人教版小学一到六年级数学知识点归纳

合集下载

人教版-小学数学-六年级-数与代数-知识梳理

人教版-小学数学-六年级-数与代数-知识梳理

人教版小学数学六年级数与代数知识梳理一知识点一:整数1、整数的范围整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。

(1)自然数自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。

自然数的个数是无限的,没有最大的自然数。

自然数的基本单位:任何非“0”的自然数都是假设干个“1”组成,所以“1”是自然数的基本单位。

1也是最小的一位数。

“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。

“0”还可以表示起点、分界点等。

“0”是最小的自然数。

自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。

〔2〕正数正数的定义以前学过的8、16、200……..这样的数叫做正数。

正数的写法和读法正数前面也可以加“+”号,例如:+8读作:正八。

“+”号一般可以省略不写。

〔2〕负数负数的定义像-1、-5、-132……这样的数叫做负数。

“一”叫负号。

负数的写法和读法负数前面加“一”号,例如:-15读作:负十五。

数字越大的负数反而越小。

“0”既不是正数,也不是负数。

〔4〕整数与自然数的联系及区别自然数全是整数,整数不全是自然数,还包括负整数。

2、整数的读法和写法数的分级按照我国的计数习惯,整数从个位起,每四个数位是一级。

个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。

计数单位整数、小数都是按照十进制写出的数,其中一〔个〕、十、百…….是整数的计数单位。

计数单位是按一定顺序排列的。

数位各个计数单位所占的位置叫数位。

如9357中的“5”在右起第二位,即“5”所在的数位是十位。

位数指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。

十进制计数法十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。

小学一至六年级数学知识点归纳

小学一至六年级数学知识点归纳

一年级数学知识点:1.数的认识:数的读写、数的概念、数的比较大小。

2.加法和减法:加减法的概念与运算、加法口算和减法口算。

3.数的合并与拆分:数的合并和数的拆分。

4.数量的意义:数量的概念、数量的认识、数量的表示。

5.时间:时间的概念、日常时间的认识与表示。

6.金钱:金钱的概念、小额货币的认识与表示。

二年级数学知识点:1.加法和减法:两位数加减法、进位和退位运算。

2.数的认识和扩展:数的读写、数的比较大小。

3.乘法和除法:乘法口诀表、简单的乘除法运算。

4.长度和重量:长度的认识与表示、重量的认识与表示。

5.时钟和日历:时钟的概念与表示、日历的概念与表示。

6.二维图形和三维图形:基本二维图形(正方形、长方形、三角形、圆形)的认识与表示、三维图形(立方体、球体、圆柱体、圆锥体)的认识与表示。

三年级数学知识点:1.加法和减法:三位数加减法、进位和退位运算。

2.乘法和除法:两位数乘法、除法口算。

3.数的认识和扩展:数的读写、数的比较大小。

4.分数:分数的概念与表示。

5.长度和重量:长度的认识与表示、重量的认识与表示。

6.时钟和日历:时钟的概念与表示、日历的概念与表示。

7.二维图形和三维图形:基本二维图形(正方形、长方形、三角形、圆形)的认识与表示、三维图形(立方体、球体、圆柱体、圆锥体)的认识与表示。

四年级数学知识点:1.加法和减法:四位数加减法、进位和退位运算。

2.乘法和除法:三位数乘法、除法口算。

3.分数:分数的概念与表示、分数的加减乘除运算。

4.小数:小数的概念与表示、小数与分数的转化。

5.长度和重量:长度的认识与表示、重量的认识与表示。

6.时钟和日历:时钟的概念与表示、日历的概念与表示。

7.平面和空间几何:平面图形的认识与表示、三维图形的认识与表示。

五年级数学知识点:1.加法和减法:五位数加减法、进位和退位运算。

2.乘法和除法:四位数乘法、除法口算。

3.分数:分数的概念与表示、分数的加减乘除运算。

人教版小学一到六年级数学知识点归纳

人教版小学一到六年级数学知识点归纳

小学数学基础知识整理)到六知识整理年(一、一小学级数学基础小学一年级九九乘法口诀表。

学会基础加减乘。

小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。

小学三年级学会乘法交换律,几何面积周长等,时间量及单位。

路程计算,分配律,分数小数。

小学四年级线角自然数整数,素因数梯形对称,分数小数计算。

小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级比例百分比概率,圆扇圆柱及圆锥。

背定义、定必二、理公式三角形的面积=底×高÷2。

公式S= a×h÷2正方形的面积=边长×边长公式S= a×aa×b宽的面积=长×公= S式方长形平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2。

度081=和角内的形角三:和角内长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr2×式半径π×:π圆的r面积S=半公径=圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh圆锥的体积=1/3底面×积高。

公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

三、读懂理解会应用以下定义定理性质公式面方术算、)一(1、加法交换律:两数相加交换加数的位置,和不变。

小学一至六年级所有数学公式知识点

小学一至六年级所有数学公式知识点

一年级:1.加法公式:a+b=c2.减法公式:a-b=c(其中a为被减数,b为减数,c为差)3.乘法公式:a×b=c(其中a为乘数,b为被乘数,c为积)4.除法公式:a÷b=c(其中a为被除数,b为除数,c为商)二年级:1.加法逆元:a+(-a)=0(任何一个数与其相反数相加结果为0)2.乘法逆元:a×(1/a)=1(任何一个数与其倒数相乘结果为1)3.面积公式:面积=长×宽4.周长公式:周长=(长+宽)×2三年级:1.乘法分配律:a×(b+c)=a×b+a×c(将一个数与两个数的和相乘,结果等于这个数与两个数分别相乘再相加)2.升序排列:将一组数按从小到大的顺序排列3.降序排列:将一组数按从大到小的顺序排列四年级:1.判断素数:只有1和本身两个因数的数称为素数2.分数和整数的互转:将一个分数转化为带分数或整数,将带分数或整数转化为分数3.正方形面积公式:面积=边长×边长4.圆的周长公式:周长=2×π×半径5.圆的面积公式:面积=π×半径×半径五年级:1.等差数列求和公式:Sn=n/2×(a+L)(其中Sn为前n项和,a为首项,L为末项)2.相似三角形边长比例公式:对应边的比例相等,即AB/DE=BC/EF=CA/DF(其中AD是一个线段,B、E是在AD上的点,AC是另一条线段,F在AC上)3.直角三角形勾股定理:c^2=a^2+b^2(其中c为斜边,a和b为两条直角边的长度)4.体积公式:体积=长×宽×高六年级:1.百分数与小数互转:将一个百分数转化为小数,将小数转化为百分数2.面积差公式:两个面积之差等于整体面积减去部分面积3.空间几何图形的计算公式:立方体的体积=长×宽×高,圆柱体的体积=圆的面积×高,三棱锥的体积=底面积×高÷3,球体的体积=4/3π×半径的立方。

一年级到六年级数学知识点

一年级到六年级数学知识点

小学一到六年级数学知识点第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。

2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5 数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

小学数学1~6年级《数学广角》专题复习资料

小学数学1~6年级《数学广角》专题复习资料

(人教版)小学数学1~6年级《数学广角》专题复习资料小学数学教科书设置了“数学广角”教学内容版块,旨在系统而有步骤地向学生渗透数学思想方法。

在小学数学教学阶段有意识地向学生渗透一些基本数学思想方法可以加深学生对数学概念、公式、定律的理解,是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要途径。

2022年教育部审定的人教版义务教育教科书(小学数学)的“数学广角”与代数”的教学内容版块中也渗透了对应思想方法、等量代换思想方法和数字编码思想方法等等。

下面,我们对相关的内容进行回顾与整理:【考点聚焦】对数学思想方法的考查,常见的有以下几类问题:1.规律性问题:从给出的数或图形中,发现其内在的规律性,并加以总结,然后用其解决实际问题。

解题小窍门:解答这类问题时要经历“从特殊到一般,再从一般到特殊”的过程,即先从简单或特例入手,利用不完全归纳法总结出其内在的规律,然后再利用发现的规律解决问题。

2.排列问题:在实际生活中,常常要把一些事物排在一起,构成一列,计算有多少种排法。

排列的过程不仅与参加排列事物的数量有关,而且与各事物的排列顺序有关。

解题小窍门:对n个不同的物品(或数字)排成一列,不同排法的总数为:(×-)1(×--nn。

nn)2)32×1×3×......×(×3.组合问题:在日常生活中,有很多有关分组(或搭配)的问题,如衣服搭配、足球比赛分组等,我们研究有多少种分组方法(或搭配方法),这就是组合问题。

解题小窍门:从n 个不同元素中,任取m 个元素组成一组,不同的方法总数为:。

4.逻辑推理问题:逻辑推理问题是根据一些相互关联条件,依据逻辑规律,从一定的前提出发,通过一系列的推理获取某种结论。

解答这类问题的常用方法:直接法、假设法、排除法、图解法和列表法等解题小窍门:要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确答案。

小学数学一到六年级所有知识点、公式、定律

小学数学一到六年级所有知识点、公式、定律

小学数学一到六年级所有知识点、计算公式、简便运算第一部份数与代数(一)数的认识1整数【正数、0、负数】一、一个物体也没有,用0表示。

0和1、2、3……都是自然数。

自然数是整数。

二、最小的一位数是1,最小的自然数是0。

三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。

“+4”读作正四。

“-4”读作负四。

+4也可以写成4。

四、像+4、19、+8844这样的数都是正数。

像-4、-11、-7、-155这样的数都是负数。

五、0既不是正数,也不是负数。

正数都大于0,负数都小于0。

六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。

七、通常情况下,盈利用正数表示,亏损用负数表示。

八、通常情况下,上车人数用正数表示,下车人数用负数表示。

九、通常情况下,收入用正数表示,支出用负数表示。

十、通常情况下,上升用正数表示,下降用负数表示。

2小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……1.二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

三、每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

3分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

人教版小学六年级数学上下册知识点归纳总结

人教版小学六年级数学上下册知识点归纳总结

小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

2022年人教版小学数学六年级(上下册)知识点梳理归纳

2022年人教版小学数学六年级(上下册)知识点梳理归纳

人教版小学数学六年级(上下册)知识点梳理归纳上册第一单元《分数乘法》知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

人教版小学数学1-6年级总复习知识点

人教版小学数学1-6年级总复习知识点

人教版小学数学一至六年级复习资料【目录】第一部分常用的数量关系---------------------------1第二部分小学数学图形计算公式---------------------1第三部分常用单位换算-----------------------------1第四部分基本概念------------------------------2第一章数和数的运算--------------------------------2第二章度量衡--------------------------------------8第三章代数初步知识--------------------------------9第四章空间与图形----------------------------------11第五章简单的统计---------------------------------14【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;6、加数+加数=和;和-一个加数=另一个加数7、被减数-减数=差;被减数-差=减数;差+减数=被减数8、因数×因数=积;积÷一个因数=另一个因数9、被除数÷除数=商;被除数÷商=除数;商×除数=被除数【小学数学图形计算公式】1、正方形(C:周长,S:面积,a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积,a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长,S:面积,a:边长,b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积,S:面积,a:长,b:宽,h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积,a:底,h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积,a:底,h:高)面积=底×高;S=ah7、梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积,C:周长,π:圆周率,d:直径,r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr29、圆柱体(V:体积,S:底面积,C:底面周长,h:高,r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积,S:底面积,h:高,r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。

小学一年级到六年级数学知识点总结

小学一年级到六年级数学知识点总结

小学一年级到六年级数学知识点整理总结十进制计数法:一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法。

整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。

整数的写法:从高位一级一级写,哪一位一个单位也没有就写0.四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.小数部分:把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示.如1/10记作0.1,7/100记作0.07.小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位.小数部分有几个数位,就叫做几位小数.如0.36是两位小数,3.066是三位小数,更多学习资料请关注ABC微课堂小数的读法:整数部分整数读,小数点读点,小数部分顺序读.小数的写法:小数点写在个位右下角.小数的性质:小数末尾添0去0大小不变.化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍.小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推.分数和百分数■分数和百分数的意义1、分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.4、成数:几成就是十分之几.■分数的种类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数■分数和除法的关系及分数的基本性质1、除法是一种运算,有运算符号;分数是一种数.因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子.2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质.3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.■约分和通分1、分子、分母是互质数的分数,叫做最简分数.2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分.3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.■倒数1、乘积是1的两个数互为倒数.2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.3、 1的倒数是1,0没有倒数■分数的大小比较1、分母相同的分数,分子大的那个分数就大.2、分子相同的分数,分母小的那个分数就大.3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小.4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大.■百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?0%,则六成五就是65%.■纳税和利息:税率:应纳税额与各种收入的比率.利率:利息与本金的百分率.由银行规定按年或按月计算.利息的计算公式:利息=本金×利率×时间■纳税和利息:税率:应纳税额与各种收入的比率.利率:利息与本金的百分率.由银行规定按年或按月计算.利息的计算公式:利息=本金×利率×时间百分数与分数的区别主要有以下三点:1.意义不同.百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系,不能表示某一具体数量.如:可以说 1米是 5米的 20%,不可以说“一段绳子长为20%米.”因此,百分数后面不能带单位名称.分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”.分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等.2.应用范围不同.百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用.3.书写形式不同.百分数通常不写成分数形式,而采用百分号“%”来表示.如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.数的整除■整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b 整除(也可以说b能整除a)除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0).■约数和倍数1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数.2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数.■奇数和偶数1、能被2整除的数叫偶数.例如:0、2、4、6、8、10……注:0也是偶数 2、不能被2整除的数叫基数.例如:1、3、5、7、9……■整除的特征1、能被2整除的数的特征:个位上是0、2、4、6、8.2、能被5整除的数的特征:个位上是0或5.3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除.更多学习资料请关注A B C 微课堂■质数和合数1、一个数只有1和它本身两个约数,这个数叫做质数(素数).2、一个数除了1和它本身外,还有别的约数,这个数叫做合数.3、1既不是质数,也不是合数.4、自然数按约数的个数可分为:质数、合数5、自然数按能否被2整除分为:奇数、偶数■分解质因数1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.例如:18=3×3×2,3和2叫做18的质因数.2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数.通常用短除法来分解质因数.3、几个数公有的因数叫做这几个数的公因数.其中最大的一个叫这几个数的最大公因数.公因数只有1的两个数,叫做互质数.几个数公有的倍数叫做这几个数的公倍数.其中最大的一个叫这几个数的最大公倍数.4、特殊情况下几个数的最大公约数和最小公倍数.(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数.(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积.■奇数和偶数的运算性质:1、相邻两个自然数之和是奇数,之积是偶数.2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数.整数、小学、分数四则混合运算■四则运算的法则1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母.能约分的先约分,结果要化简4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上.除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数■运算定律加法交换律 a+b=b+a结合律(a+b)+c=a+(b+c)减法性质 a-b-c=a-(b+c)a-(b-c)=a-b+c乘法交换律a×b=b×a结合律(a×b)×c=a×(b×c)分配律(a+b)×c=a×c+b×c除法性质a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.简易方程■用字母表示数用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律. ■用字母表示数的注意事项1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写.数与数相乘,乘号不能省略.2、当1和任何字母相乘时,“ 1” 省略不写.3、数字和字母相乘时,将数字写在字母前面.■含有字母的式子及求值求含有字母的式子的值或利用公式求值,应注意书写格式■等式与方程表示相等关系的式子叫等式.含有未知数的等式叫方程.判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.■方程的解和解方程使方程左右两边相等的未知数的值,叫方程的解.求方程的解的过程叫解方程.■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.■解方程的方法1、直接运用四则运算中各部分之间的关系去解.如x-8=12加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=差+减数被乘数×乘数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=除数×商2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41先把3x看作一个数,然后再解.3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.比和比例■比和比例应用题在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.■解题策略按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答■正、反比例应用题的解题策略1、审题,找出题中相关联的两个量2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.3、设未知数,列比例式4、解比例式5、检验,写答语数感和符号感■在数学教学中发展学生的数感主要指,使学生具有应用数字表示具体的数据和数量关系的能力;能够判定不同的算术运算,有能力进行计算,并具有选择适当方法(心算、笔算、使用计算器)实施计算的经验;能根据数据进行推论,并对数据和推论的精确性和可靠性进行检验,等等.■培养学生的数感的目的就在于使学生学会数学地思考,学会用数学的方法理解和解释现实问题.■ 数感的培养有利于学生提出问题和解决问题能力的提高.学生在遇到问题时,自觉主动地与一定的数学知识和技能建立起联系,这样才有可能建构与具体事物相联系的数学模型.具备一定的数感是完成这类任务的重要条件.如,怎样为参加学校运动会的全体运动员编号?这是一个实际问题,没有固定的解法,你可以用不同的方式编,而不同的编排方案可能在实用性和便捷性上是不同的.如,从号码上就可以分辨出年级和班级,区分出男生和女生,或很快的知道一名队员是参加哪类项目.■ 数概念本身是抽象的数概念的建立不是一次完成的,学生理解和掌握数的概念要经历一个过程.让学生在认识数的过程中,更多地接触和经历有关的情境和实例, 在现实的背景下感受和体验会使学生更具体更深刻地把握数的概念,建立数感.在认识数的过程中,让学生说一说自己身边的数,生活中用到的数,如何用数表示周围的事物等,会让学生感觉到数就在自己身边,运用数可以简单明了地表示许多现象.估计一页书的字数,一本书有多少页,一把黄豆有多少粒等,这些对具体数量的感知与体验,是学生建立数感的基础,这对学生理解数的意义会有很大的帮助.■无论在哪个学段都应鼓励学生用自己独特的方式表示具体的情境中的数量关系和变化规律,这是发展学生符号感的决定性因素.■引进字母表示是学习数学符号、学会用符号表示具体情境中隐含的数量关系和变化规律的重要一步.尽可能从实际问题中引入,使学生感受到字母表示的意义.第一,用字母表示运算法则、运算定律以及计算公式.算法的一般化,深化和发展了对数的认识.第二,用字母表示现实世界和各门学科中的各种数量关系.例如,匀速运动中的速度v、时间t和路程s的关系是s=vt.第三,用字母表示数,便于从具体情境中抽象出数量关系和变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题.例如,我们用字母表示实际问题中的未知量,利用问题中的相等关系列出方程.■字母和表达式在不同场合有不同的意义.如:5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值;Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化;(a+b)(a-b)=a-b表示一个一般化的算法,表示一个恒等式;如果a和b分别表示矩形的长和宽,S表示矩形的面积,那么S=ab表示计算矩形面积公式,同时也表示矩形的面积随长和宽的变化而变化.■如何培养学生的符号感要尽可能在实际问题情境中帮助学生理解符号以及表达式、关系式意义,在解决实际问题中发展学生的符号感.必须要对符号运算进行训练,要适当地、分阶段地进行一定数量的符号运算.但是并不主张进行过繁的形式运算训练.学生的符号感的发展不是一朝一夕就可以完成的,而是应该贯穿于数学学习的全过程,伴随着学生数学思维的提高逐步发展.量的计算■事物的多少、长短、大小、轻重、快慢等这些可以测定的客观事物的特征叫做量.把一个要测定的量同一个作为标准的量相比较叫做计量.用来作为计量标准的量叫做计量单位.■数+单位名称=名数只带有一个单位名称的叫做单名数.带有两个或两个以上单位名称的叫做复名数高级单位的数如把米改成厘米低级单位的数如把厘米改成米■只带有一个单位名称的数叫做单名数.如:5小时, 3千克(只有一个单位的)带有两个或两个以上单位名称的叫做复名数.如:5小时6分,3千克500克(有两个单位的)56平方分米=(0.56)平方米就是单名数转化成单名数560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子.■高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.■常用计算公式表(1)长方形面积=长×宽,计算公式s=a b(2)正方形面积=边长×边长,计算公式s=a×a(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)×2(4)正方形周长=边长× 4,计算公式s= 4a(5)平形四边形面积=底×高,计算公式s=ah.(6)三角形面积=底×高÷2,计算公式s=a×h÷2(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2(8)长方体体积=长×宽×高,计算公式v=abh(9)圆的面积=圆周率×半径平方,计算公式s=лr^2(10)正方体体积=棱长×棱长×棱长,计算公式v=a^3(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh(12)圆柱的体积=底面积×高,计算公式v=s h■1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天■闰年年份是4的倍数,整百年份须是400的倍数.■平年一年365天,闰年一年366天.■公元1年—100年是第一世纪,公元1901—2000是第二十世纪.平面图形的认识和计算■三角形1、三角形是由三条线段围成的图形.它具有稳定性.从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高.一个三角形有三条高.2、三角形的内角和是180度3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形■四边形1、四边形是由四条线段围成的图形.2、任意四边形的内角和是360度.3、只有一组对边平行的四边形叫梯形.4、两组对边分别平行的四边形叫平行四边形,它容易变形.长方形、正方形是特殊的平行四边形;正方形是特殊的长方形.■圆圆是平面上的一种曲线图形.同圆或等圆的直径都相等,直径等于半径的2倍.圆有无数条对称轴.圆心确定圆的位置,半径确定圆的大小.■扇形由圆心角的两条半径和它所对的弧围成的图形.扇形是轴对称图形.■轴对称图形1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴.2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等.■周长和面积1、平面图形一周的长度叫做周长.2、平面图形或物体表面的大小叫做面积.3、常见图形的周长和面积计算公式。

小学一年级到六年级数学知识点总结及练习(免费)二

小学一年级到六年级数学知识点总结及练习(免费)二

小学1-6年级数学知识点总结一、概念(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

人教版小学数学知识点总结一年级~六年级全

人教版小学数学知识点总结一年级~六年级全

一、学习目标:1.通过数数活动,使学生知道“同样多”的含义;初步学会用“一一对应”的方法比较物体的多少,知道“多”、“少”的含义;2.使学生会用1~5各数表示物体的个数,知道1~5的数序,能认读1~5各数,建立初步的数感;3.使学生能够认识长方体、正方体、圆柱、球等物体和图形,能够识别这几种物体和图形,初步理解相关概念的意义;4.初步感知分类的意义,通过操作学会分类的方法;5.通过观察、操作、演示,使学生熟练地数出6-10这几个数字,会读、会写,并会用这些数表示物体的个数或事物的顺序和位置,会比较它们的大小;6.知道钟面上有时针、分针、12个数、12大格二、重难点:1.知道“多”、“少”的含义;2.使学生会用1~6各数表示物体的个数;3.认识长方体、正方体、圆柱、球等物体和图形,能够识别这几种物体和图形,初步理解相4.关概念的意义;5.学会分类的方法;6.培养学生的操作能力、观察能力、判断能力、语言表达能力;7.初步建立时间概念三、知识点概括总结:1.数一数:2.比一比:草莓比香蕉多(1)个。

比长短:比高矮:戴眼镜穿蓝色上衣的叔叔要比戴眼镜穿黄色上衣的叔叔高。

4.几和几:5>3 3<46.加法:7.减法:8.认识物体和图形:9.分类:10.6的认识和加减法:11.7的认识和加减法:12.8和9的认识:13.7、8、9的比较:14.9和10的比较:15.连加:16.连减:17.加减混合运算:18.认识钟表:一、学习目标:1.体验上下的位置关系;定物体上下的位置和顺序,并能用自己的语言表达;2.比较熟练地口算20以内的退位减法;初步学会用加法和减法解决简单的问题;3.使学生知道长方形、正方形的形状和边的特点;4.通过折一折、摆一摆、剪一剪、拼一拼,加深对长方形和正方形的认识,能辨别、区分这两种图形;5.认识计数单位“一”和“十”,能够熟练地一个一个地和一十一十地数出数量在100以内的物体个数,懂得100以内的数是由几个“十”和几个“一”组成的,掌握100以内数的顺序,会比较100以内数的大小;6.能够熟练地口算整十数加一位数和相应的减法。

完整版)人教版小学六年级数学主要知识点总结

完整版)人教版小学六年级数学主要知识点总结

完整版)人教版小学六年级数学主要知识点总结人教版小学六年级数学知识点总结目录1.分数乘除法1.1 分数乘法1.2 分数除法1.3 百分数2.位置与方向3.圆3.1 圆的周长3.2 圆的面积4.圆柱与圆锥4.1 圆柱4.2 圆锥5.比与比例5.1 比5.2 比例5.3 用比例解决问题1.分数乘除法1.1 分数乘法1) 分数乘整数:表示连续求几个相同分数相加的和的简便运算。

计算方法:用分子乘整数的积做分子,分母不变。

能约分的要先约分。

例如:2/5 × 5 可以表示为2/5 + 2/5 + 2/5 + 2/5 + 2/5.2) 分数乘分数:计算方法:分子乘分子,分母乘分母,能约分的要先约分再计算。

3) 分数乘小数:计算方法:用分子乘小数的积做分子,分母不变。

能约分的要先约分。

也可以把分数化成小数或者把小数化成分数再计算。

4) 解决问题的思路及方法A。

一个数乘分数:表示求这个数的几分之几是多少。

方法:“1”×对应分率=对应量。

例如:一袋大米重100千克,吃了它的2/5.吃了多少千克?解析:根据题意,就是求100的2/5是多少。

所以列式:100 × 2/5 = 40(千克)。

答案:吃了40千克大米。

B。

求比一个数多(少)几分之几的数是多少?方法:“1”×对应分率=对应量。

对应分率:多几分之几就是1+几分之几,少几分之几就是1-几分之几。

例如:商店运来一批水果,运来苹果50千克,运来的梨比运来的苹果多1/5,商店运来梨多少千克?分析:根据题意其实就是求比50多1/5的数是多少,单位1的量就是50,多1/5,那么对应分率就是1+1/5=6/5.列式:50 × (1+1/5) / 5 = 60(千克)。

答案:商店运来梨60千克。

某养殖场有鸡45只,鹅比鸡少2/5,这个养殖场有鹅多3/5少几只?(此题有误,无法解答)1.2 分数除法1)分数除法计算方法:除以一个数等于乘以这个数的倒数。

小学一到六年级数学知识点归纳总结

小学一到六年级数学知识点归纳总结

小学一到六年级数学知识点归纳总结一、数与代数1、整数、小数、分数的意义,各表示什么?在这个基础上认识奇数、偶数、质数、合数。

2、正数、负数的意义。

在这个基础上掌握奇数、偶数、质数、合数的概念。

3、整数的四则运算。

(1)同级运算:把两个数合并成一个数的运算。

(2)按顺序运算:①用加法交换加数的位置,和不变,得数不变; ②用减法交换被减数的位置,和不变,得数不变;③用加法和减法交换位置,和不变,得数不变;(3)合并同级运算的顺序:加法和减法,交换加数的位置;减法和加法,交换减数的位置;和不变,得数不变。

6、加法与减法。

(1)加法: a+b=b+a;a-b=b-a;(2)减法:a-b=b-a-(-b);a+b=b+a-(-b);7、混合运算:(本书上学习了)a+b=2a-b-(-b)8、小数的意义和性质。

小数的意义:表示一个小数是另一个小数的百分之几。

小数的性质:小数末尾添上“ 0”或去掉“ 0”,小数的大小不变。

小数的计算:一个小数扩大100倍是另一个小数,缩小100倍也就是原来的10分之1。

9、乘法的意义和性质。

乘法的意义:求几个相同加数和的简便运算。

乘法的性质:求几个相同加数和的简便运算,用乘法。

10、整数四则运算的顺序:先乘除后加减。

11、除法的意义。

除法的意义:求一个数是另一个数的百分之几的数学问题。

12、比和比例。

(1)比:两个数相除又叫做两个数的比。

(2)比例:甲数是乙数的5/6,表示6: 5。

13、整数四则运算的顺序:先乘除后加减。

14、解决问题的策略。

(1)确定目标,弄清条件;(2)画草图,确定方向;(3)假设法,确定问题情景;(4)列表法,梳理信息;(5)画图法,准确判断;(6)列举法,补全缺漏;14、整数四则运算的顺序:先乘除后加减。

15、小数的意义和性质。

小数的意义:表示一个小数是另一个小数的百分之几。

小数的性质:小数末尾添上“ 0”或去掉“ 0”,小数的大小不变。

小数的计算:一个小数扩大100倍是另一个小数,缩小100倍也就是原来的10分之1。

人教版小学一到六年级数学知识点归纳

人教版小学一到六年级数学知识点归纳

人教版小学一到六年级数学知识点归纳一年级数学知识点归纳第一章:认识数1. 数的读法:从1到10的数的读法。

2. 数的比较:使用大于、小于、等于符号比较数的大小。

3. 数的组成:了解数的由十位和个位组成。

4. 数的顺序:按照从小到大或从大到小的顺序排列数。

第二章:数的加法和减法1. 数的加法:使用加号计算两个数的和,可以交换加法算式中的顺序。

2. 数的减法:使用减号计算两个数的差,被减数大于减数时才能进行减法运算。

3. 认识加减法符号:理解加号和减号的数学符号与实际运算的意义。

4. 运算口诀:背诵小学一年级的加法口诀和减法口诀,提高计算速度。

第三章:简单的乘法和除法1. 数的乘法:使用乘号计算两个数的积,可以交换乘法算式中的顺序。

2. 数的除法:使用除号计算两个数的商,被除数必须能被除数整除。

3. 认识乘法和除法符号:理解乘号和除号的数学符号与实际运算的意义。

4. 运算口诀:背诵小学一年级的乘法口诀和除法口诀,提高计算速度。

第四章:计量1. 长度的比较:使用长短粗细等词语比较不同物体的长度。

2. 称量物体:使用无刻度量杯比较不同物体的重量。

3. 时间的计算:认识钟面上的指针,学习以整点和半点为单位的时间计算。

第五章:几何图形1. 认识一些常见几何图形:直线、曲线、三角形、矩形、圆形等。

2. 图形的分类:按照边数和角数对几何图形进行分类。

3. 图形的边和角:了解不同图形的边和角的特征和性质。

4. 图形的对称性:观察图形的对称性质和特点。

第六章:数据的统计1. 数的个数:统计一组数据中的个数,学习使用计数单位。

2. 数据的图形表示:使用柱状图和折线图对数据进行直观展示。

3. 随机事件:理解随机事件的概念,能够进行简单的随机事件分析。

二年级数学知识点归纳第一章:整数的认识1. 自然数和零:认识自然数和零的概念,能够进行相关加减法运算。

2. 整数的概念:了解整数的概念,比较正整数和负整数的大小。

3. 数轴的运用:通过数轴展示整数,比较不同整数的大小关系。

小学一到六年级的数学知识点归纳

小学一到六年级的数学知识点归纳

小学一到六年级的数学知识点归纳【时分秒】1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。

时针最短,秒针最长。

2、钟面上存有12个数字,12个大格,60个小格;每两个数之间就是1个大格,也就是5个小格。

3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

4、分针跑1小格,秒针刚好跑1圈,秒针跑1圈就是60秒,也就是1分钟。

5、时针从一个数走到下一个数是1小时。

分针从一个数走到下一个数是5分钟。

秒针从一个数走到下一个数是5秒钟。

6、公式(每两个相连的时间单位之间的进率就是60):1时=60分1分后=60秒7、常用的时间单位:时、分、秒、年、月、日、世纪等。

1世纪=年1年=12个月【分数的初步重新认识】1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

几分之几:把一个物体或一个图形平均值分为几份,挑其中的几份,就是这个物体或图形的几分之几。

2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

3、比较大小的方法:①分子相同,分母小的分数反而大,分母大的分数反而小。

②分母相同,分子小的分数就小,分子大的分数就大。

4、分数加减法:①同分母的分数提、加法的计算方法:同分母分数相乘减至,分母维持不变,分子相乘、减至。

②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。

5、分数的意义:把一个整体平均值分为若干份,则表示几份就是这个整体的几分之几,所分的份数并作分母,所出的份数并作分子。

6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

【测量】1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。

2、1枚1分的硬币、尺子、磁卡、大纽扣、钥匙的厚度大约就是1毫米。

小学六年级人教版数学知识点

小学六年级人教版数学知识点

小学六年级人教版数学知识点
1. 整数加减法:整数的加减法运算规则。

2. 乘法运算:分配率、结合率、交换率。

3. 除法运算:除法的基本概念和运算规则。

4. 分数与小数:分数和小数的转换,分数的加减乘除。

5. 排列组合:排列和组合的概念和计算方法。

6. 单位换算:长度、容积、质量、时间的换算。

7. 二维图形:平行四边形、三角形、四边形、五边形等的性质和计算。

8. 三维图形:长方体、正方体、棱柱、棱锥等的性质和计算。

9. 数据统计:频数、频率、平均数等的计算和表示方法。

10. 平面图形与空间图形的关系:平行、垂直、相交、包含等的概念和判断方法。

11. 数字的整体性与分解性:数的整体和部分的关系和运算方法。

12. 简便计算:乘法的结合性、交换性、零元性;除法的关系等。

13. 数学应用问题:将实际问题转化为数学问题并进行解决。

人教版六年级数学知识点归纳

人教版六年级数学知识点归纳

人教版六年级数学知识点归纳一、分数乘法1. 分数乘法的意义- 分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

- 一个数乘分数的意义就是求这个数的几分之几是多少。

2. 分数乘法的计算法则- 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;能约分的可以先约分,再计算。

- 分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

能约分的要先约分再计算。

3. 分数乘法的运算定律- 乘法交换律:a×b = b×a- 乘法结合律:(a×b)×c = a×(b×c)- 乘法分配律:(a + b)×c = a×c + b×c二、分数除法1. 倒数的认识- 乘积是 1 的两个数互为倒数。

- 1 的倒数是 1,0 没有倒数。

2. 分数除法的意义- 分数除法与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

3. 分数除法的计算法则- 除以一个不为 0 的数,等于乘这个数的倒数。

三、比和比例1. 比的意义- 两个数相除又叫做两个数的比。

2. 比的基本性质- 比的前项和后项同时乘或除以相同的数(0 除外),比值不变。

3. 比例的意义- 表示两个比相等的式子叫做比例。

4. 比例的基本性质- 在比例里,两个内项的积等于两个外项的积。

5. 解比例- 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

四、圆1. 圆的认识- 圆心:圆中心的一点叫做圆心,一般用字母 O 表示。

- 半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母 r 表示。

- 直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母 d 表示。

2. 圆的周长- 圆的周长计算公式:C = πd 或 C = 2πr3. 圆的面积- 圆的面积计算公式:S = πr²五、百分数1. 百分数的意义- 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

小学一至六年级所有数学公式知识点

小学一至六年级所有数学公式知识点

小学四至六年级所有数学知识点 数的认识 整数: ◎读数:1先分级,每4位为一级,从高位起,一级一级的往下读; 2读亿级和万级的数,最后加上一个“亿”或者“万”字; 3每一级末尾的0都不读,每一级中间有1个0或连续几个0,都只读一个零; ◎写数:1从高位起,一级一级地往下写,每一级用虚线隔开; 2哪一个数位上一个计数单位也没有,就在哪一位上写0占位; ◎读数和写数都是从高位开始的; ◎相邻的两个计数单位之间的进率是10; ◎改写不改变数的大小; ◎省略万位或亿位后面的尾数就是让求近似数,用“≈”连接; ◎编码和数字是有区别的,编码可以传递信息; 小数: ◎小数部分的数位自左向右依次是十分位,百分位,千分位,万分位······ 它们的计数单位依次是十分之一,百分之一,千分之一,万分之一······ ◎小数部分最高的计数单位是十分之一, ◎小数点右移一位、两位、三位……它就扩大到原来的10倍、100倍、1000倍…… ◎小数点左移一位、两位、三位……它就缩小到原来的101、1001、10001…… ◎乘100———————扩大到原来的100倍————右移两位 除以1000—————缩小到原来的10001——————左移三位 ◎小数的性质:小数的末尾添上0或去掉0,小数的大小不变; 注意:是小数的末尾,不是小数点后面;分数: A01: A02:A03:◎真分数一定小于1. 假分数大于1或等于1. 假分数一定大于真分数;◎同分母分数,分子越大,分数越大;同分子分数,分母越小,分数越大;◎整数可以看作分母是1的分数;◎判断一个分数能否化成有限小数的方法:最简分数;分解质因数2、5◎分数的基本性质:分数的分子和分母同时乘或除以相同的数0除外,分数的大小不变;小数、分数、百分数:◎把小数化成分数的方法:一位小数就是十分之几,两位小数就是百分之几,三位小数就是千分之几,四位小数就是万分之几,一定要化成最简分数;◎把分数化成小数的方法:根据分数与除法的关系,把分数的分子除以分母的商化成小数即可,不能除尽的通常保留三位小数;◎分数可以表示具体数量,也可以表示两个数量之间几分之几的关系;而百分数只能表示一个数是另一个数的百分之几,不能表示具体数量;百分数后不能带单位; ◎5.021= 25.041= 75.043= 2.051= 4.052=6.053= 8.054= 125.081= 375.083= 625.085= 875.087= 05.0201= 04.0251= 用字母表示数:◎a 2与2a 表示的意义不同:a 2=a ×a 表示两个a 相乘;2a=a ×2=a+a 表示两个a 相加;但当a=2时,它们的结果是相等的,大多数情况下,a 2>2a;只有当a=1时,2a>a 2,此时2a=2,a 2=1数的关系 数的因数、倍数:◎一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;◎一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数;◎一个数既是它本身最大的因数,又是它本身最小的倍数;◎3的倍数的特征:各个数位上的数字的和是3的倍数;◎一个自然数不是奇数,就是偶数; B01: A04: A05:◎质数:一个数,只有1和它本身这两个因数,没有其他的因数;◎最小的质数是2;所有的质数只有2是偶数,其它都是奇数;◎合数:一个数,除了1和它本身这两个因数之外,还有别的因数;◎合数至少有3个因数;最小的合数是4;◎1既不是质数,也不是合数; ◎自然数按照因数的个数可以分为:1、质数、合数;公因数、公倍数:◎公因数只有1的两个数叫做互质数;◎最简分数的分子和分母不是没有公因数,而是只有公因数1;◎两个有倍数关系的数,最大公因数是较小的数,最小公倍数是较大的数;◎两个互质数,最大公因数是1,最小公倍数就是这两个数的乘积;◎两个数相乘的积一定是这两个数的公倍数,但不一定是最小公倍数;只有当这两个数互质时,这两个数的乘积才是它们的最小公倍数;◎两个数的公倍数,一定是这两个数的最小公倍数的倍数;两个数的最小公倍数的倍数,一定是这两个数的公倍数;◎13×2=26 13×3=39 13×4=52 13×5=65 13×6=78 13×7=91 17×2=34 17×3=51 17×4=68 17×5=8519×2=38 19×3=57 19×4=76 19×5=95约分、通分:◎约分:把一个分数,根据分数的基本性质,化简成最简分数的过程叫做约分;◎通分:把两个或多个异分母分数,根据分数的基本性质,化成同分母分数的过程,叫做通分;通分时,一般用这几个分母的最小公倍数作公分母;◎通分和约分的依据都是分数的基本性质;数的运算整数除法:1从被除数的最高位起,除数是几位数,就先看被除数的前几位;(2)如果前几位不够除,再多看一位;B02: B03: C0C01:(3)除到被除数的哪一位,就把商写在哪一位的上面,每次的余数一定要比除数少; ◎相同数量的小棒,分的份数越多,每份就越少;相同数量的小棒,分的份数越少,每份就越多; ◎用“四舍”法试商,商有时会偏大;用“五入”法试商,商有时会偏小;小数乘除:◎除数是整数的小数除法计算法则:①一位一位的除;②除一位商一位; ③不够商时,一定要用0占位;④商的小数点与被除数的小数点对齐;⑤一直除到除尽为止;⑥数位与数位之间要对的特别齐;◎除数是小数的除法:①先移动除数的小数点,使它变成整数;②除数的小数点向右移动几位,被除数的小数点也要向右移动几位;③位数不够时,在被除数的末尾用“0”补足,④然后按照除数是整数的小数除法进行计算;◎小数乘法:先算整数积该落0的要落0,再点小数点,后去末尾0;分数乘除:◎异分母分数相加减,要先通分,把它们化成同分母分数,再相加减;最后的结果,一定要化成最简分数;◎654⨯表示求6个54相加是多少或求54的6倍是多少;546⨯表示求6的54是多少; ◎654⨯与546⨯的结果相同,意义不同; ◎一个数除以分数等于这个数乘分数的倒数两变:除号变乘号,除数变倒数;◎两个数相乘等于1,称这两个数互为倒数;0没有倒数;◎一个数乘比1小的数,变小;一个数乘比1大的数,变大;一个数除以比1小的数,变大;一个数除以比1大的数,变小;◎求单位“1”的几分之几是多少,用乘法;◎已知单位“1”的几分之几是多少,求单位“1”,用除法;C02: C03:◎求单位“1”,一般用“对应的量”除以“对应的百分之几”;例:用“多织的长度”除以“多织的百分之几”: 0.2÷25%—20%用“亏了的价钱”除以“亏了的百分之几”: 64÷1—1+20%×80%运算律:◎ 小数+差=大数 大数-差=小数◎ 25×4=100 125×8=1000 24×5=120 15×6=90 16×5=80◎乘: 乘法分配律:a+b×c=a ×c+b ×c乘加乘: 乘加乘等于加起来乘 a ×c+b ×c=a+b ×c乘减乘: 乘减乘等于减起来乘 a ×c-b ×c=a-b ×c加起来乘: 加起来乘等于乘加乘 a+b ×c=a ×c+b ×c减起来乘: 减起来乘等于乘减乘 a-b ×c=a ×c-b ×c◎减: 连减等于减和 a-b-c=a-b+c减和等于连减 a-b+c=a-b-c◎除: 连除等于除积 a÷b÷c=a÷b×c除积等于连除 a÷b×c=a÷b÷c数量关系◎单位量×数量=总量 速度×时间=路程 单价×数量=总价 工作效率×工作时间=工作总量 总量÷单位量=数量 路程÷时间=速度 总价÷单价=数量 工作总量÷工作效率=工作时间 总量÷数量=单位量 路程÷速度=时间 总价÷数量=单价 工作总量÷工作时间=工作效率◎相遇问题: 甲乙两车的速度和×时间=两地的路程两地的路程÷时间=甲乙两车的速度和两地的路程÷甲乙两车的速度和=时间两地的路程÷时间-甲车的速度=乙车的速度◎植树问题: 两头都栽:+1,间隔数+1=棵树两头都不栽:-1,间隔数-1=棵树一头栽一头不栽:不加也不减间隔数=棵树; C04: D01: D02: D03:40 乙:70 甲比乙少几分之几,指的是甲比乙少的部分是乙的几分之几;70-40÷70=73 乙比甲多几分之几,指的是乙比甲多的部分是甲的几分之几;70-40÷40=43, ◎男生25名,女生15名;男生比女生多百分之几 表示 男生比女生多的人数 是 女生 的百分之几 25—15÷15 女生比男生少百分之几 表示 女生比男生少的人数 是 男生 的百分之几 25—15÷25◎两根同样长的绳子,第一根用去52,第二根用去52米; a :当绳子长度 大于 1米时, 第一根 用去的长;b :当绳子长度 小于 1米时, 第二根 用去的长;c :当绳子长度 等于 1米时, 两 根 用去的一样长;单位进率:◎闰年:一般年份只要是4的倍数就可以,但整百、整千的年份还应是400的倍数才可以; ◎1平方千米=100公顷 1公顷=10000平方米 1升=1000毫升◎把高级单位的名数改写成低级单位的名数乘进率;把低级单位的名数改写成高级单位的名数除以进率;方程与比方程:◎含有未知数的等式叫做方程;方程一定是等式,但等式不一定是方程;◎等式的性质:等式的两边同时加上或减去相同的数,等式的两边仍然相等; 等式的两边同时乘或除以相同的数0除外,等式的两边仍然相等;比:◎比的基本性质:比的前项和后项同时乘或除以同一个数0除外,比值不变,它是化简比的依据;◎求比值最后得到的是一个值,就是用比的前项除以后项所得的商;化简比最后得到的是一个比最简整数比——最简整数比是指比的前项和后项是两个只E02: D05: D06: E01:有公因数1的整数;◎按比例解决一个问题,一定要看清楚:它告诉的是这几个量的和还是差,还是其中的一个量,还是这几个量的平均数,还是这几个量的和的倍数; 比例:◎比例的基本性质:比例两个外项的乘积等于两个内项的乘积,它是解比例的依据; ◎图上距离和实际距离的比叫做这幅图的比例尺;◎图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺◎正比例:两种相关联的量,一种量变化,另一种量也随着变化,但是,不管这两个量怎么变,它们的商不变,也就是这两个量的比值一定,这两个量就叫做正比例的量,它们的关系叫做正比例关系;)(一定k xy =满足正比例关系的两个量图像是一条经过原点的直线; ◎反比例:两种相关联的量,一种量变化,另一种量也随着变化,但是,不管这两个量怎么变,它们的乘积不变,这两个量就叫做反比例的量,它们的关系叫做反比例关系;)(一定k xy = 几何部分直线位置关系:◎在同一平面内,不相交的两条直线叫做平行线;◎平行线之间的距离处处相等;◎同一平面内的两条直线不是平行就是相交;垂直是相交的特殊情况;◎相交不一定垂直,大多数都是斜交;垂直一定相交;◎从直线外一点到直线上所画的所有线段中,那条垂直的线段最短,它叫做垂线段;垂线段的长度叫做点到直线的距离;◎垂线通头,垂线段不通头;垂线和垂线段都要标上垂直符号;角:◎角的大小与两条边张开的大小有关,与两条边的长短无关;◎锐角:大于0度,小于90度; 直角:90度钝角:大于90度,小于180度; 平角:180度 周角:360度◎测量角的角度:①量角器的中心与角的顶点对齐;②量角器的零刻度线与角的第一条边对齐;F02: E03: F01:③从零度一度一度的数过去;◎量角器内圈读数与外圈读数相加是180°;◎两个三角板:① 90° 60° 30°② 90° 45° 45°等腰直角三角形三角形:◎由三条线段首尾顺次相接围成的封闭图形叫做三角形;◎从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段的长度叫做三角形的高;◎三角形按角分类:锐角三角形、直角三角形、钝角三角形三角形按边分类:三条边各不相等的一般三角形;有两条边长度相等的等腰三角形;三条边都相等的等边三角形;其中,等边三角形是特殊的等腰三角形;◎三角形的内角和是180度;◎一个三角形中至多有1个直角;一个三角形中至多有1个钝角;一个三角形中至少有2个锐角;◎三角形任意两边之和大于第三边;判断时,只要较短两边大于第三边就可以;平面图形面积:◎等底等高的平行四边形与三角形,平行四边形面积是三角形面积2倍;但是,一个平行四边形面积是三角形面积的2倍,不一定等底等高;◎等底等高的三角形面积一定相等,但面积相等的两个三角形不一定等底等高;◎等底等面积的平行四边形与三角形,三角形的高是平行四边形高的2倍;等高等面积的平行四边形与三角形,三角形的底是平行四边形底的2倍;◎平移和旋转都改变了图形的位置,但是都不改变物体和图形的形状和大小;旋转还改变了图形的方向; 圆:◎圆心决定圆的位置,半径决定圆的大小;◎圆规两脚之间的距离是圆的半径, F05: F04: F03:◎通过圆心并且两端都在圆上的线段叫做直径;◎在同圆或等圆中,直径是半径的2倍;◎圆的直径所在的直线是圆的对称轴;◎所有的圆的周长除以这个圆的直径,得到的商是一个固定的值,这个值叫做圆周率,用字母π表示;它是一个无限不循环小数,计算时,我们取它的近似值3.14;14.3≈π◎两个半径不相等的同心圆之间的部分叫做圆环;◎如果两个圆的半径比是m :n ,那么,它们的直径比也是m :n ,周长比还是m :n ,但它们的面积比是m ²:n ²; 长方体、正方体:◎长方体的6个面,一般都是长方形;特殊情况下有两个相对的面是正方形,此时,长方体其它的四个面是完全相同的长方形;◎从一个角度观察长方体,最多同时能看到3个面;正对一个面观察,只能看到1个面;正对一条棱观察,可以看到2个面;正对一个顶点观察,可以看到3个面;◎相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高;◎正方体是长、宽、高都相等的特殊的长方体;◎3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.73.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.263.14×12=37.68 3.14×15=47.1 3.14×16=50.24 3.14×25=78.5 3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34 圆柱: ◎圆柱侧面沿高展开后是长方形或正方形;沿侧面其它线段展开会得到一个平行四边形; ◎以长方形两种情况或正方形一种情况的一边为轴旋转一周可得到一个圆柱; 以直角三角形两种情况的直角边为轴旋转一周可得到一个圆锥;◎等底等高的圆柱与圆锥,圆锥的体积是圆柱体积的31; 但是,一个圆锥的体积是另外一个圆柱体积的31,不能说明它们等底等高; ◎两个圆柱的表面积相等,体积不一定相等;表面积相等只能表明半径与高经过表面积的计算公式后,结果相等;不代表半径相等,高相等;所以,再经过体积的计算公式后,结果就不一定相等了;一般情况下,长方体都是不一定,正方体都是一定;F07: F06:◎等底等体积的圆柱、圆锥:圆锥的高是圆柱的3倍;圆柱的高是圆锥的31. ◎等高等体积的圆柱、圆锥:圆锥的底面积是圆柱的3倍;圆柱的底面积是圆锥的31. ◎把圆柱削成与它等底等高的圆锥,圆柱与削去部分、圆锥三者之间的体积比是3:2:1; 统计图◎条形统计图很容易比较各种数量的多少;◎折线统计图能够清楚的表示出数量的增减变化、升降趋势情况;◎扇形统计图可以清楚的表示出各部分数量与总数量之间百分之几的关系;(1、计算出各部分数量占总数量的百分比;2、计算各扇形圆心角度数;3、画出圆和大小不同扇形;4、标明各部分名称和所占的百分比;5、写出统计图的名称和制图的日期;◎平均数能够较好的反映出一组数据的整体水平;智慧广场:◎找次品◎利息=本金×利率×时间 ◎鸡兔同笼问题可以采用假设法,假设全是一种动物如全是鸡或全是兔,然后根据出现的腿数差推算出另一种动物的只数;列方程时,设腿多的为x ;C=a+b ×2=2a+b S=aba=C ÷2-b a=S ÷bb=C ÷2-a b=S ÷ab=S ×2÷h-a h=S ×2÷a+b圆: r d 2= 2÷=d rr d C ππ2== 22)2(÷⨯==d r S ππ π÷=C d 3.14×2=6.28 3.14×3=9.422÷÷=πC r 3.14×5=15.7 3.14×6=18.84半圆: r r r C )2(2+=+=ππ 222121r r S ππ=⨯= )2(+÷=πC r d d C +÷=2π 3.14×7=21.98 3.14×8=25.12 圆环: )(22r -R π=S )(差d -D π=C 3.14×64=200.96 3.14×9=28.26 3.14×14=43.96 3.14×15=47.13.14×16=50.24 3.14×18=56.52 3.14×24=75.36 五个面的都是没有上面或下面,其2)(⨯++=bc ac ab S 正2)2S S ⨯+=底侧表S h S ⨯=底柱V环柱体积=h r R •-)(22π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学基础知识整理一、小学数学基础知识整理(一到六年级)小学一年级九九乘法口诀表。

学会基础加减乘。

小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。

小学三年级学会乘法交换律,几何面积周长等,时间量及单位。

路程计算,分配律,分数小数。

小学四年级线角自然数整数,素因数梯形对称,分数小数计算。

小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级比例百分比概率,圆扇圆柱及圆锥。

二、必背定义、定理公式三角形的面积=底×高÷2。

公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh圆锥的体积=1/3底面×积高。

公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

三、读懂理解会应用以下定义定理性质公式(一)、算术方面1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

(二)、数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

)17、互质数:公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

(约分用最大公约数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。

个位上是0或者5的数,都能被5整除,即能用5进行约分。

在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。

一年的利息与本金的比值叫做年利率。

一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。

0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。

如3. 14141432、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3. 14159265433、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

如3. 141592654……34、什么叫代数? 代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。

如:3x =ab+c (三)、一般运算规则1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数四、小学数学图形计算公式1 正方形C周长S面积a边长周长=边长×4 C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)×h÷28 圆形S面积C周长∏d=直径r=半径周长=直径×∏=2×∏×半径C=∏d=2∏r面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3。

相关文档
最新文档