【6年级奥数详解(上)】第01讲 比赛中的推理答案
奥赛起跑线 六年级 第一讲 习题解析

第一讲1、数学兴趣小组有38人,老师至少拿多少本书,随意分给大家,才能保证至少有1名学生能拿到2本书?解把38人看成38个抽屉,据抽屉原理,39本书中必有两本给同一人。
所以至少拿39本书,能保证至少有1名学生能拿到2本书。
2、某小学学生的年龄最大的为13岁,最小的为6岁,至少需要从中挑选多少名同学,就一定能使挑出的同学中有两位同学岁数相同?解学生年龄共有8种不同可能,看成8个抽屉,据抽屉原理,9名同学中必有2人年龄相同,所以至少需要从中挑选9名同学,就一定能使挑出的同学中有两位同学岁数相同。
3、在100米的路段上植树,至少要植多少棵树,才能保证至少有两棵树之间的距离小于10米?解把100米平均成11段,每段9.0·9·米,看成11个抽屉,据抽屉原理,12棵树中必有2棵在同一段里,则它们的距离小于10米。
所以至少要植12棵树,才能保证至少有两棵树之间的距离小于10米。
4、任意取多少个自然数,才能保证至少有两个数的差是7的倍数?解把自然数按它们被7除的余数分为7类,看成7个抽屉,据抽屉原理,8个自然数至少有2个数在同一个抽屉里,则它们的差是7的倍数。
所以任意取8个自然数,才能保证至少有两个数的差是7的倍数。
5、从1到50的自然数中,任取27个数,其中必有两个数的和等于52。
这是为什么?解把(1),(2,50),(3,49),...,(25,27),(26)看成26个抽屉,据抽屉原理,任取27个数,放入这26个抽屉中,必有2个在同一个抽屉中,由于(1)和(26)只能分别放1和26,所以这2个数只能放在2~25号抽屉中,则2个数的和为52。
6、从1,2,3,4,...,10这10个数中,任意取多少个数,可以保证在这些数中一定能找到两个数,使其中一个数是另一个数的倍数?解把(10,5),(9,3),(8,4),(7,1),(6,2)看成5个抽屉,据抽屉原理,至少取6个数,可以保证在这些数里一定能找到2个数,使其中一个数是另一个数的倍数。
小学数学奥数专题 体育比赛中的推理问题 PPT+课后作业 带答案

总场次:4×3÷2=6场
分出胜负:2+0=2分 打成平局:1+1=2分
每场比赛无论结果如何,产生的总得 分都是2分。
6场比赛的总得分:6×2=12分
总结:计算总得分的题目,每场比赛的总得分通常和胜负无关,计算总场次即可。
练习2
八人进行投篮单循环赛,规定胜者得3 分,负者得1 分,平局双方各得2 分。比赛结束后,八个人的得分加起来一定是多少分?
32分.总:得1胜分1是平31分负,或那3平么总的胜
甲负分:是情14况胜分有1,平哪那1些负么可总能的?胜如负果情总况得 4有分哪:些2胜可1能负?或1胜2平
○× √
○
√○
√×
√
× ○×
乙3.:列1表胜进2平行分析 丙:2胜1负
丁负甲和丙,平乙
总结:考虑每个队之间的胜负关系时,通常通过列表来辅助分析。
练习 6
有A、B、C 三支足球队,每两支队都比赛一场。比赛结果是:A 队有 一场踢平,共进球2 个,失球8 个;B 队两战两胜,共失球2 个;C 队共 进球4 个,失球5 个。请写出每场比赛两队的比分。
总场次:8×7÷2=28场 分出胜负:3+1=4分 打成平局:2+2=4分 每场比赛无论结果如何,产生的总得分都是4分。 28场比赛、E 五名同学一起进行象棋比赛,每两人都要比赛一盘。 到现在为止,A 同学已经赛了4 盘,B 同学赛了3 盘,C 同学赛了2 盘, D 同学赛了1 盘。请问:此时E 同学赛了几盘?
√A
1.比赛没有完全结束,因此计
算总场次是没有意义的。 B
√
E
2.不妨从比赛最多和最少的人 入手考虑。
3.用画图的方法辅助进行分析
√C
√D
此时E同学赛了2盘
高斯小学奥数六年级上册含答案第01讲 比赛中的推理

第一讲比赛中的推理这一讲我们学习的主要内容是与比赛有关的逻辑推理问题.这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在逻辑推理中,特别有用的方法是画示意图或表格,这种方法相信大家并不陌生,用它来分析比赛问题,能够让我们对比赛的情况更为直观明了.例题1编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?「分析」为了让问题更加直观,我们可以画出一个示意图,用6个点来表示这6个同学.如果两个同学之间比赛过,则把对应的两个点用实线连起来,如果没比赛过,则用虚线连起来.练习1A、B、C、D、E五所小学,每所小学派出1支足球队,共5支足球队进行友谊比赛.不同学校间只比赛1场,比赛进行了若干天后,A校的队长发现另外4支球队赛过的场数依次为4、3、2、1.问:这时候A校的足球队已赛过的场数?例题2A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C.那么第五天与A队比赛的是那个队?A B C D E F1 D B2 E C3 F D4 C B5「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示.如图,第二列从上到下依次表示A在5天中分别遇到的对手,第三列表示B在5天中遇到的对手,依此类推.观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什么特点?练习2五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E在哪一天比赛?例题3甲、乙、丙、丁四个同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得了多少分?「分析」(1)每两人之间都比赛一场,总比赛场数就是从四个人中挑出两人的方法数;(2)比赛的胜负情况有很多种可能?那么总分也有很多种可能吗?大家考虑一下每场比赛,比赛双方的得分之和就知道了;(3)乙、丙最后的分数一样,由于总分是固定的,这个相同的分数既不能太大,也不能太小,那么会是多少呢?练习3有A、B、C、D四支足球队进行单循环比赛,每两队都比赛一场.比赛规定:胜一场得2分,平局各得1分,负一场得0分.全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得多少分?例题44支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?「分析」4支球队之间一共比赛了多少场?所有比赛的总分最多是多少,最少是多少?你能由此推断出各队的得分吗?练习4甲、乙、丙、丁4个队举行足球单循环赛.规定:每场比赛胜者得3分,负者得0分,平局各得1分.已知:(1)比赛结束后4个队的得分都是奇数;(2)甲队总分超过其他各队,名列第一;(3)乙队恰有两场平局,并且其中一场是与丙队平局.那么丁队得了多少分?例题5A、B、C、D四个足球队进行循环比赛,赛了若干场后,A、B、C三队的比赛情况如下:场数胜平负进球失球A 3 2 1 0 2 0B 2 1 1 0 4 3C 2 0 0 2 3 6D问:D赛了几场?D所参与的各场比赛的比分分别是什么?「分析」对于整个表格来说总进球数等于总失球数.总胜场应当等于总负场,平局数为偶数场.另外表格中的A很特别,两胜一平却只进两个球,这说明什么呢?例题6A 、B、C、D、E五位同学分别从不同的途径打听到五年级那位获得数学竞赛第一名的同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.实际上该同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?「分析」每个同学打听到的消息都只有一项正确,可谓相当的少!5420⨯=个判断,一共才5个正确的,其中关于姓氏、性别、年龄、地区的判断各有几项是正确的呢?课堂内外足球世界杯世界杯(World Cup,FIFA World Cup),世界足球锦标赛是世界上最高荣誉、最高规格、最高水平的足球比赛,与奥运会并称为全球体育两大顶级赛事,是影响力、转播覆盖率很高的全球体育盛事.世界杯是全球各个国家最梦寐以求的神圣荣耀,哪一支国家足球队能得到它,就是名正言顺的世界第一.整个世界都会为之疯狂沸腾,世界杯上发挥出色的球员都会被该国家奉为民族英雄永载史册,所以它亦代表了各个足球运动员的终极梦想.世界杯每四年举办一次,任何国际足联会员国(地区)都可以派出代表队报名参加这项赛事.世界杯的奖杯为大力神杯,它采用意大利人加扎尼亚的设计方案——两个大力士双手举起地球的设计方案.这个造形象征着世界第一运动的规模.该杯高36.8厘米,重6.175公斤,其中4.97公斤的主体由纯金铸造.底座由两层孔雀石构成,珍贵无比.1974年第十届世界杯赛,德国队作为冠军第一次领取了该杯.国际足联规定新杯为流动奖品,不论哪个队获得多少冠军,也不能永久占有此杯.在大力神杯的底座下面有能容纳镌刻17个冠军队名字的铭牌——可以持续使用到2038年.世界杯32支队伍,在小组赛阶段进行的是单循环比赛,16强阶段进行的是淘汰赛,积分规则是3分制.大力神杯作业:1.A、B、C、D四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C三队的成绩分别是:A队二胜一负,B队二胜一平,C队一胜二负.那么D队的成绩是什么?2.6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)6个人最后得分的总和是多少?(3)得分最高的三名同学的分数之和最多是多少?3.六个人参加乒乓球比赛,每两人之间都要比赛一场,胜者得2分,负者得0分,没有平局.比赛结束时发现,有两人并列第二名,两人并列第五名.那么第一名和第四名各得了多少分?4.足球甲A联赛共有12个足球俱乐部参加,实行主客场双循环赛制,即任何两队分别在主场和客场各比赛一场,胜一场得3分,平一场各得1分,负一场得0分,在联赛结束后按积分的高低排出名次.那么,在积分榜上第一名与第二名的积分差距最多可达多少分?5.A、B、C、D四个足球队进行循环比赛,赛了若干场后,A、B、C三队的比赛情况如下:问:D赛了几场?D所参与的各场比赛的比分分别是什么?第一讲 比赛中的推理例1. 答案:3详解:5号已经赛过5盘,说明他和其他5个人都已经赛过了.而1号只赛了一盘,所以1号这一盘是同5号赛的,他同其他四个人都没有赛过,如图1所示.再看4号,他赛过4盘,且同1号没有赛过,所以4号赛过的同学是除1号以外的4个人.而2号只赛过两盘,所以2号只同5号、4号赛过,如图2所示.3号赛过3盘,而且他同1号、2号没有赛过,那么同3号赛过的就是4号、5号和6号,如图3所示.于是我们知道同6号赛过的有3号、4号和5号.他赛了3盘.例2. 答案:B 详解:如图4,列出表格后发现,每行、每列各有6个字母,而且同一行或列的6个字母互不相同,只需用这一原则把表格补充完整即可.首先可以确定(2,D )处应填A .这是因为第2行已经有E 和C ,第4列已经有D 、B 和F ,所以这一个格不能填这些字母,只能填A .由于第二天A 与D 比赛,那么对应地(2,A )处也应填D .第二天余下的一场就是B 对F ,因而(2,B )处应填F ,(2,F )处应填B .我们用类似的方法推理各行、列,最终把整个表格填出来,得到图5.于是,第五天与A 比赛的球队是B .例3.答案:6;12;3 详解:(1)6;(2)12;(3)3.(1)详解:从四个人中选出两人,有246C 种方法.每两人之间比赛一场,那么一共就有6场比赛;(2)详解:不论胜负还是平局,每场比赛两人得分之和都是2分.一共6场比赛,所以四个人最号5号图135号图2号5号图3后得分的总和就是2612⨯=分;(3)详解:四个人得分之和是12分,甲得分最高,丁得分最低,而乙、丙得分相同.如果乙、丙得分是4分,则甲得分超过4分,这三人的得分之和已经超过12分,与题意矛盾.因此乙、丙得分最多是3分.如果乙、丙得分是2分,则丁最多得了1分,而甲至少得了122217---=分.但是连胜3场也只能得6分,不可能达到7分,因此乙、丙得分至少是3分.所以乙、丙得分就是3分.例4. 答案:4详解:如果比赛分出胜负,那么双方得分之和就是3分;如果平局,双方得分之和就是2分.4支球队之间要进行246C =场比赛,所以总分就要在12分和18分之间. 由题意,四支球队的得分是4个连续的自然数.而四个连续自然数的和可能是:01236+++=,123410+++=,234514+++=,345618+++=,…… 在12分和18分之间的只有14和18.如果是3分、4分、5分、6分,总分是18分,那么每场比赛都分出了胜负,但这是不可能的(大家自己想想这是为什么).所以四个连续的分数为2分、3分、4分、5分.于是第一名得5分,只能是1胜2平;第二名得4分,只能是1胜1平1负;第三名得3分,可能是1胜2负,也可能是3平;第四名得2分,只能是2平1负.其中只有第三名的比赛结果有两种情况.综合考虑第一名、第二名、第四名的胜负情况:他们一共有2胜5平2负.由于总胜场数与总负场数相同,所以第三名只能是3平.容易画出四支队之间的比赛胜负关系,如图6所示.因此输给了第一名的只有第二名,他得了4分.例5.答案:3,A :D =1:0,B :D =4:3,C :D=3:5详解:首先A 两场胜场均为1比0胜出,平局为0比0,而且一定是A 以1比0胜C ,同样以1比0胜D ,0比0平B ,而B 胜的那场胜场以4:3胜出,C 的负场以3比5败北,所以不能是B 胜C ,那么一定是B 胜D ,D 胜C ,所以,D 参加了3场比赛.分别是A :D =1:0,B :D =4:3,C :D=3:5.例6.答案:海淀区,12岁详解:5420⨯=个判断,一共才5个正确的,可以推断出第一名同学的姓名、性别、年龄、城区,分别有1项、2项、1项、1项是正确的.先来看性别,有2项正确,那么第一名是女同学;再来看年龄,2个人说是13岁,2个人说是11岁,只有1个人说是12岁,由于只有1项消息正确,则第一名是12岁;再看城区,3人说东城区,1人说海淀区,1人说西城区,那么第一名在海淀区或者西城区;类似地,可以分析出第一名同学姓李,或姓陈,或姓黄.综合考虑第一名同学的姓名与城区,就很容易判断出唯一的答案:姓黄,是女同学,12岁,海淀区.第一名 1胜2平第二名 1胜1平1负第三名 3平第四名 2平1负图6练习答案:练习1答案:赛2场简答:连线,从胜得最多的和胜得最少的队伍入手分析.练习2答案:第五天简答:列表分析,用*表示轮空,可得下图.练习3答案:3简答:四人总得分是12分,其中C 的分数肯定小于1234÷=分,所以得分不多于3分.四人分别得4分、4分、3分、1分是容易构造出来的,所以C 队得分最多就是3分.练习4答案:3简答:先推断出各队得分分别为7分、5分、3分、1分,然后分析胜负情况即可.图1作业:6. 答案:一平二负.简答:B 队有一平,只可能平D ,所以对A 、C 是二胜.于是A 的两胜是赢了C 和D .故C 的一胜是胜D ,于是D 的成绩是一平二负.7. 答案:(1)15;(2)30;(3)24.简答:(1);(2);(3).8. 答案:10;4.简答:并列第五名的两人至少要各赢1场,所以第四名至少要赢2场,并列第二名至少要各赢3场,第一名至少要赢4场.,而一共要进行15场比赛,所以只能是第一名赢5场得10分,第四名赢2场得4分.9. 答案:46. 简答:第一名要积分多,最好是要22场全胜,得66分.剩下的11支球队还要比赛(场),每场比赛两队合起来至少得2分,于是剩下11队总共至少得220分.因此得分最多的队伍至少有分,当这11队全平时,第二名只能得20分,因此分差最大为46分.10. 答案:2;A 与D 是1:0、B 与D 是1:0.简答:由A 全胜,且进球数为3,可知A 与其他三队的比分都是1:0.B 赛了三场,且两胜一负,所以B 胜C ,而C 只比了两场,进球数为0,所以B 与C 的比分是3:0;而B 与D 只能是1:0.2201120÷= 2112110C ⨯= 12232414⨯++⨯+= 303224-⨯= 15230⨯=2615C =。
六年级奥数逻辑推理题及答案

六年级奥数逻辑推理题及答案
六年级奥数逻辑推理题及答案
数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。
逻辑推理答案:
逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的.情形,最后得到问题的解答.这里以小明所得奖牌进行分析。
解:①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。
②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.
③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。
综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。
【6年级奥数课本(上)】第01讲 比赛中的推理

小学奥数创新体系6年级(上册授课课本)最 新 讲 义小学奥数第一讲比赛中的推理这一讲我们学习的主要内容是与比赛有关的逻辑推理问题.这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在逻辑推理中,特别有用的方法是画示意图或表格,这种方法相信大家并不陌生,用它来分析比赛问题,能够让我们对比赛的情况更为直观明了.例题1编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?「分析」为了让问题更加直观,我们可以画出一个示意图,用6个点来表示这6个同学.如果两个同学之间比赛过,则把对应的两个点用实线连起来,如果没比赛过,则用虚线连起来.练习1A、B、C、D、E五所小学,每所小学派出1支足球队,共5支足球队进行友谊比赛.不同学校间只比赛1场,比赛进行了若干天后,A校的队长发现另外4支球队赛过的场数依次为4、3、2、1.问:这时候A校的足球队已赛过的场数?例题2A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C.那么第五天与A队比赛的是那个队?A B C D E F1 D B2 E C3 F D4 C B5「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示.如图,第二列从上到下依次表示A在5天中分别遇到的对手,第三列表示B在5天中遇到的对手,依此类推.观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什么特点?练习2五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E在哪一天比赛?例题3甲、乙、丙、丁四个同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得了多少分?「分析」(1)每两人之间都比赛一场,总比赛场数就是从四个人中挑出两人的方法数;(2)比赛的胜负情况有很多种可能?那么总分也有很多种可能吗?大家考虑一下每场比赛,比赛双方的得分之和就知道了;(3)乙、丙最后的分数一样,由于总分是固定的,这个相同的分数既不能太大,也不能太小,那么会是多少呢?练习3有A、B、C、D四支足球队进行单循环比赛,每两队都比赛一场.比赛规定:胜一场得2分,平局各得1分,负一场得0分.全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得多少分?。
六年级奥数推理题及答案

六年级奥数推理题及答案在六年级奥数中,推理题是培养学生逻辑思维和问题解决能力的重要题型。
以下是一些典型的六年级奥数推理题及其答案:题目一:一个班级有40名学生,其中20名男生和20名女生。
如果每个学生都至少参加了一个兴趣小组,那么至少有多少名学生参加了两个兴趣小组?答案:假设每个学生只参加一个兴趣小组,那么总共有40个兴趣小组的名额。
但实际上,兴趣小组的总数是男生和女生人数的总和,即20+20=40。
如果每个学生只参加一个小组,那么兴趣小组的名额就会全部用完。
但如果有学生参加两个小组,那么就会空出一个名额。
因此,至少有1名学生参加了两个兴趣小组。
题目二:在一个封闭的房间里,有一盏灯和三个开关。
这三个开关分别位于房间外。
每个开关可以控制灯的开关状态,但无法直接看到灯。
现在你只能进入房间一次,如何判断哪个开关控制哪个灯?答案:首先,打开第一个开关,等待几分钟,然后关闭它。
接着立即打开第二个开关,然后进入房间。
如果灯亮着,说明是第二个开关控制的。
如果灯是冷的但灯泡是热的,说明是第一个开关控制的。
如果灯是冷的且灯泡也是冷的,那么就是第三个开关控制的。
题目三:有五个人,他们分别住在不同的楼层,从一楼到五楼。
每个人也都有自己最喜欢的颜色。
已知以下信息:1. 住在三楼的人不喜欢蓝色。
2. 住在四楼的人喜欢红色。
3. 住在五楼的人住在二楼的人的楼上。
4. 喜欢黄色的人住在喜欢白色的人旁边。
5. 喜欢绿色的人不住在三楼。
根据以上信息,可以推断出谁住在二楼?答案:根据条件3,五楼的人住在二楼的人的楼上,所以二楼的人不住在一楼。
根据条件1,三楼的人不喜欢蓝色,所以三楼的人不可能喜欢黄色或白色。
根据条件4,喜欢黄色的人住在喜欢白色的人旁边,所以他们不可能住在三楼。
根据条件5,喜欢绿色的人不住在三楼。
因此,喜欢绿色的人只能住在二楼。
所以,住在二楼的人喜欢绿色。
题目四:一个班级有5名学生,他们分别参加了数学、物理、化学三个不同的兴趣小组。
小学奥数课本06-01(上)附答案和详解

=4∶3,所以甲与乙的工效比是3∶4.这个间接条件一旦揭示出来,问题就得到解 决了.
甲与乙的时间比是4∶3. 工作总量一定,工作效率和工作时间成反比例,所以甲与乙的工效比是时间比 的反比,为3∶4.
答:这批树一共252棵.
例9 加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,
例5 筑路队预计30天修一条公路.先由18人修12天只完成全部工程
之几(即一人的工效). 解:①1人1天完成全部工程的几分之几(即一人的工效): ②剩余工作量若要提前6天完成共需多少人:
=36(人). ③需增加几人:
4 / 85
36-18=18(人). 答:还要增加18人. 例6 蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小 时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水, 进水,排水…的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确 到分钟) 分析与解答 ①在解答“水管注水”问题时,会出现一个进水管,一个出水管的情 况.若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工 效), 排空水的时间=1÷(出水管工效-进水管工效). ②这道应用题是分析推理与计算相结合的题目.根据已知条件推出水池
4.水箱上装有甲、乙两个注水管.单开甲管20分钟可以注满全箱.现
满水箱? 5.一项工程,甲、乙单独做分别需要18天和27天.如果甲做若干天后,乙接 着做,共用20天完成.求甲乙完成工作量之比.
7 / 85
7.做一批儿童玩具.甲组单独做10天完成,乙组单独做12天完成,丙组每天 可生产64件.如果让甲、乙两组合作4天,则还有256件没完成.现在决定三个组合 做这批玩具,需要多少天完成?
六年级奥数题及答案:逻辑推理

六年级奥数题及答案:逻辑推理六年级奥数题及答案:逻辑推理数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。
桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。
逻辑问题通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到问题的解答.这里以小明所得奖牌进行分析。
解:①若"小明得金牌"时,小华一定"不得金牌",这与"王老师只猜对了一个"相矛盾,不合题意。
②若小明得银牌时,再以小华得奖情况分别讨论.如果小华得金牌,小强得铜牌,那么王老师没有猜对一个,不合题意;如果小华得铜牌,小强得金牌,那么王老师猜对了两个,也不合题意.③若小明得铜牌时,仍以小华得奖情况分别讨论.如果小华得金牌,小强得银牌,那么王老师只猜对小强得奖牌的名次,符合题意;如果小华得银牌,小强得金牌,那么王老师猜对了两个,不合题意。
综上所述,小明、小华、小强分别获铜牌、金牌、银牌符合题意。
亲爱的小朋友们,小学频道为你准备了六年级奥数题及答案:唐老鸭和米老鼠赛跑(高等难度),希望大家开动脑筋,交出一份满意的答卷。
加油啊!!!唐老鸭与米老鼠进行一万米赛跑,米老鼠的.速度是每分钟125米,唐老鸭的速度是每分钟100米。
六年级上册数学培优奥数讲义-第1讲 对应法解题

第1讲对应法解题2知识装备1、对应法:在解决问题时,通过观察、比较题中的已知条件,研究对应数量的变化,寻找解决问题的途径,这种解决问题的思维方法称为对应法。
2、运用对应法解决问题,应把题中的条件按对应关系一一排列,然后把有对应关系的同类量作比较,寻找解决问题的途径。
这种方法经常与消元法、代入法同时使用。
初级挑战1奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买同样的6千克梨和5千克荔枝,那么需花62元。
问1千克梨和1千克荔枝各多少元?思路引领:我们可以把两次买的情况列式进行比较:4千克梨+5千克荔枝=58元①6千克梨+5千克荔枝=62元②比较①和②式,发现两式中()的重量相等,②式比①式多了()千克(),多花了()元,由此可先算出()的单价,再根据①式或②式算出()的单价。
答案:1千克梨:(62-58)÷(6-4)=2(元)1千克荔枝:(58-2×4)÷5=10(元)能力探索1向1个空瓶里倒水,如果倒进3杯水,连瓶共重440克;如果倒进7杯水,连瓶共重600克。
问空瓶重多少克?答案:1杯水:(600-440)÷(7-3)=40(克)空瓶:440-3×40=320(克)初级挑战2学校买鼠标和键盘,如果买3个鼠标和4个键盘共需要190元,如果买同样的6个鼠标和2个键盘需要230元。
一个鼠标和一个键盘各多少元?思路引领:我们可以把两次买的情况列式进行比较:3个鼠标+4个键盘=190元①6个鼠标+2个键盘=230元②我们把①、②两式进行比较,发现两组条件中鼠标和键盘的数量都不一样,无法直接对比。
再进行观察可以发现:如果把①式左右两边同时扩大2倍,再与②式进行比较得出:6个鼠标+8个键盘=380元③6个鼠标+2个键盘=230元②鼠标个数相同,所以③式-②式可先求出键盘的单价,从而再算出鼠标的单价。
答案:键盘单价:(190×2-230)÷(4×2-2)=25(元)鼠标单价:(230-25×2)÷6=30(元)能力探索24本练习本和5支圆珠笔共14元,同样的2本练习本和4支圆珠笔共10元。
六年级奥数:逻辑推理问题

六年级奥数:逻辑推理问题知识定位本讲知识可以说是多数孩子比较喜欢的一讲,有趣又可以开发智力,自主学习研究性比较高。
其中运用的一些方法和思想我们在平时的奥数学习中已经接触运用过了。
本讲我们主要从解答逻辑推理问题的方法入手讲解。
如假设法、列表法、排除法、比较法、整体考虑法等,通过实际例题具体讲解。
知识梳理列表法列表时要将同一对象的两种不同表达方式分别用行与列标出,通过横向与纵向的不断比较得出结论。
假设法“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,顺藤摸瓜,根据数量上出现的矛盾作适当调整,从而找到正确答案。
排除法还有一种组题形式的逻辑推理题(多为选择题),这种题型通常从题目条件出发,并结合排除法来确定选项。
一般的逻辑推理对于一般的逻辑推理题,要能够通过假设、枚举、列表或者列表与假设相结合等方法来分析,逐个探讨各种假设的正确性,进而得出确切的信息。
体育比赛中的逻辑推理问题对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
例题精讲【题目】小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小. 问:谁是工人?谁是农民?谁是教师?【答案】小张是工人,小李是农民,小王是教师【解析】这道题目并不难,聪明的小朋友思考一下就能得到答案,但是今天我们通过这道题目一起来学习一个十分有用的方法:列表分析法. 由题目条件可以知道:小李不是教师,小王不是农民,小张不是农民.由此得到左下表。
表格中打“√”表示肯定,打“×”表示否定.因为左上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,于是得到右上表.因为农民小李比小张年龄小,又小李比教师年龄大,所以小张比教师年龄大,即小张不是教师。
趣味奥数题6年级逻辑推理

趣味奥数题6年级逻辑推理一、题目。
1. 甲、乙、丙三人进行跑步比赛。
甲说:“我跑得不是最快的,但比丙快。
”请你说出他们三人的跑步速度顺序。
- 解析:根据甲说的话,甲不是最快的且比丙快,那么最快的只能是乙,其次是甲,最后是丙。
所以三人的速度顺序为乙>甲>丙。
2. 有A、B、C、D四位同学参加数学竞赛。
他们对自己的成绩进行了预测。
A 说:“我肯定得第一名。
”B说:“我不会得最后一名。
”C说:“我不可能得第一名。
”D说:“我肯定得最后一名。
”竞赛结果出来后,发现他们四人中只有一人预测错误。
那么谁预测错误了呢?- 解析:假设A预测错误,那么A不是第一名,C说自己不可能得第一名是正确的,D说自己肯定得最后一名是正确的,B说自己不会得最后一名也是正确的,这样就符合只有一人预测错误;假设B预测错误,那么B就是最后一名,可是D说自己是最后一名,这样就矛盾了;假设C预测错误,那么C就是第一名,这与A说自己是第一名矛盾;假设D预测错误,那么D不是最后一名,B说自己不是最后一名,这样就没有人是最后一名了,也矛盾。
所以A预测错误。
3. 张、王、李三位老师分别教语文、数学、英语。
已知:张老师不教英语;王老师不教语文;教英语的老师不教数学;教语文的老师和王老师是好朋友。
请问三位老师分别教什么科目?- 解析:由可知张老师不教英语;由可知王老师不教语文;由可知王老师不教语文。
从知道教英语的老师不教数学,那么英语老师只能教语文或者英语。
假设张老师教语文,因为王老师不教语文,教英语的老师不教数学,所以王老师教数学,李老师教英语;假设张老师教数学,因为张老师不教英语,王老师不教语文,所以王老师教英语,李老师教语文。
4. 有红、黄、蓝、白、黑五种颜色的小球,它们之间的关系是:红色球比白色球大;蓝色球比黄色球大且比黑色球小;黄色球比白色球大;黑色球比红色球小。
请按照球的大小顺序排列这五种颜色的球。
- 解析:由可知黄<蓝<黑;由可知白<红;由可知白<黄;由可知黑<红。
六年级上册数学试题 奥数竞赛逻辑问题 全国通用

第1页/共4页第一讲逻辑推理姓名()数学是锻炼思维的体操,在我们学习数学的过程中,有许多问题都需要我们利用逻辑推理来解答。
那么什么是逻辑问题呢?逻辑问题是指事物进行判断、推理。
一般说逻辑问题必须遵循一些初步规律:1、矛盾律:两个矛盾的判断,不可能是同时成立的。
例如:小明在一次数学竞赛中,不能既是第一名又是第三名。
2、排中律:是指只有两种可能,没有介于两者之间第三种可能。
例如:甲、乙两人争夺乒乓球比赛单打冠军,冠军不是甲获得,就是乙获得。
这两个结论必有一个成立。
解这类问题时,往往先从某一个条件出发,利用其他条件进行推理,直到推出结论为止。
有时先做出一种假设,从这个假设出发,推出自相矛盾的结论。
说明这个假设是不成立的,因此与假设相反的情况是正确的。
在推理的过程中,选中突破口,层层剖析是解决问题的关键,经常采用的解答方法是表格方式。
例1、某地质学院的三名学生对一种矿石进行分析。
甲判断:“不是铁,不是铜。
”乙判断:“不是铁,而是锡。
”丙判断:“不是锡,而是铁。
”经化验证明,有一个人判断完全正确,有一人只说对了一半,另一人则完全误了。
你知道这种矿石是矿石;是错的;只对了一半。
例2、小明和小华和小红三人中,有一人做了一件好事。
老师问他们三个人是谁做的好事。
小明说:“是小华做的。
”小华说:“不是我做的。
”小红说:“不是我做的。
”已知他们三个人中有两人说的是假话,有一个说的是真话。
请你判断一下,好事是做的。
例3、刘军、张斌和徐文在一起,一位是工人,一位是农民,一位是战士。
现在只知道:①徐文比战士的年龄大;②刘军和农民不同岁;③农民比张斌年龄小。
是工人;是农民,是战士。
例4方体红色面的对面涂的是色;黄色面的对面涂的是色,黑色面的对面涂的是色。
例5:观察下图中数字的摆放规律,由此得到A=_____。
例6、爸爸在邮局寄了三种信:平信邮资每封1角,航空信邮资每封2角,挂号信邮资每封4角,他共用去2元2角。
问爸爸寄的三种信的总和最少是封。
六年级奥数逻辑推理含答案

逻辑推理知识框架逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一、 列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、 假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、 体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、 计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲一、列表推理法【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【答案】刘刚与小红、马辉与小英、李强与小丽分别是兄妹【巩固】王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【考点】逻辑推理【难度】2星【题型】解答【解析】为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【答案】王文是跳伞运动员,李丽是游泳运动员,张贝是田径运动员【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【考点】逻辑推理【难度】2星【题型】解答【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
组合数学第01讲比赛中的推理(六年级)

知识图谱组合数学第01讲_比赛中的推理-一、比赛中的推理场次计算总分计算具体赛程积分与名次得失球相关一:比赛中的推理知识精讲比赛中的推理:这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在推理中,画示意图或表格用来分析比赛问题,能够让我们对比赛的情况更为直观明了.1.比赛分类:(1)淘汰赛:每场比赛踢掉一支球队,只取第一名.(2)单循环赛:n支球队,每两队比赛1场,总共比赛场.(3)双循环比赛:n支球队,每两球比赛2场总共比赛场.2.与比赛积分有关的推理问题.两种常见的计分法:(1)2分制计分法:“每场比赛胜者得2分,负者得0分,平局各得1分”.这种情况下,每场比赛无论结果如何,双方总得分都是2分,因此所有选手的总分就等于“比赛场数×2”.(2)3分制计分法:“每场比赛胜者得3分,负者得0分,平局各的1分”.这种情况下,总分就是“胜负场数×3+平局场数×2”,或者写成“比赛场数×2-平局场数”.三点剖析重难点:要注意搞清比赛规则,特别是积分规则,对阵方式,认识总场次、总得分与某个对或人总得分、总场次间的区别与联系..若是画对阵关系图,注意箭头表胜负,虚线表示平局.题模精讲题模一场次计算例1.1.1、某年级8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队每两队之间只进行一场比赛),胜一场得3分,负一场得0分,平一场得1分.某班级共得15分,并以无负局成绩获得冠军,那么该班共胜几场比赛?答案:4解析:该班赛了7场.假设全是平局,应得7分.每将1场平局替换为胜场,总分增分,故该班共胜场.例1.1.2、为弘扬亚运精神,四年级组织了篮球联赛,赛制为单循环制,即每两队之间都要比一场,计划安排15场比赛,应该邀请几个篮球队参加?答案:6解析:由于,故应该邀请6个篮球队参加.例1.1.3、甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了______盘.答案:2解析:由题意可画出比赛图,已赛过的两人之间用线段连接.由图看出小明赛了2盘.例1.1.4、A,B,C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去.最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?答案:23场解析:因为A队胜10场,所以A队休息和被击败的天数的和是.26是个偶数,结合我们在分析中得到的结论,可以知道A队休息的天数与被打败的天数是相同的,所以A队休息了13天.因为一共有36场比赛,所以A 队打了23场比赛.例1.1.5、有16位选手参加象棋晋级赛,每两人都只赛一盘.每盘胜者积1分,败者积0分.如果和棋,每人各积0.5分.比赛全部结束后,积分不少于10分者晋级.那么本次比赛后最多有_______为选手晋级.答案:11解析:一共比赛了120场,每场比赛两个选手总分会得到1分,所以共有120分,理论上来讲,最多能有人,但是没有晋级的人同样也消耗了120分钟的若干分,所以不可能这120分全部是这12个人获得,故最多不可能是12人;于是接下来考虑11人的情况,这样是可以实现的,11人只需110分,而剩下来的5人正好消耗分,加起来120分.(具体的一种情况可以使前11人之间均为平局,然后他们都赢了最后5名,则前11人每人得分都为10分).例1.1.6、五支足球队伍比赛,每两个队伍之间比赛一场;胜者得3分,负者得0分,平局各得1分.比赛完毕后,发现各队得分均不超过9分,且恰有两支队伍同分.设五支队伍的得分从高到低依次为、、、、(有两个字母表示的数是相同的).若恰好是15的倍数,那么此次比赛中共有______场平局.答案:3解析:体育比赛得分问题,首先算出比赛一共10场,总分在20到30分之间.五位数是15的倍数,利用整除性可知,可为0或者5,考虑到最小,如果,总分最小为分,不成立,所以,即第五名4场全负积0分.第五名负四场,则平局最多为6场,总分最少为24分.又考虑到分数和为3的倍数,总分可能情况为30,27,24.对三种情况分别讨论:(1)总分30分:即无平局情况,那么前四名队伍得分只可能为9,6,3分.不能在只有两个重复的情况下凑出30.所以总分30分情况不存在.(2)总分27分:经测试,存在,满足题目分数要求,且四个队7场胜3场负,恰好满足第五队的4场负,所以此为一解,比赛3场平局.(3)总分24分:在24分情况下,只有前四名只能各胜1场平2场,但不满足只有两队得分相同.所以总分24分情况不存在.综上,唯一存在总分27分情况下,比赛中共有3场平局.题模二总分计算例1.2.1、6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.那么6个人最后得分的总和是_______分.答案:30解析:无论赛果如何,每场共产生2分.6个人共赛了场,因此总分为分.例1.2.2、四支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?答案:4分解析:如果比赛分出胜负,那么双方得分之和就是3分;如果平局,双方得分之和就是2分.4支队之间要进行场比赛,那么总分就要在12分和18分之间.各队的总得分就是6场比赛的总得分,因此四支球队的总分也要在12分和18分之间.由题意,四支球队的得分是4个连续的自然数.而四个连续自然数的和可能是:,,,,……在12分和18分之间的只有14和18,因此这四支球队的得分可能是2分、3分、4分、5分,或者3分、4分、5分、6分.这两种情况都可能出现吗?如果是3分、4分、5分、6分,总分是18分,那么每场比赛都分出了胜负,但这是不可能的,大家自己想想这是为什么?如果是2分、3分、4分、5分,那么第一名得5分,只能是1胜2平;第二名得4分,只能是1胜1平1负;第三名得3分,可能是1胜2负,也可能是3平;第四名得2分,只能是2平1负.其中只有第三名的比赛结果有两种情况.综合考虑第一名、第二名、第四名的胜负情况:他们一共有2胜5平2负.由于总胜场数与总负场数相同,所以第三名只能是3平.第三名没有平局,容易画出四支队之间的比赛胜负关系,如图所示.因此输给了第一名的只有第二名,他得了4分.例1.2.3、10名选手参加象棋比赛,每两名选手间都要比赛一次.已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等.问:前六名的分数各为多少?答案:17分,16分,13分,12分,11分,9分解析:因为前两名选手都没有输过,所以第一名选手的战绩最好是8胜1平,得17分.第二名最多得16分.可知第三名最多得分.后四名选手之间有6场比赛,每场比赛得2分,一共得12分.所以后四名选手总分最少为12分,从而第四名选手最少得12分.考虑到第三名最多得13分,可知第三名得13分,第四名得12分.于是第一名和第二名总分为33分,也就是第一名得17分,第二名得16分.10名选手之间一共有45场比赛,总分是90.第五名和第六名的总分是.考虑到每一个的得分都小于第四名的得分12,可知第五名得11分,第六名得9分.因此前六名的分数分别为17、16、13、12、11、9.例1.2.4、有A、B、C、D、E五个队分在同一个小组进行单循环足球赛(每两队只进行一场比赛),为争夺出线权,比赛规则规定:胜一场得3分,平一场各队各得一分,负一场得0分.小组赛结束后,小组中名次在前的两个队出线,请你解答下列问题:(1)小组赛结束后,若A队的积分为9分,设A队胜m场,平n场,则的值是多少?(2)小组赛结束后,设5个队的积分总和为x,那么x的范围是什么?(3)小组赛结束后,若A队的积分为10分,A队能出线吗?请你对A队能否出线作出分析.答案:(1)9(2)(3)能解析:(1)即为A的总分,故.(2)共赛场,每场最少产生2个积分,最多产生3个积分,故5个队的积分总和x最小为,最多为,且易知此范围内任何一种情况均可达到.因此,x的范围是.(3)假设A无法出线,则至少有两队的得分不低于10分,即此三队总分至少为分,进而另两队总分最多为分.但另两队之间会比一场,不可能都积0分,矛盾.因此假设不成立,即A一定能出线.题模三具体赛程例1.3.1、甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘.问:小强已经赛了几盘?分别与谁赛过?答案:2;甲,乙解析:用5个点代表5人,实线代表两人比过,虚线则为没比过.甲与每人都比过,这样丁只与甲比过,乙未与丁比,与另三人比过,进而丙只与甲、乙比过.最终得小强与甲、乙比过2盘.例1.3.2、今有6支球队进行单循环赛,每两队仅赛一场,胜者得3分,负者得0分,平局各得1分.比赛结束,各队得分由高到低恰好是等差数列(排名相邻两队得分差相等),其中第三名得8分.这次比赛中平局共有几局?答案:3解析:第三名5场得8分,故最多胜2场.假设其只胜1场,则其积分最多为分,矛盾,因此第三名只能为2胜2平1负.共比了场,故所有队总分最多为分.前五名总分为分,进而第六名最多为分,且与第三名差3个公差,只能为2分.这样,所有队总分为分,平局有局.例1.3.3、五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D,C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E在哪一天比赛?答案:第五天解析:列表分析,用*表示轮空.题模四积分与名次例1.4.1、A、B、C、D四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C三队的成绩分别是:A队2胜1负,B队2胜1平,C队1胜2负.那么D队的成绩是________胜.答案:解析:D显然有1平.共赛了场,A、B、C共胜5场,再加上1场平局,已经达到6场,因此D没有获胜.例1.4.2、东亚四强赛是由中国、韩国、日本、朝鲜四个国家球队之间进行的一次单循环制比赛,即每支球队都必须分别和其他球队比赛一场.请问:东亚四强赛总共需要比多少场比赛?如果每赢一场得3分,平一场得一分,输一场得0分,那么第一名最多可以的多少分?最少可以得多少分?答案:9;3解析:易知第一名最多为分.若所有比赛均为平局,显然第一名为分.假设某队只得2分、1分或0分,则其至少输了1场,故必有1队至少积3分,因此3分以下不可能为第一名.综上,第一名最多9分,最少3分.例1.4.3、A、B、C、D四支足球队进行一次单循环比赛,赢一场得2分,平局各得1分,输一场不得分.所有比赛结束后,按积分高低排名,A、B两队并列最后一名,C队第二名,D队第一名.那么A队最多得多少分?答案:2解析:共赛了场,各队总积分为分.A队得分必低于平均分分,即最多2分.易知2分是可达的,如D胜A、B,其余比赛均为平局即可.因此,A队最多得2分.例1.4.4、一张有4人参加的国际象棋单循环比赛的积分表如下,每场比赛胜者得3分,负者减1分,平局则两人各得1分.(1)填出表内空格中的分值.(2)排出这次比赛的名次.答案:(1)见下表(2)余张赵陈解析:若a胜b,则b负于a;若a与b战平,则b与a也战平.由此易将表格补全,进而得到名次.例1.4.5、热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20分;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛__________队胜,他们的比分是___________________.答案:雷霆,解析:综合条件,可以得到雷霆队得分组成的等差数列的公差只能是4分,队员分别得分为30、26、22、18、14,而热火队得分为22、22、21、20、19.所以雷霆队与热火队的比分是110:104.例1.4.6、世界杯足球小组赛,每组四个队进行单循环比赛(即每个队都与同组的其它三个队各赛一场).每场比赛胜队得3分,败队得0分,若打成平局,则两队各得1分,小组赛全赛完后,总积分高的两个队出线进入下一轮比赛.如果总积分相同,则还要依次按净胜球多少和进球数多少来排序.试问:(1)每组小组赛需要比赛几场?(2)一个队的积分情况有哪几种可能?(3)若某队只积3分,那么该队的输赢情况有哪几种可能(不考虑三场比赛的先后顺序)?(4)若某队只积3分,那么该队有可能出线吗?请简单叙述理由.(5)至少需要积多少分才能保证一定出线?请简单叙述理由.(6)至少需要积多少分才有可能出线?请简单叙述理由.答案:(1)6(2)0至7分及9分均有可能,共9种(3)1胜2负或3平,共2种(4)可能(5)7(6)2解析:(1)场.(2)可能为、、、、、、、、、,共9种.(3),故可能为1胜2负或3平.(4)可能,如6场均为平局,每队均为3分,则必有2只可以出线.(5)7分.9分显然小组第一出现.若为7分,其战胜的两支球队最多为6分,故7分可确保前两名.若1队3负,另3队均为2胜1负,则必有1只积6分的无法出线.(6)2分.若一支球队全胜,另三只均为2平1负,则必有2分的可以出线.而若积1分或0分,其至少输给过2只球队,那两只至少3分,排名一定在前,即此时必无法出线.题模五得失球相关例1.5.1、现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分.图1是一张记有比赛详细情况的表格.但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入图2中.答案:<解析:对于A,赛2场,2胜1平0负,这里至少有一个数字有误,如果只有一个数字有误,那有三种可能:(1)赛3场,2胜0负1平;(2)赛2场,1胜0负1平;(3)赛2场,2胜0负0平.对于(1)、(3)两种情况,后面的积分都是错误的,对于(2)这种情况,后面的进球是错误的,所以对A来说,至少有两个数字是错误的.对于C,赛1场,0胜2平1负,这里至少有一个数字有误,如果只有一个数字有误,那有两种可能:(1)赛3场,0胜2平1负;(2)赛1场,0胜0平1负.无论哪种情况,后面的积分都是错误的,所以对C来说,也至少有两个数字是错误的.A和C一共至少有4个错误的数字,而总共只有4个数字错误,所以它们各错了两个,B的数字全部正确.三个球队打单循环,每支球队的比赛场数不多于2.对A来说,如果它的两个错误全部出现在前4个数字上,那么它进0球就是对的,所以它没有赢.这时它最多平2场得2分,这样积分出错,矛盾.因此前4个数字只有一个错误,那它的结果是一胜一平或者两胜.如果A的比赛结果是2胜,那进球数是错的,积分也是错的,一共有3个错误,所以A的比赛结果是一胜一平,另一个错误的数字是进球数.用类似的方法可以写出正确的表格,如图所示.我们还容易看出,A平C而胜了B,B胜了C而负于A,C平了A而负于B.再从C的进球数与失球数就可以判断出三场比赛比分分别是:Avs BAvs CBvs C例1.5.2、A、B、C三队比赛篮球,A队以83∶73战胜B队,B队以88∶79战胜C队,C队以84∶76战胜A队,三队中得失分率最高的出线.一个队的得失分率为,如,A队得失分率为.三队中__________队出线.答案:A解析:这道题没必要算出三队得失分率,得失分率就是衡量一个球队总共是赢了还是输了.A:赢了10分,输了8分,一共赢了2分.B:赢了9分,输了10分,一共输了1分.C:赢了8分,输了9分,一共输了1分,所以A的得失分率最大.随堂练习随练1.1、6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共有_________种.答案:70解析:把六个球队看做六个点,这之间进行连线.则可能形成一个六边形或者两个三角形.如果形成一个六边形,则有种;如果形成两个三角形,则有种.所以共有种.随练1.2、六个人传球,每两人之间至多传一次,那么最多共进行____次传球.答案:13解析:本题是一道比赛场数计数问题,“每两个之间至多传一次”让六个人最多次地传球,则是5+4+3+2+1=15次.但得看是否可传递回去,在传递过程中同两人是否重复.(15条线,代表传球15次)根据一笔画问题:一笔画要求只有2个奇点(不需要回到出发点时)或0个奇点(需要回到出发点时),行不通.所以应减少奇点个数,共有6个奇点,应该去掉两条两条直线,即去掉了4个奇点,剩下2个奇点,可以传递成功,共15-2=13次传球.随练1.3、五支球队进行足球比赛,每两支队之间都要赛一场,那么每支队要赛几场?一共要进行多少场比赛?若这五支球队进行淘汰赛,为了决出冠军,一共需要进行多少场比赛?答案:4;10;4解析:每支队要赛场,共进行场.淘汰赛每场淘汰1支球队,故为了决出冠军,一共需要进行场淘汰赛.随练1.4、6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.请问:(1)各队总分之和最多是__________分,最少是__________分。
6年级奥数逻辑推理(上)例题解析

【内容概述】体育比赛形式的逻辑推理问题,其中存在的呼应——队的胜、负、平分别对应着另一队的负、平、胜”对解题有重要作用,有时宜将比赛情况用点以及连接这些点的线来表示.需要从整体考虑,涉及数量比较、整数分解等具有一定综合性的逻辑推理问题.【例题】1.甲、乙、丙、丁与小强5位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了l盘.问小强已经赛了几盘?,[分析与解]“甲已经赛了4盘”,说明甲与乙、丙、丁、小强各赛了1盘(小强与甲赛了1盘).“丁赛了1盘”,肯定丁只与甲比赛.“乙赛了3盘”,说明乙与甲、丙、小强各赛了1盘(小强与乙赛了1盘).现在已经知道,丙赛的2盘是与甲、乙各赛了1盘.所以,小强赛了2盘.2.共有4人进行跳远、百米、铅球、跳高4项比赛,规定每个单项中,第一名记5分,第二名记3分,第三名记2分,第四名记1分.已知在每一单项比赛中都没有并列名次,并且总分第一名共获17分,其中跳高得分低于其他项得分;总分第三名共获11分,其中跳高得分高于其他项得分.问总分第二名在铅球项目中的得分是多少?[分析与解]每个单项的4人共得分5+3+2+1=11分,所以4个单项的总分为11×4=44分,而第一、三名得分为17、11分,所以第二、四名得分之和为44-(17+11)=16分.第4名得分最少为4,但是如果大于4,则第二得分少于12,显然不会超过第三名的11分,不满足.于是,第一、二、三、四名的得分依次为17、12、11、4分,而17只能是5+5+5+4,4只能是1+1+1+1,不难得到下表:由表知总分第二名在铅球项目中的得分是3分.3.甲、乙、丙、丁4个队参加足球循环赛,即每两队之间都比赛一场.现在甲、乙、丙的比赛情况如图10-1,请由此确定甲与丁的比分,丙与丁的比分.[分析与解]我们先根据甲、乙、丙三队已赛场数及丁与甲、丙两队均有比赛确定对阵情势.乙赛了3场,则对手为甲、丙、丁,题目所求为甲与丁、丙与丁比分,则丁与甲、丙都赛了两场,由此得到如下得对阵状况图.然后,考虑各场比赛胜负关系.先考虑甲、乙间的这一场,显然甲胜的比赛不是与乙的比赛,而是甲、丁间的比赛,甲、乙间以平局告终,那么,乙胜的2局分别是与丙与丁的比赛,而丙一场未胜,因此丙在与丁的比赛中输掉.因此,得到如下得赛况图,其中“A B队”表示A队胜了B队,“A队—B队”表示两队比赛为平局.最后,考虑各场次的比分.乙队进球为2,失球数为0,战绩是二胜一平,则两场胜利的比赛全是“1:0”的胜利,而平局为“0:0”,甲在与乙的比赛中是“0:0”,总进球数为3,失2球,所以,甲与丁的比赛为甲“3:2”战胜丁,丙在与乙的比赛中失掉一个球,未进球,决进球数为3,失球数为5,所以丙丁之间的比赛是丁4:3胜出,这样,各场比赛分数下图所示所示.所以,甲与丁的3:2,丙与丁是3:4.4.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?[分析与解]四个队共赛了=6场,6场总分m在12(=6×2)与18(=6×3)之间.由于m是4各连续自然数的和,所以m=2+3+4+5=14或m=3+4+5+6=18.如果m=18,那么每场都产生3份,没有平局,但5=3+1+1表明两场踢平,矛盾.所以m=14,14=3×2+2×4表明6场中只有2场分出胜负.其中第一名得5分,5=3+1+1,表明这队仅胜一场.第二名得4分,4=3+1,表明第二名胜一场,负一场,平一场.因为6场中只有两场分出胜负,所以第二名负于第一名,即输给第一名的队得4分.如下图所示,在两队之间连一条线表示两队踢平,画一条A→B,表示A胜B,各队用它们的得分来表示.评注:常见的体育比赛模式N个队进行淘汰赛,至少要打N-1场比赛:每场比赛淘汰一名选手;N个队进行循环赛,一共要打场比赛:每个队要打N-1场比赛.循环赛中常见的积分方式:①两分制:胜一场得2分,平一场得1分,负一场得0分;核心关系:总积分=2×比赛场次;②三分制:胜一场得3分,平一场得1分,负一场得0分;核心关系:总计分=3×比赛场次-1×赛平场次.5.甲、乙、丙、丁4个队举行足球循环赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.已知:①比赛结束后4个队的得分都是奇数;②甲队总分超过其他各队,名列第一;③乙队恰有两场平局,并且其中一场是与丙队平局.那么丁队得了多少分?[分析与解]乙队得分是奇数,并且恰有两场平局,所以乙队是平2场胜1场,得5分.甲队总分第一,并且没有胜乙队,只能是胜2场平1场(与乙队平),得7分.因此丙队与乙队平局,负于甲队,得分是奇数,所以只能是得1分.丁队负于甲队和乙队,胜丙队,得3分.6.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.现在比赛已进行了4轮,即每队都已与4个队比赛过,各队已赛4场的得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球踢成平局,那么总得分居第五位的队最多可得多少分?最少可得多少分?[分析与解]每轮赛3场,最多产生3×3=9分,四轮最多4×9=36分.现在有4场踢成平局,每平一场少1分,所以总分为36-4×1=32.前三名得分的和至少为7+8+9=24.所以后三名的得分的和至多为32-24=8.第5名如果得4分,则后三名的得分的和至少为4+5=9,这不可能,所以第5名最多得3分,下图为取3分时的一种可能的赛况图.显然第5名最少得1分,下图为取1分时的一种可能的赛况图.7.已知A,B,C,D,E,F这6位同学参加数学竞赛,其中有两人得了满分,但不知是哪两个人.在同学们的猜测中,有下列5种说法:①A和C,②B和F,③B和E,④A和F,⑤A和D.但是老师说,在这5种说法中,有4种猜对了一半,有1种都猜错了.那么是哪两位同学得满分?[分析与解]如果A没有得满分,则①、②、⑤不可能全是猜对了一半,否则C、D、F均为满分,所以猜错的说法一定在①、④、⑤当中,但是,两个满分也一事实上在C、D、F中,可这样,③中的B、E就民猜错了,这时,有两种说法都猜错了,这种情况不成立,因此A一定得了满分.当A得了满分的C、D、F都没有得满分,则错了的廉洁法只能是②和③,而另一个得满分的是:B、E之一,这就说明③猜对了一半,②猜错了,所以,另一个得满分的是E.即A、E两位同学得了满分.8.某商品的编号是一个三位数.现有5个三位数:874,765,123,364,925,其中每一个数与商品编号,恰好在同一位上有一个相同的数字.那么这个三位数是多少?[分析与解]商品编号的个位数字只可能是3、4、5.如果是3,那么874,765,364,925这4个数中至多又三个数与商品编号有相同数字(百位有一个相同,十位有两个相同),还有一个数与商品编号无相同数字,矛盾.如果是5,那么765,925的个位数字是5,从而商品号码的十位数字不是6、2,因此必须是7.这时123、364中至少有一个与商品号码无相同数字,矛盾.所以,该商品号码的个位数字只能是4,而且这个号码应当是724.即这个三位数为724.9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题答对得,10分,不答得0分,满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学的得分如图10-2.那么丁应得多少分?[分析与解]我们知道甲错了3到题,乙错了3道题,于是甲、乙共错了6道题,而甲、乙有第2、3、5、7、8、10这6道题的答案不一样,要们是甲对,要么是乙队,也就是说甲或乙共做错的6道均在第2、3、5、7、8、10这6道题中,剩下的第1、4、6、9的答案是正确的,如下图所示.比照丙的答案,知丙第1、4、6、9的答案与甲的答案相反,而甲这4道都是正确的,所以丙的这4道题都是错误的,而丙得了60分,只错了4道题,所以剩下的6道题都是正确的,即正确的答案是从第1题到第10题依次为×××√√×√×√×.比照丁的答案只有第2题是错误的,所以得分为90分.10.某楼住着4个女孩和2个男孩,他们的年龄各不相同,最大的10岁,最小的4岁,最大的女孩比最小的男孩大4岁,最大的男孩比最小的女孩大4岁.求最大的男孩的岁数.[分析与解]本题中最大的孩子,可能是男孩,可能是女孩.当最大的孩子为女孩时,即最大女孩为10岁,那么最小的男孩时10-4=6岁,则4岁一定是最小的女孩,那么最大的男孩是4+4=8岁,满足题意;当最大的孩子为男孩时,即最大的男孩为10岁,那么最小的女孩为10-4=6岁,则4岁一定时最小的男孩,那么最大的女孩为4+4=8岁,也就是说4个年龄不同的女孩的年龄在6~8之间,显然得不到满足.于是,最大的男孩为8岁.11.有8个球依次编号为①至⑧,其中有6个球一样重,另外2个球都轻1克.为了找出2个轻球,用天平称了3次,结果如下:第一次,①+②比③+④重;第二次,⑤+⑥比⑦+⑧轻;第三次,①+③+⑤与②+④+⑧一样重.求2个轻球的编号.[分析与解]从第一次称球和第二次称球的情况来看,③号球和④号球中必定有一个轻球,⑤号球和⑥号球中必定有一个轻球,其他球都是标准球.由于③、④中有轻球,所以第三次称时有轻球.又两边一样重,所以两边各有一共轻球,②、⑧为标准球,所以④为轻球,又⑥不是轻球(因为两个轻球都在天平上),所以⑤是轻球.即轻球的编号是④和⑤.12.某次考试满分是100分,A,B,C,D,E这5个人参加了这次考试.A说:“我得了94分.”B说:“我在5个人中得分最高.”C说:“我的得分是A和D的平均分,且为整数.”D说:“我的得分恰好是5个人的平均分.”E说:“我比C多得了2分,并且在5个人中居第二.”问这5个人各得了多少分?[分析与解]B、E分别为第一、二名,C介于A、D之间,则当A为第三时,C 为第四,D为第五,得5人平均分得为最后一名,显然不满足;于是D、C、A只能依次为第三、四、五名,有B、E、D、C、A依次为第一、二、三、四、五名,A为94分,C为D、A得平均分,且为整数,所以D的得分为偶数,只用可能为98或96(如果为100,则B、E无法取值),有D、C、A得分依次为98、96、94或96、95、94,有E比C高2分,则E、D、C、A得分依次为98、98、96、94或97、96、95、94,对应平均分为98或96,而B的得分对应为104或98,显然B得不到104分,所以B、E、D、C、A的得分只能依次是98、97、96、95、94.13.赵、钱、孙、李、周5户人家,每户至少订了A,B,C,D,E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2,2,4,3种报纸,而A,B,C,D这4种报纸在这5户人家中分别有l,2,2,2家订户.那么周姓订户订有这5种报纸中的几种,报纸E在这5户人家中有几家订户?[分析与解]注意到赵、钱、孙、李共订了2+2+4+3=11份报纸,而周至少订1份报纸,所以5户人家至少订了11+1=12份报纸.又注意到,A、B、C、D这4种报纸共订了1+2+2+2=7份,而E最多订有5份,所以A、B、C、D、E最多被订有7+5=12份.所以,周只能是订了1份报纸,E只能是5家都订了.14.在一次射击练习中,甲、乙、丙3位战士各打了4发子弹,全部中靶.其命中情况如下:①每人4发子弹所命中的环数各不相同;②每人4发子弹所命中的总环数均为17环;③乙有2发命中的环数分别与甲其中的2发一样,乙另2发命中的环数与丙其中的2发一样;④甲与丙只有1发环数相同;⑤每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?[分析与解]条件较多,一次直接求出满足所有条件的情况有些困难,我们把条件分类,再逐个满足之.第一步:使用枚举法找出符合每发最多不超过7环、四发子弹命中的环数各不相同,和为17环的所有情况;第二步:再这这些情况中去掉不符合条件③、④的,剩下的就是符合全部条件的情况,即为答案.满足条件①、②、⑤的只有如下四种情况:从上述四个式子中看出A式与B式有数字1、7相同;B式与C式有数字4和5相同.B式既与A式有两个数字相同,又与C式又两个数字相同,B式就是乙.A式与C式对应为甲和丙.A式与C式相同的数字式6,所以甲和丙相同的环数是6.15.教师给甲、乙、丙各发一张写着不同整数的卡片.教师说:“甲的卡片上写着一个两位数,乙的卡片上写着一个一位数,丙的卡片上写着一个比60小的两位数,并且甲的数乘以乙的数等于丙的数.请大家先看一下自己的数,然后猜一猜其他两位同学的数是多少?”甲说:“我猜不出其他两个人的数.”丙说:“我也猜不出其他两个人的数.”甲听了丙的话后,问乙:“你猜得出我与丙的数吗?”乙说:“我猜不出你们两个人的数.”听到这里,甲说:“我已知道乙和丙的数,乙的数是□,丙的数是□□,对不对?”乙、丙答:“很对!”那么,3张卡片上的数各是多少?[分析与解]首先说明甲就小于20.易知甲应该小于30,如果甲在20到30之间,则甲知道;甲≠丙,所以乙≠1,丙<60,所以乙<3,所以,乙=2,丙=2×甲,这样甲直接就知道其他两人中的数,所以,甲为10到19之间的数.对于丙,首先丙不可能小于20,否则甲=丙,以下排列丙的一些可能.第一种可能:丙≠23、29、31、37、41、43、47、53、59.丙若是质数,就无法写出一个两位数与一个大于1的一位数之和.第二种可能:丙≠21、25、32、35、49.这几个数也都无法写成一个两位数与一个大于1的一位数之和.第三种可能:丙≠20、22、24、26、28、33、34、38、39、45、46、51、55、57、58.这几个数都只能惟一地写成一个两位数与一个大于1的一位数之和,如20=2×10、26=2×13……这样,丙根据自己手中卡片的数,就可以知道甲、乙手中的数.第四种可能:丙≠40、42、44、50、52、56.以42为例,42=2×21=3×14.当甲说自己猜不出时,丙就知道甲小于20,而自己又是42,就可以知道甲为14、乙为4了,所以丙≠42,同样的道理,丙不等于其他几个数,这类数的特点是用两种方法写成两位数与一位数的积,但两上乘积式中两个两位数中,只有一个在10~19之间.这样,丙只可能为30、36、48.若丙为30,则甲为10或5,那么,当丙说自己猜不出时,甲、乙知丙为30、36、48之一,而自己又是5的倍数,所以甲不用问乙,就可以说出乙、丙手中的卡片的数,所以,丙不为30,既然甲问了乙,所以甲与乙均知道丙为36或48,而36=3×12=2×18;48=3×6=4×12.所以乙=2,则乙知道甲为18,丙为36;若乙=4,乙知道甲为12,丙为36,而乙仍然不知道甲与丙,所以甲知道乙为3.若甲为16,由于在甲问乙之前,甲就知道丙为36或48,所以当时就知道乙、丙手中卡片上的数了.矛盾.所以,甲为12,乙为3,丙为16.。
小学六年级奥数题解析及逻辑推理

小学六年级奥数题解析及逻辑推理
小学六年级奥数题解析及逻辑推理
1.难度:
二年级的四个站成一列纵队,学学在前,思思紧跟其后,聪聪在思思后面,最后是明明.明明拿出两顶红帽子和两顶黄帽子,分给四人戴,每人一顶,站在前面的人不能回过头来看,后面的人可以看前面人头上戴的帽子(单选).
⑴如果聪聪说:"我头上戴的`是黄帽子".那么,-----(A、学学;B、思思;C、学学和思思;D、学学和思思都不)能说出自己戴颜色的帽子.
⑵如果聪聪说:"我头上戴的是红帽子".那么,-----(A、学学;B、思思;C、学学和思思;D、学学和思思都不)能说出自己戴什么颜色的帽子.
⑶如果聪聪说:"我不知道自己戴的是什么颜色的帽子".那么-----
(A、学学;B、思思;C、学学和思思;D、学学和思思都不)能说出自己戴什么颜色的帽子.
因为聪聪只能看见学学和思思两个人戴的帽子,如果他能确定自己戴的是什么颜色的帽子,说明学学和思思肯定戴的是同色的帽子。
如果他不能确定自己戴什么颜色的帽子,说明学学和思思戴的是不同颜色的帽子。
如果聪聪说:"我头上戴的是黄帽子"。
那么学学和思思都能确定自己戴的是红帽子。
如果聪聪说:"我头上戴的是红帽子"。
那么学学和思思都能确定自己戴的是黄帽子。
如果聪聪说:"我不知道自己戴的是什么颜色的帽子"。
那么学学和思思一个人红帽子一个人。
而思思可以看见学学戴的什么帽子,那么思思就能说出自己帽子的颜色。
【小学六年级奥数题解析及逻辑推理】。
高斯小学奥数六年级上册含答案第01讲比赛中的推理

第一讲比赛中的推理快*布,这定我找体仟 老算抄来的比我们 高出臥进了不少球叽 駅近矗思、IT 罗.工林三所守校之间锻 行了一轮足竦骼环翌- 刚比完・小豪盛皓大 案带回* .战fti rK4rSf BL・■社KVteI■yA**kHf7n#>n这一讲我们学习的主要内容是与比赛有关的逻辑推理问题. 这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的•不同类型的问题我们应该用不同的方法来处理.在逻辑推理中,特别有用的方法是画示意图或表格,这种方法相信大家并不陌生,用它来分析比赛问题,能够让我们对比赛的情况更为直观明了.例题1」 ..................... …一…. ...... . .... . ........ ..编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?「分析」为了让问题更加直观,我们可以画出一个示意图,用6个点来表示这6个同学•如果两个同学之间比赛过,则把对应的两个点用实线连起来,如果没比赛过,则用虚线连起来.A、B、C、D、E五所小学,每所小学派出1支足球队,共5支足球队进行友谊比赛•不同学校间只比赛1场,比赛进行了若干天后,A校的队长发现另外4支球队赛过的场数依次为4、3、2、1.问:这时候A校的足球队已赛过的场数?例题2———— ... —I,每天同A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场)时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C•那么第五天与A队比赛的是那个队?A B C D E F1D B2E C3F D4C B5「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第二列从上到下依次表示A在5天中分别遇到的对手,第三列表示B在5天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什么特点?练习五个国家足球队A、B、C、D、E进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A与D , C轮空;第二天A与B比赛,E轮空;第三天A与E比赛;第四天A与C比赛;B与C的比赛在B与D的比赛之前进行.那么C与E在哪一天比赛?例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?时在3个场地各进行一场比赛,已知第一天B 对D ,第二天C 对E ,第三天D 对F ,第四天「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第 二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示B 在 5 天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什 么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一 天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与B 对C •那么第五天与A 队比赛的是那个队?A 1 2 3 4 5B C DEC BDE B CF例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?时在3个场地各进行一场比赛,已知第一天B 对D ,第二天C 对E ,第三天D 对F ,第四天「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第 二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示B 在 5 天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什 么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一 天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与B 对C •那么第五天与A 队比赛的是那个队?A 1 2 3 4 5B C DEC BDE B CF例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?时在3个场地各进行一场比赛,已知第一天B 对D ,第二天C 对E ,第三天D 对F ,第四天「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第 二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示B 在 5 天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什 么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一 天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与B 对C •那么第五天与A 队比赛的是那个队?A 1 2 3 4 5B C DEC BDE B CF例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?时在3个场地各进行一场比赛,已知第一天B 对D ,第二天C 对E ,第三天D 对F ,第四天「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第 二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示B 在 5 天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什 么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一 天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与B 对C •那么第五天与A 队比赛的是那个队?A 1 2 3 4 5B C DEC BDE B CF例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场) ,每天同 时在3个场地各进行一场比赛,已知第一天 B 对D ,第二天C 对E ,第三天D 对F ,第四天C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?B 对C •那么第五天与A 队比赛的是那个队?A1 2 3 45 B C DEC BD E B CF「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第 二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示B 在 5 天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什 么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一 天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场) ,每天同 时在3个场地各进行一场比赛,已知第一天 B 对D ,第二天C 对E ,第三天D 对F ,第四天C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?B 对C •那么第五天与A 队比赛的是那个队?A1 2 3 45 B C DEC BD E B CF「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第 二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示B 在 5 天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什 么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一 天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场) ,每天同 时在3个场地各进行一场比赛,已知第一天 B 对D ,第二天C 对E ,第三天D 对F ,第四天C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?B 对C •那么第五天与A 队比赛的是那个队?A1 2 3 45 B C DEC BD E B CF「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第 二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示B 在 5 天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什 么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一 天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场) ,每天同时在3个场地各进行一场比赛,已知第一天 B 对D ,第二天C 对E ,第三天D 对F ,第四天 C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?B 对C •那么第五天与A 队比赛的是那个队?A 1 2 3 45 B C DEC BD EBC F 「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示 B 在 5 天中遇到的对手,依 此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与例题 2A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场) ,每天同时在3个场地各进行一场比赛,已知第一天 B 对D ,第二天C 对E ,第三天D 对F ,第四天 C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?B 对C •那么第五天与A 队比赛的是那个队?A 1 2 3 4 5BC DE C BD EBCF「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示 B 在 5 天中遇到的对手,依此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与例题 2C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么 C 与E 在哪一天比赛?A 、B 、C 、D 、E 、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场) ,每天同 时在3个场地各进行一场比赛,已知第一天 B 对D ,第二天C 对E ,第三天D 对F ,第四天 「分析」题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示•如图,第二列从上到下依次表示 A 在 5 天中分别遇到的对手,第三列表示 B 在 5 天中遇到的对手,依 此类推•观察表格,这个表格的每行有几个字母?每列有几个字母?每行、每列的字母有什 么特点?练习 2五个国家足球队 A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是 A 与D , C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天 A 与 B 对C •那么第五天与A 队比赛的是那个队? A1234 5 B C D E C BD E B C F。
第01讲 比赛中的推理(教师版)-五升六暑期数学奥数培优讲义

一、比赛中的推理(六上)第1讲 比赛中的推理五升六 暑期知识点备注一、 连线对阵图1、编号为1,2,3,4,5,6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1,2,3,4,5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?【答案】 3盘 【解析】5号已经赛过5盘,说明他和其他5个人都已经赛过了.而1号只赛了一盘,所以1号这一盘是同5号赛的,他同其他四个人都没有赛过(如图1所示).再看4号.他赛过4盘,而且4号同1号没有赛过.所以同4号赛过的同学是除1号以外的4个人.而2号只赛过两盘,所以2号只同5号、4号赛过(如图2所示).号图1课堂例题3号赛过3盘,而且他同1号、2号没有赛过,那么同3号赛过的就是4号、5号和6号(如图3所示).于是我们知道同6号赛过的有3号、4号和5号.他赛了3盘.二、 用类似数独的方法求解问题2、A ,B ,C ,D ,E ,F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B 对D ,第二天C 对E ,第三天D 对F ,第四天B 对C .请问:第五天与A 队比赛的是哪支队伍?【答案】 B 队 【解析】题目的条件比较多,如何才能看清楚呢?我们可以用表格来表示.如图1,第二列从上到下依次表示A 在5天中分别遇到的对手,第三列表示B 在5天中遇到号图2号图3A B C D E F 1 D B 2 E C 3 F D 4 C B 5图1的对手,依此类推.下面我们来分析这个表格的特点:很明显每行的六个字母应该是互不相同的,每列的六个字母也是互不相同的.那么利用这个特点,我们就可以逐渐填出其中的空格了.首先可以确定(2,D)处应填A.这是因为第2行已经有E和C,第4列已经有D、B和F,所以这一个格不能填这些字母,只能填A.由于第二天A与D比赛,那么对应地(2,A)处也应填D(如图2).A B C D E F1 D B2 D E A C3 F D4 C B5图2此时第二行中已经填出了四个字母,那么余下的两个字母也很容易填出.第五列中也填出了四个字母,而(4,D)处又不能填C,因此只能填E,如图3所示.A B C D E F1 D B2 D F E A C B3 F D4 C B E5 C图3(4,D)处已经填上了E,那么(4,E)处就应该填D.此时第四行中已经填出了四个字母,那么余下的两个字母也就确定了.我们用类似的方法把整个表格填出来,得到图4.A B C D E F1 E D F B A C2 D F E A C B3 C E A F B D4 F C B E D A5 B A D C F E图4因此,第五天与A比赛的球队是B.3、墨莫在纸上写下了10组数据:14073,63136,29402,35862,84271,79588,42936,98174,50811,07145,卡莉娅看到说她的游戏编号也是一个五位数码,恰好每一组数据与她的游戏编号都只有一个数位上的数字相同,这个编号是多少?【答案】 09876 【解析】各组数如下表所示,从左数的第1-5位各数的最高频数分别为1、2、3、3、2.设编号为abcde ,每位分别有1n ~5n 个与编号一致,则11n ≤,22n ≤,33n ≤,43n ≤,52n ≤,且1234510n n n n n ++++=.易知11n =,且3n 、4n 中至少有一个为3.当33n =时,1c =,②⑧⑩其它位均错,故4,7,9d ≠,41n =, 这样123451231210n n n n n ++++≤++++<,矛盾.这样,32n =,由此易得22n =,43n =,52n =,8c =,7d =.①④⑤⑧⑨的第一、二、五位均错,4b ≠,1,2e ≠,故9b =,6e =.这样,⑩只能是首位正确,即0a =.综上,编号为09876.4、小王和小李酷爱打牌,而且推理能力都很强:一天,他们和华教授围着桌子打牌,华教授给他们出了道推理题.华教授从桌子上抽取了如下l 8张扑克牌:红桃A ,Q ,4; 黑桃J ,8,4,2,7,3,5; 草花K ,Q ,9,4,6,10; 方块A ,9. 华教授从这18张牌中挑出一张牌来,并把这张牌的点数告诉小王,把这张牌的花色告诉小李.然后,华教授问小王和小李:“你们能从已知的点数或花色中推断出这张牌是什么牌吗?”小王:“我不知道这张牌.”小李:“我知道你不知道这张牌.”小王:“现在我知道这张牌了.”小李:“我也知道了.”那么这张牌是什么?【答案】 方块9 【解析】①② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 最高频数1 623 8 74 95 0 14 3 95 4 9 2 8 0 7 2 0 1 4 8 2 5 9 1 8 1 3 7 9 0678 3 7 1 4 3 3 6221864152设小王、小李的四句话按顺序分别为①、②、③、④.由①可知牌的点数不能只出现一次,剩红桃A,Q,4;黑桃4;草花Q,9,4;方块A,9.由②可知花色中不能含点数只出现一次的牌,排除黑桃、草花,剩红桃A,Q,4;方块A,9.由③可知点数不是A,否则此时小王仍无法知道,剩红桃Q,4;方块9.由④可知花色不是红桃,否则此时小李仍无法知道,即只可能为方块9.三、与场次数、积分排名相关问题5、甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?【答案】(1)6场(2)12分(3)3分【解析】(1)从四个人中选出两人,有246C=种方法.每两人之间比赛一场,那么一共就有6场比赛.(2)如果一场比赛分出了胜负,那么比赛双方一共得了2分;如果平局,双方也得了2分,因此每场比赛两人都得了2分.一共6场比赛,那么四个人最后得分的总和就是2612×=.(3)四个人得分之和是12,甲得分最高,丁得分最低,而乙、丙得分相同.如果乙、丙得分是4分,则甲得分超过4分,这三人的得分之和已经超过12分,与题意矛盾.因此乙、丙得分最多是3分.如果乙、丙得分是2分,则丁最多得了1分,而甲至少得了122217−−−=分.但是连胜3场也只能得6分,不可能达到7分,因此乙、丙得分至少是3分.综合以上讨论,可知乙、丙得分就是3分.6、四支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结束后,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?【答案】 4分 【解析】如果比赛分出胜负,那么双方得分之和就是3分;如果平局,双方得分之和就是2分. 4支队之间要进行246C =场比赛,那么总分就要在12分和18分之间.各队的总得分就是6场比赛的总得分,因此四支球队的总分也要在12分和18分之间.由题意,四支球队的得分是4个连续的自然数.而四个连续自然数的和可能是:01236+++=,123410+++=,234514+++=,345618+++=,…… 在12分和18分之间的只有14和18,因此这四支球队的得分可能是2分、3分、4分、5分,或者3分、4分、5分、6分.这两种情况都可能出现吗?如果是3分、4分、5分、6分,总分是18分,那么每场比赛都分出了胜负,但这是不可能的,大家自己想想这是为什么?如果是2分、3分、4分、5分,那么第一名得5分,只能是1胜2平;第二名得4分,只能是1胜1平1负;第三名得3分,可能是1胜2负,也可能是3平;第四名得2分,只能是2平1负.其中只有第三名的比赛结果有两种情况.综合考虑第一名、第二名、第四名的胜负情况:他们一共有2胜5平2负.由于总胜场数与总负场数相同,所以第三名只能是3平.第三名没有平局,容易画出四支队之间的比赛胜负关系,如图所示.因此输给了第一名的只有第二名,他得了4分.7、有甲、乙、丙、丁四支球队参加的足球循环赛,每两队都要赛一场,胜者得3分,负者得0分,如果踢平,两队各得1分.现在甲、乙和丙分别得7分、1分和6分.已知甲和乙踢平,那么丁得多少分?【答案】 3第一名 1胜2平第二名 1胜1平1负第三名 3平 第四名 2平1负【解析】每队比了3场,易知甲、乙分别只有1场平局,丙无平局,故丁无平局.各队总分为361117×−×=,故丁得177163−−−=分.四、 与得失球数相关内容8、(龙校四年级春季)2015年亚洲杯足球赛小组赛中国队被分在B 组,同组四支球队举行单循环比赛,下表给出小组赛结束之后比赛结果:(1)请将表格内空缺处补充完整;(2)根据此表格有人猜测中国队对朝鲜队的比分可能是2:0,你认为有可能吗?为什么? 【答案】(1)如下表(2)不可能【解析】(1)每队胜平负场次和为3场,故乌兹别克斯坦胜2场,朝鲜胜、平均为0场.由于乌、沙、朝均无平局,故中国也无平局,胜3场.这样,所有队的胜场和与负场和均为6场,因此沙特1胜2负.此外,所有球队总进球数与总失球数相等,因此中国进球数为()()32575525+++−++=个. (2)不可能,中国总净胜球为523−=个且3战全胜,故每场只能净胜1球,因此2:0不可能出现.9、A ,B ,C ,D 四个足球队进行循环比赛.赛了若干场后,A ,B ,C 三队的比赛情况如图:球队 比赛场次胜 平 负 进球数 失球数 乌兹别克斯坦3 0 1 5 3 中国 3 0 2 沙特 3 0 5 5 朝鲜3327球队 比赛场次胜 平 负 进球数 失球数 乌兹别克斯坦3 2 0 1 5 3 中国 3 3 0 0 5 2 沙特 3 1 0 2 5 5 朝鲜3327场数胜平负进球失球A 3 2 1 0 2 0B 2 1 1 0 4 3C 2 0 0 2 3 6D问:D赛了几场?D赛的几场的比分各是多少?【答案】3场;比分分别是0:1输给A,3:4输给B,5:3赢了C【解析】由分析可知,A队0:0平B,1:0胜C,1:0胜D.B队1胜1平,进4球失3球.由于它与A的比赛是0:0,所以它赢的那场比赛是4:3.C队2负,进3球失6球.由于它与A的比赛是0:1,所以它输的另一场比赛是3:5.B赢的那场比赛与C输的另一场比赛比分不相同,因此它们没有踢过,只能是B队4:3赢D,C队3:5输给D.这样,D一共比赛了3场,比分分别是0:1输给A,3:4输给B,5:3赢了C.五、其它问题10、A,B,C,D,E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?【答案】海淀区,12岁【解析】由分析可知,对于第一名同学的姓名、性别、年龄、城区,分别有1项、2项、1项、1项是正确的.先来看性别,有2项消息正确,那么第一名是女同学;再来看年龄,2个人说是13岁,2个人说是11岁,只有1个人说是12岁,由于只有1项消息正确,则第一名是12岁;再看城区,3人说东城区,1人说海淀区,1人说西城区,那么第一名在海淀区或者西城区; 类似地,可以分析出第一名同学姓李,或姓陈,或姓黄.综合考虑第一名同学的姓名与城区,就很容易判断出唯一的答案:姓黄,是女同学,12岁,海淀区.11、老师在A 、B 、C 每个人头顶上带一个帽子,每个帽子上都有一个大于0的自然数,A 、B 、C 每个人可以看见别人帽子上的数,但是看不见自己帽子上的数.老师对他们说:“3个数可以组成一个加法算式.”老师问A :“你知道你的数吗?”A 说:“不知道.”老师问B :“现在你知道你的数吗?”B 说:“我还是不知道.”老师又问C :“现在你知道你的数吗?”C 说:“刚才我不知道,现在知道了,是2000.”则A 、B 各是多少?【答案】 800;1200 【解析】设A 、B 、C 帽子上的自然数分别为a 、b 、c ,则2000c =.开始谁也无法判断,故a 、b 、c 两两不等.在C 看来,c 可能为a 、b 之差或c a b =+,且通过A 、B 对话可排除其中某种情况,从而求出c .若a 、b 之差为c ,易知C 不可能排除c a b =+这一情况,即C 无法推出c 的值,因此c a b =+,即2000a b +=,2000ba −.这样,C 需从A 、B 对话排除c 为a 、b 之差这种情况,即当'c b a =−或'c a b =−时,A 或B 已经可推出自己帽子上的数.显然在c a b =+的情况下b c ≠,故A 必无法推出,因此B 可推出自己的数.当'c b a =−时,若2'a c =,则B 可判断出b 只能为'a c +,否则当'2'''b a c c c c =−=−=时,A 已经可以判断a 的值.即2000'2'a b c b a a c +==− = 满足题目要求,解得8001200'400a b c == =.1、五个国家足球队A 、B 、C 、D 、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A 与D ,C 轮空;第二天A 与B 比赛,E 轮空;第三天A 与E 比赛;第四天A 与C 比赛;B 与C 的比赛在B 与D 的比赛之前进行.那么C 与E 在哪一天比赛?【答案】 第五天 【解析】列表分析,用*表示轮空.2、有A 、B 、C 、D 四支足球队进行单循环比赛,每两队都比赛一场.比赛规定:胜一场得2分,平局各得1分,负一场得0分.全部比赛结束后,A 、B 两队的总分并列第一名,C 队第二名,D 队第三名,C 队最多得多少分?【答案】 3【解析】四队总分为24212C ×=分,A 、B 分数高于C ,故C 至多1234÷=分,且易知四队分别4、4、3、1分即符合要求,因此C 最多得3分.3、(金帆四年级春季)甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘.问:小强已经赛了几盘?分别与谁赛过?【答案】 2;甲,乙A B C D E 1 D E * A B 2 B A D C * 3 E C B * A 4 C * A E D 5 *DEBC随堂练习【解析】用5个点代表5人,实线代表两人比过,虚线则为没比过.甲与每人都比过,这样丁只与甲比过,乙未与丁比,与另三人比过,进而丙只与甲、乙比过.最终得小强与甲、乙比过2盘.4、A 、B 、C 、D 四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知: (1)比赛结束后四个队的得分都是奇数; (2)A 队总分第一;(3)B 队恰有两场平局,并且其中一场是与C 队平局.那么,D 队得多少分?【答案】 3 【解析】B 队得分是奇数,并且恰有两场平局,所以B 队是平2场胜1场,得5分.A 队总分第1,并且没有胜B 队,只能是胜2场平1场(与B 队平),得7分.因为C 队与B 队平局,负于A 队,得分是奇数,所以只能得1分,即他要输给D .D 队负于A 、B 队,胜C 队,得3分.DC5、(龙校四年级春季)2014年巴西世界杯足球赛小组赛结束后,东道主巴西所在的A 组比赛结果如下所示:(1)请将表格内空缺处补充完整(2)根据此表有人猜测克罗地亚对喀麦隆的比分可能是1:0,你认为有可能吗?为什么?【答案】(1)见下表(2)不可能【解析】(1)每队胜平负场次和为3场,故喀麦隆胜、平均为0场,且其它队均战胜喀麦隆,胜场至少为1场,这样克罗地亚1胜0平,进而巴西的平局只能是和墨西哥产生,墨西哥1平0负.所有队总胜场与总负场相等,故巴西2胜0负.此外,所有球队总进球数与总失球数相等,因此巴西进球数为()()21694617+++−++=个.(2)不可能,克罗地亚负于巴西与墨西哥,至少净负2球.由于其净胜球为0,故胜朝鲜至少胜2球,1:0不可能出现.6、甲、乙、丙三名选手参加马拉松比赛.起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第__________名。
六年级奥数逻辑推理1答案(2021年整理)

六年级奥数逻辑推理1答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(六年级奥数逻辑推理1答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为六年级奥数逻辑推理1答案(word版可编辑修改)的全部内容。
第三十一周逻辑推理(一)例题1:星期一早晨,王老师走进教室,发现教室里的坏桌凳都修好了.传达室人员告诉他:这是班里四个住校学生中的一个做的好事。
于是,王老师把许兵、李平、刘成、张明这四个住校学生找来了解。
(1)许兵说:桌凳不是我修的。
(2)李平说:桌凳是张明修的。
(3)刘成说:桌凳是李平修的。
(4)张明说:我没有修过桌凳.后经了解,四人中只有一个人说的是真话.请问:桌凳是谁修的?练习1:1、小华、小红、小明三人中,有一人在数学竞赛中得了奖。
老师问他们谁是获奖者,小华说是小红,小红说不是我,小明也说不是我。
如果他们当中只有一人说了真话。
那么,谁是获奖者?2、一位警察,抓获4个盗窃嫌疑犯A、B、C、D,他们的供词如下:A说:“不是我偷的”。
B说:“是A偷的”。
C说:“不是我”.D说:“是B偷的”。
他们4人中只有一人说的是真话.你知道谁是小偷吗?3、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个说真话。
说真话的有多少人?说假话的有多少人?例题2:虹桥小学举行科技知识竞赛,同学们对一贯刻苦学习、爱好读书的四名学生的成绩作了如下估计:(1)丙得第一,乙得第二。
(2)丙得第二,丁得第三.(3)甲得第二,丁得死四。
比赛结果一公布,果然是这四名学生获得前4名.但以上三种估计,每一种只对了一半错了一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数创新体系6年级
(上册授课详解)
最 新 讲 义
小学奥数
第一讲 比赛中的推理 【答案详解版】
例1.
答案:3
详解:5号已经赛过5盘,说明他和其他5个人都已经赛过了.而1号只赛了一盘,所以1号这一盘是同5号赛的,他同其他四个人都没有赛过,如图1所示.再看4号,他赛过4盘,且同1号没有赛过,所以4号赛过的同学是除1号以外的4个人.而2号只赛过两盘,所以2号只同5号、4号赛过,如图2所示.3号赛过3盘,而且他同1号、2号没有赛过,那么同3号赛过的就是4号、5号和6号,如图3所示.
于是我们知道同6号赛过的有3号、4号和5号.他赛了3盘.
例2.
答案:B
详解:如图4,列出表格后发现,每行、每列各有6个字母,而且同一行或列的6个字母互不相同,只需用这一原则把表格补充完整即可.
首先可以确定(2,D )处应填A .这是因为第2行已经有E 和C ,第4列已经有D 、B 和F ,所以这一个格不能填这些字母,只能填A .由于第二天A 与D 比赛,那么对应地(2,A )处也应填D .第二天余下的一场就是B 对F ,因而(2,B )处应填F ,(2,F )处应填B .
我们用类似的方法推理各行、列,最终把整个表格填出来,得到图5.于是,第五天与A 比赛的球队是B .
6号
1号
2号
3号 5号
4号
图1
6号 1号
2号
3号 5号
4号
图2
6号
1号
2号
3号
5号
4号
图3
例3.
答案:6;12;3
详解:(1)6;(2)12;(3)3.
(1)详解:从四个人中选出两人,有246C =种方法.每两人之间比赛一场,那么一共就有6场比赛;
(2)详解:不论胜负还是平局,每场比赛两人得分之和都是2分.一共6场比赛,所以四个人最后得分的总和就是2612⨯=分;
(3)详解:四个人得分之和是12分,甲得分最高,丁得分最低,而乙、丙得分相同.如果乙、丙得分是4分,则甲得分超过4分,这三人的得分之和已经超过12分,与题意矛盾.因此乙、丙得分最多是3分.如果乙、丙得分是2分,则丁最多得了1分,而甲至少得了122217---=分.但是连胜3场也只能得6分,不可能达到7分,因此乙、丙得分至少是3分.所以乙、丙得分就是3分.
例4.
答案:4
详解:如果比赛分出胜负,那么双方得分之和就是3分;如果平局,双方得分之和就是2分.4支球队之间要进行246C =场比赛,所以总分就要在12分和18分之间. 由题意,四支球队的得分是4个连续的自然数.而四个连续自然数的和可能是:
01236+++=,123410+++=,234514+++=,345618+++=,……
在12分和18分之间
的只有14和18.如果是3分、4分、5分、6分,总分是18分,那么每场比赛都分出了胜负,但这是不可能的(大家自己想想这是为什么).所以四个连续的分数为2分、3分、4分、5分.
A B C D E F 1 D B 2 D F E A C B 3 F D 4 C B 5
图4
A B C D E F 1 E D F B A C 2 D F E A C B 3 C E A F B D 4 F C B E D A 5
B
A
D C
F
E
图5。