昆明市-2018届-高三复习教学质量检测文科数学(附答案)

合集下载

(昆明市2018届高三摸底调研测试文数试卷

(昆明市2018届高三摸底调研测试文数试卷

文科数学试卷·第1页(共8页)秘密★启用前 【考试时间:1月22日 15∶00—17∶00】昆明市2018届高三摸底调研测试文科数学本试卷满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}(1)0M x x x =-≥,{}11N x x =-<<,则M N =A .{}10x x -<≤B .{}10x x -≤≤C .{}01x x ≤<D .{}01x x ≤≤2.2i1i=+ A .1i + B .1i -C .1i -+D .1i --3.已知向量(1,2)=-a ,(1,3)=b ,则2-=a bAB .2CD .104.设命题:N p n ∀∈,22n n ≤,则p ⌝为 A .N n ∃∈,22n n ≤ B .N n ∀∈,22n n >C .N n ∃∈,22n n >D .N n ∀∈,22n n ≥文科数学试卷·第2页(共8页)5.已知等差数列{}n a 的公差为2,且4a 是2a 与8a 的等比中项,则{}n a 的通项公式n a = A .2n - B .2nC .21n -D .21n +6.下图是1951-2016年中国年平均气温变化图. 根据上图,下列结论正确的是A .1951年以来,我国年平均气温逐年增高B .1951年以来,我国年平均气温在2016年再创新高C .2000年以来,我国年平均气温都高于19812010-年的平均值D .2000年以来,我国年平均气温的平均值高于19812010-年的平均值7.古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“石臼”由一块正方体石料凿去一部分做成(凿去的部分可看成一个简单组合体).一个“石臼”的三视图如图所示,则凿去部分的体积为 A .63π B .72π C .79π D .99π文科数学试卷·第3页(共8页)8.定义[]x 表示不超过x 的最大整数,例如[0.6]0=,[2]2=,[3.6]3=.右面的程序框图取材于中国古代数学著作《孙子算经》.执行该程序框图,则输出a = A .9 B .16 C .23D .309.已知函数()sin f x x ω=的图象关于点2π,03⎛⎫⎪⎝⎭对称,且()f x 在π04⎡⎤⎢⎥⎣⎦,上为增函数,则ω=A .32B .3C .92D .610.在长方体1111ABCD A B C D -中,2AB AD ==,11AA =,则点B 到平面1D AC 的距离等于 ABC .1D11.若函数()221x f x x =--,对于任意的Z x ∈且(),x a ∈-∞,都有()0f x ≤恒成立,则实数a 的取值范围为 A .(],1-∞- B .(],0-∞C .(],4-∞D .(],5-∞12.过抛物线2:2(0)C y px p =>的焦点且倾斜角为锐角的直线l 与C 交于A ,B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若MN AB =,则l 的斜率为 A .13BCD .1文科数学试卷·第4页(共8页)二、填空题:本题共4小题,每小题5分,共20分。

云南省昆明市云南师大实验中学2018年高三数学文月考试题含解析

云南省昆明市云南师大实验中学2018年高三数学文月考试题含解析

云南省昆明市云南师大实验中学2018年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 复数z满足z(l﹣i)=﹣1﹣i,则|z+1|=()A.0 B.1 C.D.2参考答案:C【考点】复数求模.【专题】转化思想;综合法;数系的扩充和复数.【分析】根据复数的运算性质计算即可.【解答】解:∵z(l﹣i)=﹣1﹣i,∴z(1﹣i)(1+i)=﹣(1+i)2,∴2z=﹣2i,∴z=﹣i,∴z+1=1﹣i,则|z+1|=,故选:C.【点评】本题考查了复数的化简与模的计算.2. 设等差数列{a n}满足,,S n是数列{a n}的前n项和,则使得的最大的自然数n是()A.7 B.8 C.9 D.10参考答案:C,解得,所以,所以,所以,则最大的自然数是9.故选C。

3.若不等式,对任意正整数恒成立,则实数的取值范围是( ).A. B. C.D.参考答案:答案:A4. 已知函数, 则的值是()A. B. C. D.参考答案:B5. 如图,一个空间几何体的正视图和俯视图都是周长为4,一个内角为60°的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为()A.2πB.C.πD.参考答案:C【考点】L!:由三视图求面积、体积.【分析】由已知三视图得到几何体是两个圆锥的组合体,根据数据计算表面积.【解答】解:由已知三视图得到几何体是同底的两个圆锥的组合体,底面半径为,圆锥的高为,所以几何体的表面积为;故选C.6. 下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是()A.y=2x B.y=C.y=|x| D.y=﹣x2+1参考答案:D【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数思想;综合法;函数的性质及应用.【分析】由奇函数和偶函数图象的对称性,根据y=2x和的图象便可判断出A,B错误,而由y=x的单调性便可判断选项C错误,对于D,由偶函数的定义便可判断该函数为偶函数,由该二次函数的图象便可判断出在(0,+∞)上单调递减,从而得出D正确.【解答】解:A.根据y=2x的图象知该函数非奇非偶,∴该选项错误;B.根据的图象知该函数非奇非偶,∴该选项错误;C.x∈(0,+∞)时,y=|x|=x为增函数;即y=|x|在(0,+∞)上单调递增,∴该选项错误;D.显然y=﹣x2+1为偶函数,根据其图象可看出该函数在(0,+∞)上单调递减,∴该选项正确.故选:D.【点评】考查奇函数和偶函数图象的对称性,清楚y=2x和的图象,一次函数的单调性,偶函数的定义,以及二次函数的单调性的判断.7. 设函数的最小正周期为,则(A)在单调递减(B)在单调递减(C)在单调递增(D)在单调递增参考答案:A略8. 如图,在四面体ABCD中,AB=CD=2,AD=BD=3,AC=BC=4. 点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于EFGH,则四边形EFGH面积的最大值是()A. B. C. 1 D. 2参考答案:C作AB中点M,连接CM、DM如图所示,因为AC=BC,M为AB中点,所以;同理有AD=BD,M为AB中点,所以,所以,所以?。

昆明一中2018届高三第六次月考文科数学试卷(含解析)(2018.02)

昆明一中2018届高三第六次月考文科数学试卷(含解析)(2018.02)
2
3 , 2
3 π ,所以 C ,又由余弦定理 c 2 a 2 b 2 2ab cos C 得 2 3
1 a b 3ab 4 3ab ,所以 ab 1 ,所以△ ABC 的面积 S 1 1 π 3 . ab sin C sin 2 2 3 4 14 c ,纵坐标的绝对值为 b ,代入椭圆方程 4 2
1 π ,由 0, 知 sin cos , 25 4
5. 6.
1 即 sin cos 0 ,所以 sin cos ,选 A . 5 解析:两圆方程相减即得直线 AB 的方程: 4 x 2 y 5 0 ,选 B.
解析: 由题意, 该几何体是由一个边长为 2 的正方体截去一个底面积为 1 , 高为 2
1 22 的一个三棱锥所得的组合体,如图,所以 V 2 3 1 2 ,选 D. 3 3
7. 8.
1, (0 x 1) 解析:函数的定义域为 (0, ) 且 f ( x) 2 ,选 D. x , ( x 1) π π π 解析:由 f x f x 知, f x 2sin x 3 的图象关于直线 x 对称, 4 6 3 π π 所以 f f ( x) max 或 f f ( x) min ,又 f x min 5 , f x max 1 ,选 B . 4 4
c = 3 ﹕ 6 : 5 时等号成立, 解:(Ⅰ)因为
an 1 an 2an 2 n 1 an 2an 2 n 1 2an 2n 1 n n 1 1 , 2n 1 2n 2n 1 2 2n 1 2 1 a 所以数列 n 是首项为 ,公差为 1 的等差数列 ; ………6 分 n 2 2

云南昆明一中2018届高三数学第五次月考试卷文科含答案

云南昆明一中2018届高三数学第五次月考试卷文科含答案

云南昆明一中2018届高三数学第五次月考试卷(文科含答案)昆明第一中学2018届高中新课标高三第五次二轮复习检测文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,(其中为虚数单位,是的共轭复数),则()A.2B.C.D.-22.已知集合,集合,则()A.B.C.D.3.在中,若成等差数列,,,则角()A.B.C.或D.4.直线是双曲线的一条渐近线,则()A.B.4C.12D.165.已知表示两个不同的平面,表示一条直线,且,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要6.直线过点且圆相切,则直线的的方程为()A.B.C.或D.或7.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“我没有获奖”,乙说:“是丙获奖”,丙说:“是丁获奖”,丁说:“我没有获奖”.在以上问题中只有一人回答正确,根据以上的判断,获奖的歌手是()A.甲B.乙C.丙D.丁8.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.89.执行如图所示程序框图,若输入的取值范围为,则输出的的取值范围为()A.B.C.D.10.已知集合,则函数的最小值为()A.4B.2C.-2D.-411.已知一个三角形的三边长分别为5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻距离三角形的三个顶点的距离均超过1的概率()A.B.C.D.12.设锐角的三个内角的对边分别为且,,则周长的取值范围为()A.B.C.D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在中,若,则.14.非负实数满足,则的最小值为.15.已知函数在上单调,则的取值范围为.16.已知定义在上的函数是奇函数,且满足,,数列满足且,则.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列满足.(1)证明:是等比数列;(2)求.18.某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:微信控非微信控合计男性262450女性302050合计5644100(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.参考公式:,其中.参考数据:0.500.400.250.150.100.050.0250.4550.7081.3232.0722.7063.8415.02419.如图,在四棱锥中,底面为直角梯形,,,,与均为等边三角形,点为的中点.(1)证明:平面平面;(2)若点在线段上且,求三棱锥的体积.20.已知椭圆:的离心率为,且点在椭圆上.(1)求椭圆的方程;(2)已知,设点(且)为椭圆上一点,点关于轴的对称点为,直线分别交轴于点,证明:.(为坐标原点)21.已知函数(为常数,为自然对数的底数),曲线在与轴的交点处的切线斜率为-1.(1)求的值及函数的单调区间;(2)证明:当时,;(3)证明:当时,.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,的极坐标方程为.(1)求直线与的交点的轨迹的方程;(2)若曲线上存在4个点到直线的距离相等,求实数的取值范围.23.选修4-5:不等式选讲已知函数.(1)求的最小值;(2)若不等式恒成立,求实数的取值范围.试卷答案一、选择题题号123456789101112答案ADBBDCABDDBC1.解析:由题意,有,则,选A.2.解析:由题意,,,则,选A.由题意,有,则,选D.3.解析:因为,,成等差数列,所以,由正弦定理得,解得,又因为,故,选B.4.解析:因为直线的斜率为,所以,所以,选B.5.解析:由题意,,则或,所以充分条件不成立,又当,时,不能得到,所以必要条件不成立,选D.6.解析:当直线的斜率存在时,设直线的方程为,而圆心为,半径为,所以,解得;当直线的斜率不存在,即直线为时,直线与圆相切,所以直线的方程为或,选C.7.解析:假设甲获奖,则甲、乙、丙都回答错误,丁回答正确,符合题意,所以甲获奖,选A.8.解析:由题意,该几何体是底面积为,高为的一个四棱锥,如图,所以,选B.[来源:学.科.网]9.解析:关于的函数图象如图所示,由于,则,选D.10.解析:因为集合,所以,设,则,所以,且对称轴为,所以最小值为,选D.11.解析:依题意得:,选B.12.解析:因为△为锐角三角形,所以,,,即,,,所以,;又因为,所以,又因为,所以;由,即,所以,令,则,又因为函数在上单调递增,所以函数值域为,选C.二、填空题13.解析:因为,两边平方得,所以.14.解析:如图在点处取得最小值,最小值为.15.解析:由已知,在上单调,所以,即,故.16.解析:因为函数是奇函数,所以,又因为,所以,所以,即,所以是以为周期的周期函数;由可得,则,即,所以,,又因为,,所以.三、解答题17.解:(Ⅰ)由得:,因为,所以,从而由得,所以是以为首项,为公比的等比数列.(Ⅱ)由(Ⅰ)得,所以m]18.解:(Ⅰ)由列联表可得所以没有的把握认为“微信控”与“性别”有关.(Ⅱ)根据题意所抽取的位女性中,“微信控”有人,“非微信控”有人.(Ⅲ)抽取的位女性中,“微信控”人分别记为,,;“非微信控”人分别记为,.则再从中随机抽取人构成的所有基本事件为:,,,,,,,,,,共有种;抽取人中恰有人为“微信控”所含基本事件为:,,,,,,共有种,所求为.19.解:(Ⅰ)证明:连接,由于,点为的中点,,,所以四边形为正方形,可得,设与相交于点,又△与△均为等边三角形,可得,在等腰△中,点为的中点,所以,且与相交于点,可得平面,又平面,所以平面平面.(Ⅱ)由,△与△均为等边三角形,四边形为正方形,与相交于点,可知,,所以,又平面平面,所以平面,设点到平面的距离为,又,所以,,,所以,三棱锥的体积为.20.解:(Ⅰ)由已知得:,,又因为,所以,所以椭圆的方程为.(Ⅱ)因为点关于轴的对称点为,所以,所以直线的方程为,令得;直线的方程为,令得.因为,而点在椭圆上,所以,即:,所以,即,所以,所以.21.解:(Ⅰ)由,得.又,所以.所以,.由,得.所以函数在区间上单调递减,在上单调递增.(Ⅱ)证明:由(Ⅰ)知.所以,即,.令,则.所以在上单调递增,所以,即.(Ⅲ)首先证明:当时,恒有.证明如下:令,则.由(Ⅱ)知,当时,,所以,所以在上单调递增,所以,所以.所以,即.依次取,代入上式,则,,.以上各式相加,有.所以,所以,即.第22、23题中任选一题做答,如果多做,则按所做的第一题记分.22.解:(Ⅰ)的直角坐标方程为,可化为,的直角坐标方程为,可化为,从而有,整理得,当或时,也满足上式,故直线与的交点的轨迹的方程为.(Ⅱ)由(Ⅰ)知,曲线表示圆心在,半径为的圆,点到直线的距离为,因为曲线上存在4个点到直线的距离相等,所以,解得,所以,实数的取值范围为23.解:(Ⅰ),所以,时,取最小值,且最小值为(Ⅱ)由恒成立,得恒成立,即恒成立,令,则恒成立,由(Ⅰ)知,只需,可化为或或,解得,所以,实数的取值范围为。

2018年云南省昆明市高考数学三模试卷

2018年云南省昆明市高考数学三模试卷

2018年云南省昆明市高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合S={1,2,a},T={2,3,4,b},若S∩T={1,2,3},则a﹣b=()A.2 B.1 C.﹣1 D.﹣22.设i是虚数单位,复数化简是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.已知平面向量=(x,1),=(2,﹣3),如果,那么x=()A.B.﹣C.D.﹣4.函数y=sin2x﹣2sin2x+1的最大值为()A.2 B.C.3 D.5.若运行如图所示程序框图,则输出结果S的值为()A.94 B.86 C.73 D.566.如图是底面半径为1,高为2的圆柱被削掉一部分后剩余的几何体的三视图(注:正视图也称主视图,侧视图也称左视图),则被削掉的那部分的体积为()A.B. C.﹣2 D.27.直线y=2x+1与圆x2+y2﹣2x+4y=0的位置关系为()A.相交且经过圆心B.相交但不经过圆心C.相切D.相离8.为得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位9.在数列{a n}中,a1=,a2=,a n a n+2=1,则a2016+a2017=()A.B.C.D.510.在长为3m的线段AB上任取一点P,则点P与线段两端点A、B的距离都大于1m的概率是()A.B.C.D.11.设F1,F2是双曲线C:的两个焦点,点P在C上,且=0,若抛物线y2=16x的准线经过双曲线C的一个焦点,则|||的值等于()A.2B.6 C.14 D.1612.已知函数f(x)的定义域为实数集R,,则f(10)﹣f(﹣100)的值为()A.﹣8 B.﹣16 C.55 D.101二、填空题13.若和是两个互相垂直的单位向量,则|+2|=_______.14.已知α为锐角,cosα=,则sin(﹣α)=_______.15.在△ABC中,∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,则△ABC的周长为_______.16.已知圆C:(x﹣a)2+y2=1(a>0),过直线l:2x+2y+3=0上任意一点P作圆C的两条切线PA,PB,切点分别为A,B,若∠APB为锐角,则a的取值范围为_______.三、解答题17.设S n是数列{a n}的前n项和,且S n=2a n﹣1.(1)证明:数列{a n}是等比数列;(2)求数列{na n}的前n项和T n.18.在四棱锥P﹣ABCD中,底面ABCD是菱形,AB=2,∠BAD=60°,PC⊥BD.(1)证明:PB=PD;(2)若平面PBD⊥平面ABCD,且∠DPB=90°,求点B到平面PDC的距离.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y表示每年3月份的PM2.5指数的平均值(单位:μg/m3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=,=﹣.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C相交于A,B两点,求△GAB的面积.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.2018年云南省昆明市高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合S={1,2,a},T={2,3,4,b},若S∩T={1,2,3},则a﹣b=()A.2 B.1 C.﹣1 D.﹣2【分析】由S,T,以及S与T的交集确定出a与b的值,即可求出a﹣b的值.【解答】解:∵S={1,2,a},T={2,3,4,b},且S∩T={1,2,3},∴a=3,b=1,则a﹣b=3﹣1=2,故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.设i是虚数单位,复数化简是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】复数的分子、分母同乘复数单位i,分母实数化,把式子化简到最简形式.【解答】解:复数===1﹣i.故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.已知平面向量=(x,1),=(2,﹣3),如果,那么x=()A.B.﹣C.D.﹣【分析】根据平面向量的坐标表示与共线定理,列出方程求出x的值.【解答】解:平面向量=(x,1),=(2,﹣3),且,∴﹣3x﹣1×2=0,解得x=﹣.故选:B.【点评】本题考查了平面向量的坐标表示与共线定理的应用问题,是基础题目.4.函数y=sin2x﹣2sin2x+1的最大值为()A.2 B.C.3 D.【分析】使用二倍角公式和两角和的正弦公式化简,根据正弦函数的性质得出最大值.【解答】解:y=sin2x+cos2x=sin(2x+).∴y的最大值是.故选:B.【点评】本题考查了三角函数的恒等变换,正弦函数的图象与性质,属于基础题.5.若运行如图所示程序框图,则输出结果S的值为()A.94 B.86 C.73 D.56【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值并输出,模拟程序的运行过程,即可得到答案.【解答】解:模拟执行程序,可得i=1,S=1i=2,S=4不满足条件i>5,i=3,S=10,不满足条件i>5,i=4,S=22,不满足条件i>5,i=5,S=46,不满足条件i>5,i=6,S=94,满足条件i>5,退出循环,输出S的值为94.故选:A.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.6.如图是底面半径为1,高为2的圆柱被削掉一部分后剩余的几何体的三视图(注:正视图也称主视图,侧视图也称左视图),则被削掉的那部分的体积为()A.B. C.﹣2 D.2【分析】根据几何体的三视图,得出该几何体是半圆锥体与直三棱锥的组合体,求出该几何体的体积,再求出圆柱的体积,即可求出被削掉的那部分体积.【解答】解:根据几何体的三视图,得;该几何体是底面半径为1,高为2的半圆锥体,与底面为等腰三角形高为2的三棱锥的组合体,其体积为πr2h+Sh=π×12×2+××2×1×2=;又圆柱的体积为πr2h=π×12×2=2π,所以被削掉的那部分的体积为2π﹣=.故选:B.【点评】本题考查了由三视图求几何体的体积的应用问题,也考查了三视图与实物图之间的关系问题,解题时应用三视图中的数据还原出实物图的数据,再根据相关的公式求表体积的应用问题,是基础题目.7.直线y=2x+1与圆x2+y2﹣2x+4y=0的位置关系为()A.相交且经过圆心B.相交但不经过圆心C.相切D.相离【分析】先求出圆心和半径r,再求出圆心到直线的距离d,由d=r得直线y=2x+1与圆x2+y2﹣2x+4y=0的位置关系为相切.【解答】解:∵圆x2+y2﹣2x+4y=0的圆半径r==,圆心(1,﹣2),圆心(1,﹣2)到直线y=2x+1的距离d===r,∴直线y=2x+1与圆x2+y2﹣2x+4y=0的位置关系为相切.故选:C.【点评】本题考查直线与圆的位置关系的求法,是基础题,解题时要认真审题,注意直线与圆的位置关系的合理运用.8.为得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位【分析】把函数y=sin(2x﹣)变为y=sin[2(x﹣)],然后由x得变化得答案.【解答】解:∵y=sin(2x﹣)=sin[2(x﹣)],∴要得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象向右平移个长度单位.故选:B.【点评】本题主要考查三角函数的平移,三角函数的平移原则为左加右减上加下减,是基础题.9.在数列{a n}中,a1=,a2=,a n a n+2=1,则a2016+a2017=()A.B.C.D.5【分析】a1=,a2=,a n a n+2=1,可得:a4n﹣3=,a4n﹣1=2,a4n﹣2=,a4n=3.即可得出.【解答】解:∵a1=,a2=,a n a n+2=1,∴a3=2,a5=,…,可得:a4n﹣3=,a4n﹣1=2.同理可得:a4n﹣2=,a4n=3.∴a2016+a2017=3+=.故选:C.【点评】本题考查了数列的递推关系,考查了推理能力与计算能力,属于中档题.10.在长为3m的线段AB上任取一点P,则点P与线段两端点A、B的距离都大于1m的概率是()A.B.C.D.【分析】由题意可得,属于与区间长度有关的几何概率模型,试验的全部区域长度为3,基本事件的区域长度为1,代入几何概率公式可求【解答】解:设“长为3m的线段AB”对应区间[0,3]“与线段两端点A、B的距离都大于1m”为事件A,则满足A的区间为[1,2]根据几何概率的计算公式可得,故选:B【点评】本题主要考查了几何概型,解答的关键是将原问题转化为几何概型问题后应用几何概率的计算公式求解.11.设F1,F2是双曲线C:的两个焦点,点P在C上,且=0,若抛物线y2=16x的准线经过双曲线C的一个焦点,则|||的值等于()A.2B.6 C.14 D.16【分析】求得抛物线的准线方程x=﹣4,可得双曲线的c=4,由向量垂直的条件和勾股定理,可得PF12+PF22=F1F22=4c2=64,①由双曲线的定义可得|PF1﹣PF2|=2a=6,②,运用平方相减即可得到所求值.【解答】解:抛物线y2=16x的准线为x=﹣4,由题意可得双曲线的一个焦点为(﹣4,0),即有c=4,由=0可得PF1⊥PF2,由勾股定理可得,PF12+PF22=F1F22=4c2=64,①由双曲线的定义可得|PF1﹣PF2|=2a=6,②①﹣②2,可得2PF1PF2=28,即有|||的值等于14.故选:C.【点评】本题考查双曲线的定义、方程和性质,考查向量垂直的条件以及勾股定理,同时考查抛物线的方程和性质的运用,属于中档题.12.已知函数f(x)的定义域为实数集R,,则f(10)﹣f(﹣100)的值为()A.﹣8 B.﹣16 C.55 D.101【分析】根据所给解析式凑数计算f(10)和f(﹣100).【解答】解:f(10)=f(100﹣90)=lg100=2,f(﹣100)=f(﹣10﹣90)=﹣(﹣10)=10.∴f(10)﹣f(﹣100)=2﹣10=﹣8.故选:A.【点评】本题考查了函数值的计算,属于基础题.二、填空题13.若和是两个互相垂直的单位向量,则|+2|=.【考点】平面向量数量积的运算.【分析】计算()2,然后开方即可.【解答】解:∵和是两个互相垂直的单位向量,∴,.∴()2==5,∴||=.故答案为:.14.已知α为锐角,cosα=,则sin(﹣α)=.【考点】两角和与差的正弦函数.【分析】由已知利用同角三角函数基本关系式可求sinα,利用特殊角的三角函数值及两角差的正弦函数公式化简所求即可计算得解.【解答】解:∵α为锐角,cosα=,∴sin==,∴sin(﹣α)=sin cosα﹣cos sinα=﹣×=.故答案为:.15.在△ABC中,∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,则△ABC的周长为15.【考点】余弦定理.【分析】由已知及正弦定理,二倍角的正弦函数公式可得:cosC=,又由余弦定理可得:cosC=,从而可得=,解得x,即可得解三角形的周长.【解答】解:∵∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,∴由正弦定理可得:,∴,可得:cosC=,又∵由余弦定理可得:cosC=,∴=,整理即可解得x=5,∴△ABC的周长为:(x+1)+x+(x﹣1)=3x=15.故答案为:15.16.已知圆C:(x﹣a)2+y2=1(a>0),过直线l:2x+2y+3=0上任意一点P作圆C的两条切线PA,PB,切点分别为A,B,若∠APB为锐角,则a的取值范围为(,+∞).【考点】圆的切线方程.【分析】作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由∠APB为锐角,可得0<∠APC<,运用解直角三角形可得可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,求得PC的最小值,可得PA的最小值,解不等式即可得到所求a的范围.【解答】解:作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由圆心C(a,0)到直线l的距离为d=>>1,可得直线和圆相离.由∠APB为锐角,可得0<∠APC<,即0<tan∠APC<1,在Rt△APC中,tan∠APC==,可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,当PC⊥l时,PC取得最小值,且为,即有1<,解得a>.故答案为:(,+∞).三、解答题17.设S n是数列{a n}的前n项和,且S n=2a n﹣1.(1)证明:数列{a n}是等比数列;(2)求数列{na n}的前n项和T n.【考点】数列的求和;等比数列的通项公式.【分析】(1)由S n=2a n﹣1.可得当n=1时,a1=2a1﹣1,解得a1.当n≥2时,a n=S n﹣S n﹣1,化为:a n=2a n﹣1.利用等比数列的通项公式即可得出.(2)由(1)可得:a n=2n﹣1.na n=n•2n﹣1.利用“错位相减法”与等比数列的前n 项和公式即可得出.【解答】(1)证明:∵S n=2a n﹣1.∴当n=1时,a1=2a1﹣1,解得a1=1.当n≥2时,a n=S n﹣S n﹣1=2a n﹣1﹣(2a n﹣1﹣1),化为:a n=2a n﹣1.∴数列{a n}是等比数列,首项为1,公比为2.(2)解:由(1)可得:a n=2n﹣1.na n=n•2n﹣1.∴数列{na n}的前n项和T n=1+2×2+3×22+…+n•2n﹣1,2T n=2+2×22+…+(n﹣1)•2n﹣1+n•2n,∴﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n=(1﹣n)•2n﹣1,∴T n=(n﹣1)•2n+1.18.在四棱锥P﹣ABCD中,底面ABCD是菱形,AB=2,∠BAD=60°,PC⊥BD.(1)证明:PB=PD;(2)若平面PBD⊥平面ABCD,且∠DPB=90°,求点B到平面PDC的距离.【考点】点、线、面间的距离计算.【分析】(1)如图所示,连接AC交BD于点O,连接OP.利用菱形的性质可得AC⊥BD,利用线面垂直的判定与性质定理可证明BD⊥PO.又O是BD的中点,可得PB=PD.(2)底面ABCD是菱形,AB=2,∠BAD=60°,可得△PBD与△BCD都是等边三角形.由平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,PO⊥BD.可得PO⊥平面ABCD,因此PO⊥AC,又AC⊥BD,可建立如图所示的空间直角坐标系.设平面PCD的法向量=(x,y,z),则,利用点B到平面PDC的距离d=即可得出.【解答】(1)证明:如图所示,连接AC交BD于点O,连接OP.∵四边形ABCD 是菱形,∴AC⊥BD,又PC⊥BD,且PC∩AC=C,∴BD⊥平面PAC.则BD⊥PO.又O是BD的中点,∴PB=PD.(2)解:底面ABCD是菱形,AB=2,∠BAD=60°,∴△PBD与△BCD都是等边三角形.∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,PO⊥BD.∴PO⊥平面ABCD,∴PO⊥AC,又AC⊥BD,可建立如图所示的空间直角坐标系.∵∠DPB=90°,PB=PD,BD=2,∴PO=1,∴P(0,0,1),B(1,0,0),D(﹣1,0,0),C(0,,0),=(﹣1,0,﹣1),=(0,,﹣1),=(1,﹣,0),设平面PCD的法向量=(x,y,z),则,∴,取=,则点B到平面PDC的距离d===.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y表示每年3月份的PM2.5指数的平均值(单位:μg/m3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=,=﹣.【考点】线性回归方程.【分析】(1)根据折线图中的数据,完成表格即可;(2)计算线性回归方程中的系数,可得线性回归方程;(3)x=5代入线性回归方程,可得结论.PM2.5指数(y)90 88 70 64(x i﹣)(y i﹣)=﹣48,=5,==﹣9.6,=﹣=102,∴y关于x的线性回归方程是:=﹣9.6x+102;(3)2017年的年份代号是5,当x=5时,=﹣9.6×5+102=54,∴该市2017年3月份的PM2.5指数的平均值的预测值是54μg/m3.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由=,2a+2c=6,a2=b2+c2,联立解出即可得出椭圆C的方程.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,可得λ==﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),代入椭圆方程整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△>0,利用根与系数的关系可得=,•=(x1+1)(x2+1)+y1y2,计算即可得出.【解答】解:(1)∵=,2a+2c=6,a2=b2+c2,解得a=2,c=1,b2=3.∴椭圆C的方程为=1.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,||=3,=,=.•=,则λ===﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),则,整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△=64k4﹣4(4k2+3)(4k2﹣12)=122(1+k2)>0,x1+x2=,x1x2=.==,=(x1+1,y1),=(x2+1,y2)..•=(x1+1)(x2+1)+y1y2=(k2+1)[x1x2+(x1+x2)+1]=,则==﹣.综上所述:可得存在常数λ=﹣,使||=λ•恒成立.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,根据f(1)=2,f′(1)=﹣1,求出a,b的值即可;(2)问题转化为(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),求出g(x)的单调区间,从而证出结论即可.【解答】解:(1)f(x)的定义域是(0,+∞),f(x)=+b,切点是(1,2),∴f(1)=b=2,f′(x)=,∴f′(1)=a=﹣1,故a=﹣1,b=2;(2)证明:由(1)得:f(x)=+2,f(x)>,∴(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),则g′(x)=(x﹣1)2>0,∴g(x)在(0,1)递增,在(1,+∞)递增,∵g(1)=0,∴g(x)>0⇔x>1,g(x)<0⇔0<x<1,∴x>1时,g(x)>0,0<x<1时,g(x)>0,x>0且x≠1时,(x﹣﹣2lnx)>0,∴当x>0,且x≠1时,f(x)>.[选修4-4:坐标系与参数方程选讲]22.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C相交于A,B两点,求△GAB的面积.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,令,即可得出直角坐标方程.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0).k l=1,倾斜角为,可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,设t1与t2为此方程的两个实数根,可得|AB|=|t1﹣t2|=.点G到直线l的距离d.即可得出S△GAB=|BA|•d.【解答】解:(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,∴直角坐标方程为:y2=8x.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0),k l==1,倾斜角为,直角坐标方程为:y=x﹣2.可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,△=128+4×32>0,设t1与t2为此方程的两个实数根,可得:t1+t2=,t1t2=﹣32.∴|AB|=|t1﹣t2|===16.点G到直线l的距离d==2.∴S△GAB=|BA|•d==16.[选修4-5:不等式选讲]23.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.【考点】函数的最值及其几何意义.【分析】(1)记g(x)=|x+3|﹣|x﹣1|+5,分类讨论求得g(x)=,从而求值域;(2)由柯西不等式知(a2+b2)(c2+d2)≥(ac+bd)2,从而求取值范围.【解答】解:(1)记g(x)=|x+3|﹣|x﹣1|+5,则g(x)=,故g(x)∈[1,9],故f(x)∈[1,3].(2)由(1)知,a2+b2=1,c2+d2=3,由柯西不等式知,(a2+b2)(c2+d2)≥(ac+bd)2,(当且仅当ad=bc时,取等号;)即(ac+bd)2≤3,故﹣≤ac+bd≤,故ac+bd的取值范围为[﹣,].。

云南省昆明市2018届高三教学质量检查二统文科数学试题及答案(word版)

云南省昆明市2018届高三教学质量检查二统文科数学试题及答案(word版)

昆明市2018届高三复习教学质量检测文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,0,1}A =-,2{|}B x x x ==,则A B ⋂=( ) A .{1} B .{1}- C .{0,1} D .{1,0}-2.已知,a b R ∈,复数21ia bi i+=+,则a b +=( ) A .2 B .1 C .0 D .-23.若角α的终边经过点(1,,则sin α=( )A .12-B ..12 D .4. “搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差 D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值5.已知直线:l y m +与圆22:(3)6C x y +-=相交于A 、B 两点,若||AB =m 的值等于( )A .-7或-1B .1或7 C.-1或7 D .-7或1 6.执行下面的程序框图,如果输入1a =,1b =,则输出的S =( )A .54B .33 C. 20 D .77.一个简单几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于( )A .3B .3 C..28. 若直线(01)x a a π=<<与函数tan y x =的图像无公共点,则不等式tan 2x a ≥的解集为( ) A .{|,}62x k x k k Z ππππ+≤<+∈ B .{|,}42x k x k k Z ππππ+≤<+∈ C. {|,}32x k x k k Z ππππ+≤<+∈ D .{|,}44x k x k k Z ππππ-≤≤+∈9.设函数24,1()ln 1,1x x a x f x x x ⎧-+<=⎨+≥⎩的最小值是1,则实数a 的取值范围是( )A .(,4]-∞B .[4,)+∞ C.(,5]-∞ D .[5,)+∞ 10.数列{}n a 满足1(1)n n n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .-100B .100 C. -110 D .11011.已知1F ,2F 是椭圆2222:1(0)x y E a b a b+=>>的两个焦点,过原点的直线l 交E 于,A B 两点,220AF BF ⋅=,且22||34||AF BF =,则E 的离心率为( ) A .12 B . 34 C.27 D .5712.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是( ) A .(,]e -∞ B .(,)e -∞ C. (,)e -+∞ D .[,)e -+∞二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知变量x ,y 满足3040240x x y x y +≥⎧⎪-+≤⎨⎪+-≤⎩,则3z x y =+的最小值为 .14.已知向量a ,b 满足a b ⊥,||1a =,|2|22a b +=,则||b = . 15.在ABC △中,角,,A B C 所对的边分别是,,a b c ,若1cos 4C =,3c =,且cos cos a bA B=,则ABC△的面积等于 .16. 如图,等腰PAB △所在平面为α,PA PB ⊥,6AB =.G 是PAB 的重心.平面α内经过点G 的直线l 将PAB △分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点'P ('P ∉平面α).若'P 在平面α内的射影H 恰好在翻折前的线段AB 上,则线段'P H 的长度的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 中,4524a a a +=,3621a a-=. (1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n S .18.在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x 和y ,制成下图,其中“*”表示甲村贫困户,“+”表示乙村贫困户.若00.6x <<,则认定该户为“绝对贫困户”,若0.60.8x ≤≤,则认定该户为“相对贫困户”,若0.81x <≤,则认定该户为“低收入户”;若100y ≥,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”. (1)从乙村的50户中随机选出一户,求该户为“绝对贫困户”的概率;(2)从甲村所有“今年不能脱贫的非绝对贫困户”中任选2户,求选出的2户均为“低收入户”的概率; (3)试比较这100户中,甲、乙两村指标y 的方差的大小(只需写出结论).19.如图,直三棱柱111ABC A B C -中,M 是AB 的中点.(1)证明:1//BC 平面1MCA ;(2)若122AB A M MC ===,BC =1C 到平面1MCA 的距离.20.设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上,ABF 是边长为4的等边三角形. (1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线l '与抛物线C 交于Q 、R 两点时,2211||||NQ NR +为定值?若存在,求出点N 的坐标,若不存在,请说明理由.21.函数()1x f x e x =--,()(cos 1)x g x e ax x x =++. (1)求函数()f x 的极值;(2)若1a >-,证明:当(0,1)x ∈时,()1g x >.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆O 的方程为224x y +=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是2cos21ρθ=. (1)求圆O 的参数方程和曲线C 的直角坐标方程;(2)已知M ,N 是曲线C 与x 轴的两个交点,点P 为圆O 上的任意一点,证明:22||||PM PN +为定值.23.选修4-5:不等式选讲 已知函数()|1|f x x =-.(1)解不等式(2)(4)6f x f x ++≥;(2)若a 、b R ∈,||1a <,||1b <,证明:()(1)f ab f a b >-+.试卷答案一、选择题1-5:CABDC 6-10: CDBBA 11、12:DA二、填空题16. 三、解答题17. 解:(1)由45236421a a a a a +=⎧⎨-=⎩,得112301a d a d -=⎧⎨-=⎩,解得132a d =⎧⎨=⎩.所以,数列{}n a 的通项公式为21n a n =+. (2)111(21)(23)n n n b a a n n +==++111()22123n n =-++, 所以{}n b 的前n 项和1111111()235572123n S n n =-+-++-++111()232369nn n =-=++. 所以69n nS n =+.18.解:(1)由图知,在乙村50户中,指标0.6x <的有15户, 所以,从乙村50户中随机选出一户,该户为“绝对贫困户”的概率为1535010P ==. (2)甲村“今年不能脱贫的非绝对贫困户”共有6户,其中“相对贫困户”有3户,分别记为1A ,2A ,3A .“低收入户”有3户,分别记为1B ,2B ,3B ,所有可能的结果组成的基本事件有:12{,}A A , 13{,}A A , 11{,}A B , 12{,}A B , 13{,}A B , 23{,}A A , 21{,}A B , 22{,}A B , 23{,}A B ,31{,}A B , 32{,}A B , 33{,}A B , 12{,}B B , 13{,}B B , 23{,}B B .共15个,其中两户均为“低收入户”的共有3个, 所以,所选2户均为“低收入户”的概率31155P ==. (3)由图可知,这100户中甲村指标y 的方差大于乙村指标y 的方差.19.解:(1)连接1AC ,设1AC 与1AC 的交点为N ,则N 为1AC 的中点,连接MN ,又M 是AB 的中点,所以1//MN BC .又MN ⊂平面1MCA ,1BC ⊂/平面1MCA ,所以1//BC 平面1MCA . (2)由22AB MC ==,M 是AB 的中点,所以90ACB ︒∠=,在直三棱柱中,12A M =,1AM =,所以1AA =又BC =AC =,1AC 190AMC ︒∠=. 设点1C 到平面1MCA 的距离为h ,因为1AC 的中点N 在平面1MCA 上, 故A 到平面1MCA 的距离也为h ,三棱锥1A AMC -的体积113AMC V S AA =⋅=1MCA 的面积1112S A M MC =⋅=,则1133V Sh h ===h = 故点1C 到平面1MCA20. 解:(1)由题知,||||AF AB =,则AB l ⊥.设准线l 与x 轴交于点D ,则//AB DF .又ABF 是边长为4的等边三角形,60ABF ︒∠=,所以60BFD ︒∠=,1||||cos 422DF BF BFD =⋅∠=⨯=,即2p =. (2)设点(,0)N t ,由题意知直线l '的斜率不为零, 设直线l '的方程为x my t =+,点11(,)Q x y ,22(,)R x y ,由24x my t y x=+⎧⎨=⎩得,2440y my t --=,则216160m t ∆=+>,124y y m +=,124y y t ⋅=-. 又222222211111||()()(1)NQ x t y my t t y m y =-+=+-+=+,同理可得2222||(1)NR m y =+,则有2211||||NQ NR +=22221211(1)(1)m y m y +=++221222212(1)y y m y y +=+2121222212()2(1)y y y y m y y +-=+222222168216(1)(22)m t m tm t m t++=++. 若2211||||NQ NR +为定值,则2t =,此时点(2,0)N 为定点. 又当2t =,m R ∈时,0∆>,所以,存在点(2,0)N ,当过点N 的直线l '与抛物线C 交于Q 、R 两点时,2211||||NQ NR +为定值14. 21.解:(1)函数()1x f x e x =--的定义域为(,)-∞+∞,()1x f x e '=-,由()0f x '>得0x >, ()0f x '<得0x <,所以函数()f x 在(,0)-∞单调递减,在(0,)+∞上单调递增,所以函数()f x 只有极小值(0)0f =.(2)不等式()1g x >等价于1cos 1x ax x x e++>,由(1)得:1xe x ≥+. 所以111x e x <+,(0,1)x ∈,所以11(cos 1)(cos 1)1x ax x x ax x x e x ++->++-+cos 1xax x x x =+++1(cos )1x a x x =+++.令1()cos 1h x x a x =+++,则21()sin (1)h x x x '=--+,当(0,1)x ∈时,()0h x '<, 所以()h x 在(0,1)上为减函数,因此,1()(1)cos12h x h a >=++, 因为1cos1cos32π>=,所以,当1a >-时,1cos102a ++>,所以()0h x >,而(0,1)x ∈,所以()1g x >.22.解:(1)圆O 的参数方程为2cos 2cos x y αα=⎧⎨=⎩,(α为参数),由2cos21ρθ=得:222(cossin )1ρθθ-=,即2222cos sin 1ρθρθ-=,所以曲线C 的直角坐标方程为221x y -=.(2)由(1)知(1,0)M -,(1,0)N ,可设(2cos ,2sin )P αα,所以22||||PM PN +=2222(2cos 1)(2sin )(2cos 1)(2sin )αααα+++-+54cos 54cos 10αα=++-=所以22||||PM PN +为定值10.23.解:(1)由(2)(4)6f x f x ++≥得:|21||3|6x x -++≥,当3x <-时,2136x x -+--≥,解得3x <-;当132x -≤≤时,2136x x -+++≥,解得32x -≤≤-; 当12x >时,2136x x -++≥,解得43x ≥;综上,不等式的解集为4{|2}3x x ≤-≥或.(2)证明:()(1)|1||f ab f a b ab a b >-+⇔->-, 因为||1a <,||1b <,即21a <,21b <,所以22|1|||ab a b ---=2222212a b ab a ab b -+-+-=22221a b a b --+=22(1)(1)0a b -->,所以22|1|||ab a b ->-,即|1|||ab a b ->-,所以原不等式成立.。

云南省昆明市2018届高三第二次统测数学

云南省昆明市2018届高三第二次统测数学

云南省昆明市2018届高三第二次统测数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B2.设复数z满足z(2+i)=5i,则|z﹣1|=()A.1 B.2 C.D.53.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为()A.32 B.33 C.34 D.354.设a=60.7,b=log70.6,c=log0.60.7,则()A.c>b>a B.b>c>a C.c>a>b D.a>c>b5.在△ABC中,角A,B,C所对的边分别为a,b,c,若B=,a=,sin2B=2sinAsinC,=()则△ABC的面积S△ABCA.B.3 C.D.66.执行如图所示的程序框图,如果输入N=30,则输出S=()A.26 B.57 C.225 D.2567.函数f(x)=sin(ωx+φ),(|φ|<)的部分图象如图所示,则f(x)的单调递增区间为()A.(﹣1+4kπ,1+4kπ),k∈Z B.(﹣3+8kπ,1+8kπ),k∈ZC.(﹣1+4k,1+4k),k∈Z D.(﹣3+8k,1+8k),k∈Z8.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中点,则异面直线BC1与PD所成角等于()A.30°B.45°C.60°D.90°9.在平行四边形ABCD中,||=8,||=6,N为DC的中点,=2,则•=()A.48 B.36 C.24 D.1210.已知函数f(x)=,则不等式f(x﹣1)≤0的解集为()A.{x|0≤x≤2}B.{x|0≤x≤3}C.{x|1≤x≤2}D.{x|1≤x≤3}11.某几何体的三视图如图所示,若这个几何体的顶点都在球O的表面上,则球O的表面积是()A.2πB.4πC.5πD.20π12.以双曲线C:﹣=1(a>0,b>0)上一点M为圆心作圆,该圆与x轴相切于C的一个焦点F,与y轴交于P,Q两点,若△MPQ为正三角形,则C的离心率等于()A .B .C .2D .第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若,x y 满足约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为.14.曲线sin 3y x π⎛⎫=+ ⎪⎝⎭在点⎛ ⎝⎭处的切线方程是. 15.已知边长为6的等边ABC ∆的三个顶点都在球O 的表面上,O 为球心,且OA 与平面ABC 所成的角为45 ,则球O 的表面积为.16.在平面直角坐标系上,有一点列()121,,...,,,...N n n P P P P n *-∈,设点n P 的坐标(),n n a ,其中2(N )n a n n*=∈,过点1,n n P P +的直线与两坐标轴所围成的三角形面积为n b ,设n S 表示数列{}n b 的前n 项和,则5S =.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在平面四边形ABCD中,,2,2,AB BC AB BD BCD ABD ABD ⊥==∠=∠∆的面积为2.(1)求AD 的长; (2)求CBD ∆的面积.18.根据“2015年国民经济和社会发展统计公报”中公布的数据,从2011 年到2015 年,我国的第三产业在GDP 中的比重如下:(1)在所给坐标系中作出数据对应的散点图;(2)建立第三产业在GDP 中的比重y 关于年份代码x 的回归方程; (3)按照当前的变化趋势,预测2017 年我国第三产业在GDP 中的比重.附注:回归直线方程 y abx =+ 中的斜率和截距的最小二乘估计公式分别为: 1122211()()()()n ni iiii i nniii i x y nx y x x y y bxn x x x ====---==--∑∑∑∑ , ay bx =- .19. 在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC M 为BC的中点,13,2,AC AB BC CC ===(1)证明:1B C ⊥平面1AMC ; (2)求点1A 到平面1AMC 的距离.20. 在直角坐标系xOy 中, 已知定圆()22:136M x y ++=,动圆N 过点()1,0F 且与圆M 相切,记动圆圆心N 的轨迹为曲线C .(1)求曲线C 的方程;(2)设,A P 是曲线C 上两点,点A 关于x 轴的对称点为B (异于点P ),若直线,AP BP 分别交x 轴于点,S T ,证明:OS OT 为定值. 21. 设函数()()2,ln xf x x eg x x x -==.(1)若()()()F x f x g x =-,证明:()F x 在()0,+∞上存在唯一零点; (2)设函数()()(){}min ,h x f x g x =,({}m i n ,a b 表示,a b 中的较小值),若()h x λ≤,求λ的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为122(2x t t y ⎧=-+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线1C的极坐标方程为ρ=. (1)写出直线l 的普通方程和曲线1C 的参数方程; (2)若将曲线1C上各点的横坐标缩短为原来的62倍,得到曲线2C ,设点P 是曲线2C 上任意一点,求点P 到直线l 距离的最小值. 23.选修4-5:不等式选讲 已知函数()2f x x =+.(1)解不等式()241f x x <--;(2)已知()10,0m n m n +=>>,若不等式()11x a f x m n--≤+恒成立,求实数a 的取值范围.云南省昆明市2018届高三下学期第二次统测数学(文)试题参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B【考点】集合的包含关系判断及应用.【分析】化解集合A,B,根据集合之间的关系判断即可.【解答】解:集合A={x|﹣x2﹣x+2<0}={x|x>1或x<﹣2},B={x|2x﹣5>0}={x|x >2.5}.∴B⊆A,故选A【点评】本题主要考查集合的基本运算,比较基础2.设复数z满足z(2+i)=5i,则|z﹣1|=()A.1 B.2 C.D.5【考点】复数求模.【分析】把已知等式变形,利用复数代数形式的乘除运算化简求得z,再由复数模的计算公式求|z﹣1|.【解答】解:∵z(2+i)=5i,∴,则|z﹣1|=|2i|=2.故选:B.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为()A.32 B.33 C.34 D.35【考点】茎叶图.【分析】根据中位数相同求出m的值,从而求出甲的平均数即可.【解答】解:由乙的数据是:21,32,34,36得中位数是33,故m=3,故=(27+33+36)=32,故选:A.【点评】本题考查了中位数和平均数问题,考查茎叶图的读法,是一道基础题.4.设a=60.7,b=log70.6,c=log0.60.7,则()A.c>b>a B.b>c>a C.c>a>b D.a>c>b【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=60.7>1,b=log70.6<0,c=log0.60.7∈(0,1),∴a>c>b,故选:D.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.在△ABC中,角A,B,C所对的边分别为a,b,c,若B=,a=,sin2B=2sinAsinC,=()则△ABC的面积S△ABCA.B.3 C.D.6【考点】余弦定理;正弦定理.【分析】由B=,利用勾股定理可求b2=a2+c2,由sin2B=2sinAsinC,利用正弦定理可得:b2=2ac,联立可求a=c,进而利用三角形面积公式即可计算得解.【解答】解:在△ABC中,∵B=,a=,∴b2=a2+c2,∵sin2B=2sinAsinC,∴由正弦定理可得:b2=2ac,∴a2+c2=2ac,可得:a=c=,=acsinB==3.∴S△ABC故选:B.【点评】本题主要考查了勾股定理,正弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.6.执行如图所示的程序框图,如果输入N=30,则输出S=()A.26 B.57 C.225 D.256【考点】程序框图.【分析】由已知中的程序框图及已知中输入N的值为30,可得:进入循环的条件为n≤30,模拟程序的运行结果,即可得到输出的S值.【解答】解:模拟程序的运行,可得N=30,n=1,S=0S=1不满足条件n>30,执行循环体,n=3,S=4不满足条件n>30,执行循环体,n=7,S=11不满足条件n>30,执行循环体,n=15,S=26不满足条件n>30,执行循环体,n=31,S=57满足条件n>30,退出循环,输出S的值为57.故选:B.【点评】本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理.7.函数f(x)=sin(ωx+φ),(|φ|<)的部分图象如图所示,则f(x)的单调递增区间为()A.(﹣1+4kπ,1+4kπ),k∈Z B.(﹣3+8kπ,1+8kπ),k∈ZC.(﹣1+4k,1+4k),k∈Z D.(﹣3+8k,1+8k),k∈Z【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的单调性,求得f(x)的增区间.【解答】解:根据函数f(x)=sin(ωx+φ),(|φ|<)的部分图象,可得=3﹣1=2,求得ω=,再根据五点法作图可得•1+φ=,∴φ=,∴f(x)=sin(x+).令2kπ﹣≤x+≤2kπ+,求得8k﹣3≤x≤8k+1,故函数的增区间为[﹣3+8k,1+8k],k∈Z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,正弦函数的单调性,属于基础题.8.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中点,则异面直线BC1与PD所成角等于()A.30°B.45°C.60°D.90°【考点】异面直线及其所成的角.【分析】根据题意,取CD的中点Q,连接BQ,C1Q,得出BQ∥PD,∠C1BQ是异面直线BC1与PD所成角,利用等边三角形求出∠C1BQ的值即可.【解答】解:长方体ABCD﹣A1B1C1D1中,AB=2,BC=1,BB1=1,取CD的中点Q,连接BQ,C1Q,∵P是AB的中点,∴BQ∥PD,∴∠C1BQ是异面直线BC1与PD所成角,如图所示;△C1BQ中,C1B=BQ=C1Q=,∴∠C1BQ=60°,即异面直线BC1与PD所成角等于60°.故选:C.【点评】本题考查了异面直线所成的角的作法与计算问题,是基础题目.9.在平行四边形ABCD中,||=8,||=6,N为DC的中点,=2,则•=()A.48 B.36 C.24 D.12【考点】平面向量数量积的运算.【分析】先画出图形,根据条件及向量加减法的几何意义即可得出,,这样进行数量积的运算即可求出的值.【解答】解:如图,,∴;∴=,=;∴===24.故选:C.【点评】考查向量数乘的几何意义,相反向量的概念,以及向量的数乘运算,向量数量积的运算.10.已知函数f(x)=,则不等式f(x﹣1)≤0的解集为()A.{x|0≤x≤2}B.{x|0≤x≤3}C.{x|1≤x≤2}D.{x|1≤x≤3}【考点】指、对数不等式的解法.【分析】由已知中函数f(x)=是一个分段函数,故可以将不等式f(x﹣1)≤0分类讨论,分x﹣1≥1和x﹣1<1两种情况,分别进行讨论,综合讨论结果,即可得到答案.【解答】解:当x﹣1≥1,即x≥2时,f(x﹣1)≤0⇔2x﹣2﹣2≤0,解得x≤3,∴2≤x≤3;当x﹣1<1,即x<2时,f(x﹣1)≤0⇔22﹣x﹣2≤0,解得x≥1,∴1≤x<2.综上,不等式f(x﹣1)≤0的解集为{x|1≤x≤3}.故选:D.【点评】本题考查的知识点是分段函数的解析式,及不等式的解法,其中根据分段函数分段处理的原则,对不等式f(x+2)≤3的变形进行分类讨论,是解答本题的关键.11.某几何体的三视图如图所示,若这个几何体的顶点都在球O的表面上,则球O的表面积是()A.2πB.4πC.5πD.20π【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图可得:该几何体为三棱锥,其外接球相当于以俯视图为底面,高为1的三棱柱的外接球,进而得到答案.【解答】解:由已知中的三视图可得:该几何体为三棱锥,其外接球相当于以俯视图为底面,高为1的三棱柱的外接球,底面的外接圆半径r=1,球心到底面的距离d=,故几何体的外接球半径,故几何体的外接球表面积为:S=4πR2=5π,故选:C【点评】本题考查的知识点是球内接多面体,球的体积和表面积,简单几何体的三视图,难度中档.12.以双曲线C:﹣=1(a>0,b>0)上一点M为圆心作圆,该圆与x轴相切于C的一个焦点F,与y轴交于P,Q两点,若△MPQ为正三角形,则C的离心率等于()A.B.C.2 D.【考点】双曲线的简单性质.【分析】由题意可设F(c,0),MF⊥x轴,可设M(c,n),n>0,设x=c,代入双曲线的方程,可得M的坐标,圆的半径,运用弦长公式,可得|PQ|=2,再由等边三角形的性质,可得a,c的方程,运用离心率公式计算即可得到所求值.【解答】解:由题意可设F (c ,0), MF ⊥x 轴,可设M (c ,n ),n >0, 设x=c ,代入双曲线的方程可得y=b=,即有M (c ,),可得圆的圆心为M ,半径为,即有M 到y 轴的距离为c , 可得|PQ |=2,由△MPQ 为等边三角形,可得 c=•2,化简可得3b 4=4a 2c 2,由c 2=a 2+b 2,可得3c 4﹣10c 2a 2+3a 4=0, 由e=,可得3e 4﹣10e 2+3=0, 解得e 2=3(舍去), 即有e=.故选:B .【点评】本题考查双曲线的离心率的求法,注意运用直线和圆相交的弦长公式,考查化简整理的运算能力,属于中档题.二、填空题13.8 14. 20x y - 15.96π 16.1256三、解答题17. 解:(1)由已知11sin2sin2 22ABDS AB BD ABD ABD∆=∠=⨯∠=,所以sin ABD∠=,又0,2ABDπ⎛⎫∠∈ ⎪⎝⎭,所以cos ABD∠=,在ABD∆中,由余弦定理得:2222cos5AD AB BD AB BD ABD=+-∠=,所以AD(2)由AB BC⊥,得2ABD CBDπ∠+∠=,所以sin cosCBD ABD∠=∠=,又42,sin2sin cos5BCD ABD BCD ABD ABD∠=∠∠=∠∠=,222BDC CBD BCD ABD ABD ABD CBDππππ⎛⎫∠=-∠-∠=--∠-∠=-∠=∠⎪⎝⎭,所以CBD∆为等腰三角形,即CB CD=,在CBD∆中,由正弦定理得:sin sinBD CDBCD CBD=∠∠,所以sin51155455,sinsin42244585CBDBD CBDCD S CB CD BCDBCD∆∠====∠=⨯⨯⨯=∠.18. 解:(1)数据对应的散点图如图所示:(2)3,47.06x y ==,1122211()()151.510()()n ni iiii i nniii i x y nx y x x y y bxn x x x ====---====--∑∑∑∑ , 42.56ay bx =-= , 所以回归直线方程为 1.542.56y x =+.(3)代入2017年的年份代码7x =,得 1.5742.5653.06y =⨯+=,所以按照当前的变化趋势,预计到2017年,我国第三产业在GDP 中的比重将达到0053.06.19. 解:(1) 证明:在ABC ∆中,,AC AB M =为BC 的中点,故AM BC ⊥,又侧棱1CC ⊥底面ABC ,所以1CC AM ⊥,又1B C C C C = ,所以AM ⊥平面11BCC B ,则1A MB C⊥,在1R t BCB ∆中,11tan B B B CB BC ∠==;在1R t MCC ∆中,11tan 2MC MC C C C ∠===,所以11B CB MC C ∠=∠,又11190B CB C CB ∠+∠= ,所以11190MC C C CB ∠+∠= ,即11MC B C ⊥,又11,AM B C AM MC M ⊥= ,所以1B C ⊥平面1AMC.(2)设点1A 到平面1AMC 的距离为h ,由于1111111,A AMC M A AC C AMC A AMC C AMC V V V V V -----==∴=,即111133AMC AMC S h S CC ∆∆=,于是111111122AMC AMC AM MC CC S CC MC CC h S C M AM C M ∆∆=====, 所以点1A 到平面1AMC20. 解:(1)因为点()1,0F 在()22136M x y ++=:内,所以圆N 内切于圆M ,则6NM NF FM +=>,由椭圆定义知,圆心N 的轨迹为椭圆,且26,1a c ==,则229,8a b ==,所以动圆圆心N 的轨迹方程为22198x y +=. (2)设()()()()0011,,,,,0,,0S T P x y A x y S x T x ,则()11,B x y -,由题意知01x x ≠±.则1010AP y y k x x -=-,直线AP 方程为()11AP y y k x x -=-,令0y =,得011010S x y x y x y y -=-,同理()()011001101010T x y x y x y x y x y y y y --+==--+,于是222201100110011022101010S T x y x y x y x y x y x y OS OT x x y y y y y y -+-===-+- , 又()00,P x y 和()11,A x y 在椭圆22198x y +=上,故2222010181,8199x x y y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,则()()22222222222222011001011001018,81818999x x y y x x x y x y x x x x ⎛⎫⎛⎫-=--=---=- ⎪ ⎪⎝⎭⎝⎭.所以()()222222010110222210018989x x x y x y OS OT y y x x --===-- . 21. 解:(1)函数()F x 的定义域为()0,+∞,因为()2ln xF x x ex x -=-,当01x <≤时,()0F x >,而()2422ln 20F e=-<,所以()F x 在()1,2存在零点.因为()()()()()2211'ln 1ln 1x xx x x F x x x e e---+=-+=-+,当1x >时,()()21111,ln 11x xx x e e e--+≤<-+<-,所以()1'10F x e <-<,则()F x 在()1,+∞上单调递减,所以()F x 在()0,+∞上存在唯一零点.(2)由(1)得,()F x 在()1,2上存在唯一零点0x ,()00,x x ∈时,()()()0;,f x g x x x >∈+∞时,()()()()[)020ln ,0,,,,x x x x x f x g x h x x e x x -∈⎧⎪<∴=⎨∈+∞⎪⎩.当()00,x x ∈时,由于(]()0,1,0x h x ∈≤;()01,x x ∈时,()'ln 10h x x =+>,于是()h x 在()01,x 单调递增,则()()00h x h x <<,所以当00x x <<时,()()0h x h x <.当[)0,x x ∈+∞时,因为()()'2xh x x x e -=-,[]0,2x x ∈时,()'0h x ≥,则()h x 在[]0,2x 单调递增;()2,x ∈+∞时,()'0h x <,则()h x 在()2,+∞单调递减,于是当0x x ≥时,()()224h x h e -≤=,所以函数()h x 的最大值为()224h e -=,所以λ的取值范围为)24,e -⎡+∞⎣. 22. 解:(1)直线l0y -+=,曲线1C的参数方程为(x y θθθ⎧=⎪⎨=⎪⎩为参数). (2)由题意知,曲线2C 的参数方程为cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),可设点()cos P θθ,故点P到直线l的距离为d==,所以mind=P到直线l23. 解:(1)不等式()241f x x<--等价于2214x x++-<,即()22214xx x≤-⎧⎪⎨-+-+<⎪⎩或()212214xx x-<<⎧⎪⎨+-+<⎪⎩或()12214xx x≥⎧⎪⎨++-<⎪⎩. 解得7|23x x⎧⎫-<≤-⎨⎬⎩⎭或{}|21x x-<-或∅,所以不等式的解集为7|13x x⎧⎫-<<-⎨⎬⎩⎭.(2)因为()222x a f x x a x x a x a--=--+≤---=+,所以()x a f x--的最大值是2a+,又()10,0m n m n+=>>,于是()112224n mm nm n m n⎛⎫++=++≥+=⎪⎝⎭,11m n∴+的最小值为4.要使()11x a f xm n--≤+的恒成立,则24a+≤,解此不等式得62a-≤≤.所以实数a 的取值范围是[]6,2-.。

【数学】云南省昆明市2018届高三教学质量检查(二统)数学(文)试题 含解析

【数学】云南省昆明市2018届高三教学质量检查(二统)数学(文)试题 含解析

昆明市2018届高三复习教学质量检测文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.【答案】C【解析】,,,故选C.2. 已知,复数,则()A. 2B. 1C. 0D. -2【答案】A【解析】由题意得,所以,选A.3. 若角的终边经过点,则()A. B. C. D.【答案】B【解析】的终边经过点,,故选B.4. “搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化B. 这半年中,网民对该关键词相关的信息关注度不断减弱C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值【答案】D5. 已知直线与圆相交于、两点,若,则实数的值等于()A. -7或-1B. 1或7C. -1或7D. -7或1【答案】C【解析】由圆的方程可知,圆心坐标,圆半径,由勾股定理可知,圆心到直线的距离为,解得或,故选C.6. 执行下面的程序框图,如果输入,,则输出的()A. 54B. 33C. 20D. 7【答案】C【解析】执行程序框图,;;,结束循环,输出,故选C.7. 一个简单几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于()A. B. C. D. 2【答案】D【解析】由三视图可知,该几何体是一个四棱锥,由侧视图为边长为的正三角形,结合三视图的性质可知四棱锥底面是边长为和的矩形,四棱锥的高为,故四棱锥体积为,故选D.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.8. 若直线与函数的图像无公共点,则不等式的解集为()A. B.C. D.【答案】B【解析】与函数的图象无公共点,且,,即为,结合正切函数图象可得,,不等式的解集为,故选B.9. 设函数的最小值是1,则实数的取值范围是()A. B. C. D.【答案】B【解析】时,的最小值为要使的最小值是1,必有时,的最小值不小于,因为在上递减,所以时,,则,实数的取值范围是,故选B.10. 数列满足,则数列的前20项的和为()A. B. C. D.【答案】A11. 已知,是椭圆的两个焦点,过原点的直线交于两点,,且,则的离心率为()A. B. C. D.【答案】D【解析】,连接,由椭圆的对称性可知,是矩形,设,则,可知,由勾股定理可知,,,故选D.【方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题是利用双曲线的几何性质以及双曲线的定义根据方法①求解的.12. 已知函数,若是函数的唯一极值点,则实数的取值范围是()A. B. C. D.【答案】A【解析】由函数,可得,有唯一极值点有唯一根,无根,即与无交点,可得,由得,在上递增,由得,在上递减,,即实数的取值范围是,故选A.【方法点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题 .二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知变量,满足,则的最小值为__________.【答案】【解析】画出表示的可行域,如图,由,可得平移直线,由图知,当直线经过点,直线在以轴上截距最小,此时最小值为,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14. 已知向量,满足,|,,则__________.【答案】【解析】,故答案为. 15. 在中,角所对的边分别是,若,,且,则的面积等于__________.【答案】【解析】因为,由正弦定理可知,,所以为等腰三角形,,,到距离,面积为,故答案为.16. 如图,等腰所在平面为,,.是的重心.平面内经过点的直线将分成两部分,把点所在的部分沿直线翻折,使点到达点(平面).若在平面内的射影恰好在翻折前的线段上,则线段的长度的取值范围是__________.【答案】【解析】因为等腰所在平面为,,.是的重心,所以可得,连接,在中,,,当与重合时最大为,此时最小,与重合)作于,此时最小为最大为,的长度的取值范围是,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列中,,.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】试题分析:(1)根据等差数列中,,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可得,利用裂项相消法求解即可.试题解析:(1)由,得,解得.所以,数列的通项公式为.(2),所以的前项和.所以.【方法点晴】本题主要考查等差数列的通项公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标和,制成下图,其中“”表示甲村贫困户,“”表示乙村贫困户.若,则认定该户为“绝对贫困户”,若,则认定该户为“相对贫困户”,若,则认定该户为“低收入户”;若,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.(1)从乙村的50户中随机选出一户,求该户为“绝对贫困户”的概率;(2)从甲村所有“今年不能脱贫的非绝对贫困户”中任选2户,求选出的2户均为“低收入户”的概率;(3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).【答案】(1);(2);(3)甲村指标的方差大于乙村指标的方差.【解析】试题分析:(1)由图知,在乙村户中,指标的有户,根据古典概型概率公式可得结果;(2)利用列举法可得,所有可能的结果组成的基本事件有个,其中两户均为“低收入户”的事件共有个,根据古典概型概率公式可得选出的户均为“低收入户”的概率;(3) 由图可知,这户中甲村指标的方差大于乙村指标的方差..试题解析:(1)由图知,在乙村50户中,指标的有15户,所以,从乙村50户中随机选出一户,该户为“绝对贫困户”的概率为.(2)甲村“今年不能脱贫的非绝对贫困户”共有6户,其中“相对贫困户”有3户,分别记为,,.“低收入户”有3户,分别记为,,,所有可能的结果组成的基本事件有:,,,,,,,,,,,,,,.共15个,其中两户均为“低收入户”的共有3个,所以,所选2户均为“低收入户”的概率.(3)由图可知,这100户中甲村指标的方差大于乙村指标的方差.【方法点睛】本题主要考查古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.19. 如图,直三棱柱中,是的中点.(1)证明:平面;(2)若,,求点到平面的距离.【答案】(1)证明见解析;(2).【解析】试题分析:(1)连接,设与的交点为,则为的中点,连接,又是的中点,由三角形中位线定理可得,从而根据线面平行的判定定理可得平面;(2)设点到平面的距离为,因为的中点在平面上,故到平面的距离也为,三棱锥的体积,的面积,由得结果.试题解析:(1)连接,设与的交点为,则为的中点,连接,又是的中点,所以.又平面,平面,所以平面.(2)由,是的中点,所以,在直三棱柱中,,,所以,又,所以,,所以.设点到平面的距离为,因为的中点在平面上,故到平面的距离也为,三棱锥的体积,的面积,则,得,故点到平面的距离为.20. 设抛物线的焦点为,准线为.已知点在抛物线上,点在上,是边长为4的等边三角形.(1)求的值;(2)在轴上是否存在一点,当过点的直线与抛物线交于、两点时,为定值?若存在,求出点的坐标,若不存在,请说明理由.【答案】(1);(2).【解析】试题分析:(1)由题知,,则.设准线与轴交于点,则.又是边长为4的等边三角形,,所以,,从而可得结果;(2)设点,由题意知直线的斜率不为零,设直线的方程为,由得,,由韦达定理及两点间距离公式可得,同理可得,化简即可得,时为定值,此时点为定点.试题解析:(1)由题知,,则.设准线与轴交于点,则.又是边长为4的等边三角形,,所以,,即.(2)设点,由题意知直线的斜率不为零,设直线的方程为,点,,由得,,则,,.又,同理可得,则有.若为定值,则,此时点为定点.又当,时,,所以,存在点,当过点的直线与抛物线交于、两点时,为定值. 21. 函数,.(1)求函数的极值;(2)若,证明:当时,.【答案】(1)极小值;(2)证明见解析.【解析】试题分析:(1)求出,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得函数的极值;(2)不等式等价于,由(1)得,可得,设,利用导数研究函数的单调性,根据单调性可得,进而可得结果.试题解析:(1)函数的定义域为,,由得,得,所以函数在单调递减,在上单调递增,所以函数只有极小值.(2)不等式等价于,由(1)得:.所以,,所以.令,则,当时,,所以在上为减函数,因此,,因为,所以,当时,,所以,而,所以.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22. 在平面直角坐标系中,圆的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)求圆的参数方程和曲线的直角坐标方程;(2)已知,是曲线与轴的两个交点,点为圆上的任意一点,证明:为定值.【答案】(1),;(2)证明见解析.【解析】试题分析:(1)由三角函数的性质可得圆的参数方程为,利用二倍角的余弦公式展开曲线的极坐标方程,利用可得曲线的直角坐标方程;(2)由(1)知,,可设,所以,化简即可的结果.试题解析:(1)圆的参数方程为,(为参数),由得:,即,所以曲线的直角坐标方程为.(2)由(1)知,,可设,所以所以为定值10.选修4-5:不等式选讲23. 已知函数.(1)解不等式;(2)若、,,,证明:.【答案】(1)或;(2)证明见解析.【解析】试题分析:(1)用分段讨论法解绝对值不等式。

2018届云南省昆明市高三复习教学质量检测文科综合试题及答案

2018届云南省昆明市高三复习教学质量检测文科综合试题及答案

昆明市2018届高三复习教学质量检测文综试题本试卷分第I卷(选择题)和第II卷(非选择题>两部分。

共300分注意事项:1.答题前,考生务必用黑色碳素笔将自已的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号,在规定的位置贴好条形码。

2.第{卷每小题选出答案后,用2B铅笔把答题卡上对应题目豹答案标号涂黑。

如需改动,用橡皮擦擦干;争后,再选涂其它答案标号。

第II卷用黑色墨水签字笔在答题卡上书写作答,答在试卷上的答案无效。

3.考试结束,由监考员将试卷、答题卡一并收回。

第1卷(选择题,共140分)本卷共35个小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

紫外线指数是度量到达地球表面的太阳紫外线对人类皮肤损伤的程度。

世界气象组织及世界卫生组织的一般划分等级为:0—2为低,3—5中等,6—7高,8一10较高,ll及其以上为极高。

图1为我国某月某网各地紫外线指数的预报简图,据此回答1—3题。

1.此时,我国可能处于A.春季B.夏季C.秋季D.冬季2.下列说法,正确的是A.此日,广州居民出行直佩戴墨镜B.此时,锋面雨带正控制我国江淮地区C.全球变暖与紫外线增强有一定关联D.紫外线增强可导致农业减少3./影响图中我国各地紫外线指数豹主要因素是A.正午太阳高度角的大小 B.日照时间的长短C.各地距海的远近D.各地的天气状况图2为美国局部区域示意图,据此回答4~6题。

4.图中‚棉花带‛布局的主导区位因素是A.气候B.土壤C.交通D.劳动力5.休斯敦成为美国南部工业城市的基础条件是A.气候和地形B.资源和交通C.劳动力和市场D.人才和技术6.与密西西比河三角洲形态形成有关的是A.存在大量人工填海造陆的行为B.建有大规模的海洋深水港口区C.河流沉积作用强于海水侵蚀作用D.海水侵蚀作用强于河流沉积作用图3为广东省历次人口普查人口年龄基本情况统计图,据此回答7~8题。

2018届昆明市高考文科数学模拟试卷及答案

2018届昆明市高考文科数学模拟试卷及答案

2018 届昆明市高考文科数学模拟试卷及答案高中文科数学的备考,文科生们可以通过做高考文科数学模拟试题来巩固数学知识。

以下是为你的2018 届昆明市高考文科数学模拟试卷,希望能帮到你。

一、选择题1. 设集合A={x € Z|x > 2} , B={x|0 < xA.{x|2 <x<6}B.{x|0 <x<6}C.{0 , 1, 2, 3, 4, 5}D.{2 , 3, 4,5}2. =()A. - iB.iC.1D. - 13. 一个四棱柱的三视图如图所示,若该四棱柱的所有顶点都在同一球面上,则这个球的表面积为()A.25 nB.50 nC.100 nD.200 n4. AQI(Air Quality Index ,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或者污染的程度.AQI 共分六级,从一级优(0〜50),二级良(51〜100,),三级轻度污染,四级重度污染,直至无极重度污染,六级严重污染(大于300). 下面是昆明市xx 年 4 月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2018年4 月份质量优的天数(按这个月共30天计算)为()A.3B.4C.12D.215. 已知非零向量,满足?=0, ||=3 ,且与+的夹角为,则||=()A.6B.3C.2D.36. 若tan 0 二—2,贝卩sin2 0 +cos2 0 =()A.B. —C.D.-7. 已知F1、F2为双曲线C: —=1(a>0, b>0)的左、右焦点,点P 在C的渐进线上,PF1丄x轴,若△ PF1F2为等腰直角三角形,则 C 的离心率为( )A.B.C.+1D.8. 在厶ABC中,已知AB= AC= tan / BAC- 3,贝S BC边上的高等于( )A.1B.C.D.29. 定义n!=1 x 2X 3X-X n,例如1!=1 , 2!=1 X2=2,执行右边的程序框图,若输入?=0.01,则输出的e精确到e的近似值为()A.2.69B.2.70C.2.71D.2.7210. 我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于 5 世纪末提出了下面的体积计算的原理(祖暅原理) :“幂势既同,贝积不容异” . “势”是几何体的高,“幂”是截面面积. 意思是,若两等高的几何体在同高处截面面积总相等,贝这两个几何体的体积相等.现有一旋转体D,它是由抛物线y=x2(x >0), 直线y=4及y轴围成的封闭图形如图1所示绕y轴旋转一周形成的几何体,利用祖暅原理,以长方体的一半为参照体(如图2所示)贝旋转体D的体积是()A.B.6 n C.8 n D.16 n11. 已知函数f(x)二,若方程f(x) - ax=O恰有两个不同的根,则实数 a 的取值范围是( )A.(0 , )B.[ , )C.( , ]D.(-汽0] U [ , +乂)12. 设F为抛物线C: y2=8x,曲线y=(k>0)与C交于点A,直线FA恰与曲线y=(k>0)相切于点A,直线FA于C的准线交于点B,贝席于( )A.B.C.D.二、填空题13. 已知实数x,y 满足,贝z=x+y 的最大值为.14. 已知函数f(x)=sin( 3 x+)( 3 >0), A、B是函数y=f(x)图象上相邻的最高点和最低点,若|AB|=2,则f(1)=.15. 已知数列{an}的前n项和为Sn,且an=4n,若不等式Sn+8》入n对任意的n € N*都成立,贝卩实数入的取值范围为.16. 若关于x的不等式a< x2 - 3x+4< b的解集恰好为[a , b], 那么b- a= .三、解答题17. 已知数列{an}满足a1=2,an+1=2an+2n+1.(I) 证明数列{}是等差数列;(II) 求数列{}的前n项和.18. 某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了 1 00名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照[0 , 0.5) , [0.5 , 1),…,[4 , 4.5]分成9组,制成样本的频率分布直方图如图所示.(I) 求图中a的值;(II) 估计该校高一学生周末“阅读时间”的中位数;( 皿)在[1 , 1.5) , [1.5 , 2)这两组中采用分层抽样抽取7人,再从7人中随机抽取2人,求抽取的两人恰好都在一组的概率.19. 如图,已知三棱锥P- ABC BC! AC BC二AC=2 PA二PB 平面PABL平面ABC D E、F分别是AB PB PC的中点.(I )证明:PDL平面ABC;( I)若M为BC中点,且PM!平面EFD 求三棱锥P- ABC的体积.20. 已知动点M(x, y)满足:+=2, M的轨迹为曲线E.(I )求E的方程;( I)过点F(1 , 0)作直线I交曲线E于P, Q两点,交y轴于R 点,若二入1,二入2,求证:入1+入2为定值.21. 已知函数f(x)=(2x2+x)lnx - (2a+1)x2 - (a+1)x+b(a , b€R).( I )当a=1 时,求函数f(x) 的单调区间;( I)若f(x) > 0恒成立,求b - a的最小值.请考生在22、23二题中任选一题作答,如果多做,则按所做的第一题计分.[ 选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy中,曲线C的方程为(x - 2)2+y2=4 , 直线I的方程为x+y - 12=0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I) 分别写出曲线C与直线I的极坐标方程;(II) 在极坐标中,极角为B ( 0€ (0 ,))的射线m与曲线C,直线I分别交于A、B两点(A异于极点0),求的最大值.[ 选修4-5 :不等式选讲]23. 已知a, b, c, m n, p都是实数,且a2+b2+c2=1, m2+n2+p2=1.( I)证明|am+bn+cp| < 1;(I)若abc z 0,证明++> 1.一、选择题1. 设集合A={x € Z|x > 2} , B={x|0 < xA.{x|2 < x<6}B.{x|0 < x<6}C.{0 , 1 , 2 , 3 , 4 , 5}D.{2 , 3 ,4 ,5}【考点】1E:交集及其运算.【分析】由A与B ,求出两集合的交集即可.【解答】解:T 集合A={x€ Z|x > 2}, B={x|0 < x<6},••• A A B={2 , 3 , 4 , 5},故选: D2. =( )A. - iB.iC.1D. - 1【考点】A5:复数代数形式的乘除运算【分析】直接由复数代数形式的乘除运算化简得答案.【解答】解:=,故选: A.3. 一个四棱柱的三视图如图所示,若该四棱柱的所有顶点都在同一球面上,则这个球的表面积为()A.25 nB.50 nC.100 nD.200 n【考点】LR:球内接多面体;LG :球的体积和表面积.【分析】由题意,四棱柱为长方体,其对角线长为=5,可得球的半径为,即可求出这个球的表面积.【解答】解:由题意,四棱柱为长方体,其对角线长为=5,二球的半径为,二这个球的表面积为=50n,故选: B.4. AQI(Air Quality Index ,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或者污染的程度.AQI 共分六级,从一级优(0〜50),二级良(51〜100,),三级轻度污染,四级重度污染,直至无极重度污染,六级严重污染(大于300). 下面是昆明市xx 年 4 月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2018年4 月份质量优的天数(按这个月共30天计算)为()A.3B.4C.12D.21【考点】BA茎叶图.【分析】通过读茎叶图求出空气质量是优的概率,从而求出30 天空气质量是优的天数即可.【解答】解:由茎叶图10天中有4天空气质量是优,即空气优的概率是p==,故30天中有x 30=12天是优,故选: C.5. 已知非零向量,满足?=0,||=3 ,且与+的夹角为,则||=( )A.6B.3C.2D.3【考点】9V:向量在几何中的应用;9S :数量积表示两个向量的夹角.【分析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【解答】解:非零向量,满足?=0,可知两个向量垂直,||=3 ,且与+的夹角为,说明以向量,为邻边,+为对角线的平行四边形是正方形,所以则||=3.故选: D.6. 若tan 0 二—2,贝卩sin2 0 +cos2 0 =()A.B. —C.D.-【考点】GI:三角函数的化简求值.【分析】利用二倍角公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:sin2 0 +cos2 0 ====-,故选: D.7. 已知F1、F2为双曲线C: - =1(a>0, b>0)的左、右焦点,点P在C的渐进线上,PF1丄x轴,若△ PF1F2为等腰直角三角形,则C 的离心率为( )A.B.C.+1D.【考点】KC双曲线的简单性质.【分析】利用双曲线的简单性质,通过三角形是等腰直角三角形,列出方程求解即可.【解答】解:F1、F2为双曲线C:- =1(a>0, b>0)的左、右焦点,点P在C的渐近线上,PF1丄x轴,若△ PF1F2为等腰直角三角形,可得:,即:b=2a,可得c2 -a2=4a2,即e2=5,e>1,解得e=,则C的离心率为.故选: A.8. 在厶ABC中,已知AB= AC= tan / BAC- 3,贝S BC边上的高等于( )A.1B.C.D.2【考点】HS余弦定理的应用;HT:三角形中的几何计算【分析】求出/ BAC勺余弦函数值,然后求解BC的距离,通过求解三角形求解即可.【解答】解:在△ ABC中,已知AB= AC= tan / BAC=- 3, 可得cos/ BAC=- =-, sin / BAC=.由余弦定理可得:BC===3,设BC边上的高为h,三角形面积为:=BC?h,h==1.故选: A.9. 定义n!=1 x 2X 3X-X n,例如1!=1 , 2!=1 x2=2,执行右边的程序框图,若输入?=0.01,则输出的e精确到e的近似值为()A.2.69B.2.70C.2.71D.2.72【考点】EF:程序框图.【分析】模拟程序的运行,依次写出每次循环得到的e,n的值,当n=5时满足条件退出循环,输出e的值即可得解.【解答】解:模拟程序的运行,可得?=0.01 , e=1, n=1执行循环体, e=2, n=2不满足条件不满足条件不满足条件由于~ 0.008故选: C.10. 我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于 5 世纪末提出了下面的体积计算的原理( 祖暅原理) :“幂势既同,则积不容异” . “势”是几何体的高,“幂”是截面面积. 意思是,若两等高的几何体在同高处截面面积总相等,则这两个几何体的体积相等.现有一旋转体D,它是由抛物线y=x2(x >0), 直线y=4及y 轴围成的封闭图形如图1所示绕y轴旋转一周形成的几何体,利用祖暅原理,以长方体的一半为参照体(如图2所示)则旋转体D的体积是()A.B.6 n C.8 n D.16 n【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】由题意,4x= n ?22,求出x= n,再求出长方体的一半的体积即可.【解答】解:由题意,4x= n ?22,二x= n,•••旋转体D的体积是=8n,故选 C.11. 已知函数f(x)=,若方程f(x) - ax=0恰有两个不同的根,则实数 a 的取值范围是( )A.(0 , )B.[ , )C.( , ]D.(-汽0] U [ , +乂)【考点】6H:利用导数研究曲线上某点切线方程;54 :根的存在性及根的个数判断.【分析】由题意,方程f(x)=ax 恰有两个不同实数根,等价于y=f(x)与y=ax有2个交点,又a表示直线y=ax的斜率,求出a的取值范围.【解答】解:•••方程f(x) - ax=0恰有两个不同实数根,二y=f(x)与y=ax有2个交点,又T a表示直线y=ax的斜率,二x>1 时,y,=,设切点为(x0 , y0), k=,二切线方程为y- yO=(x - x0),而切线过原点,二y0=1, x0=e, k=,二直线11的斜率为,又T直线12与y=x+1平行,•••直线12的斜率为,二实数a的取值范围是[,)故选: B.12. 设F为抛物线C: y2=8x,曲线y=(k>0)与C交于点A,直线FA恰与曲线y=(k>0)相切于点A,直线FA于C的准线交于点B,则等于( )A.B.C.D.【考点】K8:抛物线的简单性质.【分析】先根据抛物线的定义求出焦点坐标和准线方程,设A(x0,y0) ,根据题意可求出A(1 ,2) ,继而求出答案.【解答】解:F为抛物线C: y2=8x的焦点,贝S F(2 , 0),其准线方程为x二-2,设A(x0,y0)T y二,k=x0y0=2x0・ /…y =-,二直线AF的斜率为-二-t kAF==,. ・解得x0=1,・A(1,2),・AC=1+2=3,FD=4,・==,・=,・AB=3,・=,故选: B.二、填空题13. 已知实数x,y 满足,贝z=x+y 的最大值为3 .【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,A(0 ,3) ,化目标函数z=x+y为y= - x+z,由图可知,当直线y=- x+z过A时,直线在y轴上的截距最大,z 有最大值为3.故答案为: 3.14. 已知函数f(x)=sin( 3 x+)( 3 >0), A B是函数y=f(x)图象上相邻的最高点和最低点,若|AB|=2,则f(1)=.【考点】HW三角函数的最值. 【分析】由图象上的两个相邻的最高点和最低点的距离为2求出3,可得函数的解析式,即可求出f(1).【解答】解:由题意可得=2,二3 =,二函数f(x)=sin(x+),•-f(1)=,故答案为:.15. 已知数列{an}的前n项和为Sn,且an=4n,若不等式Sn+8 》入n对任意的n€N*都成立,贝卩实数入的取值范围为(-汽10].【考点】8I :数列与函数的综合.【分析】先根据an=4n得到数列{an}是以4为首项,以4为公差的等差数列,再根据等差数列的求和公式得到Sn=2n+2n2原不等式转化为入w 2(n+)+2,根据基本不等式即可求出答案.【解答】解:丁数列{an}的前n项和为Sn,且an=4n,当n=1 时,a1=4,T an —an —1=4n— 4(n - 1)=4 ,二数列{an}是以4为首项,以4为公差的等差数列,Sn==2n+2n2T不等式Sn+8>^ n对任意的n€ N*都成立,二2n+2n2+8>入n对任意的n € N*都成立,即入w 2(n+)+2 ,T n+》2=4,当且仅当n=2时取等号,入w 2X4+2=10,故实数入的取值范围为(-=,10],故答案为:(-=,10].16. 若关于x 的不等式a w x2—3x+4w b 的解集恰好为[a ,b] ,那么b—a= 4 .【考点】74:一元二次不等式的解法.【分析】画出函数f(x)=x2 —3x+4的图象,可知f(x)min=1;分类讨论:a>1 时,不等式a w x2—3x+4w b 的解集分为两段区域,不符合题意;有a w 1【解答】解:画出函数f(x)=x2 - 3x+4=(x - 2)2+1的图象,可得f(x)min=f(2)=1 ,由图象可知:若a>1,则不等式a< x2 - 3x+4< b的解集分两段区域,不符合已知条件,因此a< 1,此时a< x2 - 3x+4恒成立;又T不等式a<x2 - 3x+4< b的解集为[a , b],a w 1由b2 - 3b+4二b,化为3b2 - 16b+16=0,解得b二或b=4;当b二时,由a2 - 3a+4- =0,解得a二或a=,不符合题意,舍去;二b=4,此时a=0;二b- a=4.故答案为: 4.三、解答题17. 已知数列{an}满足a1=2, an+1=2an+2n+1.(I) 证明数列{}是等差数列;(II) 求数列{}的前n项和.【考点】8H:数列递推式;8E :数列的求和.【分析】(I )根据数列的递推公式可得数列{}是首项为1,公差为 1 的等差数列,(I)由(I )可得数列{}是首项为2,公比为2的等比数列,再根据求和公式计算即可.【解答】解:(1) T a1=2, an+1=2an+2n+1二一=+1- =1,T =1,二数列{}是首项为1 ,公差为1的等差数列,(II)由(I)可得二n,=2n,•••数列{}是首项为2,公比为2的等比数列,故数列{}的前n 项和Sn==2n+1- 218. 某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了 1 00名学生进行调查,获得了每人的周末“阅读时间” (单位:小时),按照[0 , 0.5) , [0.5 , 1),…,[4 , 4.5]分成9组,制成样本的频率分布直方图如图所示.( I ) 求图中a 的值;( I ) 估计该校高一学生周末“阅读时间”的中位数;( 皿)在[1 , 1.5) , [1.5 , 2)这两组中采用分层抽样抽取7人,再从7人中随机抽取2人,求抽取的两人恰好都在一组的概率.【考点】B3:分层抽样方法;CB:古典概型及其概率计算公式.【分析】( I ) 求出高一学生周末“阅读时间”在[0 ,0.5) ,[0.5 ,1),…,[4 , 4.5]的概率,即可求图中a的值;(I)确定2< m(皿)确定基本事件的个数,即可得出结论.【解答】解:(I)由题意,高一学生周末“阅读时间”在[0,0.5) ,[0.5 ,1),…,[4 ,4.5]的概率分别为0.04 ,0.08,0.20.0.25.0.07 0.04.0.02,由 1 - (0.04+0.08+0.20+0.25+0.07+0.04+0.02)=0.5a+0.5a ,二a=0.30;(II)设该校高一学生周末“阅读时间”的中位数为m小时,因为前5组频率和为0.040.08+0.15+0.20+0.25=0.72>0.5 前4 组频率和为0.47<0.5 ,所以2< m<2.5,由0.50(m- 2)=0.5 - 0.47,得m=2.06;( 皿)在[1 , 1.5) , [1.5 , 2)这两组中的人分别有15人、20人,采用分层抽样抽取7 人分别为 3 人、 4 人再从7 人中随机抽取 2 人有=21 种抽取的两人恰好都在一组有=9 种故所求概率为.19. 如图,已知三棱锥P- ABC BC!AC BC二AC=2PA二PB 平面PABL平面ABC D E、F分别是AB PB PC的中点.(I )证明:PDL平面ABC;( I)若M为BC中点,且PM!平面EFD 求三棱锥P- ABC勺体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直的判定.【分析】(I )由PA=PB D为AB中点,可得PDL AB再由面面垂直的性质可得PDL平面ABC;(n )设PM交EF于N,连接DM DN由线面垂直的性质得到PM 丄DN 由已知可得DN垂直平分PM故PD=DM求出DM进一步求得PD.即三棱锥P- ABC勺高,然后由三棱锥体积公式求得三棱锥P- ABC 的体积.【解答】(I )证明:T PA=PB D为AB中点,二PDL AB 又平面PABL平面ABC 交线为AB PD?平面PAB••• PDL平面ABC;( n )解:设PM交EF于N,连接DM DNT PML平面EFD DN平面DEF•PML DN又E , F分别是PB, PC的中点,•N为EF的中点,也是PM的中点,•DN垂直平分PM 故PD=DM又DM fe^ ABC的中位线,贝S DM==1 • PD=1.T BC L AC 则.•三棱锥P- ABC的体积20. 已知动点M(x , y)满足:+=2 , M的轨迹为曲线E.(I )求E的方程;( n )过点F(1 , 0)作直线I交曲线E于P , Q两点,交y轴于R 点,若二入1,二入2,求证:入1+入2为定值.【考点】KQ圆锥曲线的定值问题;J3 :轨迹方程.【分析】(I )由已知,可得动点N的轨迹是以C( - 1,0) , A(1 , 0)为焦点的椭圆,根据定义可得,a、c,可得曲线E的方程;(II)设P(x1 , y1) , Q(x2, y2) , R(0, y0),由二入1,,点P 在曲线E上可得…①,同理可得:…②由①②可得入1、入2是方程x2+4x+2 - 2y02=0的两个根,入1 + 入2为定值-4.【解答】解:(I )由+=2,可得点M(x, y)到定点A( - 1, 0), B(1 , 0) 的距离等于之和等于2.且AB,所以动点N的轨迹是以C(- 1, 0), A(1 , 0)为焦点的椭圆,且长轴长为2,焦距2c=2,所以,c=1, b=1, 曲线E的方程为:;(I)设P(x1 , y1) , Q(x2, y2) , R(0 , y0), 由二入1 , (x1 , y1 -y0)=入1(1 - x1 , - y1),二,T过点F(1 , 0)作直线I交曲线E于P, •••,二…①同理可得:…②由①②可得入1、入2是方程x2+4x+2 - 2y02=0的两个根,•••入1+入2为定值-4.21. 已知函数f(x)=(2x2+x)lnx - (2a+1)x2 - (a+1)x+b(a , b€R).(I)当a=1时,求函数f(x)的单调区间;(II)若f(x) > 0恒成立,求b - a的最小值.【考点】6B:利用导数研究函数的单调性;6D :利用导数研究函数的极值.【分析】(I)当a=1 时,f' (x)=(4x+1)(lnx - 1)=0,得x=e.x € (0 , e)时,f' (x)0.即可得函数f(x)的单调区间;(I)由题意得f‘ (x)=(4x+1)(lnx - a) , (x>0).可得函数f(x) 的单调增区间为(ea , ),减区间为(0 , ea)即f(x) >0恒成立,b>e2a+ea.即 b - a>e2a+ea- a,构造函数g(t)=t2+t - lnt , (t>0), g‘ (t)=.可得g(t)min=g()=.即可得b- a的最小值.【解答】解: ( I ) 当a=1 时, f(x)=(2x2+x)lnx - 3x2-2x+b(x>0).f ' (x)=(4x+1)(lnx - 1),令f' (x)=0,得x=e.x € (0 , e)时,f‘ (x)0.函数f(x)的单调增区间为(e , ),减区间为(0 , e);( I)由题意得f‘ (x)=(4x+1)(lnx - a) , (x>0).令 f ' (x)=0,得x=ea.x € (0 , ea)时,f‘ (x)0.函数f(x)的单调增区间为(ea , ),减区间为(0 , ea)f(x)min二f(ea)= - e2a - ea+b,T f(x) >0 恒成立,二f(ea)= - e2a- ea+b> 0,贝U b>e2a+ea.b- a>e2a+ea— a令ea=t, (t>0),二e2a+ea- a=t2+t - lnt ,设g(t)=t2+t - lnt , (t>0) , g‘ (t)=.当t € (0 ,)时,g,(t)0.••• g(t)在(0 ,)上递减,在(,+乂)递增.••• g(t)min=g()=.f(x) >0恒成立,b- a的最小值为.请考生在22、23 二题中任选一题作答,如果多做,则按所做的第一题计分.[ 选修4-4 :坐标系与参数方程]22. 在平面直角坐标系xOy中,曲线C的方程为(x - 2)2+y2=4 , 直线I的方程为x+y - 12=0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I) 分别写出曲线C与直线I的极坐标方程;(II) 在极坐标中,极角为B ( 0€ (0 ,))的射线m与曲线C,直线I分别交于A、B两点(A异于极点0),求的最大值.【考点】Q4:简单曲线的极坐标方程;H9:余弦函数的定义域和值域.【分析】( I )利用直角坐标方程与极坐标方程的转化方法,分别写出曲线C与直线I的极坐标方程;(I)由题意|OA|=4cos 0, |OB|=,利用三角函数知识,可得结论.【解答】解:(I )曲线C的方程为(x - 2)2+y2=4,即x2+y2=4x,极坐标方程为p =4cos 0 ;直线I的方程为x+y - 12=0,极坐标方程为p cos 0 + p sin 0-12=0;(II)由题意|OA|=4cos 0, |OB|=,二==+sin(2 0 +),T0€(0 ,),二20+€(,兀),••• sin(2 0 +) € ( - 1],•••的最大值为,此时.[ 选修4-5 :不等式选讲]23. 已知a , b , c , m n , p 都是实数,且a2+b2+c2=1,m2+n2+p2=1.( I)证明|am+bn+cp| < 1;(I)若abc z 0,证明++> 1.【考点】R6:不等式的证明.【分析】利用柯西不等式即可证明结论.【解答】证明:(I)由柯西不等式,可得(a2+b2+c2)(m2+n2+p2) > (am+b n+cp)2,T a2+b2+c2=1, m2+n2+p2=1• 1 > (am+b n+cp)2,•|am+b n+cp| < 1;( I)由柯西不等式,可得++=(++)(a2+b2+c2) > (m2+n2+p2)2=1 ,• ++> 1.。

2018届高三第二次质量检测文科数学答案

2018届高三第二次质量检测文科数学答案

2018届高三第二次质量检测卷文科数学参考答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合要求.第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.3; 14. [3,)+∞; 15.1(,1)2; 16.2π3+ 三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知三个集合:{}22log (58)1A x x x =∈-+=R ,{}22821R x x B x +-=∈=,{}22190R C x x ax a =∈-+->.(I )求A B ;(II )已知,A C B C ≠∅=∅,求实数a 的取值范围.解:(Ⅰ){}{}25822,3R A x x x =∈-+==, ………………………........................2分 {}{}22802,4R B x x x =∈+-==-, ……………………….....................4分{}2,3,4.A B ∴=- ……………………....................…5分(Ⅱ),A C B C ≠∅=∅,2,4,3.C C C ∴∉-∉∈ …………………….................…6分{}22190,R C x x ax a =∈-+->22222222190,(4)4190,33190.a a a a a a ⎧-+-≤⎪∴-++-≤⎨⎪-+->⎩…………………….................…10分即35,222 5.a a a a -≤≤⎧⎪--≤≤-⎨⎪<->⎩或解得3 2.a -≤<-……………………….................11分 所以实数a 的取值范围是[3,2).--.................................................................................12分 18. (本小题满分12分)已知函数()()sin f x a x b ωθ=+-()x ∈R 的部分图象如图所示,其中,a b 分别是ABC ∆的角,A B 所对的边, ππ0,[,]22ωθ>∈-.(I )求,,,a b ωθ的值;(II )若cos ()+12CC f =,求ABC ∆的面积S .解:(Ⅰ)0,0a ω>>及图象特征知: ①()f x 的最小正周期2π3ππ2[()]π,88ω=--=2.ω=……………………….......................................................................................................2分②当()sin 1x ωθ+=-时,min ()1f x a b =--=; 当()sin 1x ωθ+=时,max ()1f x a b =-=.解得 1.a b ==………………………..................................................................................4分③ππ()))1188f θ-=-+-=,得ππ2π,42k θ-+=-π2π,4k θ=-.k ∈Z由ππ[,]22θ∈-得π.4θ=- 所以π2,, 1.4a b ωθ==-==…………………….....................................................…6分(II )由π()214f x x ⎛⎫=-- ⎪⎝⎭及cos ()+12C C f =得,πsin c s os o 4c C C C C ⎛⎫-=- ⎪⎝⎭=,即C C sin 21cos = ……………….............…..........................................................................8分又22sin cos 1C C +=,得552sin ,54sin 2±==C C …………………………...........…10分由0πC <<得,sin C =1sin 2S ab C ==……………………...........……12分 19.(本小题满分12分)中国移动通信公司早前推出“全球通”移动电话资费“个性化套餐”,具体方案如下:(I )写出“套餐”中方案1的月话费y (元)与月通话量t (分钟)(月通话量是指一个月内每次通话用时之和)的函数关系式;(II )学生甲选用方案1,学生乙选用方案2,某月甲乙两人的电话资费相同,通话量也相同,求该月学生甲的电话资费;(III )某用户的月通话量平均为320分钟,则在表中所列出的七种方案中,选择哪种方案更合算,说明理由.解: (Ⅰ) 30, 048,300.6(48) , 48.t y t t ≤≤⎧=⎨+⨯->⎩, ……………………..............……3分即:30, 048,0.6 1.2 , 48.t y t t ≤≤⎧=⎨->⎩………………………...........…4分(Ⅱ)设该月甲乙两人的电话资费均为a 元,通话量均为b 分钟.当048b ≤≤时, 甲乙两人的电话资费分别为30元, 98元,不相等;…….........5分 当170b >时, 甲乙两人的电话资费分别为1300.6(48)y b =+-(元),2980.6(170)y b =+-元, 21 5.20y y -=-<,21y y <; ……………......…6分当48170b <≤时, 甲乙两人的电话资费分别为300.6(48)a b =+-(元),98a =(元), 解得484.3b =所以该月学生甲的电话资费98元. …………….................................…8分(Ⅲ)月通话量平均为320分钟,方案1的月话费为:30+0.6×(320-48)=193.2(元); ……………….........9分方案2的月话费为:98+0.6×(320-170)=188(元); ……………..........…10分 方案3的月话费为168元. 其它方案的月话费至少为268元. …………….........…11分 经比较, 选择方案3更合算. ……………........…12分 20.(本小题满分12分)已知函数32()f x ax x b =++的图象在点1x =处的切线方程为13y =,其中实数,a b 为常数.(I )求,a b 的值;(II )设命题p 为“对任意1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x =”,问命题p 是否为真命题?证明你的结论.解: (I )32(),f x ax x b =++ 2()32.f x ax x '∴=+……………......................…1分(1)1,(1)32,f a b f a '=++=+∴函数()f x 的图象在点1x =处的切线方程为(1)(32)(1)y a b a x -++=+-, 即(32)21y a x b a =++-- ………………4分该切线方程为13y =, ∴1320,21,3a b a +=--=…………....................……5分 即2,0.3a b =-= ………….....................……6分(II )命题p 为真命题. ……………................…7分证明如下: 322(),3f x x x =-+ 2()222(1).f x x x x x '=-+=-- 当1x >时, ()0f x '<,()f x 在区间(1,)+∞单调递减,集合{}1()1,(,(1))(,).3R A f x x x f =>∈=-∞=-∞ ……………..................…9分当2x >时, ()f x 的取值范围是4(,(2))(,).3f -∞=-∞-集合132,(,0).()4R B x x f x ⎧⎫=>∈=-⎨⎬⎩⎭…………….................…11分从而.B A ⊆所以对任意1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得211(),()f x f x =即12()() 1.f x f x = ……………..................…12分21.(本小题满分12分) 已知函数1()ln ,1xf x a x x-=++其中实数a 为常数且0a >. (I )求函数()f x 的单调区间;(II )若函数()f x 既有极大值,又有极小值,求实数a 的取值范围及所有极值之和; (III )在(II )的条件下,记12,x x 分别为函数()f x 的极大值点和极小值点,求证:1212()()()22x x f x f x f ++<. 解:(Ⅰ) 函数2()ln 11f x a x x=+-+的定义域为∞(0,+),22222(1)()(1)(1)a ax a x af x x x x x +-+'=-=++, …………...........……1分 设222()2(1)4(1)44(12).g x ax a x a a a a =+-+∆=--=-,① 当12a ≥时, 0∆≤,()0,g x ≥()0f x '≥,函数()f x 在∞(0,+)内单调递增; …………..........……2分② 当102a <<时, 0∆>,方程()0g x =有两个不等实根:12x x ==,且1201.x x <<< 1()0()00,f x g x x x '>⇔>⇔<<或2.x x >12()0()0.f x g x x x x '<⇔<⇔<< .............................................3分综上所述,当12a ≥时, ()f x 的单调递增区间为∞(0,+),无单调递减区间;当102a <<时,()f x 的单调递增区间为1a a -(0,, 1a a -+∞(),单调递减区间.............................................................4分(II )由(I )的解答过程可知,当12a ≥时,函数()f x 没有极值. ......................................5分 当102a <<时,函数()f x 有极大值1()f x 与极小值2()f x ,121212(1), 1.x x x x a+=-=12()()f x f x ∴+=121211*********(1)(ln )(ln )ln()0.11(1)(1)x x x x a x a x a x x x x x x ---+++=+=++++ .....................................7分故实数a 的取值范围为1(0,)2,所有极值之和为0. ……………................8分 (III )由(II )知102a <<,且1211()(1)ln(1)212x x f f a a a a+=-=-+-, 12()()02f x f x +=.…………9分原不等式等价于证明当102a <<时,1ln(1)210a a a-+-<,即11ln(1)2a a-<-. ………………......................................10分设函数()ln 1h x x x =-+,则(1)0,h =当1x >时,1()10h x x'=-<. 函数()h x 在区间[1,)+∞单调递减,由102a <<知111a ->,1(1)(1)0h h a -<= ……………….....................................11分 . 即11ln(1)2a a-<-. 从而原不等式得证. ………………....................................12分22.[选修4−4:坐标系与参数方程] (本小题满分10分)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的参数方程为122(2x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数);曲线1C的极坐标方程为2cos ρθθ=+;曲线2C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数) (Ⅰ)求直线l 的直角坐标方程、曲线1C 的直角坐标方程和曲线2C 的普通方程;(Ⅱ)若直线l 与曲线1C 曲线2C 在第一象限的交点分别为,M N ,求,M N 之间的距离。

2018年云南省昆明市高考数学二模试卷(文科)(解析版)

2018年云南省昆明市高考数学二模试卷(文科)(解析版)

2018年云南省昆明市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.﹣2﹣4i B.﹣2+4i C.﹣1+2i D.﹣1﹣2i2.(5分)已知集合A={x|x2﹣4x+3≤0},B={x∈N|﹣1<x<3},则A∩B=()A.{0,1,2}B.{1,2}C.{1,2,3}D.{2,3}3.(5分)程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为()A.65B.176C.183D.1844.(5分)执行如图所示的程序框图,则输出a=()A.6B.6.25C.6.5D.6.85.(5分)一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“”组成.已知在一个显示数字8的显示池中随机取一点A,点A落在深色区域内的概率为,若在一个显示数字0的显示池中随机取一点B,则点B落在深色区域内的概率为()A.B.C.D.6.(5分)一个几何体挖去部分后的三视图如图所示,若其正视图和侧视图都是由三个边长为2的正三角形组成,则该几何体的表面积为()A.13πB.12πC.11πD.7.(5分)若实数x,y满足,则的取值范围是()A.B.C.D.8.(5分)已知函数,若f(a﹣1)≥f(﹣a),则实数a的取值范围是()A.B.C.D.9.(5分)已知双曲线的左、右焦点分别为F1,F2,点A为双曲线C虚轴的一个端点,若线段AF2与双曲线右支交于点B,且|AF1|:|BF1|:|BF2|=3:4:1,则双曲线C的离心率为()A.B.C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则()A.MN∥C1D1B.MN⊥BC1C.MN⊥平面ACD1D.MN⊥平面ACC111.(5分)已知抛物线C:y2=2px(p>0),圆,直线,自上而下顺次与上述两曲线交于A1,A2,A3,A4四点,则=()A.B.C.p D.12.(5分)已知函数f(x)=(x2﹣2x)e x﹣alnx(a∈R)在区间(0,+∞)上单调递增,则a的最大值是()A.﹣e B.e C.D.4e2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:“若a,b,m为任意的正数,则”.能够说明p是假命题的一组正数a,b,m的值依次为.14.(5分)已知向量,若,则=.15.(5分)已知函数f(x)=sin(ωx+φ),,若,则f(π)=.16.(5分)若数列{a n}满足:,若数列{a n}的前99项之和为,则a100=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2c cos B=2a﹣b.(Ⅰ)求C;(Ⅱ)当c=3时,求a+b的取值范围.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,,D,E分别是BC,CC1的中点.(1)证明:平面ADB1⊥平面ADE;(2)求三棱锥D﹣AB1E的高.19.(12分)每年的3月21日被定为“世界睡眠日”,拥有良好睡眠对人的健康至关重要,一夜好眠成为很多现代入的诉求.某市健康研究机构于2018年3月14日到3月20日持续一周,通过网络调查该市20岁至60岁市民的日平均睡眠时间T(单位:小时),共有500人参加调查,其中年龄在区间[40,60]的有200人,现将调查数据统计整理后,得到如下频数分布表:500位市民日平均睡眠时间的频数分布表(1)根据上表,在给定坐标系中画出这500名市民日平均睡眠时间的频率分布直方图;(2)填写下面2×2列联表,并根据2×2列联表判断是否有99%的把握认为该市20岁至60岁市民的日平均睡眠时间与年龄有关;附:,其中n =a +b +c +d .20.(12分)已知圆O :x 2+y 2=4上一动点A ,过点A 作AB ⊥x 轴,垂足为B 点,AB 中点为P .(1)当A 在圆O 上运动时,求点P 的轨迹E 的方程; (Ⅱ)过点的直线l 与E 交于M ,N 两点,当|MN |=2时,求线段MN 的垂直平分线方程.21.(12分)已知函数f (x )=(2﹣x )e x,g (x )=(x ﹣1)3.(1)若曲线y=g(x)的切线l经过点,求l的方程;(2)若方程3af(x)=g'(x)有两个不相等的实数根,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xoy中,点P(0,﹣1),曲线(t为参数),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ+ρcos2θ=8sinθ.(Ⅰ)若,求C1与C2公共点的直角坐标;(Ⅱ)若C1与C2相交于不同的两点A,B,M是线段AB的中点,当时,求sinα的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|ax﹣1|.(Ⅰ)当a=1时,求不等式f(x)≤x的解集;(Ⅱ)当时,f(x)+x2>1,求实数a的取值范围.2018年云南省昆明市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.﹣2﹣4i B.﹣2+4i C.﹣1+2i D.﹣1﹣2i【解答】解:=.故选:C.2.(5分)已知集合A={x|x2﹣4x+3≤0},B={x∈N|﹣1<x<3},则A∩B=()A.{0,1,2}B.{1,2}C.{1,2,3}D.{2,3}【解答】解:∵合A={x|x2﹣4x+3≤0}={x|1≤x≤3},B={x∈N|﹣1<x<3}={0,1,2},∴A∩B={1,2}.故选:B.3.(5分)程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为()A.65B.176C.183D.184【解答】解:设第一个孩子分配到a1斤棉花,则由题意得:7=996,解得a1=65,∴第八个孩子分得斤数为a8=65+7×17=184.故选:D.4.(5分)执行如图所示的程序框图,则输出a=()A.6B.6.25C.6.5D.6.8【解答】解:模拟执行如图所示的程序框图如下,k=1,a=10,进入循环;k=2,b=,a=;k=3,b=6,a=6;k=4,b=;不满足a>b,终止循环,输出a=6.故选:A.5.(5分)一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“”组成.已知在一个显示数字8的显示池中随机取一点A,点A落在深色区域内的概率为,若在一个显示数字0的显示池中随机取一点B,则点B落在深色区域内的概率为()A.B.C.D.【解答】解:设全等矩形“显示池”的面积为S,每一个深色区域的面积为x,则=,可得=,即有点B落在深色区域内的概率为=6×=,故选:C.6.(5分)一个几何体挖去部分后的三视图如图所示,若其正视图和侧视图都是由三个边长为2的正三角形组成,则该几何体的表面积为()A.13πB.12πC.11πD.【解答】解:由三视图还原原几何体如图,该几何体为圆台内部挖去一个圆锥,圆台的上底面半径为1,下底面半径为2,圆台的母线长为2,圆锥的母线长为2.∴该几何体的表面积为π×22+π×1×2+=12π.故选:B.7.(5分)若实数x,y满足,则的取值范围是()A.B.C.D.【解答】解:作出实数x,y满足的可行域如图阴影部分所示:目标函数可以认为是D(2,3)与可行域内一点(x,y)连线的斜率.当连线过点A时,其最小值为:=,连线经过B时,最大值为:=2,则的取值范围是:[,2]故选:C.8.(5分)已知函数,若f(a﹣1)≥f(﹣a),则实数a的取值范围是()A.B.C.D.【解答】解:当x≤0时,f(x)=e﹣x是减函数且f(x)≥1,当x>0时,f(x)=﹣x2﹣2x+1的对称轴为x=﹣1,抛物线开口向下,此时f(x)在(0,+∞)上是减函数,且f(x)<1,综上f(x)在(﹣∞,+∞)上是减函数,若f(a﹣1)≥f(﹣a),则a﹣1≤﹣a,即a≤,则实数a的取值范围是,故选:A.9.(5分)已知双曲线的左、右焦点分别为F1,F2,点A为双曲线C虚轴的一个端点,若线段AF2与双曲线右支交于点B,且|AF1|:|BF1|:|BF2|=3:4:1,则双曲线C的离心率为()A.B.C.D.【解答】解:∵|AF1|:|BF1|:|BF2|=3:4:1,不妨设|AF1|=3k,|BF1|=4k,|BF2|=k,k≠0,∴|BF1|﹣|BF2|=4k﹣k=2a,∴k=a,∴|AF2|=|AF1|=2a,在Rt△AOF2中,|OF2|=c,|OA|=b,∴4a2=b2+c2=c2﹣a2+c2,∴5a2=2c2,∴a=c,∴e===,故选:C.10.(5分)在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则()A.MN∥C1D1B.MN⊥BC1C.MN⊥平面ACD1D.MN⊥平面ACC1【解答】解:由题意画出图形如图:连接D1B1,可知MN∥C1D1是不正确的,两条直线是异面直线;△CD1B1是正三角形,所以MN⊥BC1是不正确的,所成角为60°;由选项B不正确即可判断MN与CD1不垂直,所以MN⊥BC1不正确,因为D1B1⊥平面ACC1,所以MN⊥平面ACC1.正确;故选:D.11.(5分)已知抛物线C:y2=2px(p>0),圆,直线,自上而下顺次与上述两曲线交于A1,A2,A3,A4四点,则=()A.B.C.p D.【解答】解:分别设A1,A2,A3,A4四点横坐标为x1,x2,x3,x4,由y2=2px可得焦点F(,0),准线l0:x=﹣.由定义得:|A1F|=x1+,又∵|A1F|=|A1A2|+p,∴|A1A2|=x1﹣,同理:|A3A4|=﹣x3;将y=k(x﹣)时,代入抛物线方程,得:k2x2﹣(pk2+2p)x+=0,∴x1x3=,x1+x3=p+;∴=|﹣|=||=||=.故选:B.12.(5分)已知函数f(x)=(x2﹣2x)e x﹣alnx(a∈R)在区间(0,+∞)上单调递增,则a的最大值是()A.﹣e B.e C.D.4e2【解答】解:根据题意,函数f(x)=(x2﹣2x)e x﹣alnx,有x>0,其导数f′(x)=(2x﹣2)e x+(x2﹣2x)e x﹣=(x2﹣2)e x﹣,若函数f(x)=(x2﹣2x)e x﹣alnx在区间(0,+∞)上单调递增,则有f′(x)=(x2﹣2)e x﹣≥0在(0,+∞)上恒成立,变形可得a≤(x3﹣2x)e x在(0,+∞)上恒成立,令g(x)=(x3﹣2x)e x,其导数g′(x)=(x3﹣2x)e x+(3x2﹣2)e x=(x3+3x2﹣2x﹣2)e x,分析可得:当0<x<1时,g′(x)<0,g(x)在区间(0,1)上为减函数,当x>1时,g′(x)>0,g(x)在区间(1,+∞)上为增函数,则g(x)min=g(1)=﹣e,若a≤(x3﹣2x)e x在(0,+∞)上恒成立,必有a≤﹣e,即a的最大值为﹣e,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:“若a,b,m为任意的正数,则”.能够说明p是假命题的一组正数a,b,m的值依次为1,2,3(只要填出0<a≤b,m>0的一组正数即可).【解答】解:命题p:“若a,b,m为任意的正数,则”,命题p是假命题,如:a=1,b=2,c=3时,==<2=,∴能够说明p是假命题的一组正数a,b,m的值依次为1,2,3.故答案为:1,2,3.14.(5分)已知向量,若,则=30.【解答】解:∵,且,∴﹣4﹣(﹣2)x=0,即x=2.∴,则,又,∴=6×3+(﹣3)×(﹣4)=30.故答案为:30.15.(5分)已知函数f(x)=sin(ωx+φ),,若,则f(π)=.【解答】解:函数f(x)=sin(ωx+φ),若,则﹣ω+φ=mπ,m∈Z,ω+φ=nπ,n∈Z;∴ω=(n﹣m)π,n、m∈Z;又0<ω<3,∴ω=2;∴φ=mπ+;又|φ|<,∴φ=,∴f(x)=sin(2x+),∴f(π)=sin(2π+)=sin=.故答案为:.16.(5分)若数列{a n}满足:,若数列{a n}的前99项之和为,则a100=10﹣3.【解答】解:若数列{a n}满足:,可得S100=(a1+a2)+(a3+a4)+…+(a99+a100)=﹣0+2﹣+﹣2+ (10)=10,数列{a n}的前99项之和为,可得a100=S100﹣S99=10﹣3,故答案为:10﹣3.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2c cos B=2a﹣b.(Ⅰ)求C;(Ⅱ)当c=3时,求a+b的取值范围.【解答】解:(Ⅰ)∵由正弦定理可得:2sin C cos B=2sin A﹣sin B,又∵A=π﹣(B+C),∴2sin C•cos B=2sin(B+C)﹣sin B=2sin B•cos C+2cos B•sin C﹣sin B,∴2sin B•cos C=sin B,∵sin B≠0,∴,∵0<C<π,∴.(Ⅱ)∵由正弦定理:,得:,∴=,∵,∴,∴a+b∈(3,6].18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,,D,E分别是BC,CC1的中点.(1)证明:平面ADB1⊥平面ADE;(2)求三棱锥D﹣AB1E的高.【解答】解:(1)由已知得:所以Rt△B1BD∽Rt△DCE所以∠BB1D=∠CDE,所以B1D⊥DE又因为AB=AC,D是BC的中点,所以AD⊥BC所以AD⊥平面BCC1B1,所以AD⊥B1D而AD∩DE=D,所以B1D⊥平面ADE又B1D⊂平面ADB1,所以平面ADB1⊥平面ADE;(2)设三棱锥D﹣AB1E的高为h,因为,所以,由,得:,所以,所以,由,得:,所以h=1.19.(12分)每年的3月21日被定为“世界睡眠日”,拥有良好睡眠对人的健康至关重要,一夜好眠成为很多现代入的诉求.某市健康研究机构于2018年3月14日到3月20日持续一周,通过网络调查该市20岁至60岁市民的日平均睡眠时间T(单位:小时),共有500人参加调查,其中年龄在区间[40,60]的有200人,现将调查数据统计整理后,得到如下频数分布表:500位市民日平均睡眠时间的频数分布表(1)根据上表,在给定坐标系中画出这500名市民日平均睡眠时间的频率分布直方图; (2)填写下面2×2列联表,并根据2×2列联表判断是否有99%的把握认为该市20岁至60岁市民的日平均睡眠时间与年龄有关;附:,其中n =a +b +c +d .【解答】解:(1)所调查500位20岁至60岁市民日平均睡眠时间的频率分布直方图如下所示:(2)由该市年龄在区间[20,60]的市民日平均睡眠时间的频率分布直方图与年龄在区间[40,60]的市民日平均睡眠时间的频率分布表得2×2列联表.∴κ2的观测值由于10.870>10.807故有99%的把握认为该市20岁至60岁居民的日平均睡眠时间与年龄有关.20.(12分)已知圆O:x2+y2=4上一动点A,过点A作AB⊥x轴,垂足为B点,AB中点为P.(1)当A在圆O上运动时,求点P的轨迹E的方程;(Ⅱ)过点的直线l与E交于M,N两点,当|MN|=2时,求线段MN的垂直平分线方程.【解答】解:(Ⅰ)设P(x,y),则A(x,2y),将A(x,2y)代入圆O:x2+y2=4方程得:点P的轨迹(注:学生不写y≠0也不扣分)(Ⅱ)由题意可设直线l方程为:,由得:,所以,,所以.当时,中点纵坐标,代入x=my﹣1得:中点横坐标,斜率为故MN的垂直平分线方程为:当时,同理可得MN的垂直平分线方程为:所以MN的垂直平分线方程为:或.21.(12分)已知函数f(x)=(2﹣x)e x,g(x)=(x﹣1)3.(1)若曲线y=g(x)的切线l经过点,求l的方程;(2)若方程3af(x)=g'(x)有两个不相等的实数根,求a的取值范围.【解答】解:(1)设切点为(x0,g(x0)),因为g'(x)=3(x﹣1)2,所以,由斜率知:,即,可得,,,所以x0=0或x0=1,当x0=0时,g'(x0)=3,切线l的方程为,即3x﹣y﹣1=0,当x0=1时,g'(x0)=0,切线l的方程为,即y=0,综上所述,所求切线l的方程为3x﹣y﹣1=0或y=0;(2)由3af(x)=g'(x)得:3af(x)﹣g'(x)=0,代入整理得:a(x﹣2)e x+(x﹣1)2=0,设h(x)=a(x﹣2)e x+(x﹣1)2,则h'(x)=a(x﹣1)e x+2(x﹣1)=(x﹣1)(ae x+2),由题意得函数h(x)有两个零点.①当a=0时,h(x)=(x﹣1)2,此时h(x)只有一个零点.②当a>0时,由h'(x)<0得x<1,由h'(x)>0得x>1,即h(x)在(﹣∞,1)上为减函数,在(1,+∞)上为增函数,而h(1)=﹣ae<0,h(2)=1>0,所以h(x)在(1,+∞)上由唯一的零点,且该零点在(1,2)上.若,则,取,则,所以h(x)在(﹣∞,1)上有唯一零点,且该零点在(b,1)上;若,则h(0)=﹣2a+1≥0,所以h(x)在(﹣∞,1)上有唯一零点;所以a>0,h(x)有两个零点.当a<0时,由h'(x)=0,得x=1或,若,,所以h(x)至多有一个零点.若,则,易知h(x)在(1,+∞)上单调递减,在上单调递增,在单调递减,又,所以h(x)至多有一个零点.若,则,易知h(x)在上单调递增,在(﹣∞,1)和上单调递减,又h(1)=﹣ae>0,所以h(x)至多有一个零点.综上所述:a的取值范围为(0,+∞).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xoy中,点P(0,﹣1),曲线(t为参数),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ+ρcos2θ=8sinθ.(Ⅰ)若,求C1与C2公共点的直角坐标;(Ⅱ)若C1与C2相交于不同的两点A,B,M是线段AB的中点,当时,求sinα的值.【解答】解:(Ⅰ)若,曲线C1:(t为参数),曲线C1的普通方程为y=x﹣1,曲线C2:ρ+ρcos2θ=8sinθ,即2ρcos2θ=8sinθ,即有ρ2cos2θ=4ρsinθ,曲线C2的直角坐标方程为x2=4y,由解得,所以C1与C2公共点的直角坐标为(2,1);(Ⅱ)将代入x2=4y得(cosα)2t2﹣4(sinα)t+4=0,由△=16sin2α﹣16cos2α>0得,,由,得20sin2α+9sinα﹣20=0,得.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|ax﹣1|.(Ⅰ)当a=1时,求不等式f(x)≤x的解集;(Ⅱ)当时,f(x)+x2>1,求实数a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)≤x,即为|x+1|﹣|x﹣1|≤x,等价于或或,解得:﹣2≤x≤﹣1或﹣1<x≤0或x≥2.故不等式f(x)≤x的解集为[﹣2,0]∪[2,+∞);(Ⅱ)当时,f(x)+x2>1⇔|ax﹣1|<x2+x,由|ax﹣1|<x2+x,得当时,的最小值为3,的最大值为,故a的取值范围是.。

2021届云南省昆明市一中2018级高三上学期第四次一轮复习检测数学(文)试卷参考答案

2021届云南省昆明市一中2018级高三上学期第四次一轮复习检测数学(文)试卷参考答案

CE EB, EB CD ,所以 BE 平面CDE ,所以 BE DE ,所以 C 正确; 假设 BD 平面ACE ,则 BD CE ,又 CE DC , BD I DC D ,所以
CE 平面ABCD ,所以 CE BC ,与 CEB 90 矛盾,所以 D 不正确,选 C.
10. 解析:因为平面 ABCD 为矩形,所以 BC AB . 又平面 ABCD⊥平面 AEBF, BC 平面ABCD ,
2
2
7. 解析:由 AC BC BA 可知, BC BA AC BC BA BC BA BC BA
2
2
2
则 BC AC BA ,故△ ABC 是直角三角形,选 C.
8. 解析:由题意得 f (x)
3 sin x 2 cos 2 x 1 2
3 sin
x
cos x
2 sin
昆明一中 2021 届高三联考第四期文科数学参考答案及解析
一、选择题
题号 1
2
3
4
5
6
7
8
9
10
11
12
答案 A
D
C
C
B
D
C
A
C
D
B
A
1. 解析:因为复数 z 与 z 12 2i 都是纯虚数,设 z b i ,
所以 z 12 2i bi 12 2i 1 b2 2b 1i ,所以1 b2 0 且 b 1 0 ,所以 b 1 .所以 z i .
4 22
2 22
22
所以 f x+f x 1,又因为 2log 2 3 2log2 3 3 ,所以 a+b f 3+f 3 1 ,选 B.
12. 解析:令 g (x) f (x) x2 ,所以 g(x) f (x) 2x , 因为 f (x) 是定义在 R 上的偶函数,x 0 时, f (x) 2x ,所以 g(x) 是定义在 R 上的偶函数,且 x 0 时, g(x) 0 ,所以 g (x) 是在(0 , +)上单调递减;

2018年云南省昆明市高考数学二模试卷(文科)(解析版)

2018年云南省昆明市高考数学二模试卷(文科)(解析版)

2018年云南省昆明市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.﹣2﹣4i B.﹣2+4i C.﹣1+2i D.﹣1﹣2i2.(5分)已知集合A={x|x2﹣4x+3≤0},B={x∈N|﹣1<x<3},则A∩B=()A.{0,1,2}B.{1,2}C.{1,2,3}D.{2,3}3.(5分)程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为()A.65B.176C.183D.1844.(5分)执行如图所示的程序框图,则输出a=()A.6B.6.25C.6.5D.6.85.(5分)一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“”组成.已知在一个显示数字8的显示池中随机取一点A,点A落在深色区域内的概率为,若在一个显示数字0的显示池中随机取一点B,则点B落在深色区域内的概率为()A.B.C.D.6.(5分)一个几何体挖去部分后的三视图如图所示,若其正视图和侧视图都是由三个边长为2的正三角形组成,则该几何体的表面积为()A.13πB.12πC.11πD.7.(5分)若实数x,y满足,则的取值范围是()A.B.C.D.8.(5分)已知函数,若f(a﹣1)≥f(﹣a),则实数a的取值范围是()A.B.C.D.9.(5分)已知双曲线的左、右焦点分别为F1,F2,点A为双曲线C虚轴的一个端点,若线段AF2与双曲线右支交于点B,且|AF1|:|BF1|:|BF2|=3:4:1,则双曲线C的离心率为()A.B.C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则()A.MN∥C1D1B.MN⊥BC1C.MN⊥平面ACD1D.MN⊥平面ACC111.(5分)已知抛物线C:y2=2px(p>0),圆,直线,自上而下顺次与上述两曲线交于A1,A2,A3,A4四点,则=()A.B.C.p D.12.(5分)已知函数f(x)=(x2﹣2x)e x﹣alnx(a∈R)在区间(0,+∞)上单调递增,则a的最大值是()A.﹣e B.e C.D.4e2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:“若a,b,m为任意的正数,则”.能够说明p是假命题的一组正数a,b,m的值依次为.14.(5分)已知向量,若,则=.15.(5分)已知函数f(x)=sin(ωx+φ),,若,则f(π)=.16.(5分)若数列{a n}满足:,若数列{a n}的前99项之和为,则a100=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2c cos B=2a﹣b.(Ⅰ)求C;(Ⅱ)当c=3时,求a+b的取值范围.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,,D,E分别是BC,CC1的中点.(1)证明:平面ADB1⊥平面ADE;(2)求三棱锥D﹣AB1E的高.19.(12分)每年的3月21日被定为“世界睡眠日”,拥有良好睡眠对人的健康至关重要,一夜好眠成为很多现代入的诉求.某市健康研究机构于2018年3月14日到3月20日持续一周,通过网络调查该市20岁至60岁市民的日平均睡眠时间T(单位:小时),共有500人参加调查,其中年龄在区间[40,60]的有200人,现将调查数据统计整理后,得到如下频数分布表:500位市民日平均睡眠时间的频数分布表(1)根据上表,在给定坐标系中画出这500名市民日平均睡眠时间的频率分布直方图;(2)填写下面2×2列联表,并根据2×2列联表判断是否有99%的把握认为该市20岁至60岁市民的日平均睡眠时间与年龄有关;附:,其中n =a +b +c +d .20.(12分)已知圆O :x 2+y 2=4上一动点A ,过点A 作AB ⊥x 轴,垂足为B 点,AB 中点为P .(1)当A 在圆O 上运动时,求点P 的轨迹E 的方程; (Ⅱ)过点的直线l 与E 交于M ,N 两点,当|MN |=2时,求线段MN 的垂直平分线方程.21.(12分)已知函数f (x )=(2﹣x )e x,g (x )=(x ﹣1)3.(1)若曲线y=g(x)的切线l经过点,求l的方程;(2)若方程3af(x)=g'(x)有两个不相等的实数根,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xoy中,点P(0,﹣1),曲线(t为参数),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ+ρcos2θ=8sinθ.(Ⅰ)若,求C1与C2公共点的直角坐标;(Ⅱ)若C1与C2相交于不同的两点A,B,M是线段AB的中点,当时,求sinα的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|ax﹣1|.(Ⅰ)当a=1时,求不等式f(x)≤x的解集;(Ⅱ)当时,f(x)+x2>1,求实数a的取值范围.2018年云南省昆明市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.﹣2﹣4i B.﹣2+4i C.﹣1+2i D.﹣1﹣2i【解答】解:=.故选:C.2.(5分)已知集合A={x|x2﹣4x+3≤0},B={x∈N|﹣1<x<3},则A∩B=()A.{0,1,2}B.{1,2}C.{1,2,3}D.{2,3}【解答】解:∵合A={x|x2﹣4x+3≤0}={x|1≤x≤3},B={x∈N|﹣1<x<3}={0,1,2},∴A∩B={1,2}.故选:B.3.(5分)程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为()A.65B.176C.183D.184【解答】解:设第一个孩子分配到a1斤棉花,则由题意得:7=996,解得a1=65,∴第八个孩子分得斤数为a8=65+7×17=184.故选:D.4.(5分)执行如图所示的程序框图,则输出a=()A.6B.6.25C.6.5D.6.8【解答】解:模拟执行如图所示的程序框图如下,k=1,a=10,进入循环;k=2,b=,a=;k=3,b=6,a=6;k=4,b=;不满足a>b,终止循环,输出a=6.故选:A.5.(5分)一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“”组成.已知在一个显示数字8的显示池中随机取一点A,点A落在深色区域内的概率为,若在一个显示数字0的显示池中随机取一点B,则点B落在深色区域内的概率为()A.B.C.D.【解答】解:设全等矩形“显示池”的面积为S,每一个深色区域的面积为x,则=,可得=,即有点B落在深色区域内的概率为=6×=,故选:C.6.(5分)一个几何体挖去部分后的三视图如图所示,若其正视图和侧视图都是由三个边长为2的正三角形组成,则该几何体的表面积为()A.13πB.12πC.11πD.【解答】解:由三视图还原原几何体如图,该几何体为圆台内部挖去一个圆锥,圆台的上底面半径为1,下底面半径为2,圆台的母线长为2,圆锥的母线长为2.∴该几何体的表面积为π×22+π×1×2+=12π.故选:B.7.(5分)若实数x,y满足,则的取值范围是()A.B.C.D.【解答】解:作出实数x,y满足的可行域如图阴影部分所示:目标函数可以认为是D(2,3)与可行域内一点(x,y)连线的斜率.当连线过点A时,其最小值为:=,连线经过B时,最大值为:=2,则的取值范围是:[,2]故选:C.8.(5分)已知函数,若f(a﹣1)≥f(﹣a),则实数a的取值范围是()A.B.C.D.【解答】解:当x≤0时,f(x)=e﹣x是减函数且f(x)≥1,当x>0时,f(x)=﹣x2﹣2x+1的对称轴为x=﹣1,抛物线开口向下,此时f(x)在(0,+∞)上是减函数,且f(x)<1,综上f(x)在(﹣∞,+∞)上是减函数,若f(a﹣1)≥f(﹣a),则a﹣1≤﹣a,即a≤,则实数a的取值范围是,故选:A.9.(5分)已知双曲线的左、右焦点分别为F1,F2,点A为双曲线C虚轴的一个端点,若线段AF2与双曲线右支交于点B,且|AF1|:|BF1|:|BF2|=3:4:1,则双曲线C的离心率为()A.B.C.D.【解答】解:∵|AF1|:|BF1|:|BF2|=3:4:1,不妨设|AF1|=3k,|BF1|=4k,|BF2|=k,k≠0,∴|BF1|﹣|BF2|=4k﹣k=2a,∴k=a,∴|AF2|=|AF1|=2a,在Rt△AOF2中,|OF2|=c,|OA|=b,∴4a2=b2+c2=c2﹣a2+c2,∴5a2=2c2,∴a=c,∴e===,故选:C.10.(5分)在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则()A.MN∥C1D1B.MN⊥BC1C.MN⊥平面ACD1D.MN⊥平面ACC1【解答】解:由题意画出图形如图:连接D1B1,可知MN∥C1D1是不正确的,两条直线是异面直线;△CD1B1是正三角形,所以MN⊥BC1是不正确的,所成角为60°;由选项B不正确即可判断MN与CD1不垂直,所以MN⊥BC1不正确,因为D1B1⊥平面ACC1,所以MN⊥平面ACC1.正确;故选:D.11.(5分)已知抛物线C:y2=2px(p>0),圆,直线,自上而下顺次与上述两曲线交于A1,A2,A3,A4四点,则=()A.B.C.p D.【解答】解:分别设A1,A2,A3,A4四点横坐标为x1,x2,x3,x4,由y2=2px可得焦点F(,0),准线l0:x=﹣.由定义得:|A1F|=x1+,又∵|A1F|=|A1A2|+p,∴|A1A2|=x1﹣,同理:|A3A4|=﹣x3;将y=k(x﹣)时,代入抛物线方程,得:k2x2﹣(pk2+2p)x+=0,∴x1x3=,x1+x3=p+;∴=|﹣|=||=||=.故选:B.12.(5分)已知函数f(x)=(x2﹣2x)e x﹣alnx(a∈R)在区间(0,+∞)上单调递增,则a的最大值是()A.﹣e B.e C.D.4e2【解答】解:根据题意,函数f(x)=(x2﹣2x)e x﹣alnx,有x>0,其导数f′(x)=(2x﹣2)e x+(x2﹣2x)e x﹣=(x2﹣2)e x﹣,若函数f(x)=(x2﹣2x)e x﹣alnx在区间(0,+∞)上单调递增,则有f′(x)=(x2﹣2)e x﹣≥0在(0,+∞)上恒成立,变形可得a≤(x3﹣2x)e x在(0,+∞)上恒成立,令g(x)=(x3﹣2x)e x,其导数g′(x)=(x3﹣2x)e x+(3x2﹣2)e x=(x3+3x2﹣2x﹣2)e x,分析可得:当0<x<1时,g′(x)<0,g(x)在区间(0,1)上为减函数,当x>1时,g′(x)>0,g(x)在区间(1,+∞)上为增函数,则g(x)min=g(1)=﹣e,若a≤(x3﹣2x)e x在(0,+∞)上恒成立,必有a≤﹣e,即a的最大值为﹣e,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:“若a,b,m为任意的正数,则”.能够说明p是假命题的一组正数a,b,m的值依次为1,2,3(只要填出0<a≤b,m>0的一组正数即可).【解答】解:命题p:“若a,b,m为任意的正数,则”,命题p是假命题,如:a=1,b=2,c=3时,==<2=,∴能够说明p是假命题的一组正数a,b,m的值依次为1,2,3.故答案为:1,2,3.14.(5分)已知向量,若,则=30.【解答】解:∵,且,∴﹣4﹣(﹣2)x=0,即x=2.∴,则,又,∴=6×3+(﹣3)×(﹣4)=30.故答案为:30.15.(5分)已知函数f(x)=sin(ωx+φ),,若,则f(π)=.【解答】解:函数f(x)=sin(ωx+φ),若,则﹣ω+φ=mπ,m∈Z,ω+φ=nπ,n∈Z;∴ω=(n﹣m)π,n、m∈Z;又0<ω<3,∴ω=2;∴φ=mπ+;又|φ|<,∴φ=,∴f(x)=sin(2x+),∴f(π)=sin(2π+)=sin=.故答案为:.16.(5分)若数列{a n}满足:,若数列{a n}的前99项之和为,则a100=10﹣3.【解答】解:若数列{a n}满足:,可得S100=(a1+a2)+(a3+a4)+…+(a99+a100)=﹣0+2﹣+﹣2+ (10)=10,数列{a n}的前99项之和为,可得a100=S100﹣S99=10﹣3,故答案为:10﹣3.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知2c cos B=2a﹣b.(Ⅰ)求C;(Ⅱ)当c=3时,求a+b的取值范围.【解答】解:(Ⅰ)∵由正弦定理可得:2sin C cos B=2sin A﹣sin B,又∵A=π﹣(B+C),∴2sin C•cos B=2sin(B+C)﹣sin B=2sin B•cos C+2cos B•sin C﹣sin B,∴2sin B•cos C=sin B,∵sin B≠0,∴,∵0<C<π,∴.(Ⅱ)∵由正弦定理:,得:,∴=,∵,∴,∴a+b∈(3,6].18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,,D,E分别是BC,CC1的中点.(1)证明:平面ADB1⊥平面ADE;(2)求三棱锥D﹣AB1E的高.【解答】解:(1)由已知得:所以Rt△B1BD∽Rt△DCE所以∠BB1D=∠CDE,所以B1D⊥DE又因为AB=AC,D是BC的中点,所以AD⊥BC所以AD⊥平面BCC1B1,所以AD⊥B1D而AD∩DE=D,所以B1D⊥平面ADE又B1D⊂平面ADB1,所以平面ADB1⊥平面ADE;(2)设三棱锥D﹣AB1E的高为h,因为,所以,由,得:,所以,所以,由,得:,所以h=1.19.(12分)每年的3月21日被定为“世界睡眠日”,拥有良好睡眠对人的健康至关重要,一夜好眠成为很多现代入的诉求.某市健康研究机构于2018年3月14日到3月20日持续一周,通过网络调查该市20岁至60岁市民的日平均睡眠时间T(单位:小时),共有500人参加调查,其中年龄在区间[40,60]的有200人,现将调查数据统计整理后,得到如下频数分布表:500位市民日平均睡眠时间的频数分布表(1)根据上表,在给定坐标系中画出这500名市民日平均睡眠时间的频率分布直方图; (2)填写下面2×2列联表,并根据2×2列联表判断是否有99%的把握认为该市20岁至60岁市民的日平均睡眠时间与年龄有关;附:,其中n =a +b +c +d .【解答】解:(1)所调查500位20岁至60岁市民日平均睡眠时间的频率分布直方图如下所示:(2)由该市年龄在区间[20,60]的市民日平均睡眠时间的频率分布直方图与年龄在区间[40,60]的市民日平均睡眠时间的频率分布表得2×2列联表.∴κ2的观测值由于10.870>10.807故有99%的把握认为该市20岁至60岁居民的日平均睡眠时间与年龄有关.20.(12分)已知圆O:x2+y2=4上一动点A,过点A作AB⊥x轴,垂足为B点,AB中点为P.(1)当A在圆O上运动时,求点P的轨迹E的方程;(Ⅱ)过点的直线l与E交于M,N两点,当|MN|=2时,求线段MN的垂直平分线方程.【解答】解:(Ⅰ)设P(x,y),则A(x,2y),将A(x,2y)代入圆O:x2+y2=4方程得:点P的轨迹(注:学生不写y≠0也不扣分)(Ⅱ)由题意可设直线l方程为:,由得:,所以,,所以.当时,中点纵坐标,代入x=my﹣1得:中点横坐标,斜率为故MN的垂直平分线方程为:当时,同理可得MN的垂直平分线方程为:所以MN的垂直平分线方程为:或.21.(12分)已知函数f(x)=(2﹣x)e x,g(x)=(x﹣1)3.(1)若曲线y=g(x)的切线l经过点,求l的方程;(2)若方程3af(x)=g'(x)有两个不相等的实数根,求a的取值范围.【解答】解:(1)设切点为(x0,g(x0)),因为g'(x)=3(x﹣1)2,所以,由斜率知:,即,可得,,,所以x0=0或x0=1,当x0=0时,g'(x0)=3,切线l的方程为,即3x﹣y﹣1=0,当x0=1时,g'(x0)=0,切线l的方程为,即y=0,综上所述,所求切线l的方程为3x﹣y﹣1=0或y=0;(2)由3af(x)=g'(x)得:3af(x)﹣g'(x)=0,代入整理得:a(x﹣2)e x+(x﹣1)2=0,设h(x)=a(x﹣2)e x+(x﹣1)2,则h'(x)=a(x﹣1)e x+2(x﹣1)=(x﹣1)(ae x+2),由题意得函数h(x)有两个零点.①当a=0时,h(x)=(x﹣1)2,此时h(x)只有一个零点.②当a>0时,由h'(x)<0得x<1,由h'(x)>0得x>1,即h(x)在(﹣∞,1)上为减函数,在(1,+∞)上为增函数,而h(1)=﹣ae<0,h(2)=1>0,所以h(x)在(1,+∞)上由唯一的零点,且该零点在(1,2)上.若,则,取,则,所以h(x)在(﹣∞,1)上有唯一零点,且该零点在(b,1)上;若,则h(0)=﹣2a+1≥0,所以h(x)在(﹣∞,1)上有唯一零点;所以a>0,h(x)有两个零点.当a<0时,由h'(x)=0,得x=1或,若,,所以h(x)至多有一个零点.若,则,易知h(x)在(1,+∞)上单调递减,在上单调递增,在单调递减,又,所以h(x)至多有一个零点.若,则,易知h(x)在上单调递增,在(﹣∞,1)和上单调递减,又h(1)=﹣ae>0,所以h(x)至多有一个零点.综上所述:a的取值范围为(0,+∞).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xoy中,点P(0,﹣1),曲线(t为参数),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ+ρcos2θ=8sinθ.(Ⅰ)若,求C1与C2公共点的直角坐标;(Ⅱ)若C1与C2相交于不同的两点A,B,M是线段AB的中点,当时,求sinα的值.【解答】解:(Ⅰ)若,曲线C1:(t为参数),曲线C1的普通方程为y=x﹣1,曲线C2:ρ+ρcos2θ=8sinθ,即2ρcos2θ=8sinθ,即有ρ2cos2θ=4ρsinθ,曲线C2的直角坐标方程为x2=4y,由解得,所以C1与C2公共点的直角坐标为(2,1);(Ⅱ)将代入x2=4y得(cosα)2t2﹣4(sinα)t+4=0,由△=16sin2α﹣16cos2α>0得,,由,得20sin2α+9sinα﹣20=0,得.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|ax﹣1|.(Ⅰ)当a=1时,求不等式f(x)≤x的解集;(Ⅱ)当时,f(x)+x2>1,求实数a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)≤x,即为|x+1|﹣|x﹣1|≤x,等价于或或,解得:﹣2≤x≤﹣1或﹣1<x≤0或x≥2.故不等式f(x)≤x的解集为[﹣2,0]∪[2,+∞);(Ⅱ)当时,f(x)+x2>1⇔|ax﹣1|<x2+x,由|ax﹣1|<x2+x,得当时,的最小值为3,的最大值为,故a的取值范围是.。

云南省昆明市冠益中学2018年高三数学文测试题含解析

云南省昆明市冠益中学2018年高三数学文测试题含解析

云南省昆明市冠益中学2018年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图是函数在区间上的图象,为了得到这个函数的图象,只要将的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标缩短到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标缩短到原来的2倍,纵坐标不变参考答案:A略2. 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(﹣2)和极小值f(2)参考答案:D【考点】函数在某点取得极值的条件;函数的图象.【分析】利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.【解答】解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f (2).故选D.3. 已知是奇函数当>0时,=a x(a>0且a≠1)且= -3 ,则a的值是()A、B、3 C、9 D、参考答案:A4. 抛物线绕轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是(A)1 (B)2(C)(D)参考答案:B,做出轴截面,设正方体的边长为,则,为面的对角线,所以,所以,代入得。

云南省昆明市嵩明县第三完全中学2018年高三数学文月考试题含解析

云南省昆明市嵩明县第三完全中学2018年高三数学文月考试题含解析

云南省昆明市嵩明县第三完全中学2018年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,BC:AB=2:,∠B=30°,则∠C=()A.30°B.45°C.60°D.75°参考答案:C【考点】余弦定理.【分析】利用余弦定理与勾股定理的逆定理即可得出.【解答】解:∵BC:AB=2:,不妨取a=2,c=.∴b2=﹣2×=1.∴b2+c2=a2,∴∠A=90°.∴∠C=60°.故选:C.【点评】本题考查了余弦定理与勾股定理的逆定理,考查了推理能力与计算能力,属于中档题.2. 已知,现给出如下结论:①;②;③;④.其中正确结论的序号为:(A)①③(B)①④(C)②④(D)②③参考答案:3. 函数的定义域是()A. B. C. (-∞,0)D.(-∞,+∞)参考答案:B4. 在复数集C={a+bi|a,b∈R}中的两个数2+bi与a﹣3i相等,则实数a,b的值分别为()A.2,3 B.2,﹣3 C.﹣2,3 D.﹣2,﹣3参考答案:B【考点】A2:复数的基本概念.【分析】直接由2+bi与a﹣3i相等,得a,b的值.【解答】解:由2+bi与a﹣3i相等,得a=2,b=﹣3.则实数a,b的值分别为:2,﹣3.故选:B.【点评】本题考查了复数的基本概念,是基础题.5. 一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a元一年定期,若年利率为r保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为A.B.C.D.参考答案:解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的元产生的本利合计为,同理:孩子在2周岁生日时存入的元产生的本利合计为,孩子在3周岁生日时存入的元产生的本利合计为,孩子在17周岁生日时存入的元产生的本利合计为,可以看成是以为首项,为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:;故选:.6. 函数在一个周期内的图象如图所示,则此函数的解析式可能是(A) (B)(C) (D)参考答案:B由图象可知,所以函数的周期,又,所以。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明市2018届高三复习教学质量检测
文科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合{1,0,1}A =-,2{|}B x x x ==,则A B ⋂=( )
A .{1}
B .{1}-
C .{0,1}
D .{1,0}-
2.已知,a b R ∈,复数21i a bi i
+=+,则a b +=( ) A .2 B .1 C .0 D .-2
3.若角α的终边经过点(1,,则sin α=( )
A .12-
B ..12
D .4. “搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.
根据该走势图,下列结论正确的是( )
A .这半年中,网民对该关键词相关的信息关注度呈周期性变化
B .这半年中,网民对该关键词相关的信息关注度不断减弱
C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差
D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值
5.已知直线:l y m =+与圆22:(3)6C x y +-=相交于A 、B 两点,若||AB =m 的值。

相关文档
最新文档