管理运筹学复习题解析
管理运筹学复习题及部分参考答案
一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策二、简答题 1.简述运筹学的工作步骤。
2.运筹学中模型有哪些基本形式 3.简述线性规划问题隐含的假设。
4.线性规划模型的特征。
5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解 6.简述对偶理论的基本内容。
7.简述对偶问题的基本性质。
8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。
9.简述运输问题的求解方法。
10.树图的性质。
11.简述最小支撑树的求法。
12.绘制网络图应遵循什么规则。
三、书《收据模型与决策》2.13 14. 有如下的直线方程:2x 1 +x 2 =4 a. 当x 2 =0 时确定x 1 的值。
当x 1 =0 时确定x 2 的值。
b. 以x 1 为横轴x 2 为纵轴建立一个两维图。
使用a 的结果画出这条直线。
c. 确定直线的斜率。
d. 找出斜截式直线方程。
然后使用这个形式确定直线的斜率和直线在纵轴上的截距。
答案: 14. a. 如果x 2 =0,则x 1 =2。
如果x 1 =0,则x 2 =4。
c. 斜率= -2 d. x 2 =-2 x 1 +4 2.40 你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。
模型的代数形式如下所示。
Maximize 成本=15 x 1 +20 x 2 约束条件约束1:x 1 + 2x 2 10 约束2:2x 1 3x 2 6 约束3:x 1 +x 2 6和x 1 0,x 2 0 a. 用图解法求解这个模型。
b. 为这个问题建立一个电子表格模型。
c. 使用Excel Solver 求解这个模型。
答案: a. 最优解:(x 1 , x 2 )=(2, 4),C=110 b c.活动获利 1 2总计水平A B C 1 2 2 3 1 1 10 10 8 6 6 6 单位成本方案15 20 2 4 $110.00 3.2 考虑具有如下所示参数表的资源分配问题: 资源每一活动的单位资源使用量可获得的资源数量 1 2 1 2 3 2 3 2 1 3 4 10 20 20 单位贡献$20 $30 单位贡献=单位活动的利润b. 将该问题在电子表格上建模。
《管理运筹学期末复习题》
《管理运筹学期末复习题》运筹学期末复习题⼀、判断题:1、任何线性规划⼀定有最优解。
()2、若线性规划有最优解,则⼀定有基本最优解。
()3、线性规划可⾏域⽆界,则具有⽆界解。
()4、基本解对应的基是可⾏基。
()5、在基本可⾏解中⾮基变量⼀定为零。
()6、变量取0或1的规划是整数规划。
()7、运输问题中应⽤位势法求得的检验数不唯⼀。
()8、产地数为3,销地数为4的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为⼀组基变量.()9、不平衡运输问题不⼀定有最优解。
()10、m+n-1个变量构成基变量组的充要条件是它们不包含闭回路。
()11、含有孤⽴点的变量组不包含有闭回路。
()12、不包含任何闭回路的变量组必有孤⽴点。
()13、产地个数为m销地个数为n的平衡运输问题的系数距阵为A,则有r(A)≤m+n-1()14、⽤⼀个常数k加到运价矩阵C的某列的所有元素上,则最优解不变。
()15、匈⽛利法是求解最⼩值分配问题的⼀种⽅法。
()16、连通图G的部分树是取图G的点和G的所有边组成的树。
()17、求最⼩树可⽤破圈法.()18、Dijkstra算法要求边的长度⾮负。
()19、Floyd算法要求边的长度⾮负。
()20、在最短路问题中,发点到收点的最短路长是唯⼀的。
()21、连通图⼀定有⽀撑树。
()22、⽹络计划中的总⼯期等于各⼯序时间之和。
()23、⽹络计划中,总时差为0的⼯序称为关键⼯序。
()24、在⽹络图中,关键路线⼀定存在。
()25、紧前⼯序是前道⼯序。
()26、后续⼯序是紧后⼯序。
()27、虚⼯序是虚设的,不需要时间,费⽤和资源,并不表⽰任何关系的⼯序。
()28、动态规划是求解多阶段决策问题的⼀种思路,同时是⼀种算法。
()29、求最短路径的结果是唯⼀的。
()30、在不确定型决策中,最⼩机会损失准则⽐等可能性则保守性更强。
()31、决策树⽐决策矩阵更适于描述序列决策过程。
()32、在股票市场中,有的股东赚钱,有的股东赔钱,则赚钱的总⾦额与赔钱的总⾦额相等,因此称这⼀现象为零和现象。
管理运筹学期末复习资料【韩伯棠】
运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP模型(线性规划模型)三要素:(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。
《管理运筹学》第四版课后习题解析上
《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。
(2)等值线为图中虚线部分。
(3)由图2-1可知,最优解为B 点,最优解1x =127,2157x =;最优目标函数值697。
图2-1 2.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6x x =⎧⎨=⎩,函数值为3.6。
图2-2(2)无可行解。
(3)无界解。
(4)无可行解。
(5)无穷多解。
(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。
3.解: (1)标准形式12123max 32000f x x s s s =++++1211221231212392303213229,,,,0x x s x x s x x s x x s s s ++=++=++=≥(2)标准形式1212min 4600f x x s s =+++12112212121236210764,,,0x x s x x s x x x x s s --=++=-=≥(3)标准形式12212min 2200f x x x s s ''''=-+++1221122122212212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥4.解: 标准形式1212max 10500z x x s s =+++1211221212349528,,,0x x s x x s x x s s ++=++=≥ 松弛变量(0,0) 最优解为 1x =1,x 2=3/2。
5.解: 标准形式12123min 118000f x x s s s =++++121122123121231022033184936,,,,0x x s x x s x x s x x s s s +-=+-=+-=≥剩余变量(0, 0, 13) 最优解为 x 1=1,x 2=5。
运筹学基础章节习题详解
章节习题详解第1章导论1.区别决策中的定性分析和定量分析,试各举出两例。
答:决策中的定性分析是决策人员根据自己的主观经验和感受到的感觉或知识对决策问题作出的分析和决策,在许多情况下这种做法是合适的。
例1 在评定“三好生”的条件中,评价一个学生是否热爱中国共产党,尊敬师长,团结同学,热爱劳动等属于定性分析,它依赖于评价者对被评价者的感知、喜好而定。
在“德”、“智”、“体”这三个条件中规定“德”占30%、“智”占40%、“体”占30%,这种比例是决策者们通过协商和主观意识得出的,它也属于定性分析的范畴。
决策中的定量分析是借助于某些正规的计量方法去作出决策的方法,它主要依赖于决策者从客观实际获得的数据和招待所采用的数学方法。
例2 在普通高等学校录取新生时,通常按该生的入学考试成绩是否够某档分数线而定,这就是一种典型的定量分析方法。
另外,在评价一个学生某一学期的学习属于“优秀”、“良好”、“一般”、“差”中的哪一类时,往往根据该生的各科成绩的总和属于哪一个档次,或者将各科成绩加权平均后视其平均值属于哪一个档次而定。
这也是一种典型的定量分析方法。
2.构成运筹学的科学方法论的六个步骤是哪些?答:运用运筹学进行决策过程的几个步骤是:1.观察待决策问题所处的环境;2.分析和定义待决策的问题;3.拟定模型;4.选择输入资料;5.提出解并验证它的合理性;6.实施最优解。
3.简述运筹学的优点与不足之处。
答:运用运筹学处理决策问题有以下优点:(1)快速显示对有关问题寻求可行解时所需的数据方面的差距;(2)由于运筹学处理决策问题时一般先考察某种情况,然后评价由结局变化所产生的结果,所以不会造成各种损失和过大的费用;(3)使我们在众多方案中选择最优方案;(4)可以在建模后利用计算机求解;(5)通过处理那些构思得很好的问题,运筹学的运用就可以使管理部门腾出时间去处理那些构思得不好的问题,而这些问题常常要依赖于足够的主观经验才能解决的;(6)某些复杂的运筹学问题,可以通过计算机及其软件予以解决。
《管理运筹学》第四版课后习题解析(上)之欧阳德创编
《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1.解: (1)可行域为OABC 。
(2)等值线为图中虚线部分。
(3)由图2-1可知,最优解为B 点,最优解1x =127,2157x =;最优目标函数值697。
图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6x x =⎧⎨=⎩,函数值为3.6。
图2-2(2)无可行解。
(3)无界解。
(4)无可行解。
(5)无穷多解。
(6)有唯一解1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。
3.解:(1)标准形式(2)标准形式(3)标准形式4.解:标准形式松弛变量(0,0)最优解为1x =1,x2=3/2。
5.解:标准形式剩余变量(0, 0, 13)最优解为x1=1,x2=5。
6.解:(1)最优解为x1=3,x2=7。
(2)113c <<。
(3)226c <<。
(4)1264x x ==。
(5)最优解为x1=8,x2=0。
(6)不变化。
因为当斜率12113c c ---≤≤,最优解不变,变化后斜率为1,所以最优解不变。
7.解:设x ,y 分别为甲、乙两种柜的日产量,目标函数z=200x +240y , 线性约束条件:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+006448120126y x y x y x 即 ⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00162202y x y x y x 作出可行域.解⎩⎨⎧=+=+162202y x y x 得)8,4(Q 答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.8.解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积zm2.目标函数z=x +2y , 线性约束条件:作出可行域,并做一组一组平行直线x +2y=t .解⎩⎨⎧=+=+12273y x y x 得)2/15,2/9(E.但E 不是可行域内的整点,在可行域的整点中,点)8,4(使z 取得最小值。
《管理运筹学》试题及参考答案
《管理运筹学》试题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是(A )A.销售数量B.销售价格C.顾客的需求D.竞争价格2.我们可以通过(C )来验证模型最优解。
A.观察B.应用C.实验D.调查3.建立运筹学模型的过程不包括(A )阶段。
A.观察环境B.数据分析C.模型设计D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
运筹学复习试题和参考答案解析
《运筹学》一、判断题:在下列各题中,您认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1、 T2、 F3、 T4、T5、T6、T7、 F8、 T9、 F10、T 11、 F 12、 F 13、T 14、 T 15、 F1、线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2、用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3、若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4、满足线性规划问题所有约束条件的解称为可行解。
( T )5、在线性规划问题的求解过程中,基变量与非机变量的个数就是固定的。
( T )6、对偶问题的对偶就是原问题。
( T )7、在可行解的状态下,原问题与对偶问题的目标函数值就是相等的。
( F )8、运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9、指派问题的解中基变量的个数为m+n。
( F )10、网络最短路径就是指从网络起点至终点的一条权与最小的路线。
( T )11、网络最大流量就是网络起点至终点的一条增流链上的最大流量。
( F)12、工程计划网络中的关键路线上事项的最早时间与最迟时间往往就是不相等。
( F )13、在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14、单目标决策时,用不同方法确定的最佳方案往往就是不一致的。
( T )15、动态规则中运用图解法的顺推方法与网络最短路径的标号法上就是一致的。
( F )二、单项选择题1、A2、B3、D4、B5、A6、C7、B8、C9、 D 10、B11、A 12、D 13、C 14、C 15、B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
A、增大B、不减少C、减少D、不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上( B )。
《运筹学》习题与答案
《运筹学》习题与答案(解答仅供参考)一、名词解释1. 线性规划:线性规划是运筹学的一个重要分支,它主要研究在一系列线性约束条件下,如何使某个线性目标函数达到最大值或最小值的问题。
2. 动态规划:动态规划是一种解决多阶段决策问题的优化方法,通过把原问题分解为相互联系的子问题来求解,对每一个子问题只解一次,并将其结果保存起来以备后续使用,避免了重复计算。
3. 整数规划:整数规划是在线性规划的基础上,要求决策变量取值为整数的一种优化模型,用于解决实际问题中决策变量只能取整数值的情形。
4. 马尔可夫决策过程:马尔可夫决策过程是一种随机环境下的决策模型,其中系统的状态转移具有无后效性(即下一状态的概率分布仅与当前状态有关),通过对每个状态采取不同的策略(行动)以最大化期望收益。
5. 最小费用流问题:最小费用流问题是指在网络流模型中,每条边都有一个容量限制和单位流量的成本,寻找满足所有节点流量平衡的同时使得总成本最小的流方案。
二、填空题1. 运筹学的主要研究对象是系统最优化问题,其核心在于寻求在各种(约束条件)下实现(目标函数)最优的方法。
2. 在运输问题中,供需平衡指的是每个(供应地)的供应量之和等于每个(需求地)的需求量之和。
3. 博弈论中的纳什均衡是指在一个博弈过程中,对于各个参与者来说,当其他所有人都不改变策略时,没有人有动机改变自己的策略,此时的策略组合构成了一个(纳什均衡)。
4. 在网络计划技术中,关键路径是指从开始节点到结束节点的所有路径中,具有最长(总工期)的路径。
5. 对于一个非负矩阵A,如果存在一个非负矩阵B,使得AB=BA=A,则称A为(幂等矩阵)。
三、单项选择题1. 下列哪项不是线性规划的标准形式所具备的特点?(D)A. 目标函数是线性的B. 约束条件是线性的C. 决策变量非负D. 变量系数可以为复数2. 当线性规划问题的一个基解满足所有非基变量的检验数都非正时,那么该基解(C)。
A. 不是可行解B. 是唯一最优解C. 是局部最优解D. 不一定是可行解3. 下列哪种情况适合用动态规划法求解?(B)A. 问题无重叠子问题B. 问题具有最优子结构C. 问题不能分解为多个独立子问题D. 子问题之间不存在关联性4. 在运输问题中,如果某条路线的运输量已经达到了其最大运输能力,我们称这条路线处于(A)状态。
《管理运筹学》第四版课后习题解析(上)
《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。
(2)等值线为图中虚线部分。
(3)由图2-1可知,最优解为B 点,最优解1x =127,2157x =;最优目标函数值697。
图2-1 2.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6x x =⎧⎨=⎩,函数值为3.6。
图2-2(2)无可行解。
(3)无界解。
(4)无可行解。
(5)无穷多解。
(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。
3.解:(1)标准形式 (2)标准形式 (3)标准形式 4.解: 标准形式松弛变量(0,0) 最优解为 1x =1,x 2=3/2。
5.解: 标准形式剩余变量(0, 0, 13) 最优解为 x 1=1,x 2=5。
6.解:(1)最优解为 x 1=3,x 2=7。
(2)113c <<。
(3)226c <<。
(4)1264x x ==。
(5)最优解为 x 1=8,x 2=0。
(6)不变化。
因为当斜率12113c c ---≤≤,最优解不变,变化后斜率为1,所以最优解不变。
7.解:设x ,y 分别为甲、乙两种柜的日产量,目标函数z=200x +240y , 线性约束条件:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+006448120126y x y x y x 即 ⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00162202y x y x y x作出可行域.解⎩⎨⎧=+=+162202y x y x 得)8,4(Q 答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.8.解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积zm2. 目标函数z=x +2y , 线性约束条件:作出可行域,并做一组一组平行直线x +2y=t .解⎩⎨⎧=+=+12273y x y x 得)2/15,2/9(E.但E 不是可行域内的整点,在可行域的整点中,点)8,4(使z 取得最小值。
《管理运筹学》第四版课后习题解析
《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1•解:(1) 可行域为OABG(2) 等值线为图中虚线部分。
图2-1 2•解:3•解:12,X215上;最优目标函数值769~7X20.206,函数值为3、6。
X1⑹有唯一解X2 203,函数值为92。
8 3 3(3)由图2-1可知,最优解为B点,最优解图2-2(2) 无可行解。
(3) 无界解。
(4) 无可行解。
(1)如图2-2所示,由图解法可知有唯一解(1) 标准形式max 3x1 2x2 0s1 0s2 0s39x1 2x2 s1 303x1 2x2 s2 132x1 2x2 s3 9X i,X2,®,S2,S3 > 0(2) 标准形式min f 4X1 6X2 0S1 0S23X1 X2 S1 6X1 2X2 S2 107X1 6X2 4X1, X2,S1, S2》(3) 标准形式min f X1 2X2 2X2 0S1 0S23X1 5X2 5X2 S1 702X1 5X2 5X2 503X1 2X2 2X2 S2 30X i,X2,X2,q,S2 > 0 4.解: 标准形式maX z 10X1 5X2 0S1 0S23X1 4X2 S1 95X1 2X2 S2 8X1, X2,s1,s2> 0松弛变量(0,0)最优解为X1=1,X2=3/2。
5.解: 标准形式min f 11X1 8X2 0S1 0S2 0S310X1 2X2 S1 203X1 3X2 S2 184X1 9X2 S3 36X i,X2,S i,S2,S3 > 0剩余变量(0, 0, 13)最优解为X i=1,X2=5。
6•解:(1) 最优解为X I=3,X2=7。
(2) 1 q 3。
⑶ 2 C2 6。
Xi 6。
⑷4X 4。
⑸最优解为X1=8,X2=0。
(6)不变化。
因为当斜率1 < 9 < 1,最优解不变,变化后斜率为1,所以最优解不变。
管理科学与工程考研必备运筹学与决策分析题型解析
管理科学与工程考研必备运筹学与决策分析题型解析管理科学与工程考研必备:运筹学与决策分析题型解析运筹学与决策分析作为管理科学与工程领域中的重要学科,广泛应用于各种实际问题的分析与解决。
考研中,这一学科的题型也是必考内容之一。
在本文中,我们将对运筹学与决策分析的题型进行详细解析,帮助考生更好地应对考试。
一、线性规划题型线性规划是运筹学与决策分析中最基础的内容之一。
在考研中,常见的线性规划题型包括最大化问题、最小化问题和求解最优解等。
解决这类题目的关键在于建立数学模型和运用线性规划的相关理论与方法。
例如,某企业要决定生产两种产品A和B,其单价分别为10元/件和8元/件。
已知每天生产产品A需要人工2小时,材料1件,而生产产品B需要人工3小时,材料1件。
每日可用的人工总量为20小时,材料总量为15件。
企业的目标是最大化每日的总利润。
如何确定生产各种产品的数量以实现最大利润?请给出详细解答。
解析:首先,我们定义变量x和y分别表示产品A和产品B的数量。
目标函数可以表示为:最大化利润=10x + 8y。
约束条件为:2x + 3y ≤20和x + y ≤ 15。
在满足约束条件的前提下,求取目标函数的最大值。
二、整数规划题型整数规划是线性规划的一种扩展形式,要求变量的取值必须为整数。
在实际问题中,往往存在许多限制条件,这就需要考生在解题过程中综合运用线性规划和整数规划的方法。
例如,某工厂需要生产一种产品,并有3条生产线可供选择。
第一条生产线每天生产产品的数量不得多于100件;第二条生产线每天生产产品的数量不得多于200件;第三条生产线每天生产产品的数量不得多于150件。
工厂希望最大化每天的总产量。
请问该如何进行决策?解析:我们定义变量x1、x2和x3分别表示选择第一、二和三条生产线生产产品的数量。
目标函数可以表示为:最大化总产量=x1 + x2 +x3。
约束条件为:x1 ≤ 100、x2 ≤ 200和x3 ≤ 150。
《管理运筹学》试题及答案
中国矿业大学2010~2011学年第二学期《 管理运筹学 》模拟试卷一考试时间:120 分钟 考试方式:闭 卷1212121212max 334262180,0z x x x x x x x x x x =+⎧⎪+≤⎪⎪-+≤⎨⎪+≤⎪≥≥⎪⎩2. 用表上作业法求下表中给出的运输问题的最优解。
答案: 1.解:加入人工变量,化问题为标准型式如下:1234512312412512345max 3300042.6218,,,,0z x x x x x x x x x x x s t x x x x x x x x =++++++=⎧⎪-++=⎪⎨++=⎪⎪≥⎩(3分)下面用单纯形表进行计算得终表为:所以原最优解为 *(3,0,1,5,0)T X =2、解: 因为销量:3+5+6+4+3=21;产量:9+4+8=21;为产销平衡的运输问题。
(1分)由最小元素法求初始解:(5分)用位势法检验得:(7分)所有非基变量的检验数都大于零,所以上述即为最优解且该问题有唯一最优解。
此时的总运费:min 45594103112011034150z =⨯+⨯+⨯+⨯+⨯+⨯+⨯=。
3、解:系数矩阵为:1279798966671712149151466104107109⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(3分)从系数矩阵的每行元素减去该行的最小元素,得:50202 23000 010572 98004 06365⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦经变换之后最后得到矩阵:70202 43000 08350 118004 04143⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦相应的解矩阵:01000 00010 00001 00100 10000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(13分)由解矩阵得最有指派方案:甲—B,乙—D,丙—E,丁—C,戊—A 或者甲—B,乙—C,丙—E,丁—D,戊—A (2分)所需总时间为:Minz=32 (2分)中国矿业大学2010~2011学年第二学期《管理运筹学》模拟试卷二考试时间:120 分钟考试方式:闭卷1.求解下面运输问题。
《管理运筹学》复习题及参考答案
《管理运筹学》复习题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过(C)来验证模型最优解。
A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括(A )阶段。
A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
管理运筹学》-第四版课后习题解析(上)
《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1.解:(1)可行域为OABC。
(2)等值线为图中虚线部分。
(3)由图2-1可知,最优解为B点,最优解1x=127,2157x=;最优目标函数值697。
图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6xx=⎧⎨=⎩,函数值为3.6。
图2-2(2)无可行解。
(3)无界解。
(4)无可行解。
(5)无穷多解。
(6)有唯一解 1220383x x ⎧=⎪⎪⎨⎪=⎪⎩,函数值为923。
3.解:(1)标准形式12123max 32000f x x s s s =++++1211221231212392303213229,,,,0x x s x x s x x s x x s s s ++=++=++=≥(2)标准形式1212min 4600f x x s s =+++12112212121236210764,,,0x x s x x s x x x x s s --=++=-=≥(3)标准形式12212min 2200f x x x s s ''''=-+++ 1221122122212212355702555032230,,,,0x x x s x x x x x x s x x x s s '''-+-+=''''-+=''''+--=''''≥4.解: 标准形式1212max 10500z x x s s =+++1211221212349528,,,0x x s x x s x x s s ++=++=≥ 松弛变量(0,0) 最优解为 1x =1,x 2=3/2。
5.解:标准形式12123min 118000f x x s s s =++++121122123121231022033184936,,,,0x x s x x s x x s x x s s s +-=+-=+-=≥剩余变量(0, 0, 13) 最优解为 x 1=1,x 2=5。
管理运筹学复习题及部分参考答案
管理运筹学复习题及部分参考答案一、填空题1. 运筹学起源于________时期,它是一门研究如何有效地进行决策的学科。
答案:二战2. 线性规划问题中,约束条件通常表示为________。
答案:线性不等式3. 在目标规划中,若目标函数为多个目标的加权和,则称为________目标规划。
答案:加权目标规划4. 整数规划中的0-1变量表示________。
答案:决策变量是否取值5. 动态规划是一种用于解决________决策问题的方法。
答案:多阶段二、选择题1. 在线性规划中,若约束条件均为等式,则该线性规划问题称为________。
A. 线性方程组B. 线性不等式组C. 线性规划问题D. 线性方程组与线性不等式组的混合答案:C2. 在目标规划中,以下哪项不是目标规划的约束条件?A. 目标约束B. 系统约束C. 系统等式D. 目标等式答案:D3. 在整数规划中,若决策变量必须是整数,则该问题称为________。
A. 整数规划B. 线性规划C. 非线性规划D. 动态规划答案:A4. 动态规划问题的最优策略是________。
A. 阶段决策的最优解B. 子问题的最优解C. 整个问题的最优解D. 阶段决策的最优解与子问题的最优解的组合答案:C三、判断题1. 线性规划问题的目标函数必须是线性的。
()答案:正确2. 在目标规划中,目标函数与约束条件均可以是非线性的。
()答案:错误3. 整数规划问题可以转化为线性规划问题求解。
()答案:错误4. 动态规划适用于解决线性规划问题。
()答案:错误四、计算题1. 某企业生产两种产品,甲产品每件利润为100元,乙产品每件利润为150元。
甲产品需要2小时加工时间,乙产品需要3小时加工时间。
企业每周最多可加工60小时。
求企业如何安排生产计划以使利润最大化。
答案:设甲产品生产件数为x,乙产品生产件数为y。
目标函数:Z = 100x + 150y约束条件:2x + 3y ≤ 60(加工时间)x, y ≥ 0(非负约束)求解得:x = 15,y = 10,最大利润为2000元。
运筹学各章的作业题答案解析
4、如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检验数之间的关系?
5、利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?
6、在线性规划的最优单纯形表中,松弛变量(或剩余变量) ,其经济意义是什么?
7、在线性规划的最优单纯形表中,松弛变量 的检验数 ,其经济意义是什么?
(2)对c1=2进行灵敏度分析,求出c1由2变为4时的最优基和最优解。
(3)对第二个约束中的右端项b2=4进行灵敏度分析,求出b2从4变为1时新的最优基和最优解。
(4)增加一个新的变量x6,它在目标函数中的系数c6=4,在约束条件中的系数向量为 ,求新的最优基和最优解。
(5)增加一个新的约束x2+x32,求新的最优基和最优解。
x1,
x2
≥0
3、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。
max
z=
2x1
+x2
-x3
s.t.
x1
+ x2
+2x3
≤6
x1
+4x2
-x3
≤4
x1,
x2,
x3
≥0
4、用单纯形表求解以下线性规划问题
(1)
max
z=
x1
-2x2
+x3
s.t.
x1
+x2
+x3
≤12
2x1
+x2
-x3
5、某工厂用甲、乙、丙三种原料生产A、B、C、D四种产品,每种产品消耗原料定额以及三种原料的数量如下表所示:
产品
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
065、线性规划数学模型具备哪几个要素?第二章线性规划的基本概念一、填空题1.线性规划问题是求一个_在一组条件下的极值问题。
2.图解法适用于含有变量的线性规划问题。
3.线性规划问题的可行解是指满足的解。
4.在线性规划问题的基本解中,所有的非基变量等于。
5.在线性规划问题中,基本可行解的非零分量所对应的列向量6.若线性规划问题有最优解,则最优解一定可以在可行域的达到。
7.线性规划问题有可行解,则必有。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其_的集合中进行搜索即可得到最优解。
9.满足条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式_端加入变量。
12.线性规划模型包括三个要素。
13.线性规划问题可分为目标函数求和_值两类。
14.线性规划问题的标准形式中,约束条件取式,目标函数求值,而所有变量必须。
15.线性规划问题的基可行解与可行域顶点的关系是16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则。
17.求解线性规划问题可能的结果有。
18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一变量。
19.如果某个变量X j为自由变量,则应引进两个非负变量X j′,X j〞,同时令X j=X j′-X j。
20.表达线性规划的简式中目标函数为。
21..线性规划一般表达式中,a ij表示该元素位置在。
二、单选题1.如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_ _。
A.m个 B.n个 C.C n m D.C m n个2.下列图形中阴影部分构成的集合是凸集的是3.线性规划模型不包括下列_要素。
A.目标函数 B.约束条件 C.决策变量 D.状态变量4.线性规划模型中增加一个约束条件,可行域的范围一般将_ _。
A.增大 B.缩小 C.不变 D.不定5.若针对实际问题建立的线性规划模型的解是无界的,不可能的原因是 __。
A.出现矛盾的条件 B.缺乏必要的条件 C.有多余的条件 D.有相同的条件6.在下列线性规划问题的基本解中,属于基可行解的是A.(一1,0,O)T B.(1,0,3,0)T C.(一4,0,0,3)T D.(0,一1,0,5)T7.关于线性规划模型的可行域,下面_ _的叙述正确。
A.可行域内必有无穷多个点B.可行域必有界C.可行域内必然包括原点D.可行域必是凸的8.下列关于可行解,基本解,基可行解的说法错误的是_ __.A.可行解中包含基可行解 B.可行解与基本解之间无交集C.线性规划问题有可行解必有基可行解 D.满足非负约束条件的基本解为基可行解9.线性规划问题有可行解,则A 必有基可行解B 必有唯一最优解C 无基可行解 D无唯一最优解10.线性规划问题有可行解且凸多边形无界,这时A没有无界解 B 没有可行解 C 有无界解 D 有有限最优解11.若目标函数为求max,一个基可行解比另一个基可行解更好的标志是A使Z更大 B 使Z更小 C 绝对值更大 D Z绝对值更小12.如果线性规划问题有可行解,那么该解必须满足A 所有约束条件B 变量取值非负C 所有等式要求D 所有不等式要求13.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在集合中进行搜索即可得到最优解。
A 基B 基本解C 基可行解D 可行域14.线性规划问题是针对求极值问题.A约束 B决策变量 C 秩 D目标函数15如果第K个约束条件是“≤”情形,若化为标准形式,需要A左边增加一个变量 B右边增加一个变量 C左边减去一个变量D右边减去一个变量16.若某个b k≤0, 化为标准形式时原不等式A 不变B 左端乘负1C 右端乘负1D 两边乘负117.为化为标准形式而引入的松弛变量在目标函数中的系数应为A 0B 1C 2D 312.若线性规划问题没有可行解,可行解集是空集,则此问题A 没有无穷多最优解B 没有最优解C 有无界解D 有无界解三、多选题1.在线性规划问题的标准形式中,不可能存在的变量是 .A.可控变量B.松驰变量c.剩余变量D.人工变量2.下列选项中符合线性规划模型标准形式要求的有A.目标函数求极小值B.右端常数非负C.变量非负D.约束条件为等式E.约束条件为“≤”的不等式3.某线性规划问题,n个变量,m个约束方程,系数矩阵的秩为m(m<n)则下列说法正确的是。
A.基可行解的非零分量的个数不大于mB.基本解的个数不会超过C m n个C.该问题不会出现退化现象D.基可行解的个数不超过基本解的个数E.该问题的基是一个m×m阶方阵4.若线性规划问题的可行域是无界的,则该问题可能A.无有限最优解B.有有限最优解C.有唯一最优解D.有无穷多个最优解E.有有限多个最优解5.判断下列数学模型,哪些为线性规划模型(模型中a.b.c为常数;θ为可取某一常数值的参变量,x,Y为变量)6.下列模型中,属于线性规划问题的标准形式的是7.下列说法错误的有_ _。
A.基本解是大于零的解 B.极点与基解一一对应C.线性规划问题的最优解是唯一的 D.满足约束条件的解就是线性规划的可行解8.在线性规划的一般表达式中,变量x ij为A 大于等于0B 小于等于0C 大于0D 小于0E 等于09.在线性规划的一般表达式中,线性约束的表现有A <B >C ≤D ≥E =10.若某线性规划问题有无界解,应满足的条件有A P k<0 B非基变量检验数为零C基变量中没有人工变量Dδj>O E所有δj≤011.在线性规划问题中a23表示A i =2B i =3C i =5D j=2E j=343.线性规划问题若有最优解,则最优解A定在其可行域顶点达到 B只有一个 C会有无穷多个 D 唯一或无穷多个 E 其值为042.线性规划模型包括的要素有A.目标函数 B.约束条件 C.决策变量 D 状态变量 E 环境变量四、名词1基:2、线性规划问题:3 .可行解:4、可行域:5、本解:6.、图解法:7、本可行解:8、模型四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。
建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?第三章线性规划的基本方法一、填空题1.线性规划的代数解法主要利用了代数消去法的原理,实现的转换,寻找最优解。
2.标准形线性规划典式的目标函数的矩阵形式是_。
3.对于目标函数极大值型的线性规划问题,用单纯型法求解时,当基变量检验数时,当前解为最优解。
4.用大M法求目标函数为极大值的线性规划问题时,引入的人工变量在目标函数中的系数应为。
5.在单纯形迭代中,可以根据_表中判断线性规划问题无解。
6.在线性规划典式中,所有基变量的目标系数为。
7.当线性规划问题的系数矩阵中不存在现成的可行基时,一般可以加入构造可行基。
8.在单纯形迭代中,选出基变量时应遵循法则。
9.线性规划典式的特点是。
10.对于目标函数求极大值线性规划问题在非基变量的检验数全部δj≤O、情况下,单纯形迭代应停止。
11.在单纯形迭代过程中,若有某个δk>0对应的非基变量x k的系数列向量P k__时,则此问题是无界的。
12.在线性规划问题的典式中,基变量的系数列向量为_13.对于求极小值而言,人工变量在目标函数中的系数应取14.(单纯形法解基的形成来源共有种15.在大M法中,M表示。
二、单选题1.线性规划问题2.在单纯形迭代中,出基变量在紧接着的下一次迭代中立即进入基底。
A.会 B.不会 C.有可能 D.不一定3.在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中。
A.不影响解的可行性B.至少有一个基变量的值为负C.找不到出基变量D.找不到进基变量4.用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部<0,则说明本问题。
A.有惟一最优解 B.有多重最优解 C.无界 D.无解5.线性规划问题maxZ=CX,AX=b,X≥0中,选定基B,变量X k的系数列向量为P k,则在关于基B的典式中,X k的系数列向量为_A.BP K B.B T P K C.P K B D.B-1P K6.下列说法错误的是A.图解法与单纯形法从几何理解上是一致的 B.在单纯形迭代中,进基变量可以任选C.在单纯形迭代中,出基变量必须按最小比值法则选取 D.人工变量离开基底后,不会再进基7.单纯形法当中,入基变量的确定应选择检验数A绝对值最大 B绝对值最小 C 正值最大 D 负值最小8.在单纯形表的终表中,若若非基变量的检验数有0,那么最优解A 不存在B 唯一C 无穷多D 无穷大9.若在单纯形法迭代中,有两个Q值相等,当分别取这两个不同的变量为入基变量时,获得的结果将是A 先优后劣B 先劣后优C 相同D 会随目标函数而改变10.若某个约束方程中含有系数列向量为单位向量的变量,则该约束方程不必再引入A 松弛变量B 剩余变量C 人工变量D 自由变量11.在线性规划问题的典式中,基变量的系数列向量为A 单位阵 B非单位阵 C单位行向量 D单位列向量12.在约束方程中引入人工变量的目的是A 体现变量的多样性B 变不等式为等式C 使目标函数为最优D 形成一个单位阵13.出基变量的含义是A 该变量取值不变B该变量取值增大 C 由0值上升为某值D由某值下降为014.在我们所使用的教材中对单纯形目标函数的讨论都是针对情况而言的。
A minB maxC min + maxD min ,max任选15.求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有A无界解B无可行解 C 唯一最优解D无穷多最优解三、多选题1.对取值无约束的变量x j。
通常令x j=x j’- x”j,其中x j’≥0,x j”≥0,在用单纯形法求得的最优解中,可能出现的是2.线性规划问题maxZ=x1+CX2其中4≤c≤6,一1≤a≤3,10≤b≤12,则当_时,该问题的最优目标函数值分别达到上界或下界。