Boost电路解析

合集下载

boost电路工作原理

boost电路工作原理

boost电路工作原理
Boost电路是一种用于升压的直流-直流转换器。

它主要由输入电源、开关管、电感、二极管和负载组成。

其工作原理如下:
1. 输入电源:Boost电路的输入电源通常是直流电源,如电池或稳定的直流电源。

2. 开关管:Boost电路中的开关管主要起到开关的作用,在周期性开关的控制下,将电能从输入电源传输到电感中。

3. 电感:电感是Boost电路中的核心元件,它通过储存能量来实现升压功能。

当开关管关闭时,电感中的电流不会突然变为零,而是通过电感中的磁场产生反向电动势,将能量传输到负载电路中。

4. 二极管:在Boost电路中,二极管主要起到导电和反向电流保护的作用。

当开关管断开时,电感中的储能电流无法直接流向负载电路,而是通过二极管的导通,形成一个回路,使得电感中的能量能够传输到负载电路中。

5. 负载:Boost电路中的负载是指输出端的电路或设备,它是通过Boost电路升压后得到的电压输出。

工作原理总结起来就是:当开关管导通时,输入电源的电能通过电感储存;当开关管断开时,电感中的储能电流经过二极管导通,将能量传输到负载电路中,从而实现电压的升高。

需要注意的是,由于Boost电路采用了周期性开关,因此需要一定的控制电路来实现开关管的开关控制。

这通常由微控制器或电子开关控制芯片来完成。

此外,Boost电路在升压过程中会产生一定的功率损耗,因此在设计时需要考虑选择合适的元件以提高效率和减少损耗。

boost电路的电路结构和并阐述它的工作原理

boost电路的电路结构和并阐述它的工作原理

boost电路的电路结构和并阐述它的工作原理
Boost电路是一种用于提高输入电压的DC-DC转换器电路。

它通过将输入电压放大到更高的输出电压,实现电压升压的功能。

Boost电路的基本结构包括一个开关、一个电感、一个二极管
和一个负载。

开关可以是晶体管或MOSFET,负载可以是电
容或电阻等。

工作原理如下:
1. 初始状态下,开关处于关闭状态,电感上没有电流流过。

2. 当开关打开时,电压源的正极连接到电感,并且电流开始通过电感增加。

此时,电感储存了能量。

3. 当开关关闭时,电感上的储存能量会引起电感两端电压的变化。

由于电感的特性,电压趋向于继续升高,电感两端的电压超过了输入电压。

4. 当电感两端的电压大于输入电压时,二极管导通,负载上出现了升高的输出电压。

此时,电感的储能已经传递给了负载。

5. 重复以上步骤,通过不断打开与关闭开关,将电感储存的能量传递给负载,从而实现电压升压。

Boost电路通过周期性地切换开关来调节输出电压。

开关的频
率越高,电路的稳定性和效率越高,但也会增加电路的复杂度。

boost电路

boost电路

Boost电路1. 介绍Boost电路,也称为升压电路,是一种用于将直流电压升高的电路。

它可以通过改变输入电压的电压水平来提供更高的输出电压。

Boost电路广泛应用于许多领域,如电源系统、太阳能电池、能量回收系统等。

2. 原理Boost电路是一种开关电源电路,其工作原理基于电感的储能和开关管的开关操作。

Boost电路主要由以下几个组成部分构成:•输入电源:提供初始电压,通常是较低的直流电压。

•开关管:控制电路的开关操作,将输入电源与电感相连接。

•电感:储存电能并输出较高的电压。

•输出电容:用于平滑输出电压脉动。

•负载:连接到输出电压的设备或系统。

Boost电路的工作流程如下:1.开关管导通时,电流从输入电源通过电感流向输出电容。

此时,电感中储存的能量增加。

2.开关管断开时,电感将储存的能量释放到输出电容,并提供增大的输出电压。

输出电容的电压将超过输入电压。

3.重复开关操作,通过周期性的导通和断开,不断提高输出电压。

Boost电路可通过调整开关管的导通时间来控制输出电压的大小。

通常,使用PWM(脉宽调制)技术来实现对开关管的控制和调节。

3. 使用Boost电路的应用Boost电路在许多场景中具有重要的应用。

3.1 电源系统Boost电路常用于电源系统中,用于将电池的低电压提升为供电设备所需的较高电压。

这在许多便携设备、无线通信设备和工业设备中都得到广泛应用。

3.2 太阳能电池太阳能电池都是直流电源,因此需要使用Boost电路来将低电压的太阳能电池输出提升到适合电力系统的电压水平。

3.3 能量回收系统在某些应用中,Boost电路可以实现能量回收。

例如,在电动汽车中,制动操作会产生大量能量,该能量可以通过Boost电路回收并充电到电池中,以提高整个系统的能效。

4. Boost电路的优点与局限性4.1 优点•提供高输出电压:Boost电路可将输入电压升高到较高的电压水平。

•简化设计:Boost电路架构相对简单,使用成本较低。

boost电路分析

boost电路分析

图一boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。

基本电路图见图一。

假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。

下面要分充电和放电两个部分来说明这个电路充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

放电过程图三如图三,这是当开关断开(三极管截止)时的等效电路。

当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。

升压完毕。

说起来升压过程就是一个电感的能量传递过程。

充电时,电感吸收能量,放电时电感放出能量。

如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上).1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大).2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联。

boost电路原理

boost电路原理

boost电路原理
Boost电路是一种直流-直流(DC-DC)电路,用于将低电压升高到高电压。

它由一个开关,一个电感和一个电容组成。

当开关打开时,电感充电,电路中的电流增加,形成一个磁场。

当开关关闭时,电感上的磁场崩溃,产生一个反向电压,使电路中的电流保持不变。

这个反向电压使电容充电并提供升高的电压。

Boost电路的输出电压取决于开关周期和开关时间的比率。

理想情况下,输出电压应该等于输入电压乘以开关周期和开关时间比率的倒数。

Boost电路有许多应用,包括电池充电、LED驱动、通信设备和医疗设备等。

BOOST—直流升压电路

BOOST—直流升压电路

BOOST 电路-直流升压变换电路:
基本电路形式:
直流输出电压的平均值高于输出电压的平均值
1.电感电流连续
电感电流连续时,BOOST 变换器分为两个工作阶段:
T 导通,即on t 期间:
电源为只为电感提供能量,电感储能,电源不给负载提供能量,负载仅靠储于电容C 中的能量维持工作;
T 关断,即off t 期间:
电源跟电感共同向负载供电,同时还给电容C 充电,电源对BOOST 电路的输入电流就是升压电感L 电流
故输出电压能够大于输入电压。

维持电感电流临界连续时的电感值为: d OK S O U I DT L 2=
电感电流临界连续的负载电流平均值为: d O S OK U L DT I 2=
当实际负载电流
,O I 大于临界连续值OK I 时,电感电流连续,当实际负载电流等于临界连续值OK I 时,电感电流临界连续,当负载电流小于临界电流OK I 时,电感电流断续,
开关频率越高,电感L 越大,
OK I 越小,越容易实现电感电流连续工作的情况 <1>输出
输出电压 D U U d
O -=1,输出电流d O I D I )1(-=
<2>电感电流的峰-峰值
fL D
U I d L =∆
<3>输出电压纹波为(,O u ∆为纹波电压) ,S L O O T C R D U U =∆
τS
O O T D U U =∆
C R L =τ,为时间常数
注:实际中,选择电感电流的增量L I ∆时,应使电感的峰值电流L d I I ∆+不大于最大平均直流输入电流
d I 的0020,防止电感L 饱和失效。

boost电路

boost电路

Boost电路概述Boost电路,也称为升压转换器,是一种用于将输入电压升高到较高输出电压的电路。

它是一种常见的DC-DC转换器,广泛应用于各种电子设备中,例如无线通信,电源管理系统等。

Boost电路的工作原理是通过切换电源,将低电压输入转换为高电压输出。

它由开关管、电感和电容等组成,采用周期性的开关操作来实现电压升高的功能。

在Boost电路中,输入端通过开关管连接到电感。

当开关管打开时,电感中的电流开始增大。

关闭开关管时,电感中的电流开始减小。

通过电感中的电流变化,将输入电压转换为较高的输出电压。

在这个文档中,我们将介绍Boost电路的基本原理、应用和设计。

工作原理Boost电路的工作原理可以分为两个阶段:开关管导通和关闭。

开关管导通在Boost电路的导通阶段,开关管连接到电感。

输入电源通过开关管和电感,通过电感储存能量。

当开关管导通时,电流开始流经电感和开关管。

在这个过程中,电感充电,并将输入电压储存在电感中。

此时,输出电压等于输入电压。

关闭在Boost电路的关闭阶段,开关管断开连接,电感的储能开始释放。

电感的储能释放通过电容来提供给负载。

在这个过程中,电路通过切换电源的方式,将电感中储存的能量传输到电容。

因为电感中储存的能量是依赖于电流的变化的,所以输出电压将会增加。

输出电压的增加是通过控制导通时间和断开时间来实现的。

应用Boost电路在许多应用中具有重要的作用。

以下是一些Boost电路的常见应用:无线通信在无线通信领域,Boost电路被广泛应用于信号放大和发射电路。

通过将低电压信号转换为高电压信号,可以实现信号的放大和增强。

电源管理系统Boost电路在电源管理系统中起着关键的角色。

在移动设备和电池供电系统中,Boost电路用于将低电压的电池电压提升到设备所需的工作电压。

照明系统Boost电路被广泛应用于LED照明系统中。

通过将低电压转换为高电压,可以为LED提供所需的电压和电流,以便正确发光。

常用boost电路

常用boost电路

常用boost电路Boost电路是一种常用的电力转换技术,可以将低电压转换为高电压输出,广泛应用于电子设备、通信系统和工业控制等领域。

本文将介绍常见的boost电路及其应用,并从人类视角出发,生动地描述其原理和工作方式。

一、基本原理Boost电路基于电感储能原理,通过周期性切换开关管,将输入电压经过电感储能放大,最终得到高电压输出。

其基本构成包括开关管、电感、电容和负载等元件。

在工作过程中,开关管周期性地打开和关闭,使电感上的电流不断变化,从而实现电能的转换和提升。

二、工作方式Boost电路的工作方式简单直观。

当开关管关闭时,电感上的电流开始增大,同时电容上的电压也随之上升;当开关管打开时,电感上的电流开始减小,电容则通过电感释放能量,使负载得到高电压输出。

通过不断重复这一过程,Boost电路可以保持输出电压的稳定性和可靠性。

三、应用领域Boost电路在各个领域都有着广泛应用。

在电子设备中,Boost电路常用于电池充电器和电源适配器中,可以将低电压的直流电源转换为高电压供电设备;在通信系统中,Boost电路可以提供稳定的高压输出,保证无线信号的传输质量;在工业控制中,Boost电路则可用于马达驱动和电机控制,实现高效能量转换。

四、发展前景随着科技的进步和应用需求的增加,Boost电路正不断发展和创新。

目前,已经出现了多种改进型Boost电路,如升压变换器、多级Boost电路等,能够提供更高的转换效率和更稳定的输出电压。

未来,随着新材料和新技术的应用,Boost电路有望在节能环保、新能源利用等领域发挥更大的作用。

总结:Boost电路作为一种常用的电力转换技术,在各个领域都有着广泛应用。

通过周期性切换开关管,Boost电路可以将低电压转换为高电压输出,满足各种设备和系统的供电需求。

随着科技的进步和创新,Boost电路的性能和效率将不断提高,为人类社会的发展做出更大的贡献。

Boost电路解析

Boost电路解析

管腳功能(續)
管腳功能(續)
13. SS(軟啟動)Vss在VVCC低的情況下放電﹒當使能 時﹐SS通過一個電流源給外部的電容充電﹒在開机時﹐此電 壓被用于電壓誤差信號﹐能使得PWM的脈寬慢慢張開﹒在 VVCC下降的時候﹐OVP/EN被迫拉到1.9V以下﹐SS快速放 電﹐關閉PWM﹒ 14. CT:(振荡定时电容)在CT和GND之间放置一个电容可以调 节PWM的振荡频率。依据是:f=0.6/(RTxCT),从振荡电容 到GND的路徑要尽可能的短和直。 15. VCC﹕在10V~17V的正常運作下需要至少20mA的電 流﹒VCC到GND要直接串接電容用來吸收電源電流的 SPIKE﹐以便給輸出MOSFET的柵極電容充電﹒如果VCC電壓 沒有上升到上限門坎或掉到了下限門坎﹐則芯片不會工作﹒
22.功率開關的選擇
對于任何開關電源的設計﹐都要權衡產品的性能﹐成 本和体積大小﹒選擇一個功率開關﹐去計算組成轉換器的几 顆元件在開關頻率下的轉換總損耗是有用的﹒轉換中的總損 耗是開關損耗和傳輸損耗的和﹒開關損耗由柵极電荷損 耗﹐Coss損耗﹐導通損耗和關斷損耗組成﹒
PGATE QGATE VGATE fs PCOSS PON 1 2 C OSS VOFF fs 2 1 POFF VOFF I L (t ON t OFF ) fs 2
②电压变比水远大于1,即它只能升压,不能降 压.
15.UCC3818功能介紹
UCC3818为主动PFC提供了很多的功能。这个控制器通 过调整交流输入电流的波形来符合交流输入电压。平均电 流能保持一个稳定的、低失真的正旋曲线。 通过BIOMOS制程设计出来的UCC2817/UCC2818具备 新的功能,例如低啟動电流、低功率损耗、过电压保护、 短路保护、一项重要的边缘调制技术是降低BULK电容的纹 波电流,还有一个低offset電壓(2mV)的电流放大器的应用 来降低在轻载情况下的失真。 UCC2817通过它的低啟動电流来提供一个在线的(on chip)稳压器,适合应用在BOOST升壓電路中,UCC2818 倾向 于运用在固定電壓的提供上﹒

boost电路原理分析

boost电路原理分析

boost电路原理分析Boost电路是一种开关直流升压电路,它能够使输出电压高于输入电压。

在电子电路设计当中算是一种较为常见的电路设计方式。

本篇文章针对新手,将为大家介绍Boost升压电路的工作原理。

首先我们需要知道:电容阻碍电压变化,通高频,阻低频,通交流,阻直流;电感阻碍电流变化,通低频,阻高频,通直流,阻交流;假定那个开关(三极管或者MOS管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。

下面要分充电和放电两个部分来说明这个电路。

充电过程在充电过程中,开关闭合(三极管导通),等效电路如图2,开关(三极管)处用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

放电过程如图3这是当开关断开(三极管截止)时的等效电路。

当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。

升压完毕。

说起来升压过程就是一个电感的能量传递过程。

充电时,电感吸收能量,放电时电感放出能量。

如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

boost电路升压过程下面是一些补充。

AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上)。

电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大)。

整流管大都用肖特基,大家一样,无特色,在输出3.3V 时,整流损耗约百分之十。

开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键。

总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联。

boost电路电感计算公式

boost电路电感计算公式

boost电路电感计算公式【原创版】目录1.Boost 电路简介2.电感的作用和计算公式3.Boost 电路电感计算的实际应用正文一、Boost 电路简介Boost 电路,即升压电路,是一种用于将输入电压升高到输出电压的电路。

在电子设备中,常常需要不同电压等级的电源供应,而 Boost 电路能够实现这一功能。

与 Buck 电路(降压电路)相反,Boost 电路的输出电压大于输入电压。

二、电感的作用和计算公式在 Boost 电路中,电感(L)起着储能和滤波的作用。

电感的大小直接影响到输出电压的稳定性和效率。

计算电感大小的公式为:L = (Vout * Iout) / (Vin * Iin - ΔVin)其中,Vout 为输出电压,Iout 为输出电流,Vin 为输入电压,Iin 为输入电流,ΔVin 为输入电压的脉动幅值。

三、Boost 电路电感计算的实际应用在实际应用中,为了提高 Boost 电路的效率和稳定性,需要合理选择电感。

根据电感计算公式,可以通过调整电感大小来满足不同的输出电压需求。

例如,假设输入电压 Vin 为 12V,输出电压 Vout 为 18V,输入电流 Iin 为 3A,输出电流 Iout 为 2A,输入电压的脉动幅值ΔVin 为 3V。

代入公式,可得:L = (18V * 2A) / (12V * 3A - 3V) = 12H因此,在实际应用中,可以根据所需参数选择合适的电感值,以实现Boost 电路的优化。

总之,Boost 电路电感计算公式为 L = (Vout * Iout) / (Vin * Iin - ΔVin),通过合理选择电感,可以提高电路的效率和稳定性。

boost电路参数设计详解

boost电路参数设计详解

Boost 电路参数设计Boost 电路的原理图如下图所示当MOSFET 开通时,电源给电感L 充电,电感储能,电容放电。

电感上的电流增加量(电感线圈未饱和时)为:DT LV I in L ⋅=∆+)( 其中:D 为占空比,T 为开关周期。

当MOSFET 关断时,电感放电,电感的能量通过二极管传递到负载。

电感上的电流不断减小,忽略二极管的压降,则电流变化为:T D LV V I in o L )1()(-⋅-=∆- 电感电流连续模式时,在稳态条件下,电感上的电流增加等于其电流减小,即)()(-+∆=∆L L I I ,于是整理可得:DV V in o -=11 因为0<D <1,所以Boost 电路是一个升压型电路。

电感电流非连续模式时,MOSFET 开通状态下,电感电流的增值为:DT LV I in L ⋅=∆+)( MOSFET 关断状态下,电感电流的下降值为:T D LV V I in o L 2)(⋅-=∆- L DR电感电流上升值等于下降值,即)()(-+∆=∆L L I I ,整理得:22D D D V V in o += 因为在此模式下电感电流是不连续的,所以每个周期电感电流都会下降至零。

输出电流等于电感电流的平均值,即)21(12T D I T R V pk o ⋅⋅⋅= )(+=L pk I I 由上式得,24112K D V V n i o ++⋅=,s T R L K ⋅=2 由此可以看出,对于Boost 电路,电感电流连续模式与电感电流非连续模式有很大的不同,非连续模式输出电压与输入电压,电感,负载电阻,占空比还有开关频率都有关系。

而连续模式输出电压的大小只取决于输入电压和占空比。

1.输出滤波电容的选择在开关电源中,输出电容的作用是存储能量,维持一个恒定的电压。

Boost 电路的电容选择主要是控制输出的纹波在指标规定的范围内。

对于Boost 电路,电容的阻抗和输出电流决定了输出电压纹波的大小。

BOOST升压电路原理简单介绍

BOOST升压电路原理简单介绍

升压电路介绍
boost 升压电路,开关直流升压电路(即所谓的boost 或者step-up 电路)the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高,基本电路如下:
1.1BOOST升压电路工作原理
假定那个开关(三极管或者mos 管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。

下面要分充电和放电两个部分来说明这个电路。

充电过程:
在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处
用导线代替。

这时,输入电压流过电感。

二极管防止电容对地放电。

由于输入是
直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。

随着电感电流增加,电感里储存了一些能量。

放电过程:
如图,这是当开关断开(三极管截止)时的等效电路。

当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。

而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。

升压完毕。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

2.提高转换效率
①尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;
②尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;
③尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量;。

BOOST升压电路案例分析

BOOST升压电路案例分析

BOOST升压电路案例分析BOOST升压电路是一种常见的电源电路,用于将输入电压提升到更高的输出电压。

它通常由一个开关管、一个电感、一个二极管和一个输出电容组成。

BOOST升压电路具有简单、高效、可靠等特点,在很多领域得到广泛应用,比如电子设备、通信设备、医疗设备等。

BOOST升压电路的工作原理是通过周期性地开关控制开关管,让电感储存能量,在每个开关周期中释放能量到输出电容上,从而提升输出电压。

在BOOST升压电路中,电感和输出电容起到了能量存储和滤波的作用,二极管则起到了防止反向电流的作用。

以下是一个BOOST升压电路的案例分析:我们以一个输入电压为5V,输出电压为12V的BOOST升压电路为例进行分析。

该BOOST升压电路的参数如下:- 输入电压(Vin):5V- 输出电压(Vout):12V- 输出电流(Iout):500mA- 开关频率(fs):100kHz-开关管(Vf):0.7V-电感(L):10uH- 输出电容(Cout):100uF- 输出电流限制电阻:Rsense=0.1ohm首先我们需要根据电路参数计算BOOST升压电路的工作状态,计算出电路中的各个元件的工作电压、电流等参数。

根据BOOST升压电路的工作原理,可以得到以下计算公式:1.输出电压与输入电压的关系Vout = (Vin * (1 - D))/(1 - D - Vf)其中D为占空比,Vf为二极管的导通压降。

由于输出电压为12V,输入电压为5V,二极管导通压降为0.7V,带入公式得到占空比D约为0.582.开关管的导通时间和关断时间Ton = D / fsToff = (1 - D) / fs计算得到开关管的导通时间Ton约为5.8us,关断时间Toff约为4.2us。

3.电感和输出电容的工作电压和电流根据电路中电感和输出电容的工作原理,可以得到以下计算公式:Vl = Vin + Vin * DIl = Vl * (Ton / L)Delta_Il = Il * Toff / L其中Vl为电感的工作电压,Il为电感的工作电流,Delta_Il为电感的电流波动。

boost电路电感饱和波形

boost电路电感饱和波形

boost电路电感饱和波形【原创版】目录1.Boost 电路的概念与基本原理2.电感饱和波形的概念与特点3.Boost 电路中电感饱和波形的影响4.如何避免电感饱和波形5.总结正文一、Boost 电路的概念与基本原理Boost 电路,又称为升压电路,是一种基于开关管工作的直流 - 直流转换器。

其主要作用是将输入的低电压转换为较高的输出电压。

Boost 电路的基本原理是通过开关管的控制,使得电感上的电流呈锯齿波形,从而实现输出电压的升高。

二、电感饱和波形的概念与特点电感饱和波形是指在电感元件上产生的电流波形。

当电感元件的电流变化速率过快时,电感元件将无法跟随电流的变化,导致电感饱和。

此时,电感上的电流波形将发生畸变,呈现出非线性的特点。

三、Boost 电路中电感饱和波形的影响在 Boost 电路中,电感饱和波形的出现会对电路性能产生以下影响:1.输出电压的波形失真:电感饱和波形的非线性特点会导致输出电压波形失真,从而影响负载电流的稳定性。

2.开关管的损耗增加:由于电感饱和波形的非线性特点,会导致开关管的导通损耗和开关损耗增加,从而影响电路的整体效率。

3.电感的寿命缩短:电感饱和波形会导致电感元件上的电流应力增加,从而缩短电感的使用寿命。

四、如何避免电感饱和波形为了避免 Boost 电路中电感饱和波形的出现,可以采取以下措施:1.选择合适的电感元件:根据电路的需求,选择具有合适电流应力承受能力的电感元件。

2.调整开关管的控制策略:通过优化开关管的控制策略,使得电感上的电流变化速率适中,避免电感饱和波形的出现。

3.使用电流限制电阻:在电感元件上串联一个适当的电流限制电阻,以限制电感上的电流幅值,从而避免电感饱和波形的出现。

五、总结Boost 电路是一种常用的直流 - 直流转换器,在实际应用中,需要关注电感饱和波形的影响。

Boost电路解析解析

Boost电路解析解析
BOOST变换器
报告人:王同新
2003年12月
1.BOOST变换器的电路拓扑
2.BOOST变换器的工作原理
当晶体管导通时,二极管截止 (t=0~DTs),输入电压Vs向能量传递电 感L充磁,负载电压Vo靠滤波电容C维持; 当晶体管截止时,二极管导通 (t=DTs~Ts),电感把前一阶段贮存的能 量全部释放给负载和电容.显然,晶体 管导通的时间越长,即D越大,负截获 得的能量越多,输出电压越高。
16.UCC3818 Block Diagram
17.UCC3818 极限參數
供应电压VCC………………… ………… ……… ……… ……………18V
门驱动电流(連續值):…………… ………… ………… ……………0.2A 门驱动电流,50%的占空比……………………… ………… ………1.2A 输入电压CAI﹐MOUT﹐SS:…………… ………… ……… …………8V 输入电压PKLMT:…………………… ………… ………… ……………5V 输入电压VSENSE、OVP/EN:…………………………… ……………10V 输入电流RT、IAC、PKLMT…………………………… ……………10mA 输入电流Vcc(no switching)…………………………… ……………20mA 最大负向电压DRVOUT、PKLMT、MOUT………纹波
电感电流纹波 I (峰值到平均值)为:
Vs i DTs 2L
峰-峰值为:
iPP
Vs DTs L
假设效率为1,则输入输出的电流比为:
Io ' MI D 1 D IS
7.DCM MODE
当电感L较小,或电阻R较大,或开关颇率fS较低时, BOOST变换器也将工作在不连续导电模式下,如下图:

BOOST升压电路原理详解

BOOST升压电路原理详解

BOOST升压电路原理详解
今天介绍一个经典的升压电路:BOOST升压电路。

BOOST升压电源是利用开关管开通和关断的时间比率,维持稳定输出的一种开关电源,它以小型、轻量和高效率的特点被广泛应用在各行业电子设备找那个,是不可缺少的一种电源架构。

公众号后台回复:boost仿真文件
Boost升压电路主要由控制IC、功率电感和mosfet基本元件组成,为了解原理,我们以非同步boost为介绍对象,详细了解boost 架构升压电源的工作原理,下图即为一个BOOST基本架构框图。

和BUCK一样,L依然是储能元件,当开关闭合时,A点的电压为0,Vi直接给电感L充电,充电电流路径见下图,开关导通时间dt=占空比*开关周期=D*T。

当开关断开时,L中存储的能量会通过二极管,给负载放电;同时,Vi也会通过二极管给负载放电,二者叠加,实现升压,放电时间dt=(1-占空比)*开关周期=(1-D)*T。

在开关闭合和断开的两个时间内,电感充电和放电是一样的,有人称之为电感的幅秒特性,其实本质都一样,无外乎是充放电的过程。

整理得。

boost电路知识点总结

boost电路知识点总结

boost电路知识点总结一、概述Boost电路是一种DC-DC转换器,主要用于将输入电压通过电感和电容进行增压转换成输出电压。

Boost电路是一种非绝缘型电源拓扑结构,其输出电压高于输入电压。

Boost电路中的开关时间由一个控制电路控制,通过调节开关时间实现输出电压的稳定控制。

Boost电路在电子设备、通信、汽车电子、光伏逆变器等领域得到了广泛的应用。

二、Boost电路原理Boost电路是基于电感储能原理的电源拓扑,其工作原理如下:1. 输入电压施加在开关管上,使得电感中产生磁场能量。

2. 当开关管关断时,电感中储存的能量会释放,产生一个反向电动势,使得输出电压增加。

3. 输出电压通过反馈控制电路进行采样,通过比较器和PWM控制器来调节开关管的导通时间,从而实现输出电压的稳定控制。

Boost电路的原理简单,通过适当控制开关管的导通时间和频率,可以实现瞬态响应良好、输出电压稳定的电源转换过程。

三、Boost电路的工作模式Boost电路工作有两种不同的模式:连续导通模式和间歇导通模式。

两种工作模式根据电感电流波形是否持续存在有所不同,其特点如下:1. 连续导通模式:当负载较小或输入电压较高时,电感电流波形一直保持在正值,电感中储存的能量能够满足输出负载的需求,输出电压能够保持稳定。

在连续导通模式下,开关管的导通时间较长,能量转移效率高,适用于负载波动较小的场景。

2. 间歇导通模式:当负载较大或输入电压较低时,电感电流波形会有一个间歇的过程,即电感电流在关断后会变为零。

在间歇导通模式下,开关管的导通时间较短,能量转移效率低,但能够适应负载波动较大的场景,保证输出电压的稳定。

四、Boost电路关键元件Boost电路主要由开关管、电感、电容和输出滤波器等几种关键元件组成。

1. 开关管:Boost电路的核心部分,通过调控开关管的导通时间和频率来控制输出电压。

2. 电感:用于储存能量,稳定输出电压,保证电路的稳定性。

BOOST电路解析

BOOST电路解析

升压式(Boost)转换器图B1所示为升压式转换器。

为另一种藉由周期性开闭一电气开关操作之切换式转换器,被称为升压式转换器,因为其输出电压大于输入电压。

电压与电流关系分析之假设如下:(a)(b)(c)图B1升压式转换器(a)电路(b)开关闭合之等效电路(c)开关打开之等校电路。

1.稳态条件存在。

2.切换周期为T,开关闭合时间为DT,打开时间为(1-D)T。

3.电感器电流为连续(通常为正)。

4.电容很大,输出电压保持固定为Vo。

5.电路组件为理想。

分析步骤为先检视开关闭合时之电感器电压与电流,接着再看开关打开时之电压与电流。

开关闭合之分析当开关闭合,二极管为逆偏,克希荷夫电压定律经过路径为电源、电感器,与闭合开关,或(16)电流变化率唯一常数,所以当开关闭合时电流会线性增加,如图B2所示。

电感器电流之变化可求得为(a) (b)(c) (d)图B2升压式转换器波形: (a)电感器电压(b)电感器电流(c)二极管电流(d)电容器电流。

解得iL为,(17)开关打开之分析当开关打开,电感器电流无法瞬间改变,所以二极管变成顺偏压以提供一路径给电感电流。

假设输出电压Vo为固定,则电感器两端电压为电感电流之变化率为一常数,所以当开关打开时电流为线性变化。

当开关打开时电感电流之变化为解得iL ∆为,(18) 在稳态操作下,电感器电流之净变化必须为零。

利用(17)与(18)式,解得Vo ,(19) 另外,周期性操作下之平均电感电压亦必须为零,一切转换下之平均电感电压可表示为,解得Vo 与(19)式相同。

(19)式指出若开关总是打开且D 为零,则输出与输入相同。

当责任比增加,(19)式分母变小,则输出会比输入大。

亦即升压式转换器所产生之输出电压会大于或等于输入电压,而不像降压式转换器会小于输入。

当开关之责任比接近于1,根据(19)式输出会街近无穷大,但(19)式是基于组件为理想,实际组件包含有损失而会造成避免此情况发生。

BOOST升压电路原理简单介绍

BOOST升压电路原理简单介绍

BOOST升压电路原理简单介绍
BOOST升压电路的基本原理是通过周期性开关的方式,改变电感储能
和释放电能的方式,从而实现输入电压的升压。

在每一个开关周期中,电
感贮存能量,当开关断开时,电感会释放储存在其中的能量,从而将电压
提升至较高的输出电压。

具体过程如下:
1.当开关关闭时,电感通过电流。

在此过程中,电感储存了电流的能量,并将其转化为磁场能。

这导致输入电压下降。

2.当开关打开时,电感的磁场能量被释放,并导致电感中的电流开始
减小。

由于电感中有一方向相反的电压趋势,所以电源与电感的串联电压
会增加。

3.电源压力增加直到达到电感的电压。

在此时,电感中的电流变为零,电源和电感的电压相等。

4.电感的磁场能量通过二极管释放到负载电容中。

这会导致输出电压
增加。

5.重复以上步骤,以保持输出电压稳定。

1.VIN:输入电压,用于提供能量。

2.SW(开关):周期性开关导通和断开,用于调节储能和释放能量的
时机。

3.L(电感):储存和释放能量的元件。

电感的选型要根据设计需求
确定。

4.D(二极管):电感电流的轮流释放。

二极管的选择要注意其反向
恢复时间。

5.C(电容):平滑输出电压的元件。

电容的选型要根据输出电压的稳定性要求来确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M Boost变换器电感电流纹波
电感电流纹波 I (峰值到平均值)为:
Vs i DTs 2L
峰-峰值为:
iPP
Vs DTs L
假设效率为1,则输入输出的电流比为:
Io ' MI D 1 D IS
7.DCM MODE
当电感L较小,或电阻R较大,或开关颇率fS较低时, BOOST变换器也将工作在不连续导电模式下,如下图:
当K>Kcrit时为连续导电模式,当K<Kcrit时为不连续导电模式。
13.Kcrit与M和D1关系的图解
14.BOOST变换器的优缺点
BOOST变换器的优点:
①输入电流是连续的,这减轻了对电源的电磁干扰; ②开关晶体管发射极接地.使驱动电路简单. BOOST变换器的缺点是: ①输出侧二极管的电流是脉动的,使输出纹波较 大.所以实际应用中,在二极管与输出之间 常加入一个输出滤波网络.
10.D2与电路参数的关系推导
1 Vs Is D1Ts ( D1 D2 ) 2 L Vo I s MI 0 M R ( D1 D2 ) D1 2 M K
2 1 1 4 D D1 D2 K 1 /K 又,M D2 D2 D1 2 2 1 1 4 D D1 D2 1 /K 且:M K 2
11.DCM与CCM模式的稳态电压变比曲线
12.DCM与CCM的临界条件
i I s 是连续与不连续导电模式的分界条件,则有:
Vo Vs D1Ts Is M i R 2L
可得BOOST变换器连续与不连续导电模式的临界条件为:
K crit
2L M 1 RTs M3
K crit D1 (1 D1 ) 2
M主要参量的稳态波形
4.BOOST变换器CCM稳态分析
由电感电压伏秒平衡原理有:
Vs DTs (Vo Vs ) (1 D)Ts得:
Vo 1 1 M ' Vs D 1 D
Boost变换器的稳态电压变比永远大于1,所 以Boost变换器也称为升压变换器。
M Boost变换器稳态电压变比特性
8.BOOST变换器DCM稳态分析
由电感电压伏秒平衡原理有:
Vs D1Ts (Vo Vs ) D2Ts
得:
Vo D1 D2 M Vs D2
DCM模式下,Boost变换器的稳态电压变比仍 永远大于1,但M不但与导通比D1有关,也与D2有 关,而D2取决于电路参数。
9.DCM主要参量的稳态波形
1.BOOST变换器的电路拓扑
2.BOOST变换器的工作原理
当晶体管导通时,二极管截止 (t=0~DTs),输入电压Vs向能量传递电 感L充磁,负载电压Vo靠滤波电容C维持; 当晶体管截止时,二极管导通 (t=DTs~Ts),电感把前一阶段贮存的能 量全部释放给负载和电容.显然,晶体 管导通的时间越长,即D越大,负截获 得的能量越多,输出电压越高。
②电压变比水远大于1,即它只能升压,不能降 压.
相关文档
最新文档