甘肃省天水市中考数学试题(word版%2C含解析)

合集下载

甘肃省天水市2019年中考数学试卷(Word解析版)

甘肃省天水市2019年中考数学试卷(Word解析版)

2019年甘肃省天水市中考数学试卷一、选择题(本大题共10小题,共40.0分)1.已知|a|=1,b是2的相反数,则a+b的值为()A. −3B. −1C. −1或−3D. 1或−32.自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为()A. 73×10−6B. 0.73×10−4C. 7.3×10−4D. 7.3×10−53.如图所示,圆锥的主视图是()A.B.C.D.4.一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为()A. 145∘B. 140∘C. 135∘D. 130∘5.下列运算正确的是()A. (ab)2=a2b2B. a2+a2=a4C. (a2)3=a5D. a2⋅a3=a66.已知a+b=1,则代数式2a+2b-3的值是()2A. 2B. −2C. −4D. −3127.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A. 14B. 12C. π8D. π4 8. 如图,等边△OAB 的边长为2,则点B 的坐标为( )A. (1,1)B. (1,√3)C. (√3,1)D. (√3,√3)9. 如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC相交于点E ,连接AC 、AE .若∠D =80°,则∠EAC 的度数为( )A. 20∘B. 25∘C. 30∘D. 35∘10. 已知点P 为某个封闭图形边界上一定点,动点M 从点P出发,沿其边界顺时针匀速运动一周,设点M 的运动时间为x ,线段PM 的长度为y ,表示y 与x 的函数图象大致如图所示,则该封闭图形可能是( )A. B. C.D.二、填空题(本大题共8小题,共32.0分)11. 函数y =√x −2中,自变量x 的取值范围是______.12. 分式方程1x−1-2x =0的解是______.13. 一组数据2.2,3.3,4.4,11.1,a .其中整数a 是这组数据中的中位数,则这组数据的平均数是______.14. 中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为______.(用百分数表示)15. 二次函数y =ax 2+bx +c 的图象如图所示,若M =4a +2b ,N =a -b .则M 、N的大小关系为M ______N .(填“>”、“=”或“<”)16. 如图,在平面直角坐标系中,已知⊙D 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,点B 坐标为(0,2√3),OC 与⊙D 交于点C ,∠OCA =30°,则圆中阴影部分的面积为______.17. 如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么sin ∠EFC 的值为______.18. 观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有______个〇.三、解答题(本大题共8小题,共78.0分)19. (1)计算:(-2)3+√16-2sin30°+(2019-π)0+|√3-4| (2)先化简,再求值:(x x 2+x -1)÷x 2−1x 2+2x+1,其中x 的值从不等式组{2x −1<5−x≤1的整数解中选取.20. 天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了______名学生.(2)请你补全条形统计图.(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为______度.(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?21.如图,一次函数y=kx+b与反比例函数y=4的图象交于A(m,4)、B(2,n)两点,x与坐标轴分别交于M、N两点.(1)求一次函数的解析式;>0中x的取值范围;(2)根据图象直接写出kx+b-4x(3)求△AOB的面积.22.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:√3.(参考数据:√2=1.414,√3=1.732)(1)若新坡面坡角为α,求坡角α度数;(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM是否需要拆除?请说明理由.23.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.25.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.26.如图,已知抛物线y=ax2+bx+c经过点A(-3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点.(1)求出该二次函数的表达式及点D的坐标;(2)若Rt△AOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l 向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.答案和解析1.【答案】C【解析】解:∵|a|=1,b是2的相反数,∴a=1或a=-1,b=-2,当a=1时,a+b=1-2=-1;当a=-1时,a+b=-1-2=-3;综上,a+b的值为-1或-3,故选:C.先根据绝对值和相反数得出a、b的值,再分别计算可得.本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.2.【答案】D【解析】解:0.000073用科学记数法表示为7.3×10-5,故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】A【解析】解:圆锥的主视图是等腰三角形,如图所示:故选:A.主视图是从正面看所得到的图形即可,可根据圆锥的特点作答.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,主视图是从物体的正面看得到的视图.4.【答案】B【解析】解:∠FDE=∠C+∠CED=90°+50°=140°,∵DE∥AF,∴∠BFA=∠FDE=140°.故选:B.先利用三角形外角性质得到∠FDE=∠C+∠CED=140°,然后根据平行线的性质得到∠BFA的度数.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.【答案】A【解析】解:A选项,积的乘方:(ab)2=a2b2,正确B选项,合并同类项:a2+a2=2a2,错误C选项,幂的乘方:(a2)3=a6,错误D选项,同底数幂相乘:a2•a3=a5,错误故选:A.根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.本题考查合并同类项、同底数幂的乘法、幂的乘方,积的乘方,熟练掌握运算性质和法则是解题的关键.6.【答案】B【解析】解:∵2a+2b-3=2(a+b)-3,∴将a+b=代入得:2×-3=-2故选:B.注意到2a+2b-3只需变形得2(a+b)-3,再将a+b=,整体代入即可此题考查代数式求值的整体代入,只需通过因式解进行变形,再整体代入即可.7.【答案】C【解析】解:设正方形ABCD的边长为2a,针尖落在黑色区域内的概率==.故选:C.用正方形的内切圆的面积的一半除以正方形的面积得到针尖落在黑色区域内的概率.本题考查了几何概率:某事件的概率=某事件所占有的面积与总面积之比.8.【答案】B【解析】解:过点B作BH⊥AO于H点,∵△OAB是等边三角形,∴OH=1,BH=.∴点B的坐标为(1,).故选:B.过点B作BH⊥AO于H点,∵△OAB是等边三角形,所以可求出OH和BH长.本题主要考查了等边三角形的性质,以坐标系为背景,综合考查了勾股定理和坐标与图形的性质.9.【答案】C【解析】解:∵四边形ABCD是菱形,∠D=80°,∴∠ACB=∠DCB=(180°-∠D)=50°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB-∠ACE=30°,故选:C.根据菱形的性质得到∠ACB=∠DCB=(180°-∠D)=50°,根据圆内接四边形的性质得到∠AEB=∠D=80°,由三角形的外角的性质即可得到结论.本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.10.【答案】D【解析】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;A选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以A选项不正确;D选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选:D.先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,开始y随x的增大而增大,然后y 随x的减小而减小,则可对D进行判断,从而得到正确选项.本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.11.【答案】x≥2【解析】解:依题意,得x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式的性质,被开方数大于等于0,就可以求解.本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.【答案】x=2【解析】解:原式通分得:=0去分母得:x-2(x-1)=0去括号解得,x=2经检验,x=2为原分式方程的解故答案为x=2先通分再去分母,再求解,最后进行检验即可本题主要考查解分式方程,解分式方程主要将方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.13.【答案】5【解析】解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.先利用中位数的定义得到a=4,然后根据平均线的计算方法计算这组数据的平均数.本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.也考查了算术平方根.14.【答案】40%【解析】解:设该地区居民年人均收入平均增长率为x,20000(1+x)2=39200,解得,x1=0.4,x2=-2.4(舍去),∴该地区居民年人均收入平均增长率为40%,故答案为:40%.根据题意可以列出相应的方程,从而可以求得该地区居民年人均收入平均增长率,本题得以解决.本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出相应的增长率.15.【答案】<【解析】解:当x=-1时,y=a-b+c>0,当x=2时,y=4a+2b+c<0,M-N=4a+2b-(a-b)=4a+2b+c-(a-b+c)<0,即M<N,故答案为:<根据二次函数的图象与性质即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.16.【答案】2π-2√3【解析】解:连接AB,∵∠AOB=90°,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C=30°,∵OB=2,∴OA=OBtan∠ABO=OBtan30°=2×=2,AB=AO÷sin30°=4,即圆的半径为2,∴S阴影=S半圆-S△ABO=-×2×2=2π-2.故答案为:2π-2.连接AB,根据∠AOB=90°可知AB是直径,再由圆周角定理求出∠OBA=∠C=30°,由锐角三角函数的定义得出OA及AB的长,根据S阴影=S半圆-S△ABO即可得出结论.本题考查的是扇形面积的计算,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.【答案】45【解析】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,∵BF==4,∴CF=BC-BF=5-4=1,设CE=x,则DE=EF=3-x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3-x)2,解得x=,∴EF=3-x=,∴sin∠EFC==.故答案为:.先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC-BF=1,设CE=x,则DE=EF=3-x,然后在Rt△ECF中根据勾股定理得到x2+12=(3-x)2,解方程即可得到x,进一步得到EF的长,再根据正弦函数的定义即可求解.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.18.【答案】6058【解析】解:由图可得,第1个图象中〇的个数为:1+3×1=4, 第2个图象中〇的个数为:1+3×2=7, 第3个图象中〇的个数为:1+3×3=10, 第4个图象中〇的个数为:1+3×4=13, ……∴第2019个图形中共有:1+3×2019=1+6057=6058个〇, 故答案为:6058.根据题目中的图形,可以发现〇的变化规律,从而可以得到第2019个图形中〇的个数.本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.19.【答案】解:(1)原式=-8+4-2×12+1+4-√3=-8+4-1+1+4-√3=-√3;(2)原式=x−x 2−x x(x+1)•x+1x−1=-x x+1•x+1x−1=x 1−x ,解不等式组{2x −1<5−x≤1得-1≤x <3,则不等式组的整数解为-1、0、1、2,∵x ≠±1,x ≠0,∴x =2,则原式=21−2=-2.【解析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出其整数解,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式和实数的混合运算顺序和运算法则及解一元一次不等式组的能力.20.【答案】50 115.2【解析】解:(1)8÷16%=50,所以在这次调查中,一共抽查了50名学生;(2)喜欢戏曲的人数为50-8-10-12-16=4(人),条形统计图为:(3)扇形统计图中喜欢“乐器”部分扇形的圆心角的度数为360°×=115.2°;故答案为50;115.2;(4)1200×=288,所以估计该校1200名学生中喜欢“舞蹈”项目的共288名学生.(1)用喜欢声乐的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢戏曲的人数,然后补全条形统计图;(3)用360度乘以喜欢乐器的人数所占得到百分比得到扇形统计图中喜欢“乐器”部分扇形的圆心角的度数;(4)用1200乘以样本中喜欢舞蹈的人数所占的百分比即可.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.21.【答案】解:(1)∵点A 在反比例函数y =4x 上, ∴4m =4,解得m =1,∴点A 的坐标为(1,4),又∵点B 也在反比例函数y =4x 上,∴42=n ,解得n =2,∴点B 的坐标为(2,2),又∵点A 、B 在y =kx +b 的图象上,∴{2k +b =2k+b=4,解得{b =6k=−2,∴一次函数的解析式为y =-2x +6.(2)根据图象得:kx +b -4x >0时,x 的取值范围为x <0或1<x <2;(3)∵直线y =-2x +6与x 轴的交点为N ,∴点N 的坐标为(3,0),S △AOB =S △AON -S △BON =12×3×4-12×3×2=3. 【解析】(1)将点A 、点B 的坐标分别代入解析式即可求出m 、n 的值,从而求出两点坐标;(2)根据题意,结合图象确定出x 的范围即可;(3)将△AOB 的面积转化为S △AON -S △BON 的面积即可.此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22.【答案】解:(1)∵新坡面坡角为α,新坡面的坡度为1:√3,∴tanα=1√3=√33, ∴α=30°;(2)该文化墙PM 不需要拆除,理由:作CD ⊥AB 于点D ,则CD =6米,∵新坡面的坡度为1:√3,∴tan∠CAD=CDAD =6AD=√3,解得,AD=6√3米,∵坡面BC的坡度为1:1,CD=6米,∴BD=6米,∴AB=AD-BD=(6√3-6)米,又∵PB=8米,∴PA=PB-AB=8-(6√3-6)=14-6√3≈14-6×1.732≈3.6米>3米,∴该文化墙PM不需要拆除.【解析】(1)根据新的坡度,可以求得坡角的正切值,从而可以解答本题;(2)根据题意和题目中的数据可以求得PA的长度,然后与3比较大小即可解答本题.本题考查解直角三角形的应用-坡度坡角文题,解答本题的关键是明确题意,利用特殊角的三角函数值和数形结合的思想解答.23.【答案】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:{16k+b=2410k+b=30,解得:{b=40k=−1,所以y与x的函数解析式为y=-x+40(10≤x≤16);(2)根据题意知,W=(x-10)y=(x-10)(-x+40)=-x2+50x-400=-(x-25)2+225,∵a=-1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤16,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解析】(1)利用待定系数法求解可得y关于x的函数解析式;(2)根据“总利润=每件的利润×销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.24.【答案】解:(1)连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∵{OA=OC PA=PC OP=OP,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵PA是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°,∵AB=10,∴OC=5,由(1)知∠OCF=90°,∴CF=OC tan∠COB=5√3.【解析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=5可得答案.本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.25.【答案】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,{AG=AC∠GAB=∠CAE AB=AE,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4√2,BE=5√2,∴GE2=CG2+BE2-CB2=73,∴GE=√73.【解析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.26.【答案】解:(1)∵抛抛线y =ax 2+bx +c 经过点A (-3,0)、B (9,0)和C (0,4), ∴抛物线的解析式为y =a (x +3)(x -9),∵点C (0,4)在抛物线上,∴4=-27a ,∴a =-427, ∴抛物线的解析式为:y =-427(x +3)(x -9)=-427x 2+89x +4,∵CD 垂直于y 轴,C (0,4),令-427x 2+89x +4=4,解得,x =0或x =6,∴点D 的坐标为(6,4);(2)如图1所示,设A 1F 交CD 于点G ,O 1F 交CD 于点H ,∵点F 是抛物线y =-427x 2+89x +4的顶点,∴F (3,163),∴FH =163-4=43,∵GH ∥A 1O 1,∴△FGH ∽△FA 1O 1,∴GH A1O 1=FH FO 1, ∴GH3=434,解得,GH =1,∵Rt △A 1O 1F 与矩形OCDE 重叠部分的图形是梯形A 1O 1HG ,∴S 重叠部分=S △A 1O 1F -S △FGH=12A 1O 1•O 1F -12GH •FH=12×3×4−12×1×43=163;(3)①当0<t ≤3时,如图2所示,设O 2C 2交OD 于点M ,∵C 2O 2∥DE ,∴△OO 2M ∽△OED ,∴O 2M DE =OO 2OE, ∴O 2M4=t 6,∴O 2M =23t ,∴S =S △OO 2M =12OO 2×O 2M =12t ×23t =13t 2; ②当3<t ≤6时,如图3所示,设A 2C 2交OD 于点M ,O 2C 2交OD 于点N ,将点D (6,4)代入y =kx ,得,k =23,∴y OD =23x ,将点(t -3,0),(t ,4)代入y =kx +b ,得,{kt +b =4k(t−3)+b=0,解得,k =43,b =-43t +4,∴直线A 2C 2的解析式为:y =43x -43t +4,联立y OD =23x 与y =43x -43t +4,得,23x =43x -43t +4,解得,x =-6+2t ,∴两直线交点M 坐标为(-6+2t ,-4+43t ),故点M 到O 2C 2的距离为6-t ,∵C 2N ∥OC ,∴△DC 2N ∽△DCO ,∴DC 2CD =C 2NOC ,∴6−t6=C 2N4,∴C 2N =23(6-t ),∴S =S 四边形A 2O 2NM =S △A 2O 2C 2-S △C 2MN=12OA •OC -12C 2N (6-t )=12×3×4-12×23(6-t )(6-t )=-13t 2+4t -6;∴S 与t 的函数关系式为:S ={13t 2(0<t ≤3)−13t 2+4t −6(3<t ≤6).【解析】(1)将点A(-3,0)、B(9,0)和C(0,4)代入y=ax2+bx+c即可求出该二次函数表达式,因为CD垂直于y轴,所以令y=4,求出x的值,即可写出点D坐标;(2)设A1F交CD于点G,O1F交CD于点H,求出顶点坐标,证△FGH∽△FA1O1,求出GH的长,因为Rt△A1O1F与矩形OCDE重叠部分的图形是梯形A1O1HG,所以S重叠部分=-S△FGH,即可求出结果;(3)当0<t≤3时,设O2C2交OD于点M,证△OO2M∽△OED,求出O2M=t,可直接求出S==OO2×O2M=t2;当3<t≤6时,设A2C2交OD于点M,O2C2交OD于点N,分别求出直线OD与直线A2C2的解析式,再求出其交点M的坐标,证△DC2N∽△DCO,求出C2N=(6-t),由S== -可求出S与t的函数表达式.本题考查了待定系数法求解析式,相似三角形的判定与性质,三角形的面积等,解题关键是能够根据题意画图,知道有些不规则图形的面积可转化为几个规则图形的面积和或差来求出.。

甘肃省天水市中考数学真题试题(含解析)

甘肃省天水市中考数学真题试题(含解析)

2020年甘肃省天水市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共40.0分)1.已知|a|=1,b是2的相反数,则a+b的值为()A. B. C. 或 D. 1或2.自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为()A. B. C. D.3.如图所示,圆锥的主视图是()A.B.C.D.4.一把直尺和一块三角板ABC(含 °、 °角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED= °,那么∠BFA的大小为()A. B. C. D.5.下列运算正确的是()A. B. C. D.6.已知a+b=,则代数式2a+2b-3的值是()A. 2B.C.D.7.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A. B. C. D.8.如图,等边△OAB的边长为2,则点B的坐标为()A.B.C.D.9.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D= °,则∠EAC的度数为()A.B.C.D.10.已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A. B. C.D.二、填空题(本大题共8小题,共32.0分)11.函数y=中,自变量x的取值范围是______.12.分式方程-=0的解是______.13.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是______.14.中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2020年人均年收入达到39200元.则该地区居民年人均收入平均增长率为______.(用百分数表示)15.二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a-b.则M、N的大小关系为M______N.(填“>”、“=”或“<”)16.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,点B坐标为(0,2),OC与⊙D交于点C,∠OCA= °,则圆中阴影部分的面积为______.17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为______.18.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有______个〇.三、解答题(本大题共8小题,共78.0分)19.(1)计算:(-2)3+- sin °+(2020-π)0+|-4|(2)先化简,再求值:(-1)÷,其中x的值从不等式组的整数解中选取.20.天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了______名学生.(2)请你补全条形统计图.(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为______度.(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?21.如图,一次函数y=kx+b与反比例函数y=的图象交于A(m,4)、B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b->0中x的取值范围;(3)求△AOB的面积.22.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(参考数据:=1.414,=1.732)(1)若新坡面坡角为α,求坡角α度数;(2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM是否需要拆除?请说明理由.23.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC= °,AB=10,求线段CF的长.25.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.26.如图,已知抛物线y=ax2+bx+c经过点A(-3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点.(1)求出该二次函数的表达式及点D的坐标;(2)若Rt△AOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l 向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤ )得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.答案和解析1.【答案】C【解析】解:∵|a|=1,b是2的相反数,∴a=1或a=-1,b=-2,当a=1时,a+b=1-2=-1;当a=-1时,a+b=-1-2=-3;综上,a+b的值为-1或-3,故选:C.先根据绝对值和相反数得出a、b的值,再分别计算可得.本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.2.【答案】D【解析】解:0.000073用科学记数法表示为 . × -5,故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a× -n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a× -n,其中 ≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】A【解析】解:圆锥的主视图是等腰三角形,如图所示:故选:A.主视图是从正面看所得到的图形即可,可根据圆锥的特点作答.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,主视图是从物体的正面看得到的视图.4.【答案】B【解析】解:∠FDE=∠C+∠CED=9 °+ °= °,∵DE∥AF,∴∠BFA=∠FDE= °.故选:B.先利用三角形外角性质得到∠FDE=∠C+∠CED= °,然后根据平行线的性质得到∠BFA 的度数.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.【答案】A【解析】解:A选项,积的乘方:(ab)2=a2b2,正确B选项,合并同类项:a2+a2=2a2,错误C选项,幂的乘方:(a2)3=a6,错误D选项,同底数幂相乘:a2•a3=a5,错误故选:A.根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.本题考查合并同类项、同底数幂的乘法、幂的乘方,积的乘方,熟练掌握运算性质和法则是解题的关键.6.【答案】B【解析】解:∵2a+2b-3=2(a+b)-3,∴将a+b=代入得: ×-3=-2故选:B.注意到2a+2b-3只需变形得2(a+b)-3,再将a+b=,整体代入即可此题考查代数式求值的整体代入,只需通过因式解进行变形,再整体代入即可.7.【答案】C【解析】解:设正方形ABCD的边长为2a,针尖落在黑色区域内的概率==.故选:C.用正方形的内切圆的面积的一半除以正方形的面积得到针尖落在黑色区域内的概率.本题考查了几何概率:某事件的概率=某事件所占有的面积与总面积之比.8.【答案】B【解析】解:过点B作BH⊥AO于H点,∵△OAB是等边三角形,∴OH=1,BH=.∴点B的坐标为(1,).故选:B.过点B作BH⊥AO于H点,∵△OAB是等边三角形,所以可求出OH和BH长.本题主要考查了等边三角形的性质,以坐标系为背景,综合考查了勾股定理和坐标与图形的性质.9.【答案】C【解析】解:∵四边形ABCD是菱形,∠D= °,∴∠ACB=∠DCB=( °-∠D)= °,∵四边形AECD是圆内接四边形,∴∠AEB=∠D= °,∴∠EAC=∠AEB-∠ACE= °,故选:C.根据菱形的性质得到∠ACB=∠DCB=( °-∠D)= °,根据圆内接四边形的性质得到∠AEB=∠D= °,由三角形的外角的性质即可得到结论.本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.10.【答案】D【解析】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;A选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以A选项不正确;D选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM 的长有最小值.故选:D.先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,开始y随x的增大而增大,然后y随x的减小而减小,则可对D进行判断,从而得到正确选项.本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.11.【答案】x≥【解析】解:依题意,得x- ≥ ,解得:x≥ ,故答案为:x≥ .根据二次根式的性质,被开方数大于等于0,就可以求解.本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.【答案】x=2【解析】解:原式通分得:=0去分母得:x-2(x-1)=0去括号解得,x=2经检验,x=2为原分式方程的解故答案为x=2先通分再去分母,再求解,最后进行检验即可本题主要考查解分式方程,解分式方程主要将方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.13.【答案】5【解析】解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.先利用中位数的定义得到a=4,然后根据平均线的计算方法计算这组数据的平均数.本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.也考查了算术平方根.14.【答案】40%【解析】解:设该地区居民年人均收入平均增长率为x,20000(1+x)2=39200,解得,x1=0.4,x2=-2.4(舍去),∴该地区居民年人均收入平均增长率为40%,故答案为:40%.根据题意可以列出相应的方程,从而可以求得该地区居民年人均收入平均增长率,本题得以解决.本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出相应的增长率.15.【答案】<【解析】解:当x=-1时,y=a-b+c>0,当x=2时,y=4a+2b+c<0,M-N=4a+2b-(a-b)=4a+2b+c-(a-b+c)<0,即M<N,故答案为:<根据二次函数的图象与性质即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.16.【答案】2π-2【解析】解:连接AB,∵∠AOB=9 °,∴AB是直径,根据同弧对的圆周角相等得∠OBA=∠C= °,∵OB=2,∴OA=OBtan∠ABO=OBtan °= ×=2,AB=AO÷sin °= ,即圆的半径为2,∴S阴影=S半圆-S△ABO=-× × =2π-2.故答案为:2π-2.连接AB,根据∠AOB=9 °可知AB是直径,再由圆周角定理求出∠OBA=∠C= °,由锐角三角函数的定义得出OA及AB的长,根据S阴影=S半圆-S△ABO即可得出结论.本题考查的是扇形面积的计算,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.【答案】【解析】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,∵BF==4,∴CF=BC-BF=5-4=1,设CE=x,则DE=EF=3-x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3-x)2,解得x=,∴EF=3-x=,∴sin∠EFC==.故答案为:.先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC-BF=1,设CE=x,则DE=EF=3-x,然后在Rt△ECF中根据勾股定理得到x2+12=(3-x)2,解方程即可得到x,进一步得到EF 的长,再根据正弦函数的定义即可求解.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.18.【答案】6058【解析】解:由图可得,第1个图象中〇的个数为: + × = ,第2个图象中〇的个数为: + × = ,第3个图象中〇的个数为: + × = ,第4个图象中〇的个数为: + × = ,……∴第2020个图形中共有: + ×2020=1+6057=6058个〇,故答案为:6058.根据题目中的图形,可以发现〇的变化规律,从而可以得到第2020个图形中〇的个数.本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.19.【答案】解:(1)原式=-8+4- ×+1+4-=-8+4-1+1+4-=-;(2)原式=•=-•=,解不等式组得- ≤x<3,则不等式组的整数解为-1、0、1、2,∵x≠± ,x≠ ,∴x=2,则原式==-2.【解析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出其整数解,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式和实数的混合运算顺序和运算法则及解一元一次不等式组的能力.20.【答案】50 115.2【解析】解:(1) ÷ %= ,所以在这次调查中,一共抽查了50名学生;(2)喜欢戏曲的人数为50-8-10-12-16=4(人),条形统计图为:(3)扇形统计图中喜欢“乐器”部分扇形的圆心角的度数为 °×= . °;故答案为50;115.2;(4) ×=288,所以估计该校1200名学生中喜欢“舞蹈”项目的共288名学生.(1)用喜欢声乐的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢戏曲的人数,然后补全条形统计图;(3)用360度乘以喜欢乐器的人数所占得到百分比得到扇形统计图中喜欢“乐器”部分扇形的圆心角的度数;(4)用1200乘以样本中喜欢舞蹈的人数所占的百分比即可.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.21.【答案】解:(1)∵点A在反比例函数y=上,∴=4,解得m=1,∴点A的坐标为(1,4),又∵点B也在反比例函数y=上,∴=n,解得n=2,∴点B的坐标为(2,2),又∵点A、B在y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=-2x+6.(2)根据图象得:kx+b->0时,x的取值范围为x<0或1<x<2;(3)∵直线y=-2x+6与x轴的交点为N,∴点N的坐标为(3,0),S△AOB=S△AON-S△BON=× × -× × = .【解析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)根据题意,结合图象确定出x的范围即可;(3)将△AOB的面积转化为S△AON-S△BON的面积即可.此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22.【答案】解:(1)∵新坡面坡角为α,新坡面的坡度为1:,∴tanα=,∴α= °;(2)该文化墙PM不需要拆除,理由:作CD⊥AB于点D,则CD=6米,∵新坡面的坡度为1:,∴tan∠CAD=解得,AD=6米,∵坡面BC的坡度为1:1,CD=6米,∴BD=6米,∴AB=AD-BD=(-6)米,又∵PB=8米,∴PA=PB-AB=8-(-6)=14-6≈ - × . ≈ . 米>3米,∴该文化墙PM不需要拆除.【解析】(1)根据新的坡度,可以求得坡角的正切值,从而可以解答本题;(2)根据题意和题目中的数据可以求得PA的长度,然后与3比较大小即可解答本题.本题考查解直角三角形的应用-坡度坡角文题,解答本题的关键是明确题意,利用特殊角的三角函数值和数形结合的思想解答.23.【答案】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:,解得:,所以y与x的函数解析式为y=-x+40( ≤x≤ );(2)根据题意知,W=(x-10)y=(x-10)(-x+40)=-x2+50x-400=-(x-25)2+225,∵a=-1<0,∴当x<25时,W随x的增大而增大,∵ ≤x≤ ,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解析】(1)利用待定系数法求解可得y关于x的函数解析式;(2)根据“总利润=每件的利润×销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.24.【答案】解:(1)连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵PA是⊙O的切线,∴∠OAP=9 °.∴∠OCP=9 °,即OC⊥PC∴PC是⊙O的切线.(2)∵OB=OC,∠OBC= °,∴△OBC是等边三角形,∴∠COB= °,∵AB=10,∴OC=5,由(1)知∠OCF=9 °,∴CF=OC tan∠COB=5.【解析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=9 °,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB= °,再由(1)中所证切线可得∠OCF=9 °,结合半径OC=5可得答案.本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.25.【答案】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=9 °,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=9 °,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,∠ ∠ ,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=9 °,∴∠ABG+∠AME=9 °,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2-CB2=73,∴GE=.【解析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.26.【答案】解:(1)∵抛抛线y=ax2+bx+c经过点A(-3,0)、B(9,0)和C(0,4),∴抛物线的解析式为y=a(x+3)(x-9),∵点C(0,4)在抛物线上,∴4=-27a,∴a=-,x+4,∴抛物线的解析式为:y=-(x+3)(x-9)=-x2+9∵CD垂直于y轴,C(0,4),x+4=4,令-x2+9解得,x=0或x=6,∴点D的坐标为(6,4);(2)如图1所示,设A1F交CD于点G,O1F交CD于点H,x+4的顶点,∵点F是抛物线y=-x2+9∴F(3,),∴FH=-4=,∵GH∥A1O1,∴△FGH∽△FA1O1,∴,∴,解得,GH=1,∵Rt△A1O1F与矩形OCDE重叠部分的图形是梯形A1O1HG,∴S重叠部分=-S△FGH=A1O1•O1F-GH•FH==;(3)①当0<t≤ 时,如图2所示,设O2C2交OD于点M,∵C2O2∥DE,∴△OO2M∽△OED,∴,∴,∴O2M=t,∴S==OO2×O2M=t×t=t2;②当3<t≤ 时,如图3所示,设A2C2交OD于点M,O2C2交OD于点N,将点D(6,4)代入y=kx,得,k=,∴y OD=x,将点(t-3,0),(t,4)代入y=kx+b,得,,解得,k=,b=-t+4,∴直线A2C2的解析式为:y=x-t+4,联立y OD=x与y=x-t+4,得,x=x-t+4,解得,x=-6+2t,∴两直线交点M坐标为(-6+2t,-4+t),故点M到O2C2的距离为6-t,∵C2N∥OC,∴△DC2N∽△DCO,∴,∴,∴C2N=(6-t),∴S=四边形=-=OA•OC-C2N(6-t)=× × -×(6-t)(6-t)=-t2+4t-6;∴S与t的函数关系式为:S= <<.【解析】(1)将点A(-3,0)、B(9,0)和C(0,4)代入y=ax2+bx+c即可求出该二次函数表达式,因为CD垂直于y轴,所以令y=4,求出x的值,即可写出点D坐标;(2)设A1F交CD于点G,O1F交CD于点H,求出顶点坐标,证△FGH∽△FA1O1,求出GH 的长,因为Rt△A1O1F与矩形OCDE重叠部分的图形是梯形A1O1HG,所以S重叠部分=-S△FGH,即可求出结果;(3)当0<t≤ 时,设O2C2交OD于点M,证△OO2M∽△OED,求出O2M=t,可直接求出S==OO2×O2M=t2;当3<t≤ 时,设A2C2交OD于点M,O2C2交OD于点N,分别求出直线OD与直线A2C2的解析式,再求出其交点M的坐标,证△DC2N∽△DCO,求出C2N=(6-t),由S==-可求出S与t的函数表达式.本题考查了待定系数法求解析式,相似三角形的判定与性质,三角形的面积等,解题关键是能够根据题意画图,知道有些不规则图形的面积可转化为几个规则图形的面积和或差来求出.。

2022年甘肃省天水市中考数学试卷(解析版)

2022年甘肃省天水市中考数学试卷(解析版)

2022年甘肃省天水市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的相反数是()A.﹣2B.2C.±2D.2.(3分)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°3.(3分)不等式3x﹣2>4的解集是()A.x>﹣2B.x<﹣2C.x>2D.x<24.(3分)用配方法解方程x2﹣2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x﹣1)2=3D.(x﹣1)2=6 5.(3分)若△ABC∽△DEF,BC=6,EF=4,则=()A.B.C.D.6.(3分)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()A.完成航天医学领域实验项数最多B.完成空间应用领域实验有5项C.完成人因工程技术实验项数比空间应用领域实验项数多D.完成人因工程技术实验项数占空间科学实验总项数的24.3%7.(3分)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm8.(3分)《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为()A.(+)x=1B.(﹣)x=1C.(9﹣7)x=1D.(9+7)x=1 9.(3分)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路()的长度为()A.20πm B.30πm C.40πm D.50πm10.(3分)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC →CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y 与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)计算:3a3•a2=.12.(3分)因式分解:m3﹣4m=.13.(3分)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).14.(3分)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB=2cm,AC=4cm,则BD的长为cm.15.(3分)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.16.(3分)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.17.(3分)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t =s.18.(3分)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.三、解答题:本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:×﹣.20.(4分)化简:÷﹣.21.(6分)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与交于点F;再以点E为圆心,仍以BD长为半径画弧与交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.22.(6分)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.23.(6分)第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京﹣张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:h)的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7 8 6 5 9 10 4 6 7 5 11 12 8 7 64 6 3 6 8 9 10 10 13 6 7 8 35 10【数据整理】将收集的30个数据按A,B,C,D,E五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A.3≤t<5,B.5≤t<7,C.7≤t<9,D.9≤t<11,E.11≤t≤13,其中t表示锻炼时间);【数据分析】统计量平均数众数中位数锻炼时间(h)7.3m7请根据以上信息解答下列问题:(1)填空:m=;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7h,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.25.(7分)如图,B,C是反比例函数y=(k≠0)在第一象限图象上的点,过点B的直线y=x﹣1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD =3.(1)求此反比例函数的表达式;(2)求△BCE的面积.26.(8分)如图,△ABC内接于⊙O,AB,CD是⊙O的直径,E是DB延长线上一点,且∠DEC=∠ABC.(1)求证:CE是⊙O的切线;(2)若DE=4,AC=2BC,求线段CE的长.27.(8分)已知正方形ABCD,E为对角线AC上一点.【建立模型】(1)如图1,连接BE,DE.求证:BE=DE;【模型应用】(2)如图2,F是DE延长线上一点,FB⊥BE,EF交AB于点G.①判断△FBG的形状并说明理由;②若G为AB的中点,且AB=4,求AF的长.【模型迁移】(3)如图3,F是DE延长线上一点,FB⊥BE,EF交AB于点G,BE=BF.求证:GE =(﹣1)DE.28.(10分)如图1,在平面直角坐标系中,抛物线y=(x+3)(x﹣a)与x轴交于A,B (4,0)两点,点C在y轴上,且OC=OB,D,E分别是线段AC,AB上的动点(点D,E不与点A,B,C重合).(1)求此抛物线的表达式;(2)连接DE并延长交抛物线于点P,当DE⊥x轴,且AE=1时,求DP的长;(3)连接BD.①如图2,将△BCD沿x轴翻折得到△BFG,当点G在抛物线上时,求点G的坐标;②如图3,连接CE,当CD=AE时,求BD+CE的最小值.2022年甘肃省天水市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的相反数是()A.﹣2B.2C.±2D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣2的相反数是:﹣(﹣2)=2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(3分)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°【分析】根据互余两角之和为90°计算即可.【解答】解:∵∠A=40°,∴∠A的余角为:90°﹣40°=50°,故选:A.【点评】本题考查的是余角的定义,如果两个角的和等于90°,就说这两个角互为余角.3.(3分)不等式3x﹣2>4的解集是()A.x>﹣2B.x<﹣2C.x>2D.x<2【分析】按照解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1即可得出答案.【解答】解:3x﹣2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故选:C.【点评】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1是解题的关键.4.(3分)用配方法解方程x2﹣2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x﹣1)2=3D.(x﹣1)2=6【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2﹣2x=2,x2﹣2x+1=2+1,即(x﹣1)2=3.故选:C.【点评】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5.(3分)若△ABC∽△DEF,BC=6,EF=4,则=()A.B.C.D.【分析】根据△ABC∽△DEF,可以得到,然后根据BC=6,EF=4,即可得到的值.【解答】解:∵△ABC∽△DEF,∴,∵BC=6,EF=4,∴=,故选:D.【点评】本题考查相似三角形的性质,解答本题的关键是明确题意,利用相似三角形的性质解答.6.(3分)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()A.完成航天医学领域实验项数最多B.完成空间应用领域实验有5项C.完成人因工程技术实验项数比空间应用领域实验项数多D.完成人因工程技术实验项数占空间科学实验总项数的24.3%【分析】应用扇形统计图用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.进行判定即可得出答案.【解答】解:A.由扇形统计图可得,完成航天医学领域实验项数最多,所以A选项说法正确,故A选项不符合题意;B.由扇形统计图可得,完成空间应用领域实验占完成总实验数的5.4%,37×5.4%≈2项,所以B选项说法错误,故B选项符合题意;C.完成人因工程技术实验占完成总实验数的24.3%,完成空间应用领域实验占完成总实验数的5.4%,所以完成人因工程技术实验项数比空间应用领域实验项数多说法正确,故C选项不符合题意;D.完成人因工程技术实验项数占空间科学实验总项数的24.3%,所以D选项说法正确,故D选项不符合题意.故选:B.【点评】本题主要考查了扇形统计图,熟练掌握扇形统计图的应用是解决本题的关键.7.(3分)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm【分析】根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF的边长.【解答】解:连接AD,CF,AD、CF交于点O,如右图所示,∵六边形ABCDEF是正六边形,AD的长约为8mm,∴∠AOF=60°,OA=OD=OF,OA和OD约为4mm,∴AF约为4mm,故选:D.【点评】本题考查多边形的对角线,解答本题的关键是明确正六边形的特点.8.(3分)《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为()A.(+)x=1B.(﹣)x=1C.(9﹣7)x=1D.(9+7)x=1【分析】设总路程为1,野鸭每天飞,大雁每天飞,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.【解答】解:设经过x天相遇,根据题意得:x+x=1,∴(+)x=1,故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.9.(3分)如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路()的长度为()A.20πm B.30πm C.40πm D.50πm【分析】根据题目中的数据和弧长公式,可以计算出这段弯路()的长度.【解答】解:∵半径OA=90m,圆心角∠AOB=80°,∴这段弯路()的长度为:=40π(m),故选:C.【点评】本题考查圆心角、弧、弦的关系,解答本题的关键是明确弧长计算公式l=.10.(3分)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC →CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y 与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【分析】根据图1和图2判定三角形ABD为等边三角形,它的面积为3解答即可.【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.【点评】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)计算:3a3•a2=3a5.【分析】根据同底数幂的乘法法则化简即可【解答】解:原式=3a3+2=3a5.故答案为:3a5.【点评】本题考查了同底数幂的乘法,掌握a m•a n=a m+n是解题的关键.12.(3分)因式分解:m3﹣4m=m(m+2)(m﹣2).【分析】原式提取m,再利用平方差公式分解即可.【解答】解:原式=m(m2﹣4)=m(m+2)(m﹣2),故答案为:m(m+2)(m﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3分)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=2(答案不唯一)(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).【点评】本题考查了一次函数的性质,掌握一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小是解题的关键.14.(3分)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB=2cm,AC=4cm,则BD的长为8cm.【分析】由菱形的性质可得AC⊥BD,BO=DO,由勾股定理可求BO,即可求解.【解答】解:∵四边形ABCD是菱形,AC=4cm,∴AC⊥BD,BO=DO,AO=CO=2cm,∵AB=2cm,∵BO==4cm,∴DO=BO=4cm,∴BD=8cm,故答案为:8.【点评】本题考查了菱形的性质,勾股定理,掌握菱形的性质是解题的关键.15.(3分)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=70°.【分析】根据圆内接四边形的对角互补即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故答案为:70.【点评】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.16.(3分)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是∠A=90°(答案不唯一).【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.【解答】解:需添加的一个条件是∠A=90°,理由如下:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.17.(3分)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t =2s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.【点评】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.18.(3分)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.【分析】根据矩形的性质可得AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,从而可得∠ABD=∠BDC,然后利用直角三角形斜边上的中线可得EG=BG,从而可得∠BEG=∠ABD,进而可得∠BEG=∠BDC,再证明△EBF∽△DCB,利用相似三角形的性质可求出BF的长,最后在Rt△BEF中,利用勾股定理求出EF的长,即可解答.【解答】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB﹣AE=6﹣2=4(cm),∵G是EF的中点,∴EG=BG=EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴=,∴=,∴BF=6,∴EF===2(cm),∴BG=EF=(cm),故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理,矩形的性质,直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线,以及相似三角形的判定与性质是解题的关键.三、解答题:本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:×﹣.【分析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.【解答】解:原式=﹣2=﹣.【点评】本题考查了二次根式的混合运算,掌握•=(a≥0,b≥0)是解题的关键.20.(4分)化简:÷﹣.【分析】将除法转化为乘法,因式分解,约分,根据分式的加减法法则化简即可得出答案.【解答】解:原式=•﹣=﹣==1.【点评】本题考查了分式的混合运算,考查学生运算能力,掌握运算的结果要化成最简分式或整式是解题的关键.21.(6分)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与交于点F;再以点E为圆心,仍以BD长为半径画弧与交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.【分析】(1)按题干直接画图即可.(2)连接DF,EG,可得△BDF和△BEG均为等边三角形,则∠DBF=∠EBG=60°,进而可得∠DBG=∠GBF=∠FBE=30°.【解答】解:(1)如图,射线BG,BF即为所求.(2)∠DBG=∠GBF=∠FBE.理由:连接DF,EG,则BD=BF=DF,BE=BG=EG,即△BDF和△BEG均为等边三角形,∴∠DBF=∠EBG=60°,∵∠ABC=90°,∴∠DBG=∠GBF=∠FBE=30°.【点评】本题考查尺规作图,根据题意正确作出图形是解题的关键.22.(6分)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.【分析】设BF=xm,根据题意可得:DE=FG=1.5m,然后在Rt△CBF中,利用锐角三角函数的定义求出CF的长,再在Rt△ACF中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:设BF=xm,由题意得:DE=FG=1.5m,在Rt△CBF中,∠CBF=35°,∴CF=BF•tan35°≈0.7x(m),∵AB=8.8m,∴AF=AB+BF=(8.8+x)m,在Rt△ACF中,∠CAF=26.6°,∴tan26.6°==≈0.5,∴x=22,经检验:x=22是原方程的根,∴CG=CF+FG=0.7x+1.5=16.9(m),∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.23.(6分)第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京﹣张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可.【解答】解:(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是;(2)画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,∴小明和小颖被分配到同一场馆做志愿者的概率为=.【点评】此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:h)的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7 8 6 5 9 10 4 6 7 5 11 12 8 7 64 6 3 6 8 9 10 10 13 6 7 8 35 10【数据整理】将收集的30个数据按A,B,C,D,E五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A.3≤t<5,B.5≤t<7,C.7≤t<9,D.9≤t<11,E.11≤t≤13,其中t表示锻炼时间);【数据分析】请根据以上信息解答下列问题:(1)填空:m=6;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7h,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.【分析】(1)由众数的定义可得出答案.(2)结合收集的数据,求出C组的人数,即可补全频数分布直方图.(3)用总人数乘以样本中每周不少于7h的人数占比,即可得出答案;过半的学生都能完成目标,即目标合理.【解答】解:(1)由数据可知,6出现的次数最多,∴m=6.故答案为:6.(2)补全频数分布直方图如下:(3)600×=340(名).答:估计有340名学生能完成目标.目标合理.理由:过半的学生都能完成目标.【点评】本题考查频数分布直方图、用样本估计总体,从收集的数据中获取必要的信息是解决问题的关键.25.(7分)如图,B,C是反比例函数y=(k≠0)在第一象限图象上的点,过点B的直线y=x﹣1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD =3.(1)求此反比例函数的表达式;(2)求△BCE的面积.【分析】(1)根据直线y=x﹣1求出点A坐标,进而确定OA,AD的值,再确定点C的坐标,代入反比例函数的关系式即可;(2)求出点E坐标,进而求出EC,再求出一次函数与反比例函数在第一象限的交点B 的坐标,由三角形的面积的计算方法进行计算即可.【解答】解:(1)当y=0时,即x﹣1=0,∴x=1,即直线y=x﹣1与x轴交于点A的坐标为(1,0),∴OA=1=AD,又∵CD=3,∴点C的坐标为(2,3),而点C(2,3)在反比例函数y=的图象上,∴k=2×3=6,∴反比例函数的图象为y=;(2)方程组的正数解为,。

2020年甘肃省天水中考数学试卷附答案解析版

2020年甘肃省天水中考数学试卷附答案解析版

测 得 AB 1.2 m , BC 12.8 m , 则 建 筑 物 CD 的 高 是 ( )
第 8 题图
A.17.5 m
B.17 m
C.16.5 m
D.18 m
9.若关于 x 的不等式3x a≤2 只有 2 个正整数解,则 a 的取值范围为 ( )
A. 7<a< 4
B. 7≤a≤ 4
C. 7≤a< 4
m (10<m<20) 元, B 种商品售价不变,在(2)的条件下,请设计出 m 的不同
取值范围内,销售这 40 件商品获得总利润最大的进货方案. 26.(13 分)如图所示,抛物线 y ax2 bx c(a 0) 与 x 轴交于 A 、B 两点,与 y 轴交
于点C ,且点 A 的坐标为 A( 2,0) ,点 C 的坐标为C(0, 6) ,对称轴为直线 x 1 .点 D 是抛物线上一个动点,设点 D 的横坐标为m(1<m<4) ,连接 AC ,BC ,DC ,DB . (1)求抛物线的函数表达式; (2)当△BCD 的面积等于△AOC 的面积的 3时,求 的m值;
为 42 42 42 ,故选:C. 2
【考点】众数,中位数
5.【答案】B 【解析】先利用切线的性质得 OAP
OBP 90 ,再利用四边形的内角和计算出 AOB 的度数,然后根
据圆周角定理计算 ACB 的度数.
解:连接OA 、 OB ,
1/ 19
PA、PB 分别与 O 相切于 A、B 两点,
OA PA , OB PB ,
数学试卷 第 1 页(共 6 页)
6.下列图形中,是中心对称图形但不是轴对称图形的是 ( )
A
B
C
D
7.若函数 y ax2 bx c(a 0) 的图象如图所示,则函数 y ax b 和 y c 在同一平

今年天水中考数学试卷真题

今年天水中考数学试卷真题

今年天水中考数学试卷真题(正文内容)今年天水中考数学试卷真题共有八道题目,涵盖了代数、几何、统计等多个数学知识点。

以下将逐一给出每道题目的详细描述和解答过程。

第一题:代数运算已知两个正整数a和b满足a+b=100,且a:b=3:2,请计算a的值。

解答:根据题目可得到以下两个方程:(1)a+b=100(2)a:b=3:2解题思路为首先列出等式(1)的代数形式:a=100-b。

然后将等式(2)中的比例项的系数做相应的放大或缩小,得到:2a=3b。

接下来将等式(1)中a的代数表达式代入等式(2)中,得到2(100-b)=3b。

化简过程如下:200-2b=3b,进一步变形得到200=5b,最后得到b=40。

将此结果再次代入等式(1)中计算a的值,即a=60。

因此,根据以上计算步骤可得到a的值为60。

第二题:几何问题已知一个等边三角形的外接圆半径为5cm,请计算三角形的面积。

解答:首先,由于等边三角形的外接圆半径为5cm,可以得知等边三角形的边长为10cm(三个边长相等)。

由此可认为该等边三角形可以分割成三个相等的等边三角形。

其次,由于每个等边三角形的高为5cm,可以计算每个三角形的面积为(10cm × 5cm)÷ 2 = 25cm²。

最后,将三个相等的等边三角形的面积相加,得到整个等边三角形的面积为25cm² + 25cm² + 25cm² = 75cm²。

因此,根据以上计算步骤可得到等边三角形的面积为75cm²。

(接下来继续介绍其他题目的相关描述和解答过程,依此类推)总结:今年天水中考数学试卷共出现了八个题目,涵盖了代数、几何、统计等多个数学知识点。

通过对以上兩道题目的解答过程,我们可以看出,题目的解答过程都需要根据所给条件进行运算和推理,其中一些题目需要利用特定的公式和几何原理进行计算。

这些题目的设定旨在考察考生的数学运算和问题解决能力,培养他们的逻辑思维和分析能力。

2020年甘肃省天水市中考数学试题及参考答案(word解析版)

2020年甘肃省天水市中考数学试题及参考答案(word解析版)

2020年天水市初中毕业与升学学业考试(中考)试卷数学(全卷满分150分,考试时间为120分钟)A卷(100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4| D.﹣2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103 D.0.341×1063.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42 B.42,43 C.42,42 D.42,415.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°6.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.8.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m9.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4 B.﹣7≤a≤﹣4C.﹣7≤a<﹣4 D.﹣7<a≤﹣410.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:m3n﹣mn=.12.一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.13.已知函数y=,则自变量x的取值范围是.14.已知a+2b=,3a+4b=,则a+b的值为.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.18.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(1)计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.(2)先化简,再求值:﹣÷,其中a=.20.(10分)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>中x的取值范围;(3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.B卷(50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)23.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).24.(10分)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)25.(10分)天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.26.(13分)如图所示,拋物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.答案与解析A卷(100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来)1.下列四个实数中,是负数的是()A.﹣(﹣3)B.(﹣2)2C.|﹣4| D.﹣【知识考点】实数.【思路分析】根据相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念判断可得.【解答过程】解:A.﹣(﹣3)=3,是正数,不符合题意;B.(﹣2)2=4,是正数,不符合题意;C.|﹣4|=4,是正数,不符合题意;D.﹣是负数,符合题意;故选:D.【总结归纳】本题主要考查实数,解题的关键是掌握相反数的定义、乘方的定义、绝对值的性质及负数和正数的概念.2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为()A.3.41×105B.3.41×106C.341×103D.0.341×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:341000=3.41×105,故选:A.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是()A.文B.羲C.弘D.化【知识考点】正方体相对两个面上的文字.【思路分析】根据正方体的展开图的特点,得出相对的面,进而得出答案.【解答过程】解:根据正方体表面展开图可知,“相间、Z端是对面”,因此“伏与化”相对,“弘与文”相对,“扬与羲”相对,故选:D.【总结归纳】本题考查正方体的表面展开图的特征,掌握正方体展开图的对面的判定方法是正确选择的前提.4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42 B.42,43 C.42,42 D.42,41【知识考点】中位数;众数.【思路分析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.【解答过程】解:将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为=42,故选:C.【总结归纳】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P =70°,则∠ACB的度数为()A.50°B.55°C.60°D.65°【知识考点】圆周角定理;切线的性质.【思路分析】连接OA、OB,如图,根据切线的性质得OA⊥PA,OB⊥PB,则利用四边形内角和计算出∠AOB=110°,然后根据圆周角定理得到∠ACB的度数.【解答过程】解:连接OA、OB,如图,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∵∠P=70°,∴∠AOB=110°,∴∠ACB=∠AOB=55°.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆心角定理.6.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答过程】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.【总结归纳】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象;二次函数的图象.【思路分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧可知b<0,再由函数图象交y轴的正坐标可知c>0,利用排除法即可得出正确答案.【解答过程】解:∵由函数图象交y轴的正坐标可知c>0,∴反比例函数y=的图象必在一、三象限,故C、D错误;∵据二次函数的图象开口向上可知a>0,对称轴在y轴的右侧,b<0,∴函数y=ax+b的图象经过一三四象限,故A错误,B正确.【总结归纳】本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.8.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB =1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【知识考点】相似三角形的应用.【思路分析】根据题意和图形,利用三角形相似,可以计算出CD的长,从而可以解答本题.【解答过程】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴,∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴,解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.【总结归纳】本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为()A.﹣7<a<﹣4 B.﹣7≤a≤﹣4 C.﹣7≤a<﹣4 D.﹣7<a≤﹣4【知识考点】一元一次不等式的整数解.【思路分析】先解不等式得出x≤,根据不等式只有2个正整数解知其正整数解为1和2,据此得出2≤<3,解之可得答案.【解答过程】解:∵3x+a≤2,∴3x≤2﹣a,则x≤,∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2≤<3,解得:﹣7<a≤﹣4,故选:D.【总结归纳】本题主要考查一元一次不等式的整数解,解题的关键是熟练掌握解不等式的基本步骤和依据,并根据不等式的整数解的情况得出某一字母的不等式组.10.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【知识考点】列代数式;规律型:数字的变化类.【思路分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102, (2199)2200,求和,即可用含S的式子表示这组数据的和.【解答过程】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.【总结归纳】本题考查了规律型﹣数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果)11.分解因式:m3n﹣mn=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提出公因式mn,再利用平方差公式即可解答.【解答过程】解:m3n﹣mn=mn(m2﹣1)=mn(m﹣1)(m+1),故答案为:mn(m﹣1)(m+1).【总结归纳】本题考查了提公因式法和公式法进行分解因式,解决本题的关键是熟记提公因式法和公式法.12.一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.【知识考点】解一元二次方程﹣因式分解法;三角形三边关系.【思路分析】先利用因式分解法解方程x2﹣8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.【解答过程】解:∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.【总结归纳】本题考查了解一元二次方程的因式分解法及三角形的三边关系,熟练掌握相关性质及定理是解题的关键.13.已知函数y=,则自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答过程】解:根据题意得:x+2≥0且x﹣3≠0,解得:x≥﹣2且x≠3.故答案为:x≥﹣2且x≠3.【总结归纳】本题考查了函数自变量的取值范围问题,当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,考虑被开方数为非负数.14.已知a+2b=,3a+4b=,则a+b的值为.【知识考点】整式的加减;解二元一次方程组.【思路分析】用方程3a+4b=减去a+2b=,即可得出2a+2b=2,进而得出a+b=1.【解答过程】解:a+2b=①,3a+4b=②,②﹣①得2a+2b=2,解得a+b=1.故答案为:1.【总结归纳】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.【知识考点】解直角三角形.【思路分析】如图,连接AB.证明△OAB是等腰直角三角形即可解决问题.【解答过程】解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为.【总结归纳】本题考查解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.【知识考点】圆锥的计算.【思路分析】根据半径为8,圆心角为120°的扇形弧长,等于圆锥的底面周长,列方程求解即可.【解答过程】解:设圆锥的底面半径为r,由题意得,=2πr,解得,r=,故答案为:.【总结归纳】本题考查弧长的计算方法,明确扇形的弧长与圆锥底面周长的关系是正确解答的关键.17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F 的坐标为.【知识考点】坐标与图形性质;全等三角形的判定与性质;正方形的性质.【思路分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答过程】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).【总结归纳】考查了正方形的性质,坐标与图形性质,全等三角形的判定与性质,根据题意求得点G的坐标是解题的难点.18.如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.【知识考点】全等三角形的判定与性质;正方形的性质;旋转的性质.【思路分析】根据旋转的性质可知,△ADF≌△ABG,然后即可得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以求出BE的长,本题得以解决.【解答过程】解:法一:由题意可得,△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即BE=2,法二:设BE=x,连接GF,如下图所示,∵四边形ABCD为正方形,∴∠ABE=∠GCF=90°,∵△ADF绕点A顺时针旋转90°得到△ABG,∴∠CAF=90°,GA=FA,∴△GAF为等腰直角三角形,∵∠EAF=45°,∴AE垂直平分GF,∴∠AEB+∠CGF=90°,∵在Rt△AEB中,∠AEB+∠BAE=90°,∴∠BAE=∠CGF,∴△BAE~△CGF,∴,∵CF=CD﹣DF=6﹣3=3,GC=BC+BG=BC+DF=6+3=9,∴,∴x=2,即BE=2,故答案为:2.【总结归纳】本题考查旋转的性质、全等三角形的判定和性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(本大题共3小题,共28分.解答时写出必要的文字说明及演算过程)19.(8分)(1)计算:4sin60°﹣|﹣2|+20200﹣+()﹣1.(2)先化简,再求值:﹣÷,其中a=.【知识考点】实数的运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】(1)先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答过程】解:(1)原式=4×﹣(2﹣)+1﹣2+4=2﹣2++1﹣2+4=3+;(2)原式=﹣•=﹣=﹣==,当a=时,原式====1.【总结归纳】本题主要考查实数的混合运算与分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.(10分)为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.【知识考点】扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)由非常满意的有18人,占36%,即可求得此次调查中接受调查的人数;(2)用总人数减去其他满意程度的人数,求出满意的人数,从而补全统计图;(3)用360°乘以满意的人数所占的百分比即可得出答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择回访市民为“一男一女”的情况,再利用概率公式即可求得答案.【解答过程】解:(1))∵非常满意的有18人,占36%,∴此次调查中接受调查的人数:18÷36%=50(人);故答案为:50;(2)此次调查中结果为满意的人数为:50﹣4﹣8﹣18=20(人);(3)扇形统计图中“满意”部分的圆心角为:360°×=144°;故答案为:144°;(4)画树状图得:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:=.【总结归纳】此题考查了列表法或树状图法求概率以及条形与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC 的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n>中x的取值范围;(3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)根据△AOC的面积为4和反比例函数图象的位置,可以确定k的值,进而确定反比例函数的关系式,代入可求出点A、B的坐标,求出a、b的值;(2)根据图象直接写出mx+n>的解集;(3)求出点A(﹣2,4)关于y轴的对称点A′(2,4),根据题意直线A′B与y轴的交点即为所求的点P,求出直线A′B的关系式,进而求出与y轴的交点坐标即可.【解答过程】解:(1)∵△AOC的面积为4,∴|k|=4,解得,k=﹣8,或k=8(不符合题意舍去),∴反比例函数的关系式为y=﹣,把点A(﹣2,a)和点B(b,﹣1)代入y=﹣得,a=4,b=8;答:a=4,b=8;(2)根据一次函数与反比例函数的图象可知,不等式mx+n>的解集为x<﹣2或0<x<8;(3)∵点A(﹣2,4)关于y轴的对称点A′(2,4),又B(8,﹣1),则直线A′B与y轴的交点即为所求的点P,设直线A′B的关系式为y=cx+d,则有,解得,,∴直线A′B的关系式为y=﹣x+,∴直线y=﹣x+与y轴的交点坐标为(0,),即点P的坐标为(0,).【总结归纳】本题考查一次函数、反比例函数的图象和性质,轴对称的性质和应用,把点的坐标代入是求函数关系式常用方法,作对称点是求线段和或差最小值的常用方法.B卷(50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(7分)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图所示,正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行30分钟后到达B处,此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?(参考数据:≈1.414,≈1.732)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)由题意得,∠PAB=30°,∠APB=135°由三角形内角和定理即可得出答案;(2)作PH⊥AB于H,则△PBH是等腰直角三角形,BH=PH,设BH=PH=x海里,求出AB =20海里,在Rt△APH中,由三角函数定义得出方程,解方程即可.【解答过程】解:(1)由题意得,∠PAB=90°﹣60°=30°,∠APB=90°+45°=135°,∴∠APB=180°﹣∠PAB﹣∠APB=180°﹣30°﹣135°=15°;(2)作PH⊥AB于H,如图:则△PBH是等腰直角三角形,∴BH=PH,设BH=PH=x海里,由题意得:AB=40×=20(海里),在Rt△APH中,tan∠PAB=tan30°==,即=,解得:x=10+10≈27.32>25,且符合题意,∴海监船继续向正东方向航行安全.【总结归纳】本题考查的是解直角三角形的应用﹣方向角问题以及等腰直角三角形的判定与性质,熟练掌握锐角三角函数的概念是解题的关键.23.(10分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,AB=6,求阴影部分的面积(结果保留π).【知识考点】角平分线的性质;直线与圆的位置关系;扇形面积的计算.【思路分析】(1)连接OD,求出OD∥AC,求出OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理求出OD=2,求出OB=4,得出∠B=30°,再分别求出△ODB和扇形DOF 的面积即可.【解答过程】(1)证明:连接OD,如图:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠C=90°,即BC⊥OD,又∵OD为⊙O的半径,∴直线BC是⊙O的切线;(2)解:设OA=OD=r,则OB=6﹣r,在Rt△ODB中,由勾股定理得:OD2+BD2=OB2,∴r2+(2)2=(6﹣r)2,解得:r=2,∴OB=4,∴OD===2,∴OD=OB,∴∠B=30°,∴∠DOB=180°﹣∠B﹣∠ODB=60°,∴阴影部分的面积S=S△ODB﹣S扇形DOF=×2 ×2﹣=2﹣.【总结归纳】本题考查了切线的判定,平行线的性质和判定,等腰三角形的性质,扇形的面积计算、含30°角的直角三角形的性质,勾股定理等知识点;熟练掌握切线的判定与性质和勾股定理是解此题的关键.24.(10分)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)【知识考点】三角形综合题.【思路分析】性质探究:如图1中,过点C作CD⊥AB于D.解直角三角形求出AB(用AC表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA=CB=m,则AB=m,构建方程求出m即可解决问题.②如图2中,连接FH.求出FH,利用三角形中位线定理解决问题即可.类比拓展:利用等腰三角形的性质求出AB与AC的关系即可.【解答过程】解:性质探究:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=120°,CD⊥AB,∴∠A=∠B=30°,AD=BD,∴AB=2AD=2AC•cos30°=AC,∴AB:AC=:1.故答案为:1.理解运用:(1)设CA=CB=m,则AB=m,由题意2m+m=4+2,∴m=2,∴AC=CB=2,AB=2,∴AD=DB=,CD=AC•sin30°=1,∴S△ABC=•AB•CD=.故答案为.(2)如图2中,连接FH.∵∠FGH=120°,EF=EG=EH,∴∠EFG=∠EGF,∠EHG=∠EGH,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=EF=20,∵FM=MG.GN=GH,∴MN=FH=10.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.【总结归纳】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,三角形的中位线定理等知识,解题的关键是学会利用等腰三角形的三线合一的性质解决问题,学会构造三角形的中位线解决问题,属于中考常考题型.25.(10分)天水市某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A种商品售价优惠m(10<m<20)元,B种商品售价不变,在(2)的条件下,请设计出m的不同取值范围内,销售这40件商品获得总利润最大的进货方案.【知识考点】分式方程的应用;一元一次不等式组的应用;一次函数的应用.【思路分析】(1)设A种商品每件的进价是x元,根据用2000元购进A种商品和用1200元购进B种商品的数量相同,列分式方程,解出可得结论;。

甘肃天水中考数学试题解析版.doc

甘肃天水中考数学试题解析版.doc

甘肃省天水市2011年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.)1、(2011•天水)图中几何体的主视图是()A、B、C、D、2、下列运算中,计算结果正确的是()A、x2•x3=x6B、x2n÷x n﹣2=x n+2C、(2x3)2=4x9D、x3+x3=x63、(2011•天水)如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是()A、B、C、D、4、(2011•天水)多项式2a2﹣4ab+2b2分解因式的结果正确的是()A、2(a2﹣2ab+b2)B、2a(a﹣2b)+2b2C、2(a﹣b)2D、(2a﹣2b)25、(2011•天水)如图,将三角板的直角顶点放在两条平行线a、b中的直线b上,如果∠1=40°,则∠2的度数是()A、30°B、45°C、40°D、50°6、(2011•天水)在a2□4a□4的空格中,任意填上“+”或“﹣”,在所得到的代数式中,可以构成完全平方式的概率是()A、B、C、D、17、(2010•北京)将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A、y=(x+1)2+4B、y=(x﹣1)2+4C、y=(x+1)2+2D、y=(x﹣1)2+28、(2011•天水)样本数据3、6、a、4、2的平均数是5,则这个样本的方差是()A、8B、5C、2D、39、(2011•天水)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()A、B、C、D、110、(2011•天水)如图,有一块矩形纸片ABCD,AB=8,AD=6.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则CF的长为()A、6B、4C、2D、1二、填空题(本大题共8小题,每小题4分,共32分.)11、(2010•昆明)计算:=_________.12、(2010•宁波)若x+y=3,xy=1,则x2+y2=_________.13、(2011•天水)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB)8.7m的点E处,然后观测考沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7m,观测者目高CD=1.6m,则树高AB约是_________.(精确到0.1m)14、(2011•天水)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是_________.15、(2011•天水)如图,点A、B在数轴上,它们所对应的数分别是﹣4与,且点A、B到原点的距离相等.则x=_________.16、(2011•天水)计算:sin230°+tan44°tan46°+sin260°=_________.17、(2010•新疆)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_________.18、(2011•天水)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是_________.三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)19、(2011•天水)Ⅰ.先化简,再从﹣2、﹣1、0、1、中选一个你认为适合的数作为x的值代入求值.Ⅱ.已知l1:直线y=﹣x+3和l2:直线y=2x,l1与x轴交点为A.求:(1)l1与l2的交点坐标.(2)经过点A且平行于l2的直线的解析式.20、(2011•天水)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.21、(2011•天水)Ⅰ.爱养花的李先生为选择一个合适的时间去参观2011年西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题:(1)5月10日至16日这一周中,参观人数最多的是日是_________,有_________万人,参观人数最少的是日是_________,有_________万人,中位数是_________.(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt△OBA和Rt△BCD中,∠OBA=∠BCD=90°,点A和点C都在双曲线y=(k>0)上,求点D的坐标.四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.)22、(2011•天水)如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,求点B1、C1、D1的坐标.(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,求a的值.23、(2011•天水)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD内作等边△BCE,并与正方形的对角线交于点F、G,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24、(2011•天水)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.甲乙型号 A B C D E单价(元/台)6000 4000 2500 5000 2000(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A型号电脑可以是多少台?25、(2011•天水)在△ABC中,AB=AC,点O是△ABC的外心,连接AO并延长交BC于D,交△ABC的外接圆于E,过点B作⊙O的切线交AO的延长线于Q,设OQ=,BQ=3.(1)求⊙O的半径;(2)若DE=,求四边形ACEB的周长.26、(2011•天水)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA 所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.答案与评分标准一、选择题(本大题共10小题,每小题4分,共40分)1、(2011•天水)图中几何体的主视图是()A、B、C、D、考点:简单组合体的三视图。

天水中考数学试题及答案

天水中考数学试题及答案

天水中考数学试题及答案一、选择题1. 设直线l的斜率为k,且通过点(2, -3),则直线l的方程是()。

A. y = -3x - 6B. y = -2x - 7C. y = 3x - 6D. y = 2x - 72. 若a:b = 3:4,且a + b = 70,则a的值是()。

A. 12B. 24C. 28D. 363. 若正方形边长为a,则它的面积是()。

A. a^2B. 2aC. 2a^2D. 4a^24. 已知函数f(x) = 2x - 5,g(x) = 3x + 4,则两个函数的复合函数(g ∘f)(x)为()。

A. 2x - 9B. 2x - 1C. 6x + 19D. 6x - 9二、填空题5. 设a是一个非零实数,若等式|2x - 3a| = 5有解,则a的取值范围是______。

6. 已知函数y = f(x)的图像关于x轴对称,且过点(1, 2),则点(1, -2)在函数y = f(x)的图像上的对应点的横坐标是______。

三、解答题7. 甲、乙两车同时从A、B两地相向而行,甲车每小时行60公里,乙车每小时行50公里。

两车相遇后,甲车再行1小时到达B地,乙车还需行多久才能到达A地?8. 某超市购进一批商品,进价是售价的4/5,若每件商品售价为800元,则该批商品的总进价是多少元?参考答案:1. C2. D3. A4. A5. a > 06. 17. 甲车行驶2小时,乙车需再行10小时。

8. 该批商品的总进价是6400元。

以上是天水中考数学试题及答案的内容,希望对你有帮助。

2021年甘肃省天水市中考数学试题及参考答案(word解析版)

2021年甘肃省天水市中考数学试题及参考答案(word解析版)

2021年甘肃省天水市中考数学试题及参考答案(word解析版) 2021年甘肃省天水市中考数学试题及参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()a.0b.1c.2d.32.如图所示的几何体就是由5个大小相同的小立方块搭起,它的俯视图就是()a.b.c.d.3.以下运算恰当的就是()a.2x+y=2xyb.x?2y2=2xy24.以下观点恰当的就是()a.不可能将事件出现的概率为0b.随机事件出现的概率为12c.2x÷x2=2xd.4x5x=1c.概率很小的事件不可能发生d.丢掷一枚质地光滑的硬币1000次,负面朝上的次数一定就是500次5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()a.13×107kg b.0.13×108kgc.1.3×107kgd.1.3×108kg6.在正方形网格中,△abc的位置如图所示,则cosb的值为()a.12b.822c.32d.337.关于a.c.描述不恰当的就是()28=2b.面积是8的正方形的边长是888就是有理数d.在数轴上可以找出则表示的点8.下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x;③函数y21x.a.①②b.②③c.①③d.都不是19.如图,ab是圆o的直径,弦cd⊥ab,∠bcd=30°,cd=43,则s阴影=()a.2πb.83pc.43pd.38p310.例如图,在全等△abc中,ab=ac=4cm,∠b=30°,点p从点b启程,以cm/s的速度沿bc方向运动到点c停止,同时点q从点b出发,以1cm/s的速度沿baac方向运动到点c 停止,ycm2)若△bpq的面积为(,运动时间为x(s),则以下最能够充分反映y与x之间函数关系的图象就是()a.b.c.d.二、填空题(本大题共8小题,每小题4分后,共32分后)11.若式子x?2x存有意义,则x的值域范围就是.12.分解因式:x3x=.13.定义一种新的运算:x*y?x?2yx,如:3*1?3?2?13?53,则(2*3)*2=.14.如图所示,在矩形abcd中,∠dac=65°,点e就是cd上一点,be交ac于点f,将△bce沿be折叠,点c恰好落在ab边上的点c′处,则∠afc′=.15.观测以下的“蜂窝图”则第n个图案中的“”的个数是.(用含有n的代数式表示)216.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点o)20米的a处,则小明的影子am长为米.17.如图所示,正方形abcd的边长为4,e就是边bc上的一点,且be=1,p就是对角线ac上的一动点,相连接pb、pe,当点p在ac上运动时,△pbe周长的最小值就是.18.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是a(1,3),与x轴的一个交点是b(4,0),直线y2=mx+n(m≠0)与抛物线交于a,b两点,下列结论:2①abc>0;②方程ax+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、答疑题(本大题共3小题,共28分后)19.(10分后)(1)排序:-14+骣112sin60°+琪琪2桫x2-2-(p-5)0.骣1(2)先化简,再求值:琪1-琪桫x+2?+2x+1x+2,其中x=3-1.20.(8分后)一艘轮船坐落于灯塔p南偏西60°方向的a处为,它向东航行20海里抵达灯塔p南偏西45°方向上的b处为,若轮船稳步沿正东方向航行,谋轮船航行途中与灯塔p的最短距离.(结果留存根号)321.(10分后)八年级一班积极开展了“念一本好书”的活动,班委会对学生写作书籍的情况展开了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅挑选一项,根据调查结果绘制了不完备的频数原产表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)恳请移去频数原产表中,并算出扇形统计图中“其他”类所占到的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.四、答疑题(本大题共5小题,共50分后)22.(8分)如图所示,一次函数y=kx+b与反比例函数y=mx的图象交于a(2,4),b(4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点b作bc⊥x轴,像距为点c,相连接ac,谋△acb的面积.23.e是弦bd的中点,(10分)如图,△abd是⊙o的内接三角形,点c是⊙o外一点且∠dbc=∠a,连接oe延长与圆相交于点f,与bc相交于点c.(1)求证:bc是⊙o的切线;(2)若⊙o的半径为6,bc=8,谋弦bd的长.424.(10分后)天水某公交公司将出局某一条线路上“冒黑烟”较轻微的公交车,计划出售a型和b型两行环保节能环保公交车共10辆,若出售a型公交车1辆,b型公交车2辆,共需400万元;若出售a型公交车2辆,b型公交车1辆,共需350万元,(1)谋出售a型和b型公交车每辆各须要多少万元?(2)预计在该条线路上a型和b型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买a型和b型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.(10分)△abc和△def是两个全等的等腰直角三角形,∠bac=∠edf=90°,△def的顶点e与△abc的斜边bc的中点重合,将△def绕点e旋转,旋转过程中,线段de与线段ab相交于点p,线段ef与射线ca相交于点q.(1)例如图①,当点q在线段ac上,且ap=aq时,澄清:△bpe≌△cqe;(2)如图②,当点q在线段ca的延长线上时,求证:△bpe∽△ceq;并求当bp=2,cq=9时bc的长.226.(12分)如图所示,在平面直角坐标系中xoy中,抛物线y=ax2ax3a(a<0)与x轴交于a,b两点(点a在点b的左侧),经过点a的直线l:y=kx+b与y轴负半轴交于点c,与抛物线的另一个交点为d,且cd=4ac.(1)谋a、b两点的座标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点e就是直线l上方的抛物线上的动点,若△ace的面积的最大值为54,求a的值;(4)设p就是抛物线对称轴上的一点,点q在抛物线上,以点a、d、p、q为顶点的四边形若想沦为矩形?若能够,谋出点p的座标;若无法,恳请表明理由.5参考答案与解析一、选择题(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()a.0b.1c.2d.3【知识考点】绝对值;相反数.【思路分析】先求出来x的值,进而可以得出结论.【答疑过程】求解:∵x与3互为相反数,∴x=3,∴|x+3|=|3+3|=0.故选a.【总结概括】本题考查的就是绝对值,津津乐道0的绝对值就是0就是答疑此题的关键.2.如图所示的几何体就是由5个大小相同的小立方块搭起,它的俯视图就是()a.b.c.d.【科学知识考点】直观组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答过程】解:从上面看易得横着的“”字,故选c.【总结概括】本题考查了三视图的科学知识,俯视图从物体的上面看看获得的视图.3.以下运算恰当的就是()a.2x+y=2xyb.x?2y2=2xy2c.2x÷x2=2xd.4x5x=1【知识考点】整式的除法;合并同类项;单项式乘单项式.【思路分析】轻易利用分拆同类项法则和整式的秦九韶运算法则分别化简谋出来答案.【答疑过程】求解:a、2x+y无法排序,故此选项错误;b、x?2y2=2xy2,恰当;c、2x÷x2=2x,故此选项错误;d、4x5x=x,故此选项错误;故挑选:b.【总结归纳】此题主要考查了合并同类项和整式的乘除运算等知识,正确掌握运算法则是解题关键.4.以下观点恰当的就是()a.不可能将事件出现的概率为0b.随机事件出现的概率为126。

甘肃省天水市2020年中考数学试题(Word版,含答案与解析)

甘肃省天水市2020年中考数学试题(Word版,含答案与解析)

甘肃省天水市2020年中考数学试卷一、选择题(共10题;共20分)1.下列四个实数中,是负数的是( )A. −(−3)B. (−2)2C. |−4|D. −√5【答案】 D【考点】正数和负数的认识及应用【解析】【解答】解:A、−(−3)=3,3不是负数,故本选项不符合题意;B、(−2)2=4,4不是负数,故本选项不符合题意;C、|−4|=4,4不是负数,故本选项不符合题意;D、−√5是负数,故本选项符合题意.故答案为:D.【分析】根据负数的定义逐项判断即得答案.2.天水市某网店2020年父亲节这天的营业额为341000元,将数341000用科学记数法表示为( )A. 3.41×105B. 3.41×106C. 341×103D. 0.341×106【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:341000用科学记数法表示为3.41×105.故答案为:A.【分析】科学记数法是指,任何一个绝对值大于或等于1的数可以写成a×10n的形式,其中,n=整数位数-1.根据科学记数法的意义即可求解.3.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是( )A. 文B. 羲C. 弘D. 化【答案】 D【考点】几何体的展开图【解析】【解答】解:在原正方体中,与“扬”字所在面相对面上的汉字是“羲”,与“伏”字所在面相对面上的汉字是“化”,与“弘”字所在面相对面上的汉字是“文”.故答案为:D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( )A. 40,42B. 42,43C. 42,42D. 42,41【答案】C【考点】中位数,众数【解析】【解答】解:将这组数据按照从小到大的顺序重新排列为39,40,40,42,42,42,43,44,因为42出现了三次,最多,所以这组数据的众数为42,因为共有8个数据,所以中间两个数据的平均数就是中位数,即中位数为42+422=42,故答案为:C.【分析】先将数据按照从小到大的顺序重新排列,再根据众数和中位数的定义求解即可得出答案.5.如图所示,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=70°,则∠ACB的度数为( )A. 50°B. 55°C. 60°D. 65°【答案】B【考点】圆周角定理,切线的性质【解析】【解答】解:连接OA、OB,∵PA、PB分别与⊙O相切于A、B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∵∠P=70°,∴∠AOB=180°-∠P=180°-70°=110°,∴∠ACB= 12∠AOB= 12×110°=55°.故答案为:B.【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.6.下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.【答案】C【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形但不是中心对称图形,故错误;B、既是轴对称图形也是中心对称图形,故错误;C、是中心对称图形,但不是轴对称图形,故正确;D、是轴对称图形但不是中心对称图形,故错误;故答案为:C.【分析】根据轴对称图形和中心对称图形的概念对各选项进行分析判断即可得出答案.7.若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=c在同一平面直角坐标x系中的图象大致是( )A. B.C. D.【答案】B【考点】反比例函数的图象,二次函数图象与系数的关系,一次函数图象、性质与系数的关系【解析】【解答】解:∵抛物线开口向上∴a>0∵抛物线对称轴x=−b>02a∴b<0∵抛物线与y轴交点在y轴正半轴上∴c>0∴当a>0,b<0时,一次函数y=ax+b的图像过第一、三、四象限;当c>0时,反比例函数y=cx的图像过第一、三象限.故答案为:B.【分析】根据二次函数的图像即可判断出a、b、c与0的大小关系,然后根据一次函数和反比例函数的图像特点确定答案.8.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB= 1.2m,BC=12.8m,则建筑物CD的高是( )A. 17.5mB. 17mC. 16.5mD. 18m【答案】A【考点】相似三角形的判定与性质【解析】【解答】解:∵AB=1.2m,BC=12.8m∴AC=1.2m+12.8m=14m∵标杆BE和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴ABBE =ACCD,即 1.21.5=14CD,解得CD=17.5m.故答案为:A.【分析】先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.9.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为( )A. −7<a<−4B. −7≤a≤−4C. −7≤a<−4D. −7<a≤−4【答案】 D【考点】一元一次不等式的特殊解【解析】【解答】解:∵3x+a⩽2,∴3x⩽2−a,则x⩽2−a3,∵不等式只有2个正整数解,∴不等式的正整数解为1、2,则2⩽2−a3<3,解得:−7<a⩽−4,故答案为:D.【分析】先解不等式得出x⩽2−a,根据不等式只有2个正整数解知其正整数解为1和2,据此得出2⩽32−a<3,解之可得答案.310.观察等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;…已知按一定规律排列的一组数:2100,2101,2102,⋯,2199,2200,若2100=S,用含S的式子表示这组数据的和是( ) A. 2S2−S B. 2S2+S C. 2S2−2S D. 2S2−2S−2【答案】A【考点】探索数与式的规律【解析】【解答】解:由题意得:这组数据的和为:2100+2101+2102+⋯+2199+2200=2100(1+2+⋯+299+2100)=2100(1+2101−2)=2100(2101−1)=2100(2100×2−1)∵2100=S,∴原式= S(S×2−1)=2S2−S,故答案为:A.【分析】由题意得出2100+2101+2102+⋯+2199+2200=2100(1+2+⋯+299+2100),再利用整体代入思想即可得出答案.二、填空题(共8题;共9分)11.分解因式:m3n−mn=________.【答案】mn(m+1)(m-1)【考点】提公因式法与公式法的综合运用【解析】【解答】解:m3n−mn= mn(m2−1)= mn(m+1)(m−1).故答案为:mn(m+1)(m−1).【分析】原式提取公因式后,利用平方差公式分解即可.12.一个三角形的两边长分别为2和5,第三边长是方程x2−8x+12=0的根,则该三角形的周长为________.【答案】13【考点】因式分解法解一元二次方程,三角形三边关系【解析】【解答】解:∵x2-8x+12=0,∴(x−2)(x−6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2-8x+12=0的根,当x=2时,2+2<5,不符合题意,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.故答案为:13.【分析】先利用因式分解法解方程x2-8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.13.函数y=√x+2x−3中,自变量x的取值范围是________.【答案】x≥-2且x≠3【考点】分式有意义的条件,二次根式有意义的条件,函数自变量的取值范围【解析】【解答】根据二次根式的性质以及分式的意义可得:x+2≥0,且x−3≠0,∴x≥−2且x≠3,故答案为:x≥−2且x≠3.【分析】根据二次根式的性质以及分式的意义,分别得出关于x的关系式,然后进一步加以计算求解即可.14.已知a+2b=103,3a+4b=163,则a+b的值为________.【答案】1【考点】代数式求值,解二元一次方程组【解析】【解答】解:a+2b=103①,3a+4b=163②,②-①得,2a+2b=2,解得:a+b=1,故答案为:1.【分析】观察已知条件可得两式中a与b的系数的差相等,因此把两式相减即可得解. 15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是________.【答案】√22【考点】锐角三角函数的定义【解析】【解答】连接AB如图所示:设小正方形的边长为1,∴OA2= 32+1=10,BA2=32+1=10,OB2=42+22=20,∴△ABO是直角三角形,∴sin∠AOB=BAOB √10√20=√22,故答案为:√22.【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB,设小正方形的边长为1,可以求出OA、OB、AB的长度,由勾股定理的逆定理可得△ABO是直角三角形,再根据三角函数的定义可以求出答案.16.如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是________.【答案】83【考点】圆锥的计算【解析】【解答】解:设圆锥的底面半径为r,由题意得,120π×8180=2πr,解得,r=83,故答案为:83.【分析】根据半径为8,圆心角为120°的扇形弧长,等于围成的圆锥的底面周长,列方程求解即可. 17.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为________.【答案】(﹣1,5)【考点】全等三角形的判定与性质,正方形的性质,中心对称及中心对称图形【解析】【解答】如图,过点E 作x 轴的垂线EH ,垂足为H .过点G 作x 轴的垂线GM ,垂足为M ,连接GE 、FO 交于点O′, ∵四边形OEFG 是正方形,∴OG=EO ,∠GOM=∠OEH ,∠OGM=∠EOH ,在△OGM 与△EOH 中,{∠OGM =∠EOHOG =OE ∠GOM =∠OEH,∴△OGM ≌△EOH (ASA ),∴GM=OH=2,OM=EH=3,∴G (﹣3,2),∴O′(﹣ 12 , 52), ∵点F 与点O 关于点O′对称,∴点F 的坐标为 (﹣1,5),故答案是:(﹣1,5).【分析】此题的难点在于正确添加辅助线。

甘肃天水市中考数学考试及答案(Word解析版)

甘肃天水市中考数学考试及答案(Word解析版)
A.
100m2
B.
64m2
C.
121m2
D.
144m2
考点:
一元二次方程的应用.
专题:
几何图形问题.
分析:
从一块正方形木板上锯掉2m宽的长方形木条,剩下的仍然是一个长方形,此时这个长方形的长等于原来正方形木板的边长,宽等于正方形木板的边长减去2m,根据剩下的长方形的面积是48m2,列出方程,求出解,进而求出原来正方形木板的面积.
6.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是( )
A.
11
B.
11或13
C.
13
D.
以上选项都不正确
考点:
解一元二次方程-因式分解法;三角形三边关系
专题:
计算题.
分析:
由两数相乘积为0,两数中至少有一个为0求出方程的解得到第三边长,即可求出周长.
A.
2,1,0.4
B.
2,2,0.4
C.
3,1,2
D.
2,1,0.2
考点:
方差;中位数;众数.
分析:
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.
解答:
解:从小到大排列此数据为:3,2,1,2,2;数据2出现了三次最多为众数,2处在第5位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3﹣2)2+3×(2﹣2)2+(1﹣2)2]=0.4,即中位数是2,众数是2,方差为0.4.
A.

甘肃省天水市中考数学试题及答案

甘肃省天水市中考数学试题及答案

天水市初中毕业与升学学业考试(中考)试卷数 学A 卷题号 一 二 三 合计 B卷 题号合计 总分 总分人 复核人 得分得分2223 24 25 26亲爱的同学,三年的初中生活你已经学到了不少数学知识,眼前的试卷将给你一个展示的机会,相信自己!(本试卷满分为150分,考试时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.(11·天水)图中几何体的主视图是2.(11·天水)下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2 C .(2x 3)2=4x 9D .x 3+x 3=x 63.(11·天水)如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.(11·天水)多项式2a 2-4ab +2b 2分解因式的结果正确的是 A .2(a 2-2ab +b 2) B .2a (a -2b )+2b 2 C .2(a -b ) 2D .(2a -2b ) 25.(11·天水)如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.(11·天水)在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是A .12B .13C .14D .1 7.(11·天水)将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为 A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2 D .y =(x -1)2+2C . B .A .正面a b 18.(11·天水)样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.(11·天水)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是A .13B .12C .34D .110.(11·天水)如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.(11·天水)计算8-12=_ ▲ .12.(11·天水)若x +y =3,xy =1,则x 2+y 2=_ ▲ . 13.(11·天水)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.(11·天水)如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.(11·天水)如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲.DCC ECEA-4BEB D(1) (2)16.(11·天水)计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ . 17.(11·天水)抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_ ▲ .18.(11·天水)如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程. 19.(11·天水)本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分) Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值. Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.(11·天水)已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF∥BE ,四边形ABCD 是平行四边形吗?请说明理由.CBAED Fxy1 -1 O CB x y1Oy 2 3 4 5 -1 -2 -3-412 3 4 5 -1 -2 -3 -4 -521.(11·天水)本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观2011年西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题:(1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x (k>0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(11·天水)(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.x23.(11·天水)(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(11·天水)(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲 乙型号 A B C D E 单价(元/台)6000400025005000200025.(11·天水)(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC 的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32. (1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(11·天水)(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O 为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时第220题A BC D Ox yAA B(1)AD E GF (2)点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式. (2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.F参考答案:A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.【答案】D 2.【答案】B 3.【答案】B 4.【答案】C 5.【答案】D 6.【答案】A 7.【答案】D 8.【答案】A 9.【答案】B 10.【答案】C二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.【答案】32 212.【答案】7 13.【答案】5.2 14.【答案】(32-2x )(20-x )=570 15.【答案】115或2.2 16.【答案】2 17.【答案】-3<x <1 18.【答案】210A (D )BCDE F OxyA B CEF Ox y三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程. 19.(11·天水)本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分) Ⅰ.【答案】原式=x 2-(x -1)(x +1)x +1·x 2-1x=1x +1·(x -1)(x +1)x ………………1分 =x -1x ………………2分 当x =2时,原式=32 ………………4分 (或当x =2时,原式=2-22)Ⅱ.【答案】解:(1)设l 1与l 2的交点为M ,则由⎩⎨⎧y =-x +3y =2x 解得⎩⎨⎧x =1y =2………………2分 ∴M (1,2) ………………3分(2)设经过点A 且且平行于l 2的直线的解析式为y =2x +b∵l 1与x 轴交点为A (3,0) ………………4分 6+b =0,∴b =-6则:所求直线的解析式为y =2x -6 ………………5分其它解法参照上面的评分标准评分20.【答案】解:结论:四边形ABCD 是平行四边形 ………………2分证明:∵DF ∥BE∴∠AFD =∠CEB ………………3分 又∵AF =CE DF =BE ,∴△AFD ≌△CEB (SAS ) ………………4分 ∴AD =CB ∠DAF =∠BCE ∴AD ∥CB∴四边形ABCD 是平行四边形 ………………6分。

甘肃省天水市2022年中考数学真题试题(扫描版,含答案)

甘肃省天水市2022年中考数学真题试题(扫描版,含答案)

2022年天水市初中毕业与升学学业考试(中考)试卷数学答案一、选择题1.A 解析:A项:-1是负数,正确;B项:0既不是正数,也不是负数,错误;C项:1是正数,错误;D项:π是无理数,是正数,错误.故选A.2.D 解析:A项:圆柱的左视图是矩形,错误;B项:圆台的左视图是梯形,错误;C项:圆锥的左视图是三角形,错误;D项,球体的左视图是圆,正确.故选D.3.D 解析:A项:是随机事件,错误;B项:只有两条平行直线被第三条直线所截时,同位角相等,是随机事件,错误;C项:闰年时,一年有366天,这样就有366个人的生日各不相同,所以是随机事件;D项:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,所以实数的绝对值是非负数是必然事件,正确.故选D.4.C 解析:A项:是轴对称图形,有三条对称轴,错误;B项:既不是轴对称图形,也不是中心对称图形;C项:既是中心对称图形又是轴对称图形,正确;D项:是轴对称图形,只有一条对称轴,错误.故选C.5.C 解析:因为AB∥CD,所以∠BOE=∠EFD=70°.又因为OG是∠EOB的平分线,所以∠BOG=½∠BOE=35°.故选C.6.D 解析:根据反比例函数y=-的图象可知,时,;,所以.故选D.7.B 解析:分式,需满足条件解得所以x=-2.故选B.8.A 解析:米的百万分之一等于,故选A.9.C 解析:根据题意得,7x+9y≤40(x,y都是正整数),且使得40-(7x+9y)最小.代入各选项的值,得D项不满足7x+9y≤40;A,B,C三项中,C项中40-(7x+9y)的值最小,故选C.10.B 解析:根据题意知,当0≤x<1时,y=½x²×sin60°=;当1≤x≤2时,y有最大值,为△AˊBˊCˊ的面积,即½×1×1×sin60°=.当2<x<3时,y=½[1-(x-2)]²×sin60°=.故选B.二、填空题11.x>-1 解析:自变量的取值范围满足x+1>0,x>-1.12.0<a<4 解析:点P(a,4-a)是第一象限点,则解得0<a<4.13.解析:原方程可变形为14.x>1.解析:根据图象可知,当x>1时,直线在双曲线的上方,即此时15.16解析:观察图形可得,第一图形有5个“○”,第二个图形有7=(5×1×2)个“○”,第三个图形有11=(5+2×3)个“○”,第四个图形有17=(5×3×4)个“○”……根据这四个图形可推出第n个图形中有[5+n(n-1)]个“○”,第n个“龟图”中有245个“○”,即5+n(n-1)=245,解得n=16或n=-15(舍去).16.解析:点A'和点A关于直线OB对称,设点A'的坐标为,线段AA'的中点坐标为在直线OB上,18.①③④解析:∵抛物线开口向下,∴a<0.∵抛物线的对称轴在y轴的右侧,∴∴b>0.∵点C的坐标为(0,c),OA=OC,∴点A的坐标为(-c,0).故④正确.三、解答题19.(1)(2)解:解不等式①得,x≥-3;解不等式②得,x≤4, 所以不等式组的解集为-3≤x≤4.20.21.(1)由题意知,C对应的人数为180人,对应的百分数为45%,所以调查的学生总人数为180÷45%=400(人);n=1-(5%+15%+45%)=35%;(2)D对应的百分数为35%,所以D部分扇形所对应的圆心角是360°×35%=126°;(3)D对应的人数为400×35%=140(人),补全条形统计图略;(4)1 2 3 41 ———— 3 4 52 3 ———— 5 63 4 5 ————74 5 6 7 ————P(奇数)=,所以游戏规则不公平.B卷22.23.24.解:(1)设李红第n天生产的粽子数量为260个,20n+60=260,解得n=10.答:第10天生产的粽子数量为260个.(2)由图象知,当0≤x≤9时,p=2.当9≤x≤19时,设p=kx+b,将点(9,2),(19,3)分别代入得,①当0≤x≤5时,w=(4-2)×32x=64x,当x=5时,;②当5<x≤9时,w=(4-2)×(20x+60)=40x+120,当x=9时,;③当9<x≤19时,w=[4-()]×(20x+60)=,当x=.时,综上,当x=18时,w有最大值,最大值为786元.25.(2)BE=CD.证明:∵∠DAB=∠EAC=90°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE.在△DAC和△BAE中,∴△DAC≌△BAE.∴BE=CD.(3)26.解:(1)由B(1,0),C(0,3),可得,OB=1,OC=3.∵△BOC绕点O按逆时针方向旋转90°,点C与点A重合,∴OA=OC=3,∴点A的坐标为(-3,0).将A(-3,0),B(1,0),C(0,3)分别代入二次函数解析式得,∴二次函数的解析式为.(2)设点P的坐标为(x,0),则PB=1-x.(3)由二次函数解析式得,,所以顶点的坐标为M(-1,4).∵△OMQ为等腰三角形,OM为底,∴MQ=OQ,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省天水市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣14.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg6.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.7.关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点8.下列给出的函数中,其图象是中心对称图形的是()①函数y=x;②函数y=x2;③函数y=.A.①②B.②③C.①③D.都不是9.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2πB.πC.πD.π10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s 的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA ﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.若式子有意义,则x的取值范围是.12.分解因式:x3﹣x=.13.定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=.14.如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=.15.观察下列的“蜂窝图”则第n个图案中的“”的个数是.(用含有n的代数式表示)16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.17.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.18.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A (1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(本大题共3小题,共28分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.20.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P 南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.四、解答题(共50分)22.如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.23.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.26.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.甘肃省天水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.3【考点】15:绝对值;14:相反数.【分析】先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+3|=|﹣3+3|=0.故选A.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【考点】4H:整式的除法;35:合并同类项;49:单项式乘单项式.【分析】直接利用合并同类项法则和整式的乘除运算法则分别化简求出答案.【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.4.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【考点】X3:概率的意义.【分析】根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:130 000 000kg=1.3×108kg.故选:D.6.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】KQ:勾股定理;T1:锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB 的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.7.关于的叙述不正确的是()A.=2B.面积是8的正方形的边长是C.是有理数D.在数轴上可以找到表示的点【考点】27:实数.【分析】=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断. 【解答】解:A 、=2,所以此选项叙述正确;B 、面积是8的正方形的边长是,所以此选项叙述正确;C 、=2,它是无理数,所以此选项叙述不正确;D 、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确; 本题选择叙述不正确的, 故选C .8.下列给出的函数中,其图象是中心对称图形的是( ) ①函数y=x ;②函数y=x 2;③函数y=. A .①②B .②③C .①③D .都不是【考点】G2:反比例函数的图象;F4:正比例函数的图象;H2:二次函数的图象;R5:中心对称图形.【分析】函数①③是中心对称图形,对称中心是原点.【解答】解:根据中心对称图形的定义可知函数①③是中心对称图形. 故选C9.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD=30°,CD=4,则S 阴影=( )A .2πB .πC .πD .π【考点】M5:圆周角定理;M2:垂径定理;MO :扇形面积的计算. 【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD 、OE 的长度,最后将相关线段的长度代入S 阴影=S扇形ODB﹣S △DOE +S △BEC .【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•C E=﹣2+2=.故选B.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s 的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA ﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B 点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选D.二、填空题(本大题共8小题,每小题4分,共32分)11.若式子有意义,则x的取值范围是x≥﹣2且x≠0.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】分式中:分母不为零、分子的被开方数是非负数.【解答】解:根据题意,得x+2≥0,且x≠0,解得x≥﹣2且x≠0.故答案是:x≥﹣2且x≠0.12.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.定义一种新的运算:x*y=,如:3*1==,则(2*3)*2=2.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:214.如图所示,在矩形ABCD中,∠DAC=65°,点E是CD上一点,BE交AC于点F,将△BCE沿BE折叠,点C恰好落在AB边上的点C′处,则∠AFC′=40°.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据直角三角形两锐角互余求出∠ACD,再根据翻折变换的性质判断出四边形BCEC′是正方形,根据正方形的性质可得∠BEC=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BFC,再根据翻折变换的性质可得∠BFC′=∠BFC,然后根据平角等于180°列式计算即可得解.【解答】解:∵矩形ABCD,∠DAC=65°,∴∠ACD=90°﹣∠DAC=90°﹣65°=25°,∵△BCE沿BE折叠,点C恰好落在AB边上的点C′处,∴四边形BCEC′是正方形,∴∠BEC=45°,由三角形的外角性质,∠BFC=∠BEC+∠ACD=45°+25°=70°,由翻折的性质得,∠BFC′=∠BFC=70°,∴∠AFC′=180°﹣∠BFC﹣∠BFC′=180°﹣70°﹣70°=40°.故答案为:40°.15.观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1.(用含有n的代数式表示)【考点】38:规律型:图形的变化类.【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13‘个图案,由此可得出规律.【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+116.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【考点】SA:相似三角形的应用.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.17.如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是6.【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】根据两点之间线段最短和点B和点D关于AC对称,即可求得△PBE周长的最小值,本题得以解决.【解答】解:连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE 周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为:6.18.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A (1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是②⑤.(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三、解答题(本大题共3小题,共28分)19.(1)计算:﹣14+sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷,其中x=﹣1.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据实数的运算法则计算即可;(2)原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)﹣14+sin60°+()﹣2﹣(π﹣)0=﹣1+2×+4﹣1=5;(2)(1﹣)÷=×=,当x=﹣1时,原式=.20.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P 南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt △APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.21.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25,∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.四、解答题(共50分)22.如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【解答】解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=×2×6=6.23.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【考点】MD:切线的判定.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.24.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y 万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;KW:等腰直角三角形;R2:旋转的性质.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴=,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3,∴BC=6.26.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D 的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣∴S△ACE3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).。

相关文档
最新文档