全等三角形判定方法3及推论ASA与AAS

合集下载

三角形全等的判定ASA-AAS及尺规作图五种基本作

三角形全等的判定ASA-AAS及尺规作图五种基本作

以上内容是基于给定的大纲和指令进行的扩 展,但请注意,由于缺乏具体细节和背景信 息,某些描述可能不够精确或全面。如有需 要,请进一步补充和修正。
04
asa-aas在实际问题中的 应用
在几何证明题中的应用
在几何证明题中,asa-aas判定定理常常用于证明两个三角形全等。通过比较两 个三角形的两边和夹角,如果满足条件,则两个三角形全等,从而可以得出其他 相关结论。
asa-aas的发展方向
拓展适用范围
实际应用研究
研究如何将ASA-AAS判定应用于更广 泛的情况,例如处理只有一边和两个 角的情况或者只有两边和夹角的情况。
研究如何将ASA-AAS判定应用于解决 实际问题,例如几何证明、建筑设计、 工程测量等领域。
引入其他判定方法
研究如何将其他三角形全等判定方法 (如SAS、SSS、HL等)与ASA-AAS 判定相结合,以拓展其应用范围。
经过一点做已知直线的垂线
总结词
垂线的作法
详细描述
在给定的直线上选择一个点,然后使 用圆规在该点上画圆,与直线相交于 两点。连接这两点即可得到经过该点 的垂线。
作已知角的角平分线
总结词
角平分线的作法
详细描述
在给定的角内,使用圆规以角的顶点为圆心画圆,与角的两 边相交于两点。连接这两点即可得到该角的角平分线。
Hale Waihona Puke VS应用在尺规作图中,可以利用asa-aas判定三 角形全等来确定未知点的位置。例如,已 知一个三角形的两个角和一边,可以通过 asa-aas判定另一个三角形与之全等,从 而确定未知点的位置。
利用asa-aas解决实际问题
• 实例:在建筑设计中,常常需要确定某一点的位置使得该点到 两个已知点的角度相等。通过asa-aas判定定理,可以确定未知 点的位置,从而满足建筑设计的需求。

第五讲 ASA全等三角形的判定

第五讲  ASA全等三角形的判定

A B C A ’B ’C ’A BC A ’B ’C ’第四讲 全等三角形的判定(三)(一)知识要点1、三角形全等的判定三、四:ASA 及AAS两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)。

书写格式:、在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠''''B B B A AB A A ∴△ABC ≌△A ’B ’C ’(ASA ) 知识延伸:“ASA ”中的“S ”必须是两个“A ”所夹的边。

两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)。

书写格式:在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠''''C A AC B B A A ∴△ABC ≌△A ’B ’C ’(AAS ) 知识延伸:“AAS ”可以看成是“ASA ”的推论。

规律方法小结:由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等。

无论这个一边是“对边”还是“夹边”,只要对应相等即可。

(二)例题讲解:例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE例2.如图,AB ⊥BC, AD ⊥DC, ∠1=∠2. 求证:AB=AD练习:如图所示,点B 、F 、C 、E 在同一条直线上,AB ∥DF ,AC ∥DE ,AC =DE ,FC 与BE 相等吗?请说明理由.A B C D A ’B ’C ’D ’ 例3.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .例4:如图,已知△ABC ≌△A ’B ’C ’,AD ,A ’D ’分别是△ABC 和△A ’B ’C ’的边BC 和B ’C ’上的高。

求证:AD=A ’D ’例5.如图,点E 在AC 上,∠1=∠2,∠3=∠4.试证明BE= DE.(三)练习1.如图,已知AB= DC ,AD =BC ,E ,F 是DB 上的两点,且BE=DF.若∠AEB=100º,∠ADB= 30º.则∠BCF= 。

第十二讲 三角形全等的判定定理3(ASA)(含解析)(人教版)

第十二讲 三角形全等的判定定理3(ASA)(含解析)(人教版)

第十二讲三角形全等的判定定理3(ASA)【学习目标】1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.【新课讲解】知识点1:三角形全等的判定(“角边角”定理)1.文字语言:有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).2.几何语言:在△ABC和△A′ B′ C′中,∴ △ABC≌△A′ B′ C′ (ASA).【例题1】已知:∠ABC=∠DCB,∠ACB=∠DBC,求证:△ABC≌△DCB.【答案】见解析。

【解析】证明:在△ABC和△DCB中,∴△ABC≌△DCB(ASA ).知识点2:用“角角边”判定三角形全等1.文字表述。

两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”.2.几何语言表述。

在△ABC和△A′B′C′中,∴ △ABC≌△A′B′C′(AAS).【例题2】如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.【答案】见解析。

【解析】证明:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∴△BDA≌△AEC(AAS).(2)证明:∵△BDA≌△AEC,∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.知识点3:应用1.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.2.全等三角形对应边上的高也相等.【例题3】已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并用一句话说出你的发现.【答案】见解析。

全等三角形判定(ASA和AAS)

全等三角形判定(ASA和AAS)
A∠BB∥=D∠EE (ASA)
D
或∠A=∠D (AAS)
E
或 AC=DF (SAS)
知识梳理: 三角形全等判定方法3
有两角和它们夹边对应相等的两个三角形全
等(可以简写成“角边角”或“ASA”)。
用符号语言表达为:
在△ABC和△DEF中
A
D
∠A=∠D (已知 )
AB=DE(已知 )
∠B=∠E(已知 )
A_B_=_A__’__C_ ( 已知 )
∠_B__=_∠__C__ ( 已知 )
∴△A_B_E__≌△A_’__C_D( ASA)
B
ED C
考考你
1、如图:已知AB∥DE,AC∥DF, BE=CF。求证:△ABC≌△DEF。
AD B EC F
证明:∵ BE=CF(已知)
∴BC=EF(等式性质)
∵ AB∥DE AC∥DF (已知)
∵∠1= ∴∠1+ 即∠BAC=
∠DAE 在△ABC和△ADC 中
C=E(已知) BAC=DAE(已证


△ABC≌△ADE (AAS)
AB=AD(已知)
5、在△ABC中,AB=AC,
A
AD是边∠BBACC上的的角中平线分,线证。明: ∠求B证A:D=BD∠C=ACDD
B
DC
证明:∵AD是B∠CB边AC上的的角中平线分线(已知)
C
F
A
BD
E
例1 、如图 ,AB=AC,∠B=∠C,那么△ABE和 △ACD全等吗?为什么?
A 证明: 在△ABE与△ACD中
D
E
∠B=∠C (已知) AB=AC (已知)
∠A= ∠A (公共角)
B

三角形全等的判定方法6种

三角形全等的判定方法6种

三角形全等的判定方法6种
1、SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。

2、SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等三角形。

3、ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。

4、AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角形全等。

5、RHS(Rightangle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。

(它的证明是用SSS原理)
下列两种方法不能验证为全等三角形:
1、AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似三角形。

2、SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。

全等三角形判定(ASA和AAS)

全等三角形判定(ASA和AAS)
∴ ∠B=∠DEF , ∠ACB=∠F
在△ABC和△DEF中
∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能行吗?
× AB=DE可以吗?
B A
C
F
D E
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。
为两角夹边
B
C 图2
在图2中, 边BC是∠A的对 边, 我们称这种位置关系为
两角及其中一角的对边。
二、合作探究
(一)探究一:已知两个角和一条线段,以这 两个角为内角,以这条线段为这两个角的夹边, 画一个三角形.
45°
3 cm
30°
把你画的三角形与小组其他组员画的三角形进
行比较,所有的三角形都全等吗? 都全等
利用“角怎边么角办?定可理以”帮帮可知,带B
A
块去,可以配我到吗?一个与原来全
等的三角形玻璃。
B
考考你
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则 △ABC ≌△DEF的理由是: 角边角(ASA)
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则
△ABC ≌△DEF的理由是: 角角边(AAS)
Q AB AC
AB AD AC AE (等式的性质)
BD CE
3.已知ABC中,BE AD于E,CF AD于F,
且BE CF,那么BD与DC相等吗?
A
证明:Q BE AD,CF AD
BED CFD 90 (垂直的定义)
F
Q 在BDE和CDF中
B
D
C
BED CFD(已证)

全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解

全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解

全等三角形判定一(SAS,ASA ,AAS )(基础)责编:杜少波【学习目标】1.理解和掌握全等三角形判定方法1——“边角边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边角边”1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、(2016•泉州)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.【思路点拨】根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,∴△CDA≌△CEB.【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量.2、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD【总结升华】通过观察,我们也可以把△CBD 看作是由△ABE 绕着B 点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,PC ⊥AC ,PB ⊥AB ,AP 平分∠BAC ,且AB =AC ,点Q 在PA 上,求证:QC =QB【答案】证明:∵ AP 平分∠BAC∴∠BAP =∠CAP在△ABQ 与△ACQ 中∵∴△ABQ ≌△ACQ(SAS)∴ QC =QB类型二、全等三角形的判定2——“角边角”【高清课堂:379110 全等三角形判定二,例5】3、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】如图,已知AE=CF ,∠AFD=∠CEB,AD∥BC,求证:△ADF≌△CBE.【答案】证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE;∵AD∥BC,∴∠A=∠C;在△ADF与△CBE中,,∴△ADF≌△CB E(ASA).类型三、全等三角形的判定3——“角角边”【高清课堂:379110 全等三角形的判定二,例6】4、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EADB ECB=DE∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD 为△ABC 的中线∴BD =CD∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°,在△BED 和△CFD 中BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等) ∴△BED ≌△CFD (AAS )∴BE =CF5、已知:如图,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点,求证:OE =OF.【思路点拨】(1)证△ABO ≌△CDO ,得AO =OC ,BO =DO (2)证△AEO ≌△CFO 或△BEO ≌△DFO【答案与解析】证明:∵AB ∥DC∴∠A=∠C在△ABO 与△CDO 中A C (AOB COD ∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等) AB=CD∴△ABO ≌△CDO (AAS )∴AO =CO ,BO=DO在△AEO 和△CFO 中A C (AOE COF ∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等) ∴△AEO ≌△CFO (ASA )∴OE =OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型四、全等三角形判定的实际应用6、要测量河两岸相对两点A ,B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD=BC ,再在过点D 的l 的垂线上取点E ,使A 、C 、E 三点在一条直线上,这时ED 的长就是A ,B 两点间的距离.你知道为什么吗?说说你的理由.【思路点拨】利用“角边角”证明△ABC 和△EDC 全等,根据全等三角形对应边相等可得AB=DE ,从而得解.【答案与解析】解:∵AB⊥l,CD⊥l,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,,∴△ABC≌△EDC(ASA ),∴AB=DE,即ED 的长就是A ,B 两点间的距离.【总结升华】此题主要考查了全等三角形的应用,解答本题的关键是借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.。

全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解

全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解

全等三角形判定一(SAS,ASA ,AAS )(基础)撰稿:常春芳【学习目标】1.理解和掌握全等三角形判定方法1——“边角边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】要点一、全等三角形判定1——“边角边” 1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角” 全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边” 1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.【思路点拨】由条件AB=AD,AC=AE,需要找夹角∠BAC与∠DAE,夹角可由等量代换证得相等.【答案与解析】证明:∵∠1=∠2∴∠1+∠CAD=∠2+∠CAD,即∠BAC=∠DAE在△ABC和△ADE中AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△ADE(SAS)∴BC=DE(全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.【答案】AE=CD,并且AE⊥CD证明:延长AE交CD于F,∵△ABC和△DBE是等腰直角三角形∴AB=BC,BD=BE在△ABE和△CBD中90AB BCABE CBDBE BD=⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,PC⊥AC,PB⊥AB,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型二、全等三角形的判定2——“角边角”【高清课堂:379110 全等三角形判定二,例5】2、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【答案与解析】证明:∵AD∥CB∴∠A=∠C在△ADF与△CBE中A CAD CBD B∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF≌△CBE (ASA)∴AF =CE ,AF+EF=CE+EF故得:AE=CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.【答案】证明:∵AB ∥CD ,∴∠B =∠C.∵AF ∥DE ,,∴∠AFB =∠DEC.又∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE. 在△ABF 和△DCE 中,B C BF CEAFB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等).类型三、全等三角形的判定3——“角角边”【高清课堂:379110 全等三角形的判定二,例6】3、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EADB ECB=DE∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD为△ABC的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED和△CFD中BED CFDBDE CDFBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【思路点拨】(1)证△ABO≌△CDO,得AO=OC,BO=DO(2)证△AEO≌△CFO或△BEO≌△DFO【答案与解析】证明:∵AB∥DC∴∠A=∠C在△ABO与△CDO中A C(AOB COD∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等)AB=CD∴△ABO≌△CDO(AAS)∴AO=CO ,BO=DO在△AEO和△CFO中A C(AOE COF∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等)∴△AEO≌△CFO(ASA)∴OE=OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型四、全等三角形判定的实际应用5、在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉敌军的碉堡,要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一名战士想出了这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转身向后,保持刚才的姿态,这时视线落在了自己这岸的某一点上.接着,他用步测的办法量出了自己与该点的距离,这个距离就是他与碉堡的距离.这名战士的方法有道理吗?请画图并结合图形说明理由.【答案与解析】设战士的身高为AB,点C是碉堡的底部,点D是被观测到的我军阵地岸上的点,由在观察过程中视线与帽檐的夹角不变,可知∠BAD=∠BAC,∠ABD=∠ABC=90°.在△ABD和△ABC中,ABD ABCAB ABBAD BAC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD≌△ABC(ASA)∴BD=BC.这名战士的方法有道理.【总结升华】解决本题的关键是结合图形说明那名战士测出的距离就是阵地与碉堡的距离,可以先画出示意图,然后利用全等三角形进行说明.解决本题的关键是建立数学模型,将实际问题转化为数学问题并运用数学知识来分析和解决.。

三角形全等的判定(ASA-AAS)3-生产经营管理-经

三角形全等的判定(ASA-AAS)3-生产经营管理-经

三角形全等判定定理的应用
解决几何问题
三角形全等判定定理是解决几何问题的重要工具, 如求角度、线段长度等。
证明几何命题
通过三角形全等判定定理,可以证明一些几何命题 ,如线段的中点性质、角的平分线性质等。
构造辅助线
在解题过程中,有时需要通过构造辅助线来应用三 角形全等判定定理,从而简化问题。
02
生产经营管理
目的经济合理性。
市场分析
市场调研
通过市场调查了解市场需求、竞争状况、消费 者行为等信息。
市场定位
根据市场调研结果,确定产品的目标市场和竞 争优势。
营销策略
制定适合目标市场的营销策略,包括产品定价、促销手段等。
投资风险分析
风险识别
找出项目可能面临的各种风险,如市场风险、技术风险、财务风 险等。
风险评估
通过收集客户反馈和内部质量分析,持续改进产品质 量,提高客户满意度。
03
经济分析
成本效益分析
成本估算
01
对项目所需的各种投入进行准确的估算,包括人力、物力、财
力等方面的投入。
效益预测
02
根据市场需求、产品定位等因素,预测项目的未来收益,包括
销售收入、利润等。
成本效益比
03
将项目的成本与效益进行比较,计算出成本效益比,以评估项
生产计划管理
80%
制定生产计划
根据市场需求、订单和库存情况 ,制定合理的生产计划,确保生 产进度与市场需求相匹配。
100%
安排生产任务
将生产计划细化为具体的生产任 务,分配给各生产线和班组,确 保生产顺利进行。
80%
监控生产进度
实时监控生产进度,及时发现并 解决生产过程中的问题,确保按 时完成生产计划。

《全等三角形的判定3(ASA和AAS)》PPT课件 冀教版八年级数学上

《全等三角形的判定3(ASA和AAS)》PPT课件 冀教版八年级数学上

探究新知
观察:△A ' B ' C ' 与 △ABC 全等吗?怎么验证?
ED
C
C′
A
B A′
B′
探究新知
理由: ∵点A与点A' 重合,边AB落在边A′B′上,AB=A ' B ' ∴边AB与边A ' B' 重合。 ∴点B与点B ' 重合。 ∵∠A=∠A ', ∴边AC落在边A ' C ' 上。 ∵∠B=∠B ', ∴边BC落在边B ' C ' 上 ∵两条直线相交只有 一个交点。 ∴点C与点C ' 重合. ∴ △ABC≌△A′B′C′
分析 要证边 方法 角相等
证明两三 角形全等
已有条件 可从图中找
缺少条件 可从已知证
回顾复习
给出三个条件
三条边 三个角 两边一角 两角一边
全等
不一定全等 两边夹角全等 继续探究
“两角和一边”有几种不同的位置关系?
探究新知
学生活动一 【一起探究】
“两角和一边”有几种不同的位置关系? 两角和这两角的夹边 两角和其中一角的对边
当堂训练
1.如图,AD=AE,∠B=∠C,那么BE和CD相等么?为什么?
A
D
E
O
B
C
证明:在△ABE与△ACD中 ∠B=∠C (已知) ∠A= ∠A (公共角) AE=AD (已知)
∴ △ABE ≌△ACD(AAS) ∴ BE=CD (全等三角形对应边相等)
第十三章 全等三角形
13.3 全等三角形的判定
第3课时 全等三角形的判定3(ASA、AAS)
学习目标
1. 掌握“角边角”基本事实以及“角角边”全等判定定 理的内容.

全等三角形判定[ASA与AAS]

全等三角形判定[ASA与AAS]

B
*
O
*
3.请补充条件, 填写证明方案.
D
C
_∠__A_O_B__=_∠__C_O__D
∠__A_O__B_=_∠__C__O_D_
__O__B_=__O_D_____ _∠__B__=_∠__D_____ 根据:___A_S_A__
__O_A__=_O__C_____ _∠__A__=_∠__C_____ 根据:_A__S_A___
全等三角形的判定(三)
一、提出问题:小明不小心将一块三角形模 具打碎了,他是否可以只带其中的一块碎片 到商店去,就能配一块与原来一样的三角形 模具呢?如果可以,带哪块去合适?
要不要3块都带去?



带几块,带去了三角形的几个元素? 另外两块呢?
三、合作学习:有两个角和这两个角的夹边 对应相等的两个三角形一定全等吗?请用量 角器和刻度尺画ΔABC,使BC=3, ∠B=400、 ∠C=600 将你画的三角形与其他同学画的三 角形比较,你发现了什么?
B
1、 某同学把一块三角形的玻璃打碎成了三 块,现在要到玻璃店去配一块完全一样的玻璃
c ,那么最省事的办法是( )。
A 带①去 B带②去
C 带③去 D带①和②去



2、如图 , AC与BD相交于点O , 则:
A
1.图中可看出相等的是 _∠__A_O__B= _∠__C__O_D.
2.要证△BAO ≌ △ DOC 还需要 ____2_ 个条件.
3,任意两角和一边(无论是夹边还是对边)
()
对应相等的两个三角形全等
()
4、已知:如图:△ABC ≌ △A´B´C´,AD和A´D´分 别 是 △△AABBCC和和△△AA´´BB´´CC´´的的角中高平线分线

12.2全等三角形的判定(第3课时AAS+ASA)课件

12.2全等三角形的判定(第3课时AAS+ASA)课件
∴ △ ABC≌ △ A’B’C’ (AAS).
课堂练习
1.已知,如图,∠1=∠2,∠C=∠D
D
求证:AC=AD
1 A2 B
C
课堂练习
2.如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线, ∠1=∠B,点E在AB边上,求证:AB=AC+CD
提升练习
1. 如图,在△ABC中,∠C=2∠B、,AD是△ABC的角平分线, ∠1=∠B,求证AB=AC+CD
A 12
B
D
C
归纳总结
1.目前,我们学习的全等三角形的判定方法有几种?
2.我们可以利用全等证明什么?
点O,AB=AC,∠B=∠C. 求证:BD=CE .
A
D O
B
E C
课堂练习
证明 :在△ADC和△AEB中
A
∠A=∠A(公共角)
AC=AB(已知)
D
∠C=∠B(已知)
O
∴△ACD≌△ABE(ASA)
B
∴AD=AE(全等三角形的对应边相等)
又∵AB=AC(已知)
∴BD=CE
E C
课堂练习
变式、如图,AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE与CD相交于点 O.求证:△BOD≌△COE.
在△ABC和△ A’B’C’中,
A
∠A= ∠A’ ,
AB=A’B’
∠B= ∠B’
A/
∴ △ ABC≌ △ A’B’C’ (ASA).
C
B
C/
B
/
课堂练习
1.一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张 与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?
课堂练习

全等三角形判定(ASA和AAS)

全等三角形判定(ASA和AAS)

在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能行吗?
B A
AB=DE可以吗?
×
C
F
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。 ∠B=∠E AB∥DE (ASA)
B
E
F
在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
两角及一角的对边对应相等的 你能从上题中得到什么结论? 两个三角形全等(AAS)。
如 何 用 符 号 语 言 来 表 达 呢
C
′ C
BC′ 中
∠A=∠A ′ ∠B=∠B ′
D B
C
A S S S AD=AD ∠BAD= ∠CAD AB=AC BD=CD
2.如图,要证△ACB≌ △ADB ,至少选 用哪些条件可 证得△ACB≌ △ADB
△ACB≌ △ADB
C
A A S S S B AB=AB ∠CAB= ∠ DAB AC=AD BC=BD D

继续探讨三角形全等的条件: 两角一边
3
D
4
(2)∠1=∠2
O
1 2
B
C
练习1 已知:如图,AB=A′ C ,∠A=∠A′,
∠B=∠C 求证:△ABE≌ △ A′ CD
证明:在 △ABE 和 △A’CD中 ∠A=∠A’ ( 已知 ________ AB=A’C ( 已知 ________ ∠B=∠C ( 已知 ________ ) )
A
证明: BE AD,CF AD Q

三角形全等的判定三AAS、ASA(课件)

 三角形全等的判定三AAS、ASA(课件)
证明:在△ABC中,∠A+∠B+∠C=180°,
∴∠C=180°-∠A-∠B,
同理∠F=180°-∠D-∠E , 又∵∠A=∠D,∠B=∠E , ∴∠C=∠F , 在△ABC和△DEF中,
B E
BC
EF
C F
∴△ABC≌△DEF (ASA).
★“角角边”判定方法
◆文字语言:两角分别相等且其中一组等角的对边相等的两个三角形全等. (可以简写成“角角边”或“AAS”). 几何语言:
5.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂
线BF上两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直
线上,这时测得DE的长就是AB的长.为什么?
解:∵ AB⊥BF,DE⊥BF,
∴ ∠ABC=∠EDC=90° , 在△ABC和△EDC中,
ABC EDC
1.如图,使△ABC≌△A′B′C′的条件是( B )
A.AB=A′B′,BC= B′C′ ,∠A=∠ A′
B.AB= A′B′ ,AC= A′C′ ,∠A=∠ A′
C.AB= A′B′ ,AC= A′C′ ,∠B=∠B′
D.AB= A′B′ ,BC= B′C′ ,∠C=∠ C′
2.如图,要使△ABC≌△DEF,已知∠A=∠D,∠C=∠F,则不能使之全
【分析】证明△ACD≌△ABE,就可以得出AD=AE.
证明:在△ACD和△ABE中,
A A
AC
AB
C B
∴ △ACD≌△ABE (ASA) ,
∴ AD=AE.
如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2.求证AB=AD.
证明:∵ AB⊥BC,AD⊥DC,

三角形全等的判定ASA,AAS

三角形全等的判定ASA,AAS

OA=OC _____________
∠A =∠C _____________
根据: ASA __
根据:ASA
例1. 如图,O是AB的中点, A =
AOC
与 BOD
B ,
C
全等吗? 为什么?
两角和夹 边对应相 等
A
O
B
D
例2 、如图 ,AB=AC,∠B=∠C,那么△ABE和 △ACD全等吗?为什么? A D E 证明: 在△ABE与△ACD中 ∠B=∠C (已知)
_____________ OA=OC _____________ ∠AOB=∠COD
D
* O * C
∠AOB=∠COD _____________
_____________ ∠AOB=∠COD
_____________ OB=OD 根据:_ SAS ___
_____________ OB=OD
_____________ ∠B =∠D
请先画图试试看
议一议

某科技小组的同学 Ⅱ 们在活动中,不小 Ⅰ 心将一块三角形形 状的玻璃摔成三块。 (如图),他们决 定到市场去配一块 同样形状和大小的 利用“角边角定理”可知, 玻璃,应该怎么办 带Ⅲ 块去,可以配到一个 与原来全等的三角形玻璃。 呢?
考考你
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则 △ABC ≌△DEF的理由是: 角边角(ASA)
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则 △ABC ≌△DEF的理由是: 角角边(AAS) C F
A
B
D
E
课堂例题1
如图 , AC与BD相交于点O , 则: 1.图中可看出相等的是 ∠AOB = ______. ______ ∠COD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∠A=∠D (已知 )
AB=DE(已知 )
∠B=∠E(已知 )
B
∴ △ABC≌△DEF (ASA)
A
D
CF E
例1: 已知如图, O是AB 的中点,∠A=∠B,
求证:△ AOC≌△BOD
证明:
∵ O是AB 的中点(已知) C
∴ OA=OB( 中点定义)
在△AOC和△BOD中 A
1O
B
2
∠A= ∠B (已知)
(ASA)
两角和其中一角的对边对应相等的两个三角形 全等,简写成“角角边”或“ AAS”
(AAS)
两个三角 是否全等(全等画 形中相等 “√”,不全等画 的边或角 “×”
公理或推 论(简写)
三条边

两边夹角 √
两边一角 两边与一 边对角
×
两角夹边 √
两角一边 两角与一 角对边

三个 角
×
SSS SAS
∴△ABC ≌△DEF(ASA )
两你角能及从一上角题的中对得到边什对么应结相论等?的 两个三角形全等( AAS)。
三角形全等判定方法4
有两角和其中一角的对边对应相等的两个三角形全等
(可以简写成“角角边”或“AAS”)。
C
C′
A
B
A′
B′
证明:在△ABC 与△A′B ′C ′中
∠A=∠A ′ ∠B=∠B ′
两角及其中一角的对边。
先任意画一个 △ABC ,再画一个△A′B′C ′ , 使A′B′=AB , ∠A =′ ∠A, ∠B =′ ∠B
画法: 1.画 A′B ′=AB ; 2.在A′B′ 的同旁画 ∠DA B′ =′ ∠A , ∠EB A′= ′∠B,
A′D′、B ′E交于点C′
C
ED
C′
A
B A′
谢谢!
BC=B ′C ′
∴△ABC ≌△A' B' C'( AAS )
例3:已知如图, ∠1=∠2, ∠C=∠D 求证:AD=AC.
证明:在△ ABD 和△ABC 中
∠1=∠2
D
∠D=∠C AB =AB
1 A 2B
∴△ABD ≌△ABC (AAS )
∴AD =AC
C
两角和它们的夹边对应相等的两个三角形全等, 简写成“角边角”或“ ASA”。
两边和它们的夹角对应相等的两个三角形全
等。(可以简写成“边角边”或 “SAS”)
用符号语言表达为: 在△ABC 与△DEF 中
A
D
AC=DF ∠C= ∠F BC=EF
CF
B
E
∴△ABC≌△DEF (SAS)
回顾: 三个条件判断两个三角形是否全等
1. 三个角 2. 三条边
不能判断两个三角形全等 SSS能判断三角形全等
3. 两边一角 4. 两角一边
SAS能判断三角形全等,但是SSA不能
继续探讨三角形全等的条件: 两角一边
思考:已知一个三角形的两个角和一条边,那么两个角
与这条边的位置上有几种可能性呢?
A
A
B 图1
C
在图1中, 边AB是∠A与∠B 的夹边,我们称这种位置关系
为两角夹边
B
C 图2
在图2中, 边BC是∠A的对 边, 我们称这种位置关系为
O
∴△ADC≌△AEB (ASA )
B
∴AD=AE (全等三角形的对应边相等)
C
又∵AB=AC (已知)
∴BD=CE (等式性质1)
探究
A
B
C
D
E
F
如图:在△ABC 和△DEF中, ∠A=∠D, ∠B=∠E,BC=EF, △ABC 和△DEF全 等吗?为什么?
分析:能否转化为ASA?
证明:∵ ∠A=∠D, ∠B=∠E(已知) ∴∠C=∠F(三角形内角和定理) 在△ABC 和△DEF中 ∠B=∠E BC=EF ∠C=∠F
ASA AAS
课后作业:
1.必做题:教材第43至44页第4、5题; 2.选做题:附后面.
1.已知,四边形ABCD中,AB∥CD,∠1=∠2,∠3=∠4。求证:BC=AB+CD。
D E A
1 2
B
4 3
C
2.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为 边在直线AB的同侧作等边△ACD和等边△BCE,AE与CD相交于点M,BD与CE相 交于点N. 求证:(1)AE=BD;(2)ME=BN;(3)MN∥AB.
第十二章 全等三角形
三角形全等的判定(3)
— ASA AAS
知识梳理: 三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“ SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF 中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF (SSS) E
F
知识梳理: 三角形全等判定方法2
D OA=OB (已证)
∠1= ∠2 (对顶角相等)
∴ △AOC≌△BO(ASA )
例2: 已知:点D在AB 上,点E在AC上,BE 和CD相交于点O,AB=AC, ∠B= ∠C
求证:AD=AE. BD角) AC=AB (已知)
D
E
∠C= ∠B (已知)
B′
观察:△A′B ′C ′ 与 △ABC 全等吗?怎么验证?
思考:这两个三角形全等是满足哪三个条件?
结论:两角及夹边对应相等的两个三角形全等 (ASA).
三角形全等判定方法3
有两角和它们夹边对应相等的两个三角形全 等(可以简写成“角边角”或“ ASA”)。
用符号语言表达为:
在△ABC和△DEF 中
相关文档
最新文档