传热学第八章答案
传热学-第五版-中建工-课后答案详解
绪论思考题与习题(89P -)答案:1. 冰雹落体后溶化所需热量主要是由以下途径得到:Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层 两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R Aλλ==2218.331012m --=⨯ 11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12. i R α 1R λ 3R λ 0R α 1f t −−→ q首先通过对流换热使炉子内壁温度升高,炉子内壁通过热传导,使内壁温度生高,内壁与空气夹层通过对流换热继续传递热量,空气夹层与外壁间再通过热传导,这样使热量通过空气夹层。
(空气夹层的厚度对壁炉的保温性能有影响,影响a α的大小。
) 13.已知:360mm σ=、0.61()Wm K λ=∙ 118f t =℃ 2187()Wh m K =∙210f t =-℃ 22124()Wh m K =∙ 墙高2.8m ,宽3m求:q 、1w t 、2w t 、φ 解:1211t q h h σλ∆=++=18(10)45.92870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯=14.已知:3H m =、0.2m σ=、2L m =、45λ=()W m K ∙ 1150w t =℃、2285w t =℃求:t R λ、R λ、q 、φ解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W ∙3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.已知:50i d mm =、 2.5l m =、85f t =℃、273()Wh m K =∙、25110Wq m =求:i w t 、φ()i w f q h t h t t =∆=-⇒iw f qt t h =+51108515573=+=℃0.05 2.551102006.7i Aq d lq Wφππ===⨯⨯=16.已知:150w t =℃、220w t =℃、241.2 3.96()W c m K =∙、1'200w t =℃求: 1.2q 、'1.2q 、 1.2q ∆解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =∙、2285()Wh m K =∙、145t =℃2500t =℃、'2285()Wk h m K ==∙、1mm σ=、398λ=()Wm K ∙求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k ∙ 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯=若k ≈2h'100k kk-∆=⨯%8583.56 1.7283.56-==% 因为:1211h h,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
传热学课后答案(完结版)
2
tw2
3
tw1 tw 2 q2 1 2 3 1 2 3
再由:
tw1
λ
λ 3
tw2
q1
q2 0.2q1 ,有
tw1 tw 2 t t 0.2 w1 w 2 1 2 1 2 3 1 2 1 2 3
得:
3 43 (
'2 3 2 5 6 2 R 0.265m k / W 2 3 0.65 0.024
"
由计算可知,双 Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双 Low-e 膜双真 空玻璃的保温性能要优于中空玻璃。 3. 4.略 5 .
m2
(m 2 K )
、 h2 85W
(m 2 K )
、 t1 45 ℃
t2 500 ℃、 k ' h2 85W
求: k 、 、
(m 2 K )
、 1mm 、 398 W
(m K )
解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即: k
tw1 t w 2 x
(设 tw1 tw 2 ) , 否则 t 与平壁 coust (即常物性假设)
其与平壁的材料无关的根本原因在 的材料有关 (2)由 4.略
q
dt dx
知,q 与平壁的材料即物性有关
5.解:
d 2 dt (r )0 dr dr r r1 , t tw1 (设tw1 t w 2 ) r r2 , t tw 2
绪论
思考题与习题( P89 )答案: 1. 冰雹落体后溶化所需热量主要是由以下途径得到:
传热学-第八章热辐射基本定律及物体的辐射特性
17
对于指定波长,而在方向上平均的
E 情况,则定义了半球光谱发射率,
即实际物体的光谱辐射力与黑体的
λ
光谱辐射力之比
ε
,T E ,ac etm ua ,iT tlt e E d ,T E ,blac,T kbE o b d, y T
这样,前面定义的半球总发射率则可以写为:
Absorptivity deals with what happens to __________________ _____________, while
emissivity deals with __________________ ___
Semi-transparent medium
24
首先介绍几个概念: 1. 投入辐射:单位时间内投射到单位表面积上的总辐射能 2. 选择性吸收:投入辐射本身具有光谱特性,因此,实际
(4)立体角 定义:球面面积除以球半径的平方称为立体角,单位: sr(球面度),如图8-8和8-9所示:
dd rA 2c s indd
10
图8-8 立体角定义图
11
图8-9 计算微元立体角的几何关系
12
(5) 定向辐射强度L(, ):
定义:单位时间内,物体在垂直发射方向的单位面积上,
在单位立体角内发射的一切波长的能量,参见图8-10。
E 2 L co d sL
图8-11 Lambert定律图示
14
§ 8-3 实际固体和液体的辐射特性
1 发射率 ❖ 前面定义了黑体的发射特性:同温度下,黑体发射热
辐射的能力最强,包括所有方向和所有波长; ❖ 真实物体表面的发射能力低于同温度下的黑体; ❖ 因此,定义了发射率 (也称为黑度) :相同温度下,
《传热学》杨世铭-陶文铨-第八章热辐射汇编
1 透明体:
黑体概念
黑体:是指能吸收投入到其面
上的所有热辐射能的物体,是 一种科学假想的物体,现实生 活中是不存在的。但却可以人 工制造出近似的人工黑体。
图8-5
黑体模型
12
§8-2
黑体辐射的基本定律
1.热辐射能量的表示方法
辐射力E:
单位时间内,物体的单位表面积向半球空间发射的所有 波长的能量总和。 (W/m2); 光谱辐射力Eλ : 单位时间内,单位波长范围内(包含某一给定波长),物 体的单位表面积向半球空间发射的能量。 (W/m3);
6
二 从电磁波的角度描述热辐射的特性
1.传播速率与波长、频率间的关系 热辐射具有一般辐射现象的共性,以光速在空间传播。 电磁波的速率与波长、频率间的关系
c f
式中:f — 频率,s-1; λ— 波长,μm
7
2. 电磁波谱
物体辐射的电磁波波长可以包括整个波谱,如图8-1所示,而 我们所感兴趣的,即工业上有实际意义的热辐射区域一般为 0.1~100μ m。 注1:红外线区段:0.76~20μm 可见光区段:0.38~0.76μm 太阳辐射: 0.2~2μm 注2:波长在1mm~1m之间的电磁波称为微波。
13
E、Eλ关系:
显然, E和Eλ之间具有如下关系:
E
0
E d
黑体一般采用下标b表示,如黑体的辐射力为Eb, 黑体的光谱辐射力为Ebλ
14
2.黑体辐射的三个基本定律及相关性质 (1)Planck定律(第 T )
1
式中,λ— 波长,m ; T — 黑体温度,K ; c1 — 第一辐射常数,3.742×10-16 Wm2; c2 — 第二辐射常数,1.4388×10-2 WK;
北京科技大学传热学第8章习题答案
8-9 A horizontal hot water pipe passes through a large room. The rate of heat loss from the pipe by natural convection and radiation is to be determined.Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas with constant properties. 3 The local atmospheric pressure is I atm. 4 The temperature of the outer surface of the pipe is constant. Properties The properties of air at 1 atm and the film temperature of (T S +T ∞)/2 = (65+22)/2 = 43.5°C = 316.5 K are (Table A-15)k = 0.0272 C m W D ⋅/ 521.7210/m s ν−=× Pr=0.710 100316.0316511−===K KT f β Analysis (a) The characteristic length in this case is the outer diameter of the pipe, δ= D = 0.06 m. Then,32132522()(9.8/)(0.00316)(6522)(0.06)Pr (0.710)690,298(1.7210/)s g T T m s K K m Ra m s βδν−∞−−−===×1.13}])710.0/559.0([!)298,690(387.06.0{}]Pr)/559.0([!387.06.0{227816961227816961=++=++=Ra NuC m W m C m W Nu kh D D ⋅=⋅==2/94.5)1.13(06.0/0272.0δ 251.1)8)(06.0(m m m DL A ===ππW C m C m W T T hA Q s 7.385)2265)(51.1)(/94.5()(22=−⋅=−=∞⋅D D(b) The radiation heat loss from the pipe is44282444()(0.8)(1.51)(5.6710/)[(65273)(22273)]375s surr Q A T T m W m k K K Wεσ⋅−=−=×⋅+−+= 8-108-17 A circuit board is cooled by a fan that blows air upwards. The average temperature on the surface of the circuit board is to be determined for two cases.Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gaswith constant properties. 3 The atmospheric pressure at that location is 1atm.Properties The properties of air at 1 atm and 1 atm and the anticipatedfilm temperature of K C T T s 5.3205.472/)3560(2/)(==+=+∞Dare (Table A-15)k = 0.0275C m W D ⋅/ 521.7710/m s ν−=× Pr = 0.710 100312.05.32011−===K KT f β AnalysisWe assume the surface temperature to be 60°C. We will check this assumption later on andrepeat calculations with a better assumption, if necessary. The characteristic length in this case is the length of the board in the flow (vertical) direction, δ = 0.12 m. Then the Reynolds number becomes 52(0.5/)(0.12)Re 33901.7710/V m s m m sδν∞−===× which is less than critical Reynolds number (5x]05 ). Therefore the flow is laminar and the forced convection Nusselt number and h are determined from5.34)710.0()3390(664.0Pr Re 664.0315.0315.0====L khl Nu C m W m C m W Nu kh D D ⋅=⋅==2/9.7)5.34(12.0/0275.0δ 2024.0)2.0)(12.0(m m m A == Then622103)710.0()024.0)(/9.7()05.0)(100(35)(×=⋅+=+=→−=⋅∞∞⋅m C m W W C hA Q T T T T hA Q s s D D which is sufficiently close to the assumed value in the evaluation of properties. Therefore, there is no need to repeat calculations.(b) The Rayleigh number is321362522()(9.8/)(0.00312)(6035)(0.12)Pr (0.710)310(1.7710/)s g T T m s K K m Ra m s βδν−−∞−−−===×× 5.24)103(59.059.041641=×==−Ra NuThis is an assisting flow and the combined Nusselt number is determined from 2.38)5.245.34()(3133=+=+=n natural n forced combined Nu NuNu Then C m W mC m W Nu kh combined D D ⋅=⋅==2/8.8)2.38(12.0/0275.0δ And C m C m W W C hA Q T T T T hA Q s s D D D 8.58)024.0)(/8.8()05.0)(100(35)(22=⋅+=+=→−=⋅∞∞⋅Therefore, natural convection lowers the surface temperature in this case by about 2°C.。
传热学第八章答案
第八章1. 什么叫黑体?在热辐射理论中为什么要引入这一概念?2. 温度均匀得空腔壁面上得小孔具有黑体辐射得特性,那么空腔内部壁面得辐射就是否也就是黑体辐射?3. 试说明,为什么在定义物体得辐射力时要加上"半球空间"及"全部波长"得说明?4. 黑体得辐射能按波长就是怎样分布得?光谱吸收力得单位中分母得""代表什么意义?5. 黑体得辐射按空间方向就是怎样分布得?定向辐射强度与空间方向无关就是否意味着黑体得辐射能在半球空间各方向上就是均匀分布得?6. 什么叫光谱吸收比?在不同光源得照耀下,物体常呈现不同得颜色,如何解释?7. 对于一般物体,吸收比等于发射率在什么条件下才成立?8,说明灰体得定义以及引入灰体得简化对工程辐射传热计算得意义.9.黑体得辐射具有漫射特性.如何理解从黑体模型(温度均匀得空腔器壁上得小孔)发出得辐射能也具有漫射特性呢?黑体辐射基本定律81、一电炉得电功率为1KW,炉丝温度为847C,直径为1mm。
电炉得效率为0、96。
试确定所需炉丝得最短长度。
解:5、67 X得L=3 、61m82、直径为1m得铝制球壳内表面维持在均匀得温度500K,试计算置于该球壳内得一个实验表面所得到得投入辐射。
内表面发射率得大小对这一数值有否影响?解:由=35438 W/83、把太阳表面近似地瞧成就是T=5800K 得黑体,试确定太阳发出得辐射能中可光所占得百分数。
解:可见光波长范围就是0、38〜0、76=64200W/可见光所占份额84、一炉膛内火焰得平均温度为1500K,炉墙上有一着火孔。
试计算当着火孔打开时从孔向外辐射得功率。
该辐射能中波长为 2 得光谱辐射力就是多少?哪种波长下得能量最多?解:=287W/T = 1500K 时,85、在一空间飞行物得外壳上有一块向阳得漫射面板。
板背面可以认为就是绝热得,向阳面得到得太阳投入辐射G=1300W/。
该表面得光谱发射率为:时时。
试确定当该板表面温度处于稳态时得温度值。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学智慧树知到答案章节测试2023年兰州理工大学
第一章测试1.传热学是研究有温差存在时的热能传递规律。
()A:对B:错答案:A2.傅里叶定律中,热量传递方向与温度升高方向相同。
()A:错B:对答案:A3.在一个串联的热量传递过程中,如果通过各个环节的热流量相同,则各串联环节的总热阻等于各串联环节热阻之和。
()A:错B:对答案:B4.热量传递过程的动力是:( )A:电压B:速度差C:温度差D:密度差答案:C5.热辐射的特点不包括下列哪一点。
( )A:辐射能与温度和波长均有关B:具有方向性C:仅能发生在流体中D:伴随能量形式的转变答案:C6.传热方程式中,传热系数的单位是:()A:W/(m2·K)B:W/(m·K2)C:W/(m·K)D:W/(m2·K2)答案:A7.尽管各个科学技术领域中遇到的传热问题形式多样,但大致可以归纳为哪三种?()A:温度控制B:削弱传热C:强化传热D:速度控制答案:ABC8.热能传递的三种基本方式:()A:热传导B:热辐射C:热对流D:热膨胀答案:ABC9.下列各参数中,属于物性参数的是?()A:密度B:传热系数C:热导率D:热扩散率答案:ACD10.下列哪几种传热方式不需要有物体的宏观运动?()A:热对流B:热辐射C:热传导D:对流换热答案:BC第二章测试1.傅里叶导热定律数学表达式中温度梯度的方向表示温度升高的方向。
()A:对B:错答案:A2.按照能量守恒定律,在任-时间间隔内有以下热平衡关系(以微元体为研究对象):导入热量+内热源生成热=导出热量。
()A:错B:对答案:A3.在研究-维平板导热问题时,导热热阻数学表达为: δ/入, 常称作面积热阻。
()A:错B:对答案:A4.研究等截面直肋的导热问题时,一般假设沿高度方向肋片温度不变。
()A:对B:错答案:A5.温度场中同一瞬间相同温度各点连成的面称为()A:等高线B:等温线C:等温面D:等势面答案:C6.在研究导热问题时需要通过边界条件来求解温度场,其中规定了边界上的温度值为:()A:第三类边界条件B:第二类边界条件C:第一类边界条件D:第四类边界条件答案:C7.在传热过程中,系统的传热量与下面哪一个参数成反比:()A:流体温差B:传热系数C:传热热阻D:传热面积答案:C8.在采用加肋片方法增强传热时,将肋片加装在一侧。
传热学第八章答案
第八章1.什么叫黑体在热辐射理论中为什么要引入这一概念2.温度均匀得空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部壁面的辐射是否也是黑体辐射3.试说明,为什么在定义物体的辐射力时要加上"半球空间"及"全部波长"的说明 4.黑体的辐射能按波长是怎样分布的光谱吸收力λb E 的单位中分母的"3m "代表什么意义5.黑体的辐射按空间方向是怎样分布的定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的6.什么叫光谱吸收比在不同光源的照耀下,物体常呈现不同的颜色,如何解释 7.对于一般物体,吸收比等于发射率在什么条件下才成立8,说明灰体的定义以及引入灰体的简化对工程辐射传热计算的意义.9.黑体的辐射具有漫射特性.如何理解从黑体模型(温度均匀的空腔器壁上的小孔)发出的辐射能也具有漫射特性呢 黑体辐射基本定律8-1、一电炉的电功率为1KW ,炉丝温度为847℃,直径为1mm 。
电炉的效率为。
试确定所需炉丝的最短长度。
解:×341096.010*******⨯=⎪⎭⎫ ⎝⎛+dL π得L=8-2、直径为1m 的铝制球壳内表面维持在均匀的温度500K ,试计算置于该球壳内的一个实验表面所得到的投入辐射。
内表面发射率的大小对这一数值有否影响解:由40100⎪⎭⎫⎝⎛=T C E b =35438 W/2m 8-3、把太阳表面近似地看成是T=5800K 的黑体,试确定太阳发出的辐射能中可光所占的百分数。
解:可见光波长范围是~m μ40100⎪⎭⎫⎝⎛=T C E b =64200 W/2m可见光所占份额()()()%87.44001212=---=-λλλλb b b F F F8-4、一炉膛内火焰的平均温度为1500K ,炉墙上有一着火孔。
试计算当着火孔打开时从孔向外辐射的功率。
该辐射能中波长为2m μ的光谱辐射力是多少哪种波长下的能量最多解:40100⎪⎭⎫⎝⎛=T C E b =287W/2m ()310/51/1074.912m W e c E T c b ⨯=-=-λλλT =1500K 时,m m 121093.1-⨯=λ8-5、在一空间飞行物的外壳上有一块向阳的漫射面板。
传热几传质学答案
第八章 热量传递的基本概念2.当铸件在砂型中冷却凝固时,由于铸件收缩导致铸件表面与砂型间产生气隙,气隙中的空气是停滞的,试问通过气隙有哪几种基本的热量传递方式?答:热传导、辐射。
注:无对流换热3.在你所了解的导热现象中,试列举一维、多维温度场实例。
答:工程上许多的导热现象,可以归结为温度仅沿一个方向变化,而且与时间无关的一维稳态导热现象。
例,大平板、长圆筒和球壁。
此外还有半无限大物体,如铸造时砂型的受热升温(砂型外侧未被升温波及)多维温度场:有限长度的圆柱体、平行六面体等,如钢锭加热,焊接厚平板时热源传热过程。
4.假设在两小时内,通过152mm ×152mm ×13mm (厚度)实验板传导的热量为 837J ,实验板两个平面的温度分别为19℃和26℃,求实验板热导率。
解:由傅里叶定律可知两小时内通过面积为152×152mm 2的平面的热量为873=-36002101326191015210152333⨯⨯⨯-⨯⨯⨯⨯⨯---λ 得 C m W 03/1034.9*⨯=-λ 第九章 导 热1. 对正在凝固的铸件来说,其凝固成固体部分的两侧分别为砂型(无气隙)及固液分界面,试列出两侧的边界条件。
解:有砂型的一侧热流密度为常数,故为第二类边界条件,即τ>0时),,,(nt z y x q T =∂∂λ 固液界面处的边界温度为常数, 故为第一类边界条件,即τ>0时Τw =f(τ)注:实际铸件凝固时有气隙形成,边界条件复杂,常采用第三类边界条件3. 用一平底锅烧开水,锅底已有厚度为3mm 的水垢,其热导率λ为1W/(m · ℃)。
已知与水相接触的水垢层表面温度为111 ℃。
通过锅底的热流密度q 为42400W/m 2,试求金属锅底的最高温度。
解:热量从金属锅底通过水垢向水传导的过程可看成单层壁导热,由公式(9-11)知 =∆T -=-121t t t 111℃, 得 1t =238.2℃4. 有一厚度为20mm 的平面墙,其热导率λ为1.3W/(m·℃)。
传热学课后标记题目答案1-9
第一章1-8 热水瓶胆剖面的示意图如附图所示。
瓶胆的两层玻璃之间抽成真空,内胆外壁及外胆内壁涂了反射率很低的银。
试分析热水瓶具有保温作用的原因。
如果不小心破坏了瓶胆上抽气口处的密闭性,这会影响保温效果吗?解:保温作用的原因:内胆外壁外胆内壁涂了反射率很低的银,则通过内外胆向外辐射的热量很少,抽真空是为了减少内外胆之间的气体介质,以减少其对流换热的作用。
如果密闭性破坏,空气进入两层夹缝中形成了内外胆之间的对流传热,从而保温瓶的保温效果降低。
1-10 一炉子的炉墙厚13cm ,总面积为202m ,平均导热系数为1.04w/m.k ,内外壁温分别是520℃及50℃。
试计算通过炉墙的热损失。
如果所燃用的煤的发热量是2.09×104kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤1-16为了说明冬天空气的温度以及风速对人体冷暖感觉的影响,欧美国家的天气预报中普遍采用风冷温度的概念(wind-chill temperature )。
风冷温度是一个当量的环境温度,当人处于静止空气的风冷温度下时其散热量与人处于实际气温、实际风速下的散热量相同。
从散热计算的角度可以将人体简化为直径为25cm 、高175cm 、表面温度为30℃的圆柱体,试计算当表面传热系数为()K m W 2/15时人体在温度为20℃的静止空气中的散热量。
如果在一个有风的日子,表面传热系数增加到()K m W 2/50,人体的散热量又是多少?此时风冷温度是多少?1-19 在1-14题目中,如果把芯片及底板置于一个封闭的机壳内,机壳的平均温度为20℃,芯片的表面黑度为0.9,其余条件不变,试确定芯片的最大允许功率。
解:()00014.0])27320()27385[(1067.59.04484241⨯+-+⨯⨯-=Φ-=辐射T T A σε P 辐射对流+ΦΦ=1.657W1-21 有一台气体冷却器,气侧表面传热系数1h =95W/(m2.K),壁面厚δ=2.5mm ,)./(5.46K m W =λ水侧表面传热系数58002=h W/(m 2.K)。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
传热学课后答案(完整版)
绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。
2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。
(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。
(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。
7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。
以热传导和热对流的方式。
9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。
当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。
10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。
传热学第八章相变换热
原因:蒸汽与液膜间的热阻 措施:断绝来源;系统中安装抽气器、空气分离器等。
② 蒸汽流速、流向
流向与液膜流动方向相同拉薄液膜h
9
③ 过热蒸汽(表面传热系数下降,教材叙述不可取)
(冷凝)相变 过热蒸汽 饱和干蒸汽 饱和液体 由于冷却过程表面传热系数远低于冷凝过程,所以过热蒸汽将使 换热器的换热能力大大下降,因此热用户应将过热蒸汽饱和化。 例如某纺织厂溴化锂制冷机组的过热蒸汽进行饱和化处理后,机 组制冷能力提高了20%。 (冷却)非相变
定性温度、特性尺度及各准则数定义参见教材P308
④ 膜层雷诺数及其临界值
Re 4hl(t s t w )
Rec 1600
8
4、影响膜状凝结的因素
① 不凝气体——在壁温下不能凝结的气体
来源:蒸汽带入;蒸汽分解;负压条件下系统漏入; 系统生成(液体与金属相容性)。
危害:含气体1%
h 60%
3
(2)简化微分方程:
动量方程(重力与粘性力平衡)
能量方程(只有导热) 边界条件:
d 2u l 2 l g 0 dy
d 2t 0 2 dy
y=0 时,u=0,t=tw y= 时,
du 0, t t s dy
4
(求解过程可参见教材P304~306)
主要计算结果: 液膜厚度计算式:
1、相变换热与非相变换热的对比:
换热形式: 单相 相变 交换热量: (显热mct)(潜热m) 相对单位质量热容量: 1 ~100介质流量m 相对表面传热系数: 1 ~10 A
2、 凝结换热现象 蒸汽
w s 蒸汽
液体——凝结 t t
t t s
壁面上凝结——凝结换热
传热学第八章
8. 凝结与沸腾换热8.1 知识结构1. 凝结换热(膜状凝结,珠状凝结,影响因素);2. 沸腾换热(气泡生成条件,大容器及管内沸腾现象,影响因素)。
8.2 重点内容剖析 8.2.1 相变换热与非相变换热的对比换热形式: 单相 相变 交换热量: (显热mc Δt ) (潜热mr )相对单位质量热容量: 1 ~100 ⇒ 介质流量 m ↓ 相对表面传热系数: 1 ~10 ⇒ 换热面积A ↓8.2.2 凝结换热现象蒸汽−→−<st t 液体——凝结蒸汽−−→−<swtt 壁面上凝结——凝结换热 膜状凝结——凝结液在壁面上铺展成膜 珠状凝结——凝结液在壁面上凝聚成液珠h 珠>>h 膜(表面改性技术)8.2.3 膜状凝结分析解及实验关联式 一. 努谢尔特假设:(1)纯净蒸汽层流液膜; (2)常物性;(3)蒸汽是静止的,气液界面上无对液膜的粘滞应力;(4)液膜的惯性可以忽略; (5)汽液界面上无温差;(6)膜内温度分布是线性的,即认为液膜内的热量转移只有导热而无对流作用; (7)液膜的过冷度可以忽略;(8)相对于液体密度,蒸汽密度可忽略不计; (9)液膜表面平整无波动。
二. 膜状凝结数学描述 简化后的微分方程:1. 动量方程(重力与粘性力平衡):022=+g dyu d l lρη (8-1)2. 能量方程(膜层只有导热)022=dyt d (8-2)3. 边界条件:y=0 时,u=0,t=t w (8-3) y=δ 时,s t t dydu ==,0δ(8-4)三. 分析解1. 竖壁层流分析解(膜层Re<1600)(求解过程参见参考文献[1]附录4)()[]4/14123Pr 943.0943.0GaJa c t t c gl Nu w s =⎥⎦⎤⎢⎣⎡⋅-⋅=ληγν (8-5) 式中:Ga ——伽利略准则(重力/粘性力) Ja ——雅各布准则(潜热/显热) 2. 水平圆管的层流膜状凝结分析解:()[]4/14123Pr 729.0729.0GaJa c t t c gd Nu w s =⎥⎦⎤⎢⎣⎡⋅-⋅=ληγυ (8-6)3. 球表面的层流膜状凝结分析解:()[]4/14123Pr 826.0826.0GaJa c t t c gd Nu w s =⎥⎦⎤⎢⎣⎡⋅-⋅=ληγυ (8-7)定性温度:膜层平均温度()2/w s t t +特征尺度(伽里略):竖壁:壁高l横管、球:外经d对比分析可见,当l/d=50时,横管的平均表面传热系数是竖管的两倍。
传热学8-10章总结问答题及答案
第八章 热辐射基本定律和辐射特性一、名词解释黑体:指能吸收投入到其表面上的所有热辐射能量的物体。
其吸收比1=α灰体:在热辐射分析中,把光谱吸收比与波长无关的物体称为灰体漫射体:辐射能按空间分布满足兰贝特定律的物体投入辐射:单位时间内投入到单位表面积上的总辐射能吸收比:投入辐射中被吸收能量的百分比。
穿透比:投入辐射中穿透过物体能量的百分比。
反射比:投入辐射中被反射能量的百分比。
发射率: 物体的辐射力与同温度下黑体辐射力之比,为ε辐射力:单位辐射面积向半球空间辐射出去的各种波长能量的总和,E ,单位是2/m W 。
光谱辐射力:单位辐射面积向半球空间辐射出去的包括波长λ在内的单位波长间隔内的辐射能λE 定向辐射强度:单位可见辐射面积向半球空间θ方向的单位立体角中辐射出去的各种波长能量的总和。
二、解答题和分析题1、四次方定律、普朗克定律、兰贝特定律及维恩位移定律和基尔霍夫定律分别描述了什么内容? 答案: 看书362页公式8-16下面有详细的总结。
2、影响实际物体吸收比和发射率的因素各有哪些?答:实际物体的吸收比取决于两方面的因素:1)吸收物体本身的情况。
系指物质的种类、物体的温度以及表面状况。
2)投入辐射的特性。
实际物体表面的发射率取决于物质的种类、表面温度和表面状况。
只与发射辐射的物体本身有关,而不涉及外界条件第九章 辐射传热的计算一、名词解释角系数:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为2,1X 。
有效辐射:是指单位时间内离开表面单位面积的总辐射能。
二、解答题和分析题1、简述角系数的定义及其性质。
答:表面1发出的辐射能中落到表面2的百分数称为表面1对表面2 的角系数,记为X。
2,11)角系数的相对性 2)角系数的完整性 3)角系数的可加性2、分析气体辐射的基本特点?(1) 气体辐射对波长具有选择性。
它只在某些波长区段内具有发射和吸收辐射的本领,而对于其他光带则呈现透明状态。
第四版传热学第六,七八章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v xy u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章1.什么叫黑体?在热辐射理论中为什么要引入这一概念?2.温度均匀得空腔壁面上的小孔具有黑体辐射的特性,那么空腔内部壁面的辐射是否也是黑体辐射?3.试说明,为什么在定义物体的辐射力时要加上"半球空间"及"全部波长"的说明? 4.黑体的辐射能按波长是怎样分布的?光谱吸收力λb E 的单位中分母的"3m "代表什么意义?5.黑体的辐射按空间方向是怎样分布的?定向辐射强度与空间方向无关是否意味着黑体的辐射能在半球空间各方向上是均匀分布的?6.什么叫光谱吸收比?在不同光源的照耀下,物体常呈现不同的颜色,如何解释? 7.对于一般物体,吸收比等于发射率在什么条件下才成立?8,说明灰体的定义以及引入灰体的简化对工程辐射传热计算的意义.9.黑体的辐射具有漫射特性.如何理解从黑体模型(温度均匀的空腔器壁上的小孔)发出的辐射能也具有漫射特性呢? 黑体辐射基本定律8-1、一电炉的电功率为1KW ,炉丝温度为847℃,直径为1mm 。
电炉的效率为0.96。
试确定所需炉丝的最短长度。
解:5.67×341096.010*******⨯=⎪⎭⎫ ⎝⎛+dL π得L=3.61m8-2、直径为1m 的铝制球壳内表面维持在均匀的温度500K ,试计算置于该球壳内的一个实验表面所得到的投入辐射。
内表面发射率的大小对这一数值有否影响?解:由40100⎪⎭⎫⎝⎛=T C E b =35438 W/2m 8-3、把太阳表面近似地看成是T=5800K 的黑体,试确定太阳发出的辐射能中可光所占的百分数。
解:可见光波长范围是0.38~0.76m μ40100⎪⎭⎫⎝⎛=T C E b =64200 W/2m可见光所占份额()()()%87.44001212=---=-λλλλb b b F F F8-4、一炉膛内火焰的平均温度为1500K ,炉墙上有一着火孔。
试计算当着火孔打开时从孔向外辐射的功率。
该辐射能中波长为2m μ的光谱辐射力是多少?哪种波长下的能量最多?解:40100⎪⎭⎫⎝⎛=T C E b =287W/2m ()310/51/1074.912m W e c E T c b ⨯=-=-λλλT =1500K 时,m m 121093.1-⨯=λ8-5、在一空间飞行物的外壳上有一块向阳的漫射面板。
板背面可以认为是绝热的,向阳面得到的太阳投入辐射G=1300W/2m 。
该表面的光谱发射率为:m μλ20≤≤时();5.0=λεm μλ2>时()2.0=λε。
试确定当该板表面温度处于稳态时的温度值。
为简化计算,设太阳的辐射能均集中在0~2m μ之内。
解:由4100⎪⎭⎫ ⎝⎛=T C G ε 得T=463K8-6、人工黑体腔上的辐射小孔是一个直径为20mm 的圆,辐射力25/1072.3m W E b ⨯=。
一个辐射热流计置于该黑体小孔的正前方l=0.5m ,处,该热流计吸收热量的面积为1.6510-⨯2m 。
问该热流计所得到的黑体投入辐射是多少?解:25/10185.1m W E L bb ⨯==λWA L rA b c2.37.104.652=⨯==Ω-所得投入辐射能量为37.2×6.4×510-=31038.2-⨯W8-7、用特定的仪器测得,一黑体炉发出的波长为0.7m μ的辐射能(在半球范围内)为38/10m W ,试问该黑体炉工作在多高的温度下?该工况下辐射黑体炉的加热功率为多大?辐射小孔的面积为24104m -⨯。
解:()1/512-=-T c b e c E λλλ代入数据得:T=1214.9KWT AC 4.4910040=⎪⎭⎫⎝⎛=Φ8-8、试确定一个电功率为100W 的电灯泡发光效率。
假设该灯泡的钨丝可看成是2900K 的黑体,其几何形状为mm mm 52⨯的矩形薄片。
解:40100⎪⎭⎫ ⎝⎛=T C E b 可见光的波长范围0.38~0.76m μ 则K m T K m T .2204;.110221μλμλ== 由表可近似取()()19.10;092.076.0038.00==--b b F F在可见光范围内的能量为()%094.019.1010040-⨯⎪⎭⎫⎝⎛=∆E T C发光效率%09.10=E ∆E =η8-9、钢制工件在炉内加热时,随着工件温度的升高,其颜色会逐渐由暗红变成白亮。
假设钢件表面可以看成黑体,试计算在工件温度为900℃及1100℃时,工件所发出的辐射能中的可见光是温度为700℃的多少倍?K m T .600μλ≤时()K m T F b .800;00μλλ==-时()401016.0--⨯=λb F 。
解:解:(1)()00.0,7.36997338.0,973700101==⨯===-λμλb F mK T K T t ℃时,,()λμλμλμλ-=≤=⨯=01800600,5.73997376.0b F mK T mK T mK T 之及由值线性插值得:()()%001116.010116.1,10116.1550121=⨯=⨯=----λλλb b F F .可见光的能量为:2455672.073.967.510116.1m W =⨯⨯⨯-.(2)()00.0,7.445117338.0,1173900101==⨯===-λμλb F mK T K T t ℃时,,()()%01565.010565.1,10565.1,5.891117376.04402211=⨯=⨯==⨯=----λλλμλb b F F mK T ,此时可见光的能量2448.1673.1167.510565.1m W =⨯⨯⨯-.所以℃900时是700℃时的16.3/0.5672=29.6倍. (3)()00.0,74.521137338.0,137********==⨯===-λμλb F mK T K T t ℃时,,()()%05808.010808.5,10808.5,48.1043137376.04402212=⨯=⨯==⨯=----λλλμλb b F F mK T ,此时可见光的能量为24403.11773.1367.510808.5m W =⨯⨯⨯-.所以1100℃时是700℃时的117.03/0.5672=206.3倍.8-10、一等温空腔的内表面为漫射体,并维持在均匀的温度。
其上有一个面积为0.022m 的小孔,小孔面积相对于空腔内表面积可以忽略。
今测得小孔向外界辐射的能量为70W ,试确定空腔内表面的温度。
如果把空腔内表面全部抛光,而温度保持不变,问这一小孔向外的辐射有何影响?解:40100⎪⎭⎫⎝⎛=ΦT AC 代入数据T=498.4K8-11、把地球作为黑体表面,把太阳看成是T=5800℃的黑体,试估算地球表面温度。
已知地球直径为,1029.17m ⨯太阳直径为1.39910⨯m,两者相距m 11105.1⨯。
地球对太空的辐射可视为0K 黑体空间的辐射。
解:如图所示。
地球投影面积对太阳球心的张角为:()()822142117105806.01025.2106641.1785.0105.11029.14-⨯=⨯⨯⨯=⨯⨯⨯=∆Ωπ(球面角)108106226.414.34105806.04--⨯=⨯⨯=∆Ωπ。
地球表面的空间辐射热平衡为: 102.10623.44-⨯⨯⨯=Φo sum C S R σπ,⎪⎪⎭⎫⎝⎛⨯⨯⨯===Φ-21029.114.344,022.ee C S be e R A E A π,10474410623.4421029.114.34,-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=sum o sum e o e o be T R T T E σπσσ,()()106292710623.41039.11029.1-⨯⨯⨯=⨯sumrT T , []412141018229.11010623.41039.1--⨯⨯⨯⨯⨯=sumcT T []()16416103675.55800106641.1623.49321.15800--⨯⨯=⨯⨯⨯=K 2.27962.315221.15800=⨯=。
8-12、如附图所示,用一个运动的传感器来测定传送带上一个热试件的辐射具有黑体的特性,文传感器与热试件之间的距离1x 多大时,传感器接受到的辐射能是传感器与试件位于同一数值线上时的75%?解:按题意,当工件位于x 1处时,工件对传感器的角系数为工件在正下方时的75%,当工件在正下方时,222,1,2H A H A x π=是A 对传感器的张角:当工件在x 1处时,(),221221222,1πx H x H H A x +⎪⎪⎭⎫ ⎝⎛+=故有:()ππ2275.021221222x H x H H A H A +⎪⎪⎭⎫⎝⎛+=⨯,即()[]()212111175.0H x H x +=+⨯,由试凑法解得395.0,395.011=∴=x H x 。
8-13、从太阳投射到地球大气层外表面的辐射能经准确测定为1353W/2m 。
太阳直径为,1039.19m ⨯两者相距11105.1⨯m 。
若认为太阳是黑体,试估计其表面温度。
解:太阳看成一个点热源,太阳投射在地球上的辐射总量为sun Qsun Q =()211105.141353⨯⨯⨯π又()491001039.167.5⎪⎭⎫⎝⎛⨯⨯⨯⨯=T Q sunπ所以T=5774K8-14、试证明下列论述:对于腔壁的吸收比为0.6的一等球壳,当其上的小孔面积小于球的总表面面积的0.6%时,该小孔的吸收比可大于99.6%。
球壳腔壁为漫射体。
解:设射进小孔的投入辐射为0E ,经空腔内表面第一次反射的投入辐射为0E ρ,经第二次反射为02E ρ,经第n 次反射为0E n ρ. 空腔共吸收()()[]nnE E 6.011100--=-ρ设n=1所以()%36.0%6.04.010=⨯-E 则小孔吸收比为1-0.36%=99.6%又因为n 越大,则小孔的吸收比越大,证明完毕。
实际物体的辐射特性8-15、已知材料AB 的光谱发射率()λε与波长的关系如附图所示,试估计这两种材料的发射率ε随温度变化的特性,并说明理由。
解:A 随稳定的降低而降低;B 随温度的降低而升高。
理由:温度升高,热辐射中的短波比例增加。
8-16、一选择性吸收表面的光谱吸收比随λ变化的特性如附图所示,试计算当太阳投入辐射为G=800W/2m 时,该表面单位面积上所吸收的太阳能量及对太阳辐射的总吸收比。
解:()()∞∞∞∞+=+=⎰⎰⎰⎰~4.14.1~002012.09.011b b b bb b F Fd E d E d E d E λλαλλααλλλλλλ查表代入数据得8026.0%0792.867.0=⨯=α8-17一漫射表面在某一温度下的光谱辐射强度与波长的关系可以近似地用附图表示,试: (1) 计算此时的辐射力;(2) 计算此时法线方向的定向辐射强度,及与法线成600角处的定向辐射强度。