balance动平衡机dynamic balancing machine 动态特性dynamic characteristics动态分析设计dynamic analysis design 动压力dynamic reaction动载荷dynamic load。
吉林大学机械学院本科毕业设计外文翻译格式
本科生毕业设计(论文)翻译资料中文题目:配合新一代液力变矩器的柴油动力线的一些特性英文题目:some properties of a diesel driveline with hydrodynamic torque converters of thelastest generation学生姓名:学号:班级:专业:机械工程及自动化指导教师:吉林大学机械科学与工程学院Some properties of a diesel drive line withhydrodynamic torque converters of the latestgenerationAbstractDynamic properties of a drive line with a controlled Diesel engine, hydrodynamic transmission mechanism, additional gearing and a loading-working machine producing common monoharmonic loading are investigated. Solution of the dynamic problem is based on phenomenological experimental data: drivingtorque-speed characteristic in the part of the prime mover and so-called external static characteristic in the hydrotransmission part. The non-linear task is solved by a modified harmonic balance method that was described in preceding publications by the author.Keywords: Machine drive line; Controlled Diesel drive; Hydrodynamic torque converter; Working machine; Periodic loading; Stationary dynamic stateNomenclature and abbreviationsa, b --- ------Coulomb and viscous non-dimensional friction lossesA i,B i --- ----coefficients in mathematical expression of torque-speed characteristic i, i m ----------kinematic transmission, supplementary gearing transmission ratio -------mean reduced moment of inertia in driving and loading partI, I, k K ---------tangent slopes of λ(i) and K(i) curves respectivelykλK -------------moment transmissionM ------------Diesel-engine momentM D(ω, z) ----controlled torque-speed driving characteristicM Dmax(ω), M Dmin(ω) ---torque-speed characteristic for maximal and minimal fuel supplyM1, (), M2, () ---pump loading moment and turbine driving momentM T1, M T2 ----friction loss moment in driving and loading partM z, M za ----mean value and amplitude of loading moment-------------hydrodynamic converter characteristic radius吉林大学本科毕业论文外文翻译t -------------timeT, T D------------Watt regulator and Diesel-engine time constantu, z ---------gas lever and regulator displacementw -----------common dynamic variableε -----------regulator structural parameterζ -----------regulator damping ratioλ -----------coefficient of rotation momentν -----------loading angular velocity, π-------index denoting mean value and periodical component---------hydraulic medium density----------rotation angleω1, (), ω2 ---pump and turbine angular velocityDM ------Diesel-engineG, G D ---additional and Watt-regulator gearingHdPT ---hydrodynamic power transmissionIJ --------InjectorLM ------loading mechanism (working machine)P, R, T---pump, reactor, turbineArticle OutlineNomenclature1. Introduction2. Mathematical model of the system3. Stationary dynamic solution at monoharmonic loading4. Results evaluation and concluding remarks1. IntroductionDynamic properties of a drive line (actuating unit) consisting of a controlled Diesel engine (DM), hydrodynamic power transmission system (HdPT), additional gearing (G) and a loading mechanism (LM) or working machine are investigated. The working machine loads the prime mover and the transmissions with a prescribed moment. A simple idealised schematic layout of the complete system is given in Fig.1. The considered Diesel engine is a standard production: ZETOR 8002.1 controlled by a mechanical (Watt’s) or electronic regulator R D governing fuel injector IJ. In the place of the hydrodynamic power transmission there are gradually applied hydrodynamic torque converters of the latest generation that have been projected吉林大学机械科学与工程学院and tested in WUSAM (Research and Projecting Institute of Machines and Mechanisms), j.s.c. Zvolen, Slovakia. These converters represent a three component assembly composed of a rotational pump (P), turbine (T) and a reactor (R) that may revolve in one direction as a free wheel. Advantage of these converters is the fact that their external dimensions and the dimensions of their individual components are identical and they may be mutually changed and arbitrarily combined in order to reach demanded properties. They differ only by internal configuration and blade geometry. According to [1] up to now more than 70 various types have been experimentally tested and from them the ones have been chosen that optimally fulfilled required properties. The mechanical system under consideration represents a sophisticated energy transfer chain from a source––prime mover to working mechanism. Because every real drive is of finite power, any periodic loading always evokes vibrations of all the dynamic variables even though we suppose all the connecting shafts and gearings rigid and backlash free. The influence of dynamic loading on the prime mover may be just controlled by a suitable choice of the torque converter.Fig. 1. Schematic layout of the Diesel drive line.In the paper influence of constant and periodic loading on time course of all the dynamic variables of the system (and particularly on the variables of the prime mover) is investigated at application of some selected types of hydrodynamic torque converters of the latest generation. For fulfilling this task it is necessary to create a suitable mathematical model of the whole combined system and then find its stationary solution corresponding to a required loading.2. Mathematical model of the system吉林大学本科毕业论文外文翻译At the beginning it is necessary to emphasize that mathematical modelling of the drive line in question is based, in our approach, on knowledge of the published phenomenological data: stationary torque-speed characteristic of the prime mover and so-called external static characteristic of the applied hydrodynamic torque converter. It is a much simpler process than modelling based on thermodynamic equations of burning fuel mixture in the Diesel engine and on hydrodynamic equations of real streaming working medium in very complicated cavities of the torque converter. The characteristics are usually given by manufacturer of the individual system components. This is different and simpler approach to solution of the problem than one may find e.g. at Ishihara [2], Hrovat and Tobler [3], Kesy and Kesy [4], Laptev [5] and some others. The derived dimensional and non-dimensional mathematical models of the mechanical system are introduced in [6]. Thenon-dimensional, reduced, so-called single-shaft model (in the driving and loading part), was derived in the form of combined system of the following differential and algebraic equations:(1)(2)(3)(4)M2=KM1, (5)λ=λ(i), (6)K=K(i), (7)(8)吉林大学机械科学与工程学院(9) where the meaning of the individual symbols is explained in nomenclature. In the non-dimensional model all the dynamic variables and parameters are expressed by means of properly chosen relative standard quantities so that the model of the system might be the most simple. Transformation of the original equations system to the non-dimensional form Figs. (1), (2), (3), (4), (5), (6), (7), (8) and (9) is described in detail in [6]. As for this cited paper, it is necessary to say that the relative standard value of loading angular frequency has been settled according to the relation, where in denominator is relative standard value of time. For this value,the time constant of the regulator has been just chosen, i.e. , where therelated dimensional dynamic variables are distinguished by upper bars. The introduced mathematical model has nine variables: M, M1, ω1, z, λ, K, i, M2, ω2 and their meaning is explained in nomenclature. The first three equations represent mathematic model of the prime mover where in inertia moment I there is includedinertia moment of the pump and equivalent part of the working medium because driving and pump shafts are connected by a rigid clutch. The right side of Eq. (3) represents the controlled stationary torque-speed characteristic for which it holds: M D(ω1,z)=M Dmax(ω1)-[M Dmax(ω1)-M Dmin(ω1)]z, (10) where M Dmax(ω1), M Dmin(ω1) represent its non-dimensional extreme branches for maximal and minimal fuel supply and z is the non-dimensional regulator deviation.If the experimentally measured dependences M Dmax(ω1), M Dmin(ω1) are expressed by second degree polynomials then the controlled non-dimensional torque-speed characteristic has the form:(11) From the introduced model it is evident that at chosen parameter value u driving speed growth causes regulator displacement to increase and fuel supply to decrease. The idealised controlled torque-speed characteristic for a chosen parameter value u (gas lever displacement) is schematically depicted in Fig. 2. From Eq. (2) it is evident that the structural parameter ε must be chosen in such away that regulator self-oscillations should not occur. Eqs. Figs. (4), (5), (6), (7) and (8), in the sense of considerations in [6], represent the dynamic equations of the torque converter. Eq. (9) represents simplified motion equation of the loading mechanism under assumptiondoes not depend on rotation angle . In thisthat the reduced inertia moment Ireduced inertia moment there is involved inertia moment of the turbine with吉林大学本科毕业论文外文翻译equivalent part of the working medium too. It is obvious that in this inertia moment and in all moments of the loading mechanism there is considered gear ratio i m of the supplementary gearing of the originally non-reduced system. Eqs. Figs. (6) and (7) represent the external static characteristic of the hydrodynamic transmission, i.e. formal dependences of λ and K on the kinematic ratio i and the dependences are given for every converter type in graphical form. The dynamic variables λ and K are defined in non-dimensional form very simply by non-linear relations Figs. (4) and (5). In a general way these non-dimensional variables are defined by means of dimensional values (distinguished by upper bars) as follows:(12) where individual symbol meaning may be found in nomenclature. As we have chosen (according to Fig. 2) for the relative standard value of angular velocity the idle motion angular velocity of the Diesel engine at maximal fuel supply, i.e. at z = 0, then from Figs. (4) and (12) it is evident that the relative standard moment value is(13)It means that if for the applied drive s−1 and all the applied convertertypes have equal characteristic radius m and if we consider mean valuekg m−3 at stationary thermic regime then the relative standard value of themoment is N m for all the considered converter types. The external static characteristics of the applied converters with internal labelling: M350.222,M350.623M, M350.675, M350.72M3M, are (according to the measuring records [7]) successively introduced in Fig. 3(a)–(d). When the torque-speed characteristic is known and the measured dependences Figs. (6) and (7) are at disposal, it is possible to solve the combined system of differential and algebraic equations Figs. (1), (2), (3), (4), (5), (6), (7), (8) and (9). This is a little complicated task because the differential and algebraic equations in the accepted mathematical model arenon-linear. Stationary dynamic state of the system was calculated by a modified harmonic balance method that is fully described in [8].吉林大学机械科学与工程学院Fig. 2. Idealised diagram of the driving torque-speed characteristic.Fig. 3. External static characteristics of the hydrodynamic power transmissions: M350.222,M350.623M, M350.675, M350.72M3M.3. Stationary dynamic solution at monoharmonicloadingIn this section stationary solution of the system Figs. (1), (2), (3), (4), (5), (6), (7), (8) and (9) will be looked for always with the same prime mover and successively considering all the converters types whose external static characteristics are introduced in Fig. 3(a)–(d). If each of the nine dynamic variables is denoted by a common symbol w≡M, M1, ω1, z, λ, K, i, M2, ω2 then, in accordance with applied method, every dynamic variable may be formally expressed as a sum of its mean and its centred periodic component, i.e.:w=w+w π. (14) Following the mentioned method, on restrictive presumption that it holds:MM z→wπw, (15)吉林大学本科毕业论文外文翻译the system Figs. (1), (2), (3), (4), (5), (6), (7), (8) and (9) splits into twoindependent systems of equations: a system of non-linear algebraic equations for calculationw and a combined system of linearised differential and algebraic equations for calculation w π. If one considers that friction losses in the driving part are implicitly expressed already in the torque-speed characteristic of the drive and in the external static characteristic of the applied hydrodynamic torque converter and friction losses in the loading part are supposed as a combination of Coulomb and viscous friction, i.e.:M T 2=a +bω2, (16)then the non-linear algebraic system has the form:(17)The combined system of the linearised differential and algebraic equations is(18)where for writing abbreviation it is denoted:吉林大学机械科学与工程学院(19) The solution process of both equation systems Figs. (17) and (18) is introduced in [8]. The system of non-linear equations (17) was calculated for three parameter levels u (u = 0.3, 0.4, 0.6) that respond to 30%, 40%, and 60% of the maximal gas lever displacement. To each chosen parameter value u, a certain driving angular velocity interval responds. From Fig. 2 and from Eq. (2) it is evident that for a chosen value u the corresponding mean driving angular velocity value must lie in interval:ω1ω1b, (20)ωwhere for border values of the interval it holds:(21) For the chosen parameter value u = 0.3 and for different mean values M z, the calculated mean values w(for the drive line with given drive and all the consideredconverter types) are introduced in diagrams in Fig. 4(a)–(d). Analogical mean values w of the same variables corresponding with the parameter u = 0.4 are in Fig.5(a)–(d). Finally, the calculated mean values w corresponding with parameteru = 0.6 and identical torque converter types are depicted in Fig. 6(a)–(d). Here it is important to remind that x-coordinates in Fig. 4, Fig. 5 and Fig. 6 represent the mean angular velocity interval (20) gradually for parameters u = 0.3, 0.4, 0.6 and the decimal fractions on this section denote only its decimal division. From the calculated mean values w in Fig. 4, Fig. 5 and Fig. 6 and from the introducedexternal static characteristics in Fig. 3a complete nine of the mean values w can be determined for any mean loading value Mand estimated loss moment value M T2in the loading part. When this complete nine w is known then it is possible, in the sense of the applied method, to construct all the constant coefficients of the combined differential and algebraic system (18) for calculation wπ. This system is already linear and may be solved by known classical methods. First of all, we take interest in stationary dynamic solution. In sense of the procedure one may express the centred periodic component of every dynamic variable in the form:wπ=M za(W c cosνt+W s sinνt), (22) where notations W c, W s represent cosine and sine components of the dynamic factor (transmissibility) of corresponding dynamic variable. Detailed computing procedure is introduced in [8]. For transmissibility of the centred periodic component of every dynamic variable it holds:(23)As an example in Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11 there are successively introduced dynamic characteristics of the centred periodic components of dynamic variables: moment (M) and angular velocity of the drive (ω1), loading moment of the pump (M1), moment (M2) and angular velocity of the turbine (ω2) for the system with hydrodynamic converter M350.222 and for chosen parameter value u = 0.4. Results are given in two forms of dynamic characteristics, namely as classic frequency response functions (upper parts) and as Nyquist diagrams (lower parts). Both types of dynamic characteristics are calculated for four values of the loadingmechanism inertia moment: kg m2 and for supplementary gear ratio i m = 1. Equal sections of loading angular velocity Δν with value π corresponding to equal sections on frequency response function x-coordinates are in the Nyquist diagrams separated by bold points as well. In dynamic calculations, theDiesel-engine time constant s, regulator time constant s and the regulator damping ratio ζ = 0.55 were considered. The left parts of the dynamic characteristics in Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11 correspond to the dynamic regime with mean values: λ = 0.111, K = 3.12, i = 0.127, which are quantified bybold points on the left thin vertical in the external static characteristic in Fig. 3(a), when the converter works in so-called friction clutch regime. Mean values of dynamic variables, corresponding to this dynamic regime, are: M = 0.0506,= 0.158, ω1 = 0.673, ω2 = 0.0855, M z = 0.152, z = 0.0849. These values areMalso accentuated in Fig. 5(a) by bold points on thin vertical line. In this dynamic regime the converter works with mean transfer energy efficiency η≈ 0.405. Theright parts of the dynamic characteristics introduced in Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11 correspond to dynamic regime with mean values: λ = 0.111, K = 1.1,i = 0.74, represented by bold points on the right thin vertical on the external staticcharacteristic in Fig. 3(a) when the converter works in so-called moment converter regime with mean energy transfer efficiency higher than 0.8. The mean values of dynamic variables corresponding to this dynamic state are: M = 0.0506,M= 0.0557, ω1 = 0.673, ω2 = 0.4986, M z = 0.0466, z = 0.0849 and aremarked out in Fig. 5(a) as well on thin vertical line by bold points. Non-dimensional friction losses at dynamic calculation were considered according to (16) as follows:, , where is dimensional relative moment standard value (13).Fig. 4. Mean values of the chosen dynamic variables w of the system with converters: M350.222,M350.623M, M350.675, M350.72M3M for optional parameter u = 0.3.Fig. 5. Mean values of the chosen dynamic variables w of the system with converters: M350.222,M350.623M, M350.675, M350.72M3M for optional parameter u = 0.4.Fig. 6. Mean values of the chosen dynamic variables w of the system with converters: M350.222,M350.623M, M350.675, M350.72M3M for optional parameter u = 0.6.Fig. 7. Dynamic factor (transmissibility) of the centred periodic component of the system driving moment with the converter M350.222 in fretting clutch and moment converter regime for optionalparameter u = 0.4Fig. 8. Dynamic factor (transmissibility) of centred periodic component of the driving angular velocity of the system with the converter M350.222 in fretting clutch and moment converter regimefor optional parameter u = 0.4Fig. 9. Dynamic factor (transmissibility) of centred periodic component of the pump moment of the converter M350.222 in fretting clutch and moment converter regime for parameter u = 0.4.Fig. 10. Dynamic factor (transmissibility) of centred periodic component of the turbine moment of the converter M350.222 in fretting clutch and moment converter regime for parameter u = 0.4.Fig. 11. Dynamic factor (transmissibility) of centred periodic component of the turbine angular velocity of the system converter M350.222 at fretting clutch and moment converter regime forparameter u = 0.4.4. Results evaluation and concluding remarksIn the paper some dynamic properties of a Diesel drive line with some the latest generation torque converter types were inquired and stationary response to common monoharmonic loading was calculated. Mean values of all dynamic variables were calculated for the system with the same controlled drive and successively four chosen torque converter types. In order to save space, complete dynamic calculations are performed only for the system with converter M350.222 and results are introduced in form of frequency response functions and Nyquist diagrams.Already from the calculated mean values in Fig. 4, Fig. 5 and Fig. 6 one may judge technical possibilities and collaboration aptness of the applied drive with the considered converter type. Even from these diagrams it is evident that at application M350.222 this converter can work in arbitrary hydrodynamic regime when optional parameter value u 0.6. Working regime of the system adjusts automatically and depends only on external loading and parameter values u. At maximal loading and lower values u all the considered hydrodynamic converter work in hydrodynamic friction clutch regime when turbine rotation may even extremely decrease to zero value. At mean loading the converter works in the system as hydrodynamic moment converter with average energy transfer efficiency above 0.8. At low system loading and higher values u, the converter behaves as quasi-hydrodynamic fix clutch when relative working medium velocity is low and creates impression of stiffened substance. In this working regime angular velocities of all the converter rotating components are close to each other and mean energy transfer efficiency approaches theoretically to 1. From calculated mean values in Fig. 5 and Fig. 6 it is evident that the torque converters: M350.623M, M350.675, M350.72M3M can at optional parameter u 0.4 cooperate with given drive only in moment converter andhydrodynamic fix clutch regime respectively. The dynamical responses of the drive line with the torque converter M350.222 are depicted in Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11. In Fig. 7 and Fig. 8 dynamic factors (transmissibility) of moment and angular velocity of the drive are introduced. It is evident that at chosen value of damping ratio ζ = 0.55 only one significant resonance of these variables occurswhich lies always in loading frequency interval (), regardless of the fact in what regime the applied converter works. Resonance values of moment and angular velocity of the drive are significantly influenced by total inertia moment ofvalue is, the lower resonant values are. Verythe loading mechanism. The higher Isimply one can inquire influence of the supplementary gearing ratio i m because reduced inertia moment I z changes with its second power. It is interesting that change of the loading mechanism inertia moment does not shift resonant peak of dynamic characteristics that remain practically at the same loading angular frequency ν. Remarkable results may be observed in Fig. 9(a) and (b) where the dynamic factors of the pump loading moment corresponding to resonant values of moment and angular velocity of the drive are minimal and express small sensibility to I z magnitude in both inquired converter regimes. In Fig. 10 and Fig. 11, the dynamic factors of driving moment and angular velocity of the turbine are drawn for the case when the applied converter works in friction clutch and moment converter regime. Whole range of dynamic calculations has been made for different values of the time constant and regulator damping ratio ζ. It turned out that the drive linewith all the applied converter types has small sensibility to time constant magnitudeof the Watt regulator. Time constant changes in range (0.01–0.1 s) did not visibly reveal in calculated dynamic factors what is certain difference in comparison with hydrostatic transmission mechanisms (see e.g. [9]). On the other part, dynamic calculations prove that damping ratio ζ influences noticeably resonant values of all dynamic variables. The resonant transmissibility peaks of the driving moment M r and angular velocity ωr in dependence on damping ratio ζ, for the system with converter M350.222 and for four different loading inertia moment values areintroduced in Fig. 12(a) and (b). The thin dash lines always denote stationary resonant dynamic factor values of appertaining variable corresponding to zero-value loading frequency. Equally, as in previous cases, left parts of the Fig. 12(a) represent resonant values of moment and angular driving velocity when the applied converter works in hydrodynamic friction clutch regime. Analogically the right parts of the Fig. 12(b) represent resonant values of the same variable when the converter works in hydrodynamic moment converter regime. From the introduced diagrams it is evident that disturbance transmissibility from the loading mechanism to the drive grows with increasing damping ratio ζ. On the other part, dynamic calculations showed that for low damping ratio values (ζ 0.1) indication of a secondary resonance ofchosen variables appears in loading frequency band but the values of this secondary resonance are essentially lower than corresponding stationary values.Fig. 12. Transmissibility resonant values dependences of moment and driving angular velocity on damping ratio and on reduced inertia moment of the loading for the system with the at hydrodynamicclutch and moment converter regime at u = 0.4.配合新一代液力变矩器的柴油动力线的一些特性摘要:带有控制柴油机的车的动态特性,液力传导机制,还有传动装置和进行普通装卸工作的装载机的调查。
机械类英语论文及翻译
附录一:Mechanical DesignLiqingyu zhangjiaMachinery manufacturing equipment designAbstractA machine is a combination of mechanisms and other components which transforms, transmits. Examples are engines, turbines, vehicles, hoists, printing presses, washing machines, and movie cameras. Many of the principles and methods of design that apply to machines also apply to manufactured articles that are not true machines. The term "mechanical design" is used in a broader sense than "machine design" to include their design. the motion and structural aspects and the provisions for retention and enclosure are considerations in mechanical design. Applications occur in the field of mechanical engineering, and in other engineering fields as well, all of which require mechanical devices, such as switches, cams, valves, vessels, and mixers.Keywords: Mechanical Design ;Rules for Design ;Design ProcessThe Design ProcessDesigning starts with a need apparatus may need improvements in durability, efficiency, weight, speed, or cost. New apparatus may be needed to perform a function previously done by men, such as computation, assembly, or servicing. With the objective wholly or partly.In the design preliminary stage, should allow to design the personnel fully to display the creativity, not each kind of restraint. Even if has had many impractical ideas, also can in the design early time, namely in front of the plan blueprint is corrected. Only then, only then does not send to stops up the innovation the mentality. Usually, must propose several sets of design proposals, then perform the comparison. Has the possibility very much in the plan which finally designated, has used certain not in plan some ideas which accepts.When the general shape and a few dimensions of the several components become apparent, analysis can begin in earnest. The analysis will have as its objective satisfactory or superior performance, plus safety and durability with minimum weight, and a competitive cost. Optimum proportions and dimensions will be sought for each critically loaded section, together with a balance between the strengths of the several components. Materials and their treatment will be chosen. These important objectives can be attained only by analysis based upon the principles of mechanics, such as those of static for reaction forces and for the optimum utilization of friction; of dynamics for inertia, acceleration, and energy; of elasticity and strength of materials for stress and deflection; of physical behavior of materials; and of fluid mechanics for lubrication and hydrodynamic drives. The analyses may be made by the same engineer who conceived the arrangement of mechanisms, or, in a large company,they may be made by a separate analysis division or research group. Design is a reiterative and cooperative process, whether done formally or informally, and the analyst can contribute to phases other than his own. Product design requires much research and development. Many Concepts of an idea must be studied, tried, and then either used or discarded. Although the content of each engineering problem is unique, the designers follow the similar process to solve the problems.Product liability suits designers and forced in material selection, using the best program. In the process of material, the most common problems for five (a) don't understand or not use about the latest application materials to the best information, (b) failed to foresee and consider the reasonable use material may (such as possible, designers should further forecast and consider due to improper use products. In recent years, many products liability in litigation, the use of products and hurt the plaintiff accused manufacturer, and won the decision), (c) of the materials used all or some of the data, data, especially when the uncertainty long-term performance data is so, (d) quality control method is not suitable and unproven, (e) by some completely incompetent persons choose materials.Through to the above five questions analysis, may obtain these questions is does not have the sufficient reason existence the conclusion. May for avoid these questions to these questions research analyses the appearance indicating the direction. Although uses the best choice of material method not to be able to avoid having the product responsibility lawsuit, designs the personnel and the industry carries on the choice of material according to the suitable procedure, may greatly reduce the lawsuit the quantity.May see from the above discussion, the choice material people should to the material nature, the characteristic and the processing method have comprehensive and the basic understanding.Finally, a design based upon function, and a prototype may be built. If its tests are satisfactory, the initial design will undergo certain modifications that enable it to be manufactured in quantity at a lower cost. During subsequent years of manufacture and service, the design is likely to undergo changes as new ideas are conceived or as further analyses based upon tests and experience indicate alterations. Sales appeal.Some Rules for DesignIn this section it is suggested that, applied with a creative attitude, analyses can lead to important improvements and to the conception and perfection of alternate, perhaps more functional, economical,and durable products.To stimulate creative thought, the following rules are suggested for the designer and analyst. The first six rules are particularly applicable for the analyst.1. A creative use of need of physical properties and control process.2. Recognize functional loads and their significance.3. Anticipate unintentional loads.4. Devise more favorable loading conditions.5. Provide for favorable stress distribution and stiffness with minimum weight.6. Use basic equations to proportion and optimize dimensions.7. Choose materials for a combination of properties.8. Select carefully, stock and integral components.9.Modify a functional design to fit the manufacturing process and reduce cost.10.Provide for accurate location and noninterference of parts in assembly.Machinery design covers the following contents.1.Provides an introduction to the design process , problem formulation ,safety factors.2.Reviews the material properties and static and dynamic loading analysis ,Including beam , vibration and impact loading.3.Reviews the fundamentals of stress and defection analysis.4.Introduces fatigue-failure theory with the emphasis on stress-life approaches to high-cycle fatigue design, which is commonly used in the design of rotation machinery.5.Discusses thoroughly the phenomena of wear mechanisms, surface contact stresses ,and surface fatigue.6.Investigates shaft design using the fatigue-analysis techniques.7.Discusses fluid-film and rolling-element bearing theory and application8.Gives a thorough introduction to the kinematics, design and stress analysis of spur gears , and a simple introduction to helical ,bevel ,and worm gearing.9.Discusses spring design including compression ,extension and torsion springs.10.Deals with screws and fasteners including power screw and preload fasteners.11.Introduces the design and specification of disk and drum clutches and brakes.Machine DesignThe complete design of a machine is a complex process. The machine design is a creative work. Project engineer not only must have the creativity in the work, but also must in aspect and so on mechanical drawing, kinematics, engineerig material, materials mechanics and machine manufacture technology has the deep elementary knowledge.One of the first steps in the design of any product is to select the material from which each part is to be made. Numerous materials are available to today's designers. The function of the product, its appearance, the cost of the material, and the cost of fabrication are important in making a selection. A careful evaluation of the properties of a. material must be made prior to any calculations.Careful calculations are necessary to ensure the validity of a design. In case of any part failures, it is desirable to know what was done in originally designing the defective components. The checking of calculations (and drawingdimensions) is of utmost importance. The misplacement of one decimal point can ruin an otherwise acceptable project. All aspects of design work should be checked and rechecked.The computer is a tool helpful to mechanical designers to lighten tedious calculations, and provide extended analysis of available data. Interactive systems, based on computer capabilities, have made possible the concepts of computer aided design (CAD) and computer-aided manufacturing (CAM). How does the psychologist frequently discuss causes the machine which the people adapts them to operate. Designs personnel''s basic responsibility is diligently causes the machine to adapt the people. This certainly is not an easy work, because certainly does not have to all people to say in fact all is the most superior operating area and the operating process. Another important question, project engineer must be able to carry on the exchange and the consultation with other concerned personnel. In the initial stage, designs the personnel to have to carry on the exchange and the consultation on the preliminary design with the administrative personnel, and is approved. This generally is through the oral discussion, the schematic diagram and the writing material carries on.If front sues, the machine design goal is the production can meet the human need the product. The invention, the discovery and technical knowledge itself certainly not necessarily can bring the advantage to the humanity, only has when they are applied can produce on the product the benefit. Thus, should realize to carries on before the design in a specific product, must first determine whether the people do need this kind of productMust regard as the machine design is the machine design personnel carries on using creative ability the product design, the system analysis and a formulation product manufacture technology good opportunity. Grasps the project elementary knowledge to have to memorize some data and the formula is more important than. The merely service data and the formula is insufficient to the completely decision which makes in a good design needs. On the other hand, should be earnest precisely carries on all operations. For example, even if places wrong a decimal point position, also can cause the correct design to turn wrongly.A good design personnel should dare to propose the new idea, moreover is willing to undertake the certain risk, when the new method is not suitable, use original method. Therefore, designs the personnel to have to have to have the patience, because spends the time and the endeavor certainly cannot guarantee brings successfully. A brand-new design, the request screen abandons obsoletely many, knows very well the method for the people. Because many person of conservativeness, does this certainly is not an easy matter. A mechanical designer should unceasingly explore the improvement existing product the method, should earnestly choose originally, the process confirmation principle of design in this process, with has not unified it after the confirmation new idea.机械设计李庆余, 张佳.机械制造装备设计摘要机器是由机械装置和其它组件组成(de).它是一种用来转换或传递能量(de)装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等.许多原则和设计方法不但适用于机器(de)设计,也适用于非机器(de)设计.术语中(de)“机械装置设计” (de)含义要比“机械设计”(de)含义更为广泛一些,机械装置设计包括机械设计.在分析运动及设计结构时,要把产品外型以及以后(de)保养也要考虑在机械设计中.在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等.关键词:设计流程;设计规则;机械设计设计流程设计开始之前就要想到机器(de)实际性,现存(de)机器需要在耐用性、效率、重量、速度,或者成本上得到改善.新(de)机器必需具有以前机器所能执行(de)功能.在设计(de)初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束.即使产生了许多不切实际(de)想法,也会在设计(de)早期,即在绘制图纸之前被改正掉.只有这样,才不致于阻断创新(de)思路.通常,还要提出几套设计方案,然后加以比较.很有可能在这个计划最后决定中,使用了某些不在计划之内(de)一些设想.一般(de)当外型特点和组件部分(de)尺寸特点分析得透彻时,就可以全面(de)设计和分析.接着还要客观(de)分析机器性能(de)优越性,以及它(de)安全、重量、耐用性,并且竞争力(de)成本也要考虑在分析结果之内.每一个至关重要(de)部分要优化它(de)比例和尺寸,同时也要保持与其它组成部分相协调.也要选择原材料和处理原材料(de)方法.通过力学原理来分析和实现这些重要(de)特性,如那些静态反应(de)能量和摩擦力(de)最佳利用,像动力惯性、加速动力和能量;包括弹性材料(de)强度、应力和刚度等材料(de)物理特性,以及流体润滑和驱动器(de)流体力学.设计(de)过程是重复和合作(de)过程,无论是正式或非正式(de)进行,对设计者来说每个阶段都很重要.最后,以图样为设计(de)标准,并建立将来(de)模型.如果它(de)测试是符合事先要求(de),则再将对初步设计进行某些修改,使它能够在制造成本上有所降低.产品(de)设计需要不断探索和发展.许多方案必须被研究、试验、完善,然后决定使用还是放弃.虽然每个工程学问题(de)内容是独特(de),但是设计师可以按照类似(de)步骤来解决问题.产品(de)责任诉讼迫使设计人员和公司在选择材料时,采用最好(de)程序.在材料过程中,五个最常见(de)问题为:(a)不了解或者不会使用关于材料应用方面(de)最新最好(de)信息资料;(b)未能预见和考虑材料(de)合理用途(如有可能,设计人员还应进一步预测和考虑由于产品使用方法不当造成(de)后果.在近年来(de)许多产品责任诉讼案件中,由于错误地使用产品而受到伤害(de)原告控告生产厂家,并且赢得判决);(c)所使用(de)材料(de)数据不全或是有些数据不确定,尤其是当其性能数据长期不更新;(d)质量控制方法不适当和未经验证;(e)由一些完全不称职(de)人员选择材料.通过对上述五个问题(de)分析,可以得出这些问题是没有充分理由而存在(de)结论.对这些问题(de)研究分析可以为避免这些问题(de)出现而指明方向.尽管采用最好(de)材料选择方法也不能避免发生产品责任诉讼,设计人员和工业界按照适当(de)程序进行材料选择,可以大大减少诉讼(de)数量.从以上(de)讨论可以看出,选择材料(de)人们应该对材料(de)性质,特点和加工方法有一个全面而基本(de)了解.在随后生产和售后服务(de)几年中,要接受新观念(de)变化,或者由试验和经验为基础,进一步分析并改进.一些设计规则在本节中,建议要运用创造性(de)态度来替代和改进.也许会创造出更实用、更经济、更耐用(de)产品.为了激发创造性思维,下列是设计和分析(de)建议规则.前六个规则对设计者来说特别适用.1.要有创造性(de)利用所需要(de)物理性质和控制过程.2.认识负载产生(de)影响及其意义.3.预测没有想到(de)负载.4.创造出对载荷更为有利(de)条件.5.提供良好(de)应力分布和最小(de)刚度条件.6.运用最简单(de)方程来优化体积和面积.7.选择组合材料.8.仔细选择所备(de)原料和不可缺少(de)组件.9.调整有效(de)设计方案,以适应生产过程和降低成本.10.规定好准确(de)位置条件为了使组件安装时不干涉.机械设计包括一下内容:1.对设计过程、设计所需要公式以及安全系数进行介绍.2.回顾材料特性、静态和动态载荷分析,包括梁、振动和冲击载荷.3.回顾应力(de)基本规律和失效分析.4.介绍静态失效理论和静态载荷下机械断裂分析.5.介绍疲劳失效理论并强调在压力条件下接近高循环(de)疲劳设计,这通常用在旋转机械(de)设计中.6.深入探讨机械磨损机理、表面接触应力和表面疲劳现象.7.使用疲劳分析技术校核轴(de)设计.8.讨论润滑油膜与滚动轴承(de)理论和应用.9.深入介绍直齿圆柱齿轮(de)动力学、设计和应力分析,并简单介绍斜齿轮、锥齿轮和涡轮有关方面(de)问题.10.讨论弹簧设计、螺杆等紧固件(de)设计,包括传动螺杆和预紧固件.11.介绍盘式和鼓式离合器以及制动器(de)设计和技术说明.机械设计一台完整机器(de)设计是一个复杂(de)过程.机械设计是一项创造性(de)工作.设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚(de)基础知识.任何产品在设计时第一步就是选择产品每个部分(de)构成材料.许多(de)材料被今天(de)设计师所使用.对产品(de)功能,它(de)外观、材料(de)成本、制造(de)成本作出必要(de)选择是十分重要(de).对材料(de)特性必须事先作出仔细(de)评估.仔细精确(de)计算是必要(de),以确保设计(de)有效性.在任何失败(de)情况下,最好知道在最初设计中有有缺陷(de)部件.计算(图纸尺寸)检查是非常重要(de).一个小数点(de)位置放错,就可以导致一个本可以完成(de)项目失败.设计工作(de)各个方面都应该检查和复查.计算机是一种工具,它能够帮助机械设计师减轻繁琐(de)计算,并对现有数据提供进一步(de)分析.互动系统基于计算机(de)能力,已经使计算机辅助设计(CAD)和计算机辅助制造(CAM)成为了可能.心理学家经常谈论如何使人们适应他们所操作(de)机器.设计人员(de)基本职责是努力使机器来适应人们.这并不是一项容易(de)工作,因为实际上并不存在着一个对所有人来说都是最优(de)操作范围和操作过程.另一个重要问题,设计工程师必须能够同其他有关人员进行交流和磋商.在开始阶段,设计人员必须就初步设计同管理人员进行交流和磋商,并得到批准.这一般是通过口头讨论,草图和文字材料进行(de).如前所诉,机械设计(de)目(de)是生产能够满足人类需求(de)产品.发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益.因而,应该认识到在一个特定(de)产品进行设计之前,必须先确定人们是否需要这种产品.应当把机械设计看成是机械设计人员运用创造性(de)才能进行产品设计、系统分析和制定产品(de)制造工艺学(de)一个良机.掌握工程基础知识要比熟记一些数据和公式更为重要.仅仅使用数据和公式是不足以在一个好(de)设计中做出所需(de)全部决定(de).另一方面,应该认真精确(de)进行所有运算.例如,即使将一个小数点(de)位置放错,也会使正确(de)设计变成错误(de).一个好(de)设计人员应该勇于提出新(de)想法,而且愿意承担一定(de)风险,当新(de)方法不适用时,就使用原来(de)方法.因此,设计人员必须要有耐心,因为所花费(de)时间和努力并不能保证带来成功.一个全新(de)设计,要求屏弃许多陈旧(de),为人们所熟知(de)方法.由于许多人墨守成规,这样做并不是一件容易(de)事.一位机械设计师应该不断地探索改进现有(de)产品(de)方法,在此过程中应该认真选择原有(de)、经过验证(de)设计原理,将其与未经过验证(de)新观念结合起来.新设计本身会有许多缺陷和未能预料(de)问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品(de)优越性.因此,一个性能优越(de)产品诞生(de)同时,也伴随着较高(de)风险.应该强调(de)是,如果设计本身不要求采用全新(de)方法,就没有必要仅仅为了变革(de)目(de)而采用新方法.。
机械专业英语液压设计论文和翻译
MECHANICAL HYDRAULIC FASTENING DEVICE 2 Sheets-Sheet 1 INVENTOR. FRANZ ARNOLD WMMBMMMW ATTORNEYS United States Patent 3,147,002 MEQHANICAL-HYDRAULIC FASTENING DEVICE Franz Arnold, Schwangauerstr. 1, Hohenschwangau, Fussen, Germany Fiied Nov. 22, 1961, Ser. No. 154,217 Claims priority, application Germany Nov. 23, 1960 8 Claims. (tCl. 26924) This invention relates to a mechanical-hydraulic fastening device for the fixing of work pieces, tools and the like, in which a fastening block is fed to the work piece by the rotation of a tightening spindle and then the displacement of a primary piston in a pressure space generates a hydraulic pressure which produces the fixing pressure of the block via a secondary piston.机械液压夹紧机构2 Sheets-Sheet 1发明家。
弗朗兹·阿诺德WMMBMMMW律师3147002年美国专利MEQHANICAL-HYDRAULIC紧固装置弗朗兹·阿诺德Schwangauerstr。
机械工程毕业设计外文翻译
毕业设计论文外文资料原文及译文学院:机电工程学院专业:机械设计制造及其自动化班级:学号:姓名:Mechanical engineering1.The porfile of mechanical engineeringEngingeering is a branch of mechanical engineerig,it studies mechanical and power generation especially power and movement.2.The history of mechanical engineering18th century later periods,the steam engine invention has provided a main power fountainhead for the industrial revolution,enormously impelled each kind of mechznical biting.Thus,an important branch of a new Engineering – separated from the civil engineering tools and machines on the branch-developed together with Birmingham and the establishment of the Associantion of Mechanical Engineers in 1847 had been officially recognized.The mechanical engineering already mainly used in by trial and error method mechanic application technological development into professional engineer the scientific method of which in the research,the design and the realm of production used .From the most broad perspective,the demend continuously to enhance the efficiencey of mechanical engineers improve the quality ofwork,and asked him to accept the history of the high degree of education and training.Machine operation to stress not only economic but also infrastructure costs to an absolute minimun.3.The field of mechanical engineeringThe commodity machinery development in the develop country,in the high level material life very great degree is decided each kind of which can realize in the mechanical engineering.Mechanical engineers unceasingly will invent the machine next life to produce the commodity,unceasingly will develop the accuracy and the complexity more and more high machine tools produces the machine.The main clues of the mechanical development is:In order to enhance the excellent in quality and reasonable in price produce to increase the precision as well as to reduce the production cost.This three requirements promoted the complex control system development.The most successful machine manufacture is its machine and the control system close fusion,whether such control system is essentially mechanical or electronic.The modernized car engin production transmission line(conveyer belt)is a series of complex productions craft mechanizationvery good example.The people are in the process of development in order to enable further automation of the production machinery ,the use of a computer to store and handle large volumes of data,the data is a multifunctional machine tools necessary for the production of spare parts.One of the objectives is to fully automated production workshop,three rotation,but only one officer per day to operate.The development of production for mechanical machinery must have adequate power supply.Steam engine first provided the heat to generate power using practical methods in the old human,wind and hydropower,an increase of engin .New mechanical engineering industry is one of the challenges faced by the initial increase thermal effciency and power,which is as big steam turbine and the development of joint steam boilers basically achieved.20th century,turbine generators to provide impetus has been sustained and rapid growth,while thermal efficiency is steady growth,and large power plants per kW capital consumption is also declining.Finally,mechanical engineers have nuclear energy.This requires the application of nuclear energy particularly high reliability and security,which requires solving many new rge power plants and the nuclear power plant control systems have become highly complex electroonics,fluid,electricity,water and mechanical parts networks All in all areas related to the mechanical engineers.Small internal combustion engine,both to the type (petrol and diesel machines)or rotary-type(gas turbines and Mong Kerr machine),as well as their broad application in the field of transport should also due to mechanical enginerrs.Throughout the transport,both in the air and space,or in the terrestrial and marine,mechanial engineers created a variety of equipment and power devices to their increasing cooperation with electrical engineers,especially in the development of appropration control systems.Mechanical engineers in the development of military weapons technology and civil war ,needs a similar,though its purpose is to enhance rather than destroy their productivity.However.War needs a lot of resources to make the area of techonlogy,many have a far-reaching development in peacetime efficiency.Jet aircraft and nuclear reactors are well known examples.The Biological engineering,mechanical engineering biotechnology is a relatively new and different areas,it provides for the replacement of the machine or increase thebody functions as well as for medical equipment.Artficial limbs have been developed and have such a strong movement and touch response function of the human body.In the development of artificial organ transplant is rapid,complex cardiac machines and similar equipment to enable increasingly complex surgery,and injuries and ill patients life functions can be sustained.Some enviromental control mechanical engineers through the initial efforts to drainage or irrigation pumping to the land and to mine and ventilation to control the human environment.Modern refrigeration and air-conditioning plant commonaly used reverse heat engine,where the heat from the engine from cold places to more external heat.Many mechanical engineering products,as well as other leading technology development city have side effects on the environment,producing noise,water and air pollution caused,destroyed land and landscape.Improve productivity and diver too fast in the commodity,that the renewable naturalforces keep pace.For mechanical engineers and others,environmental control is rapidly developing area,which includes a possible development and production of small quantities of pollutants machine sequnce,and the development of new equipment and teachnology has been to reduce and eliminate pollution.4.The role of mechanical engineeringThere are four generic mechanical engineers in common to the above all domains function.The 1st function is the understanding and the research mechanical science foundation.It includes the power and movement of the relationship dynamics For example,in the vibration and movement of the relationship;Automatic control;Study of the various forms of heart,energy,power relations between the thermodynamic;Fluidflows; Heat transfer; Lubricant;And material properties.The 2nd function will be conducts the research,the desing and the development,this function in turn attempts to carry on the essential change to satisfy current and the future needs.This not only calls for a clear understanding of mechanical science,and have to breakdown into basic elements of a complex system capacity.But also the need for synthetic and innovative inventions.The 3rd function is produces the product and the power,include plan,operation and maintenance.Its goal lies in the maintenance eitherenhances the enterprise or the organization longer-tern and survivabilaty prestige at the same time,produces the greatest value by the least investments and the consumption.The 4th function is mechanical engineer’s coordinated function,including the management,the consultation,as well as carries on the market marking in certain situation.In all these function,one kind unceasingly to use the science for a long time the method,but is not traditional or the intuition method tendency,this is a mechanical engineering skill aspect which unceasingly grows.These new rationalization means typical names include:The operations research,the engineering economics,the logical law problem analysis(is called PABLA) However,creativity is not rationalization.As in other areas,in mechanical engineering,to take unexpected and important way to bring about a new capacity,still has a personal,marked characteristice.5.The design of mechanical engineeringThe design of mechanical is the design has the mechanical property the thing or the system,such as:the instrument and the measuring appliance in very many situations,the machine design must use the knowledge of discipline the and so on mathematics,materials science and mechanics.Mechanical engineering desgin includeing all mechanical desgin,but it was a study,because it also includes all the branches of mechsnical engineering,such as thermodynamics all hydrodynamics in the basic disciplines needed,in the mechanical engineering design of the initial stude or mechanical design.Design stages.The entire desgin process from start to finish,in the process,a demand that is designed for it and decided to do the start.After a lot of repetition,the final meet this demand by the end of the design procees and the plan.Design considerations.Sometimes in a system is to decide which parts needs intensity parts of geometric shapesand size an important factor in this context that we must consider that the intensity is an important factor in the design.When we use expression design considerations,we design parts that may affect the entire system design features.In the circumstances specified in the design,usually for a series of such functions must be taken into account.Howeever,to correct purposes,we should recognize that,in many cases thedesign of important design considerations are not calculated or test can determine the components or systems.Especially students,wheen in need to make important decisions in the design and conduct of any operation that can not be the case,they are often confused.These are not special,they occur every day,imagine,for example,a medical laboratory in the mechanical design,from marketing perspective,people have high expectations from the strength and relevance of impression.Thick,and heavy parts installed together:to produce a solid impression machines.And sometimes machinery and spare parts from the design style is the point and not the other point of view.Our purpose is to make those you do not be misled to believe that every design decision will needreasonable mathematical methods.Manufacturing refers to the raw meterials into finished products in the enterprise.Create three distinct phases.They are:input,processing exprot.The first phase includes the production of all products in line with market needs essential.First there must be the demand for the product,the necessary materials,while also needs such as energy,time,human knowledge and technology resourcess .Finall,the need for funds to obtain all the other resources. Lose one stage after the second phase of the resources of the processes to be distributed.Processing of raw materials into finished products of these processes.To complete the design,based on the design,and then develop plans.Plan implemented through various production processes.Management of resources and processes to ensure efficiency and productivity.For example,we must carefully manage resources to ensure proper use of funds.Finally,people are talking about the product market was cast.Stage is the final stage of exporting finished or stage.Once finished just purchased,it must be delivered to the users.According to product performance,installation and may have to conduct further debugging in addition,some products,especially those very complex products User training is necessary.6.The processes of materials and maunfacturingHere said engineering materials into two main categories:metals and non-ferrous,high-performance alloys and power metals.Non-metallic futher divided into plastice,synthetic rubber,composite materials and ceramics.It said the productionproccess is divided into several major process,includingshape,forging,casting/ founding,heat treatment,fixed/connections ,measurement/ quality control and materal cutting.These processes can be further divide into each other’s craft.Various stages of the development of the manufacturing industry Over the years,the manufacturing process has four distinct stages of development, despite the overlap.These stages are:The first phase is artisanal,the second Phase is mechanization.The third phase is automation the forth Phase is integrated.When mankind initial processing of raw materials into finished products will be,they use manual processes.Each with their hands and what are the tools manuslly produced.This is totally integrated production take shape.A person needs indentification,collection materials,the design of a product to meet that demand,the production of such products and use it.From beginning to end,everything is focused on doing the work of the human ter in the industrial revolution introduced mechanized production process,people began to use machines to complete the work accomplished previously manual. This led to the specialization.Specialization in turn reduce the manufacture of integrated factors.In this stage of development,manufacturing workers can see their production as a whole represent a specific piece of the part of the production process.One can not say that their work is how to cope with the entire production process,or how they were loaded onto a production of parts finished.Development of manufacting processes is the next phase of the selection process automation.This is a computer-controlled machinery and processes.At this stage,automation island began to emerge in the workshop lane.Each island represents a clear production process or a group of processes.Although these automated isolated island within the island did raise the productivity of indivdual processes,but the overall productivity are often not change.This is because the island is not caught in other automated production process middle,but not synchronous with them .The ultimate result is the efficient working fast parked through automated processes,but is part of the stagnation in wages down,causing bottlenecks.To better understand this problem,you can imagine the traffic in the peak driving a red light from the red Service Department to the next scene. Occasionally you will find a lot less cars,more than being slow-moving vehicles,but the results can be found by thenext red light Brance.In short you real effect was to accelerate the speed of a red Department obstruction offset.If you and other drivers can change your speed and red light simultaneously.Will advance faster.Then,all cars will be consistent,sommth operation,the final everyone forward faster.In the workshop where the demand for stable synchronization of streamlined production,and promoted integration of manufacturing development.This is a still evolving technology.Fully integrated in the circumstances,is a computer-controllrd machinery and processing.integrated is completed through computer.For example in the preceding paragraph simulation problems,the computer will allow all road vehicles compatible with the change in red.So that everyone can steady traffic.Scientific analysis of movement,timing and mechanics of the disciplines is that it is composed of two pater:statics and dynamics.Statics analyzed static system that is in the system,the time is not taken into account,research and analysis over time and dynamics of the system change.Dynameics from the two componets.Euler in 1775 will be the first time two different branches: Rigid body movement studies can conveniently divided into two parts:geometric and mechanics.The first part is without taking into account the reasons for the downward movement study rigid body from a designated location to another point of the movement,and must use the formula to reflect the actual,the formula would determine the rigid body every point position. Therefore,this study only on the geometry and,more specifically,on the entities from excision.Obviously,the first part of the school and was part of a mechanical separation from the principles of dynamics to study movement,which is more than the two parts together into a lot easier.Dynamics of the two parts are subsequently divided into two separate disciplines,kinematic and dynamics,a study of movement and the movement strength.Therefore,the primary issue is the design of mechanical systems understand its kinematic.Kinematic studies movement,rather than a study of its impact.In a more precise kinematic studies position,displacement,rotation, speed,velocity and acceleration of disciplines,for esample,or planets orbiting research campaing is a paradigm.In the above quotation content should be pay attention that the content of the Euler dynamics into kinematic and rigid body dynamics is based on the assumptionthat they are based on research.In this very important basis to allow for the treatment of two separate disciplines.For soft body,soft body shape and even their own soft objects in the campaign depends on the role of power in their possession.In such cases,should also study the power and movement,and therefore to a large extent the analysis of the increased complexity.Fortunately, despite the real machine parts may be involved are more or less the design of machines,usually with heavy material designed to bend down to the lowest parts.Therefore,when the kinematic analysis of the performance of machines,it is often assumed that bend is negligible,spare parts are hard,but when the load is known,in the end analysis engine,re-engineering parts to confirm this assnmption.机械工程1.机械工程简介机械工程是工程学的一个分支,它研究机械和动力的产,尤其是力和动力。
工程机械配件产品中英文对照
工程机械配件产品中英文对照产品中英文对照1、支重轮:track roller,bottom roller,lower roller,roller group , roller GRP , roller assy lowOne flange track roller assy , double flange track roller assy,2、托链轮:carrier roller,top roller ,upper roller,roller assy UP HD,3、驱动轮:sprocket,sprocket rim,segment,sprocket assy4、引导轮:front idler,idler,idler wheel,front idler assy,idler group,front idler groupIdler with brackets,idler shell,5、链轨:track link,link chain,track chain,chain,track link assy,track link set6、链轨总成:link assy,track link assy7、链片:loose link8、履带板:track shoes,loose shoes , shoes , shoes plate,9、齿块:sprocket segment ,sprocket rim , segment group10、履带总成:link assy,track link assy11、斗轴:bucket spindle,bucket pin12、链通:track bush,bush13、链销:track pin,pin14、斗齿:bucket tooth15、轴套:shaft sleeve16、油封:oil seal,shaft sleeve , seal kits17、斗齿销:teech pin ,tooth pin18、斗轴套:AXIS19、螺丝:bolt20、螺母:nut21、履带板螺栓:track shoes bolt22、螺栓:bolts and nuts23、单边套:single flange bushing24、双边套:double flange bushing25、双金属铜套:BL-Metal bushing26、衬套:track bushing27、管嘴:nozzle28、弹簧座:recoil spring29、活塞环:piston ring30、活塞和真空管:plunger & valve31、节气阀:damper32、液压泵:hydraulic pump33、垫圈套头:head gasket kit34、转向装置泵:steering pump35、扭距泵:torgue pump36、挖掘机液压油缸系列:excavator cylinder37、动臂油缸:boom cylinder38、斗杆油缸:army cylinder39、铲斗油缸:bucket cylinder40、铸造:casting (引导轮、驱动轮)41、锻造:forging(支重轮、托链轮)42、千秋架:h-link rod,bucket link rod43、链杆:c onnection rods ,link rods44、活动销:spare master pins45、链节:loose link46、左节:link left side47、右节:link right side48、斗轴套:axis49、过滤器:filters50、大臂:BOOM CYL KIT51、中臂:ARM CYL KIT52、铲斗:BUCKET CYL KIT53、行走:TRA VEL MOTOR54、旋转:SWING MOTOR55、分油中:SWING JOINT56、分配阀:VALVE SEAL57、涨紧:ADJ CYL KIT58、操纵杆:CONTROL STAND59、齿轮泵:GEAR PUMP KIT60、液压泵:HYD PUMP KIT61、U型架:Idler yoke62、护链架:Roller Guide63、垫圈:washer64、斗齿:teeth斗齿座:adapters65、装配连接器:locking parts66、齿杆:shank67、齿尖及保护器:ripper teeth and protector68、刀片:cutting edge69、刀角:end bit产品对应的规格型号1、住友SUMITOMO-----SH--LS2、神钢KOBELCO--------SK3、三星SAMSUNG H.I.--------SE--MX4、现代HYUNDAI--------------R5、加藤KATO--------HD6、大宇DAEWOO---------DH7、小松KOMATSU----------PC8、日立HITACHI------------EX--UH9、菲亚特日立FAIT-HITACHI------FH10、卡特CATERPILLAR-----E或E? ? B11、洋马YANMAR12、山猫(小型挖机)BOBCAT13、沃尔沃VOLVE-------EC14、约翰迪尔JOHN DEERE15、荣克斯诺LINKBELT16、日本油谷YUTANI17、三洋SANYO 22、山工SC18、利勃海尔LIEBHERR 23、嘉和JH19、凯斯CASE 24、玉柴YC20、久保田KUBOTA 25、石川岛IHI21、三菱MITSUBISHI 26、古河TGH。
机械毕设外文翻译
Switched Reluctance Motors Drive for the Electrical Traction in Shearer Abstract—the paper presented the double Switched Reluctance motors parallel drive system for the electrical traction in shearer. The system components, such as the Switched Reluctance motor, the main circuit of the power converter and the controller, were described. The control strategies of the closed-loop rotor speed control with PI algorithm and balancing the distribution of the loads with fuzzy logic algorithm were given. The tests results were also presented. It is shown that the relative deviation of the average DC supplied current of the power converter in the Switched Reluctance motor 1 and in the Switched Reluctance motor 2 is within 10%.Keywords- switched reluctance; motor control; shearer; coalmine; electrical drive.I. INTRODUCTIONThe underground surroundings of the coal mines are very execrable. One side, it is the moist, high dust and inflammable surroundings. On the other side, the space of roadway is limited since it is necessary to save the investment of exploiting coal mines so that it is difficult to maintain the equipments. In the modern coal mines, the automatization equipments could be used widely. The faults of the automatization equipments could affect the production and the benefit of the coal mines. The shearer is the mining equipment that coal could be cut from the coal wall. The traditional shearer was driven by the hydrostatic transmission system. The fault ratio of the hydrostatic transmission system is high since the fluid in hydrostatic transmission system could be polluted easily. The faults of the hydrostatic transmission system could affect the production and the benefit of the coal mines directly. The fault ratio of the motor drive system is lower than that of the hydrostatic transmission system, but it is difficult to cool the motor drive system in coal mines since the motor drive system should be installed within the flameproof enclosure for safety protection. The motor drive system is also one of the pivotal parts in the automatization equipments. The development of the novel types of the motor drive system had been attached importance to by the coal mines. The Switched Reluctance motor drive could become the main equipments for adjustable speed electrical drive system in coal mines [1],because it has the high operational reliability and the fault tolerant ability [2]. The Switched Reluctance motor drive made up of the double-salient pole Switched Reluctance motor, the unipolar power converter and the controller is firm in the motor and in the power converter. There is no brush structure in the motor and no fault of am bipolar power converter in the power converter [3][4]. The Switched Reluctance motor drive could be operated at the condition of lacked phases fault depended on the independence of each phase in the motor and the power converter [5]. There is no winding in the rotor so that there is no copper loss in the loss and there is only little iron loss in the rotor. It is easy to cool the motor since it is not necessary to cool the rotor. The shearer driven by theSwitched Reluctance motor drive had been developed. The paper presented the developed prototype.II. SYSTEM COMPONENTSThe developed SwitchedReluctance motors drive for the electrical traction in shearer is a type of the double Switched Reluctance motors parallel drive system. The system is made up of two Switched Reluctance motors; a control box installed the power converter and the controller. The adopted two Switched Reluctance motors are all three-phase 12/8 structure Switched Reluctance motor, which were shown in Figure 1. Figure1. Photograph of the two three-phase .12/8 structure Switched Reluctance motorThe two Switched Reluctance motors were packing by the explosion-proof enclosure, respectively. The rated output power of one motor is 40 KW at the rotor speed 1155 r/min, and the adjustable speed range is from 100 r/min to 1500r/min.The power converter consists of two three-phase asymmetric bridge power converter in parallel. The IGBTs were used as the main switches. Three-phase 380V AC power source was certificated and supplied to the power converter. The maincircuit of the power converter was shown in Figure 2.In the controller, there were the rotor position detection circuit, the commutation circuit, the current and voltage protection circuit, the main switches’ gate driver circuit and the digital controller for rotor speed closed-loop and balancing the distribution of the loads.III. CONTROL STRATEGYThe two Switched Reluctance motor could all drive the shearer by the transmission outfit in the same traction guide way so that the rotor speed of the two Switched Reluctance motors could be synchronized.The closed-loop rotor speed control of the double Switched Reluctance motors parallel drive system could be implemented by PI algorithm. In the Switched Reluctance motor 1, the triggered signals of the main switches in the power converter are modulated by PWM signal, the comparison of the given rotor speed and the practical rotor speed are made and the duty ratio of PWM signal are regulated as follows,1()11()1(1)1()e=()g fk i k p k k k k k n n D k e K e e D D D ---∆=+-=+∆where, ng is the given rotor speed, nf is the practical rotorspeed, e is the difference of the rotor speed, 1()k D ∆is the increment of the dutyratio of PWM signal of the Switched Reluctance motor 1 at k time, Ki is the integral coefficient, Kp is the proportion coefficient, ek is the difference of the rotor speed at k time, ek-1 is the difference of the rotor speed at k-1 time, D1(k) is the duty ratio of PWM signal of the Switched Reluctance motor 1 at k time, and D1(k-1) is the duty ratio of PWM signal of the Switched Reluctance motor 1 at k-1 time.The output power of the Switched Reluctance motordrive system is approximately in proportion to theaverage DC supplied current of the power converter asfollows, 2in p I ∝ where, P2 is the output power of the Switched Reluctance motor drive system, Iin is the average DC supplied current of the power converter.In the Switched Reluctance motor 2, the triggered signals of the main switches in the power converter are also modulated by PWM signal. The balancing the distribution of the loads between the two Switched Reluctance motors could be implemented by fuzzy logic algorithm. In the fuzzy logic regulator, there are two input control parameters, one is the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors, and the other is the variation of the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors. The output control parameter is the increment of the duty ratio of the PWM signal of the Switched Reluctance motor 2. The block diagram of the double Switched Reluctance motors parallel drive system for the electrical traction in shearer was shown in Figure 3.The deviation of the average DC supplied current ofthe power converter between the two Switched Reluctance motors at the moment of ti is12i in in e I I =-:.1i i i e e e -=- where, ei-1 is the deviation of the average DC suppliedcurrent of the power converter between the two SwitchedReluctance motors at the moment of ti-1. The duty ratio of the PWM signal of the Switched Reluctance motor 2 at the moment of ti is2()2(1)2()i i i D D D -=+∆where, 2()i D ∆ is the increment of the duty ratio of the PWM signal of theSwitched Reluctance motor 2 at the moment of ti and D2(i-1) is the duty ratio of the PWM signal of the Switched Reluctance motor 2 at the moment of ti-1.The fuzzy logic algorithm could be expressed asfollows,if ~~if E i E = and ~~EC j E C = then U~ ~~U U U =i = 1,2,…, m, j = 1,2, …,nwhere, E~ is the fuzzy set of the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors, E~C is the fuzzy set of the variation of the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors, and U~ is the fuzzy set of the increment of the duty ratio of the PWM signal of the Switched Reluctance motor 2.The continuous deviation of the average DC supplied current of the powerconverter between the two Switched Reluctance motors could be changed into the discrete amount at the interval [-5, +5], based on the equations as follows,[]10220e i e e INT K e K ==The discrete increment of the duty ratio of PWM signal of the Switched Reluctance motor 2 at the interval [-5, +5] could be changed into the continuous amount at the interval [-1.0%, +1.0%], based on the equations as follows,12()[]100.02i D D D INT K D K -==There is a decision forms of the fuzzy logic algorithm based on the above principles, which was stored in the programme storage cell of the controller.While the difference of the distribution of the loads between the two Switched Reluctance motors could be got, the duty ratio of PWM signal of the Switched Reluctance motor 2 will be regulated based on the decision forms of the fuzzy logic algorithm and the distribution of the loads between the two Switched Reluctance motors could be balanced.IV. TESTED RESULTSThe developed double Switched Reluctance motors parallel drive system prototype had been tested experimentally. Table I gives the tests results, where 1σis the relative deviation of the average DC supplied current of the power converter in the Switched Reluctance motor 1, 2σis the relative deviation of the average DC supplied current of the power converter in the Switched Reluctance motor 2, and,1211122100%2in in in in in I I I I I σ+-=⨯+ 1222122100%2in in in in in I I I σ+-=⨯It is shown that the relative deviation of the average DC supplied current of the power converter in the SwitchedReluctance motor 1 and in the Switched Reluctance motor2 is within 10%V. CONCLUSIONThe paper presented the double Switched Reluctance motors parallel drive system for the electrical traction in shearer. The novel type of the shearer in coal mines driven by the Switched Reluctance motors drive system contributes to reduce the fault ratio of the shearer, enhance the operational reliability of the shearer and increase the benefit of the coal mines directly. The drive type of the double Switched Reluctance motors parallel drive system could also contribute to enhance the operational reliability compared with the drive type of the single Switched Reluctance motor drive system.中文翻译:关磁阻电动机驱动电牵引采煤机摘要-本文介绍了双开关磁阻电动机并联传动系统控制驱动电牵引采煤机。
机械专业中英文对照机械专业中英文对照
机械专业中英文对照机械专业中英文对照后角clearance angle龙门刨削planing主轴spindle主轴箱headstock卡盘chuck加工中心machining center车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻forge压模stamping拉床broaching machine拉孔broaching装配assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical-electrical integration气压air pressure pneumatic pressure稳固性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺旋helix键spline销pin滚动轴承rolling bearing滑动轴承sliding bearing弹簧spring制动器arrester brake十字结联轴节crosshead联轴器coupling链chain皮带strap精加工finish machining粗加工rough machining变速箱体gearbox casing腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor集成电路integrate circuit挡板orifice plate残余应力residual stress套筒sleeve扭力torsion冷加工cold machining电动机electromotor汽缸cylinder过盈配合interference fit热加工hotwork摄像头CCD camera倒角rounding chamfer优化设计optimal design工业造型设计industrial moulding design有限元finite element滚齿hobbing插齿gear shaping伺服电机actuating motor铣床milling machine钻床drill machine镗床boring machine步进电机stepper motor丝杠screw rod导轨lead rail组件subassembly可编程序逻辑操纵器Programmable Logic Controller PLC电火花加工electric spark machining电火花线切割加工electrical discharge wire - cutting 相图phase diagram热处理heat treatment固态相变solid state phase changes有色金属nonferrous metal陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy 动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheelConveyer 流水线物料板Rivet table 拉钉机Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs. inch 镑、英寸EMI gasket 导电条front plate 前板rear plate 后板chassis 基座bezel panel 面板power button 电源按键reset button 重置键Hi-pot test of SPS 高源高压测试Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts 塑胶件SOP 制造作业程序material check list 物料检查表work cell 工作间trolley 台车carton 纸箱sub-line 支线left fork 叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |plein|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |\\'skr?pid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturing procedure制程不良oxidation |\\' ksi\\'dei?n|氧化scratch刮伤dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车compound die合模die locker锁模器pressure plate=plate pinch压板administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzle蜂鸣器defective product label不良标签identifying sheet list标示单location地点present members出席人员conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺revision版次production control confirmation生产确认approved by核准stock age analysis sheet 库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked 待验或重工cause description缘故说明prepared by制表notes说明year-end physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis缘故分析finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破裂机阿基米德蜗杆Archimedes worm安全系数safety factor; factor of safety安全载荷safe load凹面、凹度concavity扳手wrench板簧flat leaf spring半圆键woodruff key变形deformation摆杆oscillating bar摆动从动件oscillating follower摆动从动件凸轮机构cam with oscillating follower 摆动导杆机构oscillating guide-bar mechanism 摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile摆线运动规律cycloidal motion摆线针轮cycloidal-pin wheel包角angle of contact保持架cage背对背安装back-to-back arrangement背锥back cone ;normal cone背锥角back angle背锥距back cone distance比例尺scale比热容specific heat capacity闭式链closed kinematic chain闭链机构closed chain mechanism臂部arm变频器frequency converters变频调速frequency control of motor speed变速speed change变速齿轮change gear change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear标准直齿轮standard spur gear表面质量系数superficial mass factor表面传热系数surface coefficient of heat transfer 表面粗糙度surface roughness并联式组合combination in parallel并联机构parallel mechanism并联组合机构parallel combined mechanism并行工程concurrent engineering并行设计concurred design, CD不平稳相位phase angle of unbalance不平稳imbalance (or unbalance)不平稳量amount of unbalance不完全齿轮机构intermittent gearing波发生器wave generator波数number of waves补偿compensation参数化设计parameterization design, PD残余应力residual stress操纵及操纵装置operation control device槽轮Geneva wheel槽轮机构Geneva mechanism ;Maltese cross槽数Geneva numerate槽凸轮groove cam侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism差速器differential常用机构conventional mechanism; mechanism in common use 车床lathe承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle齿厚tooth thickness齿距circular pitch齿宽face width齿廓tooth profile齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack齿轮插刀pinion cutter; pinion-shaped shaper cutter齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack-shaped shaper cutter 齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio冲床punch传动比transmission ratio, speed ratio传动装置gearing; transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft串联式组合combination in series串联式组合机构series combined mechanism串级调速cascade speed control创新innovation creation创新设计creation design垂直载荷、法向载荷normal load唇形橡胶密封lip rubber seal磁流体轴承magnetic fluid bearing从动带轮driven pulley从动件driven link, follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel打包机packer打滑slipping带传动belt driving带轮belt pulley带式制动器band brake单列轴承single row bearing单向推力轴承single-direction thrust bearing单万向联轴节single universal joint单位矢量unit vector当量齿轮equivalent spur gear; virtual gear当量齿数equivalent teeth number; virtual number of teeth当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导热性conduction of heat导程lead导程角lead angle等加等减速运动规律parabolic motion; constant acceleration and deceleration motion 等速运动规律uniform motion; constant velocity motion等径凸轮conjugate yoke radial cam等宽凸轮constant-breadth cam等效构件equivalent link等效力equivalent force等效力矩equivalent moment of force等效量equivalent等效质量equivalent mass等效转动惯量equivalent moment of inertia等效动力学模型dynamically equivalent model底座chassis低副lower pair点划线chain dotted line(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal碟形弹簧belleville spring顶隙bottom clearance定轴轮系ordinary gear train; gear train with fixed axes动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity动力润滑dynamic lubrication动平稳dynamic balance动平稳机dynamic balancing machine动态特性dynamic characteristics动态分析设计dynamic analysis design动压力dynamic reaction动载荷dynamic load端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge对称循环应力symmetry circulating stress对心滚子从动件radial (or in-line ) roller follower对心直动从动件radial (or in-line ) translating follower对心移动从动件radial reciprocating follower对心曲柄滑块机构in-line slider-crank (or crank-slider) mechanism 多列轴承multi-row bearing多楔带poly V-belt多项式运动规律polynomial motion多质量转子rotor with several masses惰轮idle gear额定寿命rating life额定载荷load ratingII 级杆组dyad发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm法向力normal force反馈式组合feedback combining反向运动学inverse ( or backward) kinematics反转法kinematic inversion反正切Arctan范成法generating cutting仿形法form cutting方案设计、概念设计concept design, CD防振装置shockproof device飞轮flywheel飞轮矩moment of flywheel非标准齿轮nonstandard gear非接触式密封non-contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy分度线reference line; standard pitch line分度圆reference circle; standard (cutting) pitch circle 分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone分析法analytical method封闭差动轮系planetary differential复合铰链compound hinge复合式组合compound combining复合轮系compound (or combined) gear train复合平带compound flat belt复合应力combined stress复式螺旋机构Compound screw mechanism复杂机构complex mechanism杆组Assur group干涉interference刚度系数stiffness coefficient刚轮rigid circular spline钢丝软轴wire soft shaft刚体导引机构body guidance mechanism刚性冲击rigid impulse (shock)刚性转子rigid rotor刚性轴承rigid bearing刚性联轴器rigid coupling高度系列height series高速带high speed belt高副higher pair格拉晓夫定理Grashoff`s law根切undercutting公称直径nominal diameter高度系列height series功work工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment公法线common normal line公共约束general constraint公制齿轮metric gears功率power功能分析设计function analyses design共轭齿廓conjugate profiles共轭凸轮conjugate cam构件link鼓风机blower固定构件fixed link; frame固体润滑剂solid lubricant关节型操作器jointed manipulator惯性力inertia force惯性力矩moment of inertia ,shaking moment 惯性力平稳balance of shaking force惯性力完全平稳full balance of shaking force惯性力部分平稳partial balance of shaking force 惯性主矩resultant moment of inertia惯性主失resultant vector of inertia冠轮crown gear广义机构generation mechanism广义坐标generalized coordinate轨迹生成path generation轨迹发生器path generator滚刀hob滚道raceway滚动体rolling element滚动轴承rolling bearing滚动轴承代号rolling bearing identification code 滚针needle roller滚针轴承needle roller bearing滚子roller滚子轴承roller bearing滚子半径radius of roller滚子从动件roller follower滚子链roller chain滚子链联轴器double roller chain coupling滚珠丝杆ball screw滚柱式单向超越离合器roller clutch过度切割undercutting函数发生器function generator函数生成function generation含油轴承oil bearing耗油量oil consumption耗油量系数oil consumption factor赫兹公式H. Hertz equation合成弯矩resultant bending moment合力resultant force合力矩resultant moment of force黑箱black box横坐标abscissa互换性齿轮interchangeable gears花键spline滑键、导键feather key滑动轴承sliding bearing滑动率sliding ratio滑块slider环面蜗杆toroid helicoids worm环形弹簧annular spring缓冲装置shocks; shock-absorber灰铸铁grey cast iron回程return回转体平稳balance of rotors混合轮系compound gear train积分integrate机电一体化系统设计mechanical-electrical integration system design 机构mechanism机构分析analysis of mechanism机构平稳balance of mechanism机构学mechanism机构运动设计kinematic design of mechanism机构运动简图kinematic sketch of mechanism机构综合synthesis of mechanism机构组成constitution of mechanism机架frame, fixed link机架变换kinematic inversion机器machine机器人robot机器人操作器manipulator机器人学robotics技术过程technique process技术经济评判technical and economic evaluation技术系统technique system机械machinery机械创新设计mechanical creation design, MCD机械系统设计mechanical system design, MSD机械动力分析dynamic analysis of machinery机械动力设计dynamic design of machinery机械动力学dynamics of machinery机械的现代设计modern machine design机械系统mechanical system机械利益mechanical advantage机械平稳balance of machinery机械手manipulator机械设计machine design; mechanical design机械特性mechanical behavior机械调速mechanical speed governors机械效率mechanical efficiency机械原理theory of machines and mechanisms机械运转不平均系数coefficient of speed fluctuation机械无级变速mechanical stepless speed changes基础机构fundamental mechanism差不多额定寿命basic rating life基于实例设计case-based design,CBD基圆base circle基圆半径radius of base circle基圆齿距base pitch基圆压力角pressure angle of base circle基圆柱base cylinder基圆锥base cone急回机构quick-return mechanism急回特性quick-return characteristics急回系数advance-to return-time ratio急回运动quick-return motion棘轮ratchet棘轮机构ratchet mechanism棘爪pawl极限位置extreme (or limiting) position极位夹角crank angle between extreme (or limiting) positions运算机辅助设计computer aided design, CAD运算机辅助制造computer aided manufacturing, CAM运算机集成制造系统computer integrated manufacturing system, CIMS 运算力矩factored moment; calculation moment运算弯矩calculated bending moment加权系数weighting efficient加速度acceleration加速度分析acceleration analysis加速度曲线acceleration diagram尖点pointing; cusp尖底从动件knife-edge follower间隙backlash间歇运动机构intermittent motion mechanism减速比reduction ratio减速齿轮、减速装置reduction gear减速器speed reducer减摩性anti-friction quality渐开螺旋面involute helicoid渐开线involute渐开线齿廓involute profile渐开线齿轮involute gear渐开线发生线generating line of involute渐开线方程involute equation渐开线函数involute function渐开线蜗杆involute worm渐开线压力角pressure angle of involute渐开线花键involute spline简谐运动simple harmonic motion键key键槽keyway交变应力repeated stress交变载荷repeated fluctuating load交叉带传动cross-belt drive交错轴斜齿轮crossed helical gears胶合scoring角加速度angular acceleration角速度angular velocity角速比angular velocity ratio角接触球轴承angular contact ball bearing角接触推力轴承angular contact thrust bearing 角接触向心轴承angular contact radial bearing 角接触轴承angular contact bearing铰链、枢纽hinge校正平面correcting plane接触应力contact stress接触式密封contact seal阶梯轴multi-diameter shaft结构structure结构设计structural design截面section节点pitch point节距circular pitch; pitch of teeth节线pitch line节圆pitch circle节圆齿厚thickness on pitch circle节圆直径pitch diameter节圆锥pitch cone节圆锥角pitch cone angle解析设计analytical design紧边tight-side紧固件fastener径节diametral pitch径向radial direction径向当量动载荷dynamic equivalent radial load径向当量静载荷static equivalent radial load径向差不多额定动载荷basic dynamic radial load rating 径向差不多额定静载荷basic static radial load tating径向接触轴承radial contact bearing径向平面radial plane径向游隙radial internal clearance径向载荷radial load径向载荷系数radial load factor径向间隙clearance静力static force静平稳static balance静载荷static load静密封static seal局部自由度passive degree of freedom矩阵matrix矩形螺纹square threaded form锯齿形螺纹buttress thread form矩形牙嵌式离合器square-jaw positive-contact clutch 绝对尺寸系数absolute dimensional factor绝对运动absolute motion绝对速度absolute velocity均衡装置load balancing mechanism抗压强度compression strength开口传动open-belt drive开式链open kinematic chain开链机构open chain mechanism可靠度degree of reliability可靠性reliability可靠性设计reliability design, RD空气弹簧air spring空间机构spatial mechanism空间连杆机构spatial linkage空间凸轮机构spatial cam空间运动副spatial kinematic pair空间运动链spatial kinematic chain空转idle宽度系列width series框图block diagram雷诺方程Reynolds‘s equation离心力centrifugal force离心应力centrifugal stress离合器clutch离心密封centrifugal seal理论廓线pitch curve理论啮合线theoretical line of action隶属度membership力force力多边形force polygon力封闭型凸轮机构force-drive (or force-closed) cam mechanism 力矩moment力平稳equilibrium力偶couple力偶矩moment of couple连杆connecting rod, coupler连杆机构linkage连杆曲线coupler-curve连心线line of centers链chain链传动装置chain gearing链轮sprocket sprocket-wheel sprocket gear chain wheel联组V 带tight-up V belt联轴器coupling shaft coupling两维凸轮two-dimensional cam临界转速critical speed六杆机构six-bar linkage龙门刨床double Haas planer轮坯blank轮系gear train螺杆screw螺距thread pitch螺母screw nut螺旋锥齿轮helical bevel gear螺钉screws螺栓bolts螺纹导程lead螺纹效率screw efficiency螺旋传动power screw螺旋密封spiral seal螺纹thread (of a screw)螺旋副helical pair螺旋机构screw mechanism螺旋角helix angle螺旋线helix ,helical line绿色设计green design design for environment马耳他机构Geneva wheel Geneva gear马耳他十字Maltese cross脉动无级变速pulsating stepless speed changes脉动循环应力fluctuating circulating stress脉动载荷fluctuating load铆钉rivet迷宫密封labyrinth seal密封seal密封带seal belt密封胶seal gum密封元件potted component密封装置sealing arrangement面对面安装face-to-face arrangement面向产品生命周期设计design for product`s life cycle, DPLC 名义应力、公称应力nominal stress模块化设计modular design, MD模块式传动系统modular system模幅箱morphology box模糊集fuzzy set模糊评判fuzzy evaluation模数module摩擦friction摩擦角friction angle摩擦力friction force摩擦学设计tribology design, TD摩擦阻力frictional resistance摩擦力矩friction moment摩擦系数coefficient of friction摩擦圆friction circle磨损abrasion wear; scratching末端执行器end-effector目标函数objective function耐腐蚀性corrosion resistance耐磨性wear resistance挠性机构mechanism with flexible elements挠性转子flexible rotor内齿轮internal gear内齿圈ring gear内力internal force内圈inner ring能量energy能量指示图viscosity逆时针counterclockwise (or anticlockwise)啮合engagement, mesh, gearing啮合点contact points啮合角working pressure angle啮合线line of action啮合线长度length of line of action啮入engaging-in牛头刨床shaper凝固点freezing point; solidifying point扭转应力torsion stress扭矩moment of torque扭簧helical torsion spring诺模图NomogramO 形密封圈密封O ring seal盘形凸轮disk cam盘形转子disk-like rotor抛物线运动parabolic motion疲劳极限fatigue limit疲劳强度fatigue strength偏置式offset偏( 心) 距offset distance偏心率eccentricity ratio偏心质量eccentric mass偏距圆offset circle偏心盘eccentric偏置滚子从动件offset roller follower偏置尖底从动件offset knife-edge follower偏置曲柄滑块机构offset slider-crank mechanism 拼接matching评判与决策evaluation and decision频率frequency平带flat belt平带传动flat belt driving平底从动件flat-face follower平底宽度face width平分线bisector平均应力average stress平均中径mean screw diameter平均速度average velocity平稳balance平稳机balancing machine平稳品质balancing quality平稳平面correcting plane平稳质量balancing mass平稳转速balancing speed平面副planar pair, flat pair平面机构planar mechanism平面运动副planar kinematic pair平面连杆机构planar linkage平面凸轮planar cam平面凸轮机构planar cam mechanism平面轴斜齿轮parallel helical gears一般平键parallel key其他常用机构other mechanism in common use起动时期starting period启动力矩starting torque气动机构pneumatic mechanism奇特位置singular position起始啮合点initial contact , beginning of contact气体轴承gas bearing千斤顶jack嵌入键sunk key强迫振动forced vibration切齿深度depth of cut曲柄crank曲柄存在条件Grashoff`s law曲柄导杆机构crank shaper (guide-bar) mechanism曲柄滑块机构slider-crank (or crank-slider) mechanism 曲柄摇杆机构crank-rocker mechanism曲齿锥齿轮spiral bevel gear曲率curvature曲率半径radius of curvature曲面从动件curved-shoe follower曲线拼接curve matching曲线运动curvilinear motion曲轴crank shaft驱动力driving force驱动力矩driving moment (torque)全齿高whole depth权重集weight sets球ball球面滚子convex roller球轴承ball bearing球面副spheric pair球面渐开线spherical involute球面运动spherical motion球销副sphere-pin pair球坐标操作器polar coordinate manipulator燃点spontaneous ignition热平稳heat balance; thermal equilibrium人字齿轮herringbone gear冗余自由度redundant degree of freedom柔轮flexspline柔性冲击flexible impulse; soft shock柔性制造系统flexible manufacturing system; FMS柔性自动化flexible automation润滑油膜lubricant film润滑装置lubrication device润滑lubrication润滑剂lubricant三角形花键serration spline三角形螺纹V thread screw三维凸轮three-dimensional cam三心定理Kennedy`s theorem砂轮越程槽grinding wheel groove砂漏hour-glass少齿差行星传动planetary drive with small teeth difference 设计方法学design methodology设计变量design variable设计约束design constraints深沟球轴承deep groove ball bearing生产阻力productive resistance升程rise升距lift实际廓线cam profile十字滑块联轴器double slider coupling; Oldham‘s coupling 矢量vector输出功output work输出构件output link输出机构output mechanism输出力矩output torque输出轴output shaft输入构件input link数学模型mathematic model实际啮合线actual line of action双滑块机构double-slider mechanism, ellipsograph双曲柄机构double crank mechanism双曲面齿轮hyperboloid gear双头螺柱studs双万向联轴节constant-velocity (or double) universal joint 双摇杆机构double rocker mechanism双转块机构Oldham coupling双列轴承double row bearing双向推力轴承double-direction thrust bearing松边slack-side顺时针clockwise瞬心instantaneous center死点dead point四杆机构four-bar linkage速度velocity速度不平均( 波动) 系数coefficient of speed fluctuation速度波动speed fluctuation速度曲线velocity diagram速度瞬心instantaneous center of velocity塔轮step pulley踏板pedal台钳、虎钳vice太阳轮sun gear弹性滑动elasticity sliding motion弹性联轴器elastic coupling flexible coupling弹性套柱销联轴器rubber-cushioned sleeve bearing coupling 套筒sleeve梯形螺纹acme thread form专门运动链special kinematic chain特性characteristics替代机构equivalent mechanism调剂modulation, regulation调心滚子轴承self-aligning roller bearing调心球轴承self-aligning ball bearing调心轴承self-aligning bearing调速speed governing调速电动机adjustable speed motors调速系统speed control system调压调速variable voltage control调速器regulator, governor铁磁流体密封ferrofluid seal停车时期stopping phase停歇dwell同步带synchronous belt同步带传动synchronous belt drive凸的,凸面体convex凸轮cam凸轮倒置机构inverse cam mechanism凸轮机构cam , cam mechanism凸轮廓线cam profile。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录A译文(一) 柱塞式液压缸、起重器和柱塞液压缸、起重器和柱塞的基本术语可以被看作为同义词。
通常首先描述的是其基本质特征,“jack”通常用来描述,应用于起重器中的液压缸,而且在大多数应用驱动器的特定工业场合来提供起重装置,“ram”经常被应用于高输出力的大型、重型液压缸,其它一些权威书籍可能将“ram”定义为活塞和杆是相同直径的液压缸,尽管这种液压缸更准确的应该被叫做柱塞式油缸,或置换式液压缸,这些形式的液压缸单一作用式并有其相对的应用局限。
液压缸可为单作用式,在单作用液压缸情况下,运动由弹簧或某种外力或重力使活塞返回到起始位置时释放压力来完成,在这种情况下弹簧返回,再液压条件下可获得的输出力可以被弹簧抗力所减轻。
双作用液压缸再普通应用场合是最常用的,液流上被安装液压缸两端,被选择器交替实现输入口,输出口作用。
最大的可获得的输出的仅比单作用液压缸所获得的输出稍小些,因为当液体压力被反向加压时组织泄露,因而增加了摩擦力抵抗运动。
在反向运动时,可获得的力会由于活塞和杆面积的不同而降低了活塞作用面积减少,反向压力也是存在的,这种性能损失也许会很小,但在实际中明显地减少理论性能,而且液压缸的理论性能是有一定规格的,允许的公称公差以适应摩擦损失。
大多数的液压缸是单杆式的,双杆式的液压缸可能被应用在要求特高刚度下。
对于双作用式液压缸,冲压力在伸出和缩回是相等的,这里可以估计到相比在相同直径的液压缸由于杆的封闭作用,摩擦力也会两端的密封杆和密封轴承而增大。
液压缸被广泛用于工业液体系统中,这些液压缸也别称为线性原动机或往复原动机。
通常液压缸由循环管,活塞和杆运动处两侧的密封组织,活塞杆可被设计在液压缸的一侧或两侧,围绕活塞杆向液压缸外的液体温度可以由正确设计的还有密封垫用途的应用。
再这当中我们将学习各种类型的液压缸以及它们是如何应用的液压缸的用途会对工业水利学的学习有很大帮助。
(二) 液压动力钳的发展近年来,随着我国国民经济的持续快速发展,我国的石油消费量逐年增加。
2002年达到2.457亿吨,排名已超过日本,成为继美国之后的第二大石油消费国。
相比之下,我国石油机械制造生产增长比较缓慢,供需矛盾日益突出。
而现在人类的机械创新的不断进步,使机械代替了人。
以前在油田修井时或者下油管时,管与管连接时是用管钳来上扣和卸扣,现在使用这种液压钳,就给人类带来很多方便,使工作效率和安全系数提高,也减少了很多井口的工作人员,因此这是油田经常使用的卸管工具。
针对修井作业中人力上卸抽油杆螺纹效率低,劳动强度大,又不能保证不同规格抽油杆所要求的上扣扭矩等问题,研制了液压抽油杆钳,这种抽油杆钳由主钳,手动换向阀,液压马达,底钳,弹簧吊筒和调节弹簧等组成,在设计中省掉了转速换挡机构,同时通过改变制动板上压簧螺栓的结构,解决了制动板减薄时颚板滚子爬坡力量不足这一技术难题,介绍了这种抽油杆钳的工作原理!主要技术参数和室内试验情况,现场应用结果表明,采用液压抽油杆钳可大大减少抽油杆脱扣次数,提高修井质量和修井速度。
但液压元件的制造精度和密封性能要求高,加工和安装都比较困难。
泄漏难以避免,并且油液有一定的可压缩性,因此,传动比不能恒定,不适用于传动比要求严格的场合。
泄漏引起的能量损失(称容积损失),是液压传动中主要的能量损失,此外油液在管道中受到的阻力及机械摩擦等也引起一定的能量损失,致使液压传动的效率较低。
油液的黏度随温度而变化,当油温变化时,会直接影响传动机构的工作性能。
此外,在低温条件或高温条件下采用液压传动有较大的困难。
油液中渗入空气时,会产生噪声,容易引起振动和爬行(运动速度不均匀),影响传动的平稳。
维修保养较困难,工作量大。
当液压系统产生故障时,故障原因不易查找,排除困难等通过设计优化减少负影响。
目前,国外钻杆动力钳的种类很多,而且产品性能及质量都相对稳定,特别是他们产品的体积与输出扭矩不会成比例变化,即使动力钳输出扭矩相当大时,其产品的体积也不会增加多少,因而适用于现场需要。
而国内产品还处在研发和改进阶段,产品性能及质量都有待进一步提高,国内产品的体积和重量都随输出扭矩的增大而增大,从而导致无法适用于某些大型钻管。
近10年来,中国国内生产动力钳有所增长,但相比国外我国动力钳结构复杂不方便使用与维护,使用期短等缺点,所以我国正大力发展动力钳设计改造,达到世界水平。
(三) 钻井设备与技术钻井设备第一需要是配备扭矩为三十万ft/lbs的电力装置,安装在直径21米的海上平台上,是两年前印尼研制的项目。
这个安装交叉生产线项目范围其中包括建筑连接10万多FT配对扭矩和20多万配对液压扭矩。
这些新型的螺纹连接是专为生产海上平台和输出扭矩建设的。
新型螺纹的生产极力用于海上浮动平台管道连接,当面临巨大的海浪的力量,并夹杂着水流不断的冲击,可起着稳固平台的艰巨任务。
这些参数是完全按照设计要求和建设需求去做的。
21-300型钳子也是为设计而生产的配套产品。
以上产品在不到12个月里,完成设计、建造、测试实验室,可迅速完成建设投入使用。
在新产品中包括新概念的液压马达系统,以液压马达启动和组合泵、工程液压系统内都具有独立转子堂.这些都成功用在海上平台。
这种新概念马达的体积和重量是以前没有过的可带动旋转。
在其它一些项目中也应用了包括专门设计框架伺服支持的框架。
而且装置都提供了遥控和完全的电子计算机操作。
技术要求扭矩输出力所需螺纹生产建筑连接的技术要求包括大型辐射干扰,并且之间有内在联系。
大扭矩要求"预先装载"的扭矩后线干扰,能顶住了动力海洋和抗压力。
这种事先装配的装置叫做三角扭矩,它有着全功能的重要通道,是决定性的机械方面的机械摩擦装置,缓冲、解压等功能,可使几何扭矩高达输出扭矩的2至3倍。
而且有其共同点就是扭矩输出最小15万余FT/,最大高达30万FT。
这些典型参数都是技术上所必须的,很好的利用在建筑上是很容易解决综合技术所需的理论。
综合扭矩抗压反应则需重新设计新概念,找住典型的生产建筑技术是必要的,设计不可缺少的因素。
发展构想对这些概念进行讨论,以便找出最佳设计方案. 常规力量经常用动力钳凸轮曲线的形状进行系统内容的分析. 优点是依靠着力量直接应用输出的扭矩上,这是特别重要的,而且外壳和管道连接所需最大扭矩值三十万FT/配对,但需要相当高的输出扭矩系统提供比凸轮曲线,以便解决利用液压系统带动动力钳夹紧管箍,并按标准规定设计。
这些技术可用在有<系统启动水压调节式独立液压驱动的汽车电路上,还可以用在液压钳弹簧转子上。
然后是马达、泵股(在备份和堂)由水压驱动的汽车上,塘房的活塞泵装上塘生产转子液压筒的冲击,活塞泵的活塞上装有6门的装置运动,两个活塞泵供应压力增大每个液压缸.这可确保每个铣镗得到同样数量的油量,确保完成整个工作过程。
动力安排它把两种不同的装备系统,可以把行星减速器装置的运行模式两个(外壳和建筑模式)和液压装置,总共将包括轮换速度从0.2-16分钟.三个平行驱动液压汽车外壳堂位于轮换分起床,从西三面部队驾驶系统.大型工具扶轮成绩封闭和轮换的建筑-听着. 机械动力传递的液压马达将加强扶轮来往.扶轮是一具大直径装置已分三节,关键在于构件和机制. 小扶轮起开放部分渔具建筑包围,然后设法接近工作的同时,门闩建筑国内直径的地面装备有加的打击部队,这是一个单独的驱动马达/泵股之上的情况下,确保液压堂在轮换.该装置由三个液压汽车列车装在一个单独的行星变速器堂扶轮社的房屋. 每个液压马达直接带动了鸟羽,进而扶轮驱动装置.自由浮动自由浮动的备份在钳子之下克制它从行动在管道附近当扭矩是应用的。
会导致可能的安全危险在高扭矩值钳子可能提供的备用线路不必需。
它并且包含三个水力夹紧的磁道提供肯定的字符串夹子以最大扣人心弦的强制。
自由浮动的类型回应系统消灭所有剪和弯曲的负荷横跨工具联接, 服从联接只对扭力负荷和因此使残损的线程数侧面或肩膀减到最小风险由擦伤。
可分开的自由浮动的备份(通过水喉) 与钳子机械上和水力被链接和对连接数线程数差旅自已补偿在构成和包围突破方向。
压电池(扭矩磁道) 适合在钳子和备份之间和, 由选择, 可能被使用记录构成或包围突破扭矩。
三个下颌提供夹住的平均值。
一个扣人心弦的系统相似和在钳子(还以分开的水力电路) 保证水力夹紧的磁道的一个中心夹紧的活动。
备用夹紧的范围被设计容纳在衣领直径上所有变化在他们有名无实的范围范围之内从通过最大24米直径。
扭矩评定弯曲的和剪切力被自由浮动的备用系统消灭当这些强制对称地被分配入扭矩过帐, 允许应用的扭矩的评定非常准确地被做。
扭矩评定的系统与力量钳子被结合以自由浮动的备份消灭动摆和额外干涉的强制。
结果, 构成和包围突破扭矩可能被评定以同样准确性。
扭矩负荷被评定以一个有效的压缩类型压电池。
强制直接地被评定在自由浮动的备份的扭矩回应系统之内。
如果需要, 构成或包围突破与造反者钳子21-300 可能是受控的使用记录扭矩轮图形当化妆的torque/turn 系统(或中断) 连接数。
那止步不前构成进程当被预先选定的最佳扭矩值被到达。
许多生产造反者连接今天被使用外部被担负和要求"预先输入" 那些肩膀保证他们将承受弯曲的重音由环境造成当不取消。
这由申请达到"三角洲扭矩" 向连接数在连接数担负了之后。
制造商要求, 这三角洲扭矩是应用和受控的在非常紧的容差之内。
新建私有的软件被设计分析连接数torque/turn 数据在实时, 然后运用被预先决定的相当数量三角洲扭矩或三角洲轮向连接数为最终构成。
钳子操纵造液压钳子21-300型被设计了以各种各样的类型船具在头脑里。
钳子可能或者被暂停从推力磁道和被操作到/从好的中心以Weatherford 力量范围, 或另一选项将集成造反者钳子21-300 Weatherford 轨行力量框架和伺服框架系统。
取决于申请, 所有钳子的功能可能被控制或直接地从水力控制面板在钳子的边或通过一个遥控盘区。
遥控可能是成功的通过航空在水力控制或电子与钳子是电子控制系统的整体部分。
在这种情况下, 钳子和钳子承运人设备可能被连接到船的区域管理系统防止碰撞在不同的设备譬如力量框架, 顶层驱动器, 或管道操作系统之间。
案件历史记录一、21-300型钳子被传送了为西方Seno 紧张行程平台(TLP) 由管理在海峡在印度尼西亚。
挑战被存在对Weatherford 将运行大3,000 ft 13 3/8钢框(在泥线路之下), 钛逐渐变细的重音联接(天桥联接), 和大约3,000 ft 生产造反者(在泥线路之上) 如同一个字符串在一个严重地偏离的未结漏洞。
生产者包括了联接以焊接在连接在要求得超过的高重音面积100,000 ft/lbs 做输出扭矩, 并且专门研究穿线的和耦合的连接为字符串的余数在泥之上排行。