细胞生物学第二章

合集下载

细胞生物学 第二章细胞生物学研究方法

细胞生物学 第二章细胞生物学研究方法
• 用途:观察细胞或组 织的表面立体结构。
§1 细胞形态结构的观察方法
三、扫描隧道显微镜 (Scanning tunneling microscope,STM)
• 于1981年发明,发明者获 1986年度诺贝尔物理学奖。
• 特点: ①具有原子尺度的高分辨力,
侧(横)分辨率为0.1-0.2nm, 纵分辨率0.001nm; ②除在真空外,还可在空气、 液体等条件下观察; ③非破坏性测量:不受电子 束的轰击、破坏。
• 因此,可用已知的抗体检测未知的抗原。
• 但多数抗原-抗体结合后不出现可见反应,即不能检测 到二者的这种特异性结合。如何检测抗原-抗体发生了 结合反应?
• 用一种可见的标记物标记抗体,通过检测标记物的存
在与否判断抗原-抗体是否发生了结合反应——免疫标
记技术。
抗原
标记物
抗体
二、特异蛋白抗原的定位与定性
s 将二次电子收集并经一系列 的处理在荧光屏上成像。
s 这样,可以得到样品表面的 立体图像。
二、电子显微镜
• 扫描电镜的样品制备:
s 取材; s 固定; s 脱水; s 临界点干燥; s 喷镀; s 电镜观察。
• 分辨本领:较低,一般 在3nm。
• 放大倍数:几万倍。
二、电子显微镜
• 特点:成像具有立体 感。
• 可见光的波长400700nm。
• 光学显微镜的最大分辨 率为0.2μm。
一、光学显微镜
• 光镜样品制备: 石蜡包埋切片, 苏木精-伊红染色。
一、光学显微镜
(二)相差显微镜和微分 干涉显微镜
• 原理:利用显微镜中的 特殊装置,使光线通过 样品时波长和振幅发生 变化,以增大样品明暗 的反差。
• 用途:这两种显微镜可 用于观察未染色的活细 胞的细胞结构及其动态 变化。

考研细胞生物学(简答)

考研细胞生物学(简答)

第二章:细胞的基本知识概要1、如何理解“细胞是生命活动的基本单位”这一概念?1)一切有机体都有细胞构成,细胞是构成有机体的基本单位2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位3)细胞是有机体生长与发育的基础4)细胞是遗传的基本单位,细胞具有遗传的全能性5)没有细胞就没有完整的生命6)细胞是多层次非线性的复杂结构体系7)细胞是物质(结构)、能量与信息过程精巧结合的综合体8)细胞是高度有序的,具有自装配与自组织能力的体系2、细胞的基本共性是什么?1)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜2)所有的细胞都有DNA与RNA两种核酸3) 所有的细胞内都有作为蛋白质合成的机器――核糖体4)所有细胞的增殖都是一分为二的分裂方式3、说明原核细胞与真核细胞的主要差别。

4、何谓细胞外被?它有哪些功能?1) 细胞外被是指动物细胞表面的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的厚约10~20nm的绒絮状结构。

2) 功能:(1) 细胞识别;(2) 血型抗原;(3) 酶活性。

5、细胞连接都有哪些类型?各有何结构特点?细胞连接按其功能分为:紧密连接,锚定连接,通讯连接。

1) 紧密连接(封闭连接),细胞质膜上,紧密连接蛋白(门蛋白)形成分支的链索条,与相邻的细胞质膜上的链索条对应结合,将细胞间隙封闭。

2) 锚定连接:通过中间纤维(桥粒、半桥粒)或微丝(粘着带和粘着斑)将相邻细胞或细胞与基质连接在一起,以形成坚挺有序的细胞群体、组织与器官。

3) 通讯连接:包括间隙连接和化学突触,是通过在细胞之间的代谢偶联、信号传导等过程中起重要作用的连接方式。

4) 胞间连丝连接:是高等植物细胞之间通过胞间连丝来进行物质交换与互相联系的连接方式。

第五章物质的跨膜运输与信号传递6、物质跨膜运输有哪几种方式?它们的异同点。

跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。

1) 简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;2) 协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;3) 主动运输:逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能。

考研细胞生物学(简答)

考研细胞生物学(简答)

第二章:细胞的基本知识概要1、如何理解“细胞是生命活动的基本单位”这一概念?1)一切有机体都有细胞构成,细胞是构成有机体的基本单位2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位3)细胞是有机体生长与发育的基础4)细胞是遗传的基本单位,细胞具有遗传的全能性5)没有细胞就没有完整的生命6)细胞是多层次非线性的复杂结构体系7)细胞是物质(结构)、能量与信息过程精巧结合的综合体8)细胞是高度有序的,具有自装配与自组织能力的体系2、细胞的基本共性是什么?1)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜2)所有的细胞都有DNA与RNA两种核酸3) 所有的细胞内都有作为蛋白质合成的机器――核糖体4)所有细胞的增殖都是一分为二的分裂方式3、4、何谓细胞外被?它有哪些功能?1) 细胞外被是指动物细胞表面的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的厚约10~20nm的绒絮状结构。

2) 功能:(1) 细胞识别;(2) 血型抗原;(3) 酶活性。

5、细胞连接都有哪些类型?各有何结构特点?细胞连接按其功能分为:紧密连接,锚定连接,通讯连接。

1) 紧密连接(封闭连接),细胞质膜上,紧密连接蛋白(门蛋白)形成分支的链索条,与相邻的细胞质膜上的链索条对应结合,将细胞间隙封闭。

2) 锚定连接:通过中间纤维(桥粒、半桥粒)或微丝(粘着带和粘着斑)将相邻细胞或细胞与基质连接在一起,以形成坚挺有序的细胞群体、组织与器官。

3) 通讯连接:包括间隙连接和化学突触,是通过在细胞之间的代谢偶联、信号传导等过程中起重要作用的连接方式。

4) 胞间连丝连接:是高等植物细胞之间通过胞间连丝来进行物质交换与互相联系的连接方式。

第五章物质的跨膜运输与信号传递6、物质跨膜运输有哪几种方式?它们的异同点。

跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。

1) 简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;2) 协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;3) 主动运输:逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能。

细胞生物学02细胞基本知识概要

细胞生物学02细胞基本知识概要

T4噬菌体侵染大肠杆菌E.coli
1. 吸附 2. 侵入 3. 复制 4. 成熟 5. 释放
三、病毒与细胞在起源和进化中的关系
病毒与细胞在起源上的关系,目前存在3种主要观点:
生物大分子→病毒→细胞
病毒
生物大分子
细胞 生物大分子→细胞 → 病毒
有说服力
课后作业:有何依据?
第三节 原核细胞和古核细胞
➢ 是目前发现最小、最简单的细胞,体积为细菌的 1/3,直径为0.1~0.3 μm;
➢ 具有细胞膜,无细胞核; ➢ 环状双螺旋DNA,能指导合成700多种必需蛋白;
➢ 唯一的细胞器是核糖体,每个细胞中约有800~ 1500个;
➢ 具有感染性,其中不少是致病的病原体,尤其是 一些慢性病的病原体;
肺炎支原体
由于没有核膜将核和细胞质分开,DNA的复制、 RNA转录与蛋白质的合成可以同时进行
2. 细菌的细胞表面结构
细胞膜 细胞壁
荚膜
特化结构 中膜体
鞭毛
1) 细胞膜
多功能性
➢ 最重要的功能就是物质运输和信号传递;
➢ 还具有真核细胞线粒体的部分功能;
2) 中膜体
间体或质膜体(mesome)
➢ 由细胞膜内陷产生,每细胞含一到数个;
包括核骨架和胞质骨架,由一些特异蛋白构成的网络 体系;主要对细胞形态与内部结构的合理布局起支架 作用,也与胞内大分子运输、细胞分裂等相关
二、细胞大小及其分析
表2-1 各类细胞直径的比较(见课本P33)
➢典型的原核细胞的平均大小 在1~10μm之间,而高等植物 细胞的直径平均为10~100μm, 一般为20~30μm
病毒类型: DNA病毒和RNA病毒
形态:立体对称型和螺旋对称型

细胞生物学:第2章 细胞

细胞生物学:第2章 细胞

细胞器
细胞核 染色体
DNA
无核膜和核仁 一个细胞只有一条 双链DNA, DNA不与或 双链DNA, DNA不与或 很少与组蛋白结合 环状, 环状,存在于细胞质
很长的线状分子, 很长的线状分子,含有 很多非编码区, 很多非编码区,并被核 膜所包裹。 膜所包裹。 21
§3.真核细胞基本知识概要
◆基本结构体系 ◆细胞的大小与分析 ◆细胞形态结构与功能的关系 ◆植物细胞与动物细胞的比较
9
病毒与细胞在起源与进化中的关系
病毒是非细胞形态的生命体,它的主要生命活动必 须要在细胞内实现。病毒与细胞在起源上的关系, 目前存在3种主要观点: 生物大分子→病毒→细胞 病毒 生物大分子 细胞 生物大分子→细胞→病毒
10
§3.原核细胞
(Prokaryotic Cells) )
◆没有明显可见的细胞核,同时也没有核膜和 没有明显可见的细胞核, 核仁,只有拟核,进化地位较低。 核仁,只有拟核,进化地位较低。 ◆原核细胞的基本特点: 原核细胞的基本特点: 遗传信息量少; ■遗传信息量少; 内部结构简单, ■内部结构简单,特别是没有分化为以 膜为基础的专门结构和功能的细胞器和细 胞核膜。 胞核膜。
遗传信息表达系统
该系统又称为颗粒纤维结构系统, 该系统又称为颗粒纤维结构系统, 该系统包括细胞核和核糖体。 该系统包括细胞核和核糖体。
27
纤 维 结 构
28
颗 粒 结 构
29
细胞骨架系统
细胞骨架是蛋白与蛋白搭建起的网络结构, 细胞骨架是蛋白与蛋白搭建起的网络结构, 包括细胞质骨架和细胞核骨架。 包括细胞质骨架和细胞核骨架。 细胞骨架系统首要作用是维持细胞的一 定形态; 定形态; 细胞内物质运输的动脉; 细胞内物质运输的动脉; 细胞内基质区域化; 细胞内基质区域化; 帮助细胞移动或行走; 帮助细胞移动或行走; 主要成分:微管、微丝和中间纤维 主要成分:微管、微丝和中间纤维。

细胞生物学第二章

细胞生物学第二章
细胞核:没有核膜包围,拟核 DNA裸露,没有组蛋白结合 细胞质中含有核糖体和间体,没有其他细胞器
真核 细胞核有核膜包被
细胞质中含有结构精细,功能专一的细胞器
原核细胞和真核细胞的比较
特征 细胞膜
核膜 染色体
核仁 线粒体 内质网 高尔基体 溶酶体 核糖体 光合作用结构
核外DNA 细胞壁
细胞骨架 细胞增殖(分裂)
二、细胞的发生
1.多聚体的形成 多核苷酸的自我复制和控制蛋白质的合成
2.膜的出现是细胞形成的关键 3.原始细胞的诞生
约35亿年前;异养型;具可变形的膜,含有信 息和蛋白质合成系统。
第二节 细胞的进化
一、病毒 --— 非细胞形态的有机体
由一个核酸分子(DNA或RNA)与蛋白质构成的核酸 --蛋白复合体.
细菌具有裸露的质粒DNA
植物叶绿体具有叶绿素a与b 线粒体DNA,叶绿体DNA
主要成分是氨基糖与壁酸
动物细胞无细胞壁,植物细壁的 主要成分为纤维素与果胶
无 无丝分裂(直接分裂)
有 以有丝分裂(间接分裂)为主
四、从原核生物演化为真核生物
• 分化起源说: 在漫长的进化过程中,通过内在矛盾和自然选择 分化出网膜系统,胞核系统和能量转化系统,并 由此形成真核生物.
方式原核细胞 有(多功能来自)无真核细胞 有 有
由一个环状DNA分子构成的单个染色体, DNA不与或很少与蛋白质结合 无 无 无 无
2个染色体以上,染色体由线状 DNA与蛋白质组成 有 有 有 有
无 70S(包括50S与30S的大小亚单位)
有 80S(包括60S与40S的大小亚单位)
蓝藻含有叶绿素a的膜层结构,细菌具有 菌色素
地球上最小最简单的非细胞形态的有机体.

02细胞生物学第二章 细胞生物学研究方法

02细胞生物学第二章 细胞生物学研究方法

(四)暗视野显微镜 dark field microscope
• 聚光镜中央有挡光片,照明光线不直 接进人物镜,只允许被标本反射和衍 射 的光线进入物镜,因而视野的背景 是黑 的,物体的边缘是亮的。
• 可观察 4~200nm的微粒子,分辨率 比普通显微镜高50倍。
(五)相差显微镜
• 相差显微镜在结构上进行了特别设计,尤其是光学系统有很 大的不同, 可用于观察未染色的活细胞 .由P.ZEMIKE于1932年 发明,并因此获1953年诺贝尔物理奖.
透射电镜
—、光学显微镜 (一)普通光学显微镜 •1. 构成: • ①照明系统 • ②光学放大系统 • ③机械装置 •2. 原理:经物镜形成倒 立实像,经目镜进一步 放大成像。
透镜的像差 •球面像差 •慧形像差 •像散 •像场弯曲 •畸变 •色差
球差:由主轴上某一物点向光学系统发出的单色圆锥形光束,经该光学系 列折射后,若原光束不同孔径角的各光线,不能交于 主轴上的同一位置, 以至在主轴上的理想像平面处,形成一弥散 光斑(俗称模糊圈),则此光 学系统的成像误差称为球差。
A Yeast Cell
冰冻断裂与 冰冻蚀刻技术
(二)扫描电子显微镜
•20世纪60年代问世,用来观察标本表面结构。
• 分辨力为6~10nm ,由于人眼的分辨力 (区别荧光屏上距离 最近两个光点的能力 )为0.2mm,扫描电 镜的有效放大倍率为 0.2mm/10nm=2000 0X。
• 工作原理:是用一束极细的电子束扫描样 品,在样品表面激发出次级电子,次级电子 的多少与样品表面结构有关,次级电子由探 测器收集,信号经放大用来调制荧光屏上电 子束的强度,显示出与电子束同步的扫描图 像。
• 紫外蓝光激发滤板:此滤板可使300~450nm范围内 的光通过。常用型号为ZB-2或ZB-3,外加BG-38。

细胞生物学 第二章 细胞的结构与组成

细胞生物学 第二章 细胞的结构与组成

cytoskeleton network
第三节 原核细胞与古细胞
原核细胞没有核膜,DNA为裸露的环状分子,通 常没有结合蛋白。没有恒定的内膜系统,核糖体 为70S型。通常称为细菌(bacterium)。 古细菌的细胞(archaeal cell)在形态上与原核细 胞相似,但并不意味着它们是最古老的细胞类型。
细胞的有机物主要有蛋白质、核酸、脂类和糖, 约占细胞干重的90%以上。 一个细胞中约有104种蛋白质,分子的数达1011。 蛋白质不仅是细胞的结构成分,也是细胞功能的 实现者。生化反应的催化剂——酶是蛋白质。
核酸 核酸包括DNA和RNA。 DNA是遗传信息复制、传递和基因转录的模板。 基因是编码蛋白质多肽链或RNA的DNA序列。 生物体全部基因序列及其间隔称为基因组 基因组genome。 基因组 原核生物的基因组大小约600Kb-9.5Mb,真核生 物的约为3Mb-140000Mb。 一个能够独立生存的细胞需要约500个基因。 RNA参与蛋白质的合成,主要类型有:mRNA、 tRNA、rRNA。
一、细菌的基本结构
是在自然界分布最广、个 体数量最多的有机体。 可分为:球菌、杆菌和螺 旋菌(弧形菌)。 绝大多数细菌的直径在 0.5~5m之间。
大 肠 杆 菌
淋 病 球 菌
肉 毒 梭 菌
弧 形 霍 乱 菌
1、细胞壁 细胞壁:主要成分是肽聚糖,由N-乙酰葡糖胺和N-乙酰 细胞壁 胞壁酸构成双糖单元,以β(1-4)糖苷键连接成大分子。N乙酰胞壁酸分子上有四肽侧链,相邻聚糖纤维之间的短肽通 过肽桥(革兰氏阳性菌)或肽键(革兰氏阴性菌)桥接起来, 形成了肽聚糖片层。 革兰氏阳性菌细胞壁厚约20-80nm,有15-50层肽聚糖片层, 每层厚1nm,含20-40%的磷壁酸(teichoic acid。革兰氏阴 性菌细胞壁厚约10nm,仅2-3层肽聚糖,另外还有脂多糖、 细菌外膜和脂蛋白。

细胞生物学第二章:细胞的概念与分子基础

细胞生物学第二章:细胞的概念与分子基础

• U-snRNA的5‘端含甲基化稀有碱基,形成特有的帽子结构,常见为
2,2,7-三甲基三磷酸鸟苷(m32,2,7Gppp) • 主要功能:参与基因转录产物的加工
细胞的分子基础
(5) miRNA
• microRNA(微小RNA),长21~25nt的非编码 RNA,其前体 70~90nt,具有发夹结构
合成蛋白质的模板
细胞的分子基础
• mRNA指导特定蛋白质合成的过程称为翻译(translation)
• 原核细胞的mRNA是 多顺反子(polycistron) —— 每分子RNA可携 带几种蛋白质遗传信息,指导几种蛋白质合成 • 真核细胞的mRNA是 单顺反子(monocistron) —— 每分子RNA只 携带一种蛋白质信息 • 两种细胞的mRNA的5' 端和 3' 端,各有 30至几百个核 苷酸的非翻译区(UTR),是 翻译调控的靶点
细胞的分子基础
(2) rRNA
• 占RNA总量的80%~90%,分子量在RNA 中最大 • 单链结构,主要功能参与构成核糖体 • 真核细胞核糖体(80S)含5S、5.8S、28S
和18S四种rRNA
• 原核细胞核糖体(70S)含5S、23S和16S 三种rRNA
• 核糖体是细胞合成蛋白质的机器,rRNA占
• 最先在秀丽隐杆线虫发现,随后在哺乳动物中
不断发现新miRNA,哺乳动物基因的近1%可 能编码miRNA。
• miRNA普遍存在于生物界,具有高度保守性,
参与细胞分化与发育的基因表达调控
miRNA的形成与作用机制
Dicer酶 是 双链RNA专一性RNA内切酶; Dicer酶可将外源双链RNA 也加工成 22nt (nucleotide)左右的siRNA (small interference RNA)。

细胞生物学课件第二章细胞基本知识

细胞生物学课件第二章细胞基本知识
如草履虫像鞋底状,眼虫呈梭形且带有长鞭毛,钟形
虫呈袋状。
草履虫的SEM照片
眼虫的SEM照片
钟形虫的SEM照片
高等生物体内各种细胞的形状与细胞功能和细胞间的相互 关系有关。如肌肉细胞呈长条形或长梭形;红细胞为圆盘状, 有利于O2和CO2的气体交换。植物叶表皮的保卫细胞成半月形。
细胞离开了有机体分散存在时,形状往往发生变化。如平滑肌
第二节、原核细胞与真核细胞
根据进化的地位,结构和复杂程度,遗传装置的
类型与主要生命活动的方式, 将细胞分为两大类:原
核生物和真核生物。
一、原核细胞 原核细胞大约在32亿年以前就出现在地球上了。 原核细胞结构简单,种类少 , 体积小,一般在1-10微 米,如支原体,细菌,放线菌,绿藻,蓝藻等。
基本特点: 1. 外部由质膜包围,其结构和化学组成与真核 细胞相似。多数在质膜之外有一层坚固的细胞壁。 2.内有一个含DNA的区域,称之为类核或拟核, 类核没有核膜包围,仅为一个环状DNA分子卷曲折叠 而成。 3. 大多数原核生物没有恒定的内膜系统,因而
二、细胞的结构
1. 原生质(protoplasm): 从现代概念来说包括质
膜、细胞质和细胞核(或拟核)。
2. 细胞质(cytoplasm):质膜以内、细胞核以外的 原生质。 3. 细胞核:是细胞中最大、最重要的细胞器,由双 层膜围绕,内含遗传物质DNA。细胞核中的原生质称 为核质。
4. 细胞器(organelle):在光学和电子显微镜下细
置及其协调性所决定的,
这是长达数十亿年的进化产物,细胞结构完整性 的任何破坏都会导致细胞代谢的有序性与自控性的失 调。
3.细胞是有机体生长和发育的基础
一切有机体的生长与发育都是以细胞的增殖与分

细胞生物学第二章

细胞生物学第二章
特 征 细胞膜 核膜 染色体 原核细胞 有(多功能性) 无 由一个环状 DNA 分子构成的单个染色 体,DNA 不与或很少与蛋白质结合 核仁 线粒体 内质网 高尔基体 溶酶体 核糖体 光合作用结构 无 无 无 无 无 70S(包括 50S 与 30S 的大小亚单位) 蓝藻含有叶绿素 a 的膜层结构,细菌 具有菌色素 核外 DNA 细胞壁 细菌具有裸露的质粒 DNA 主要成分是氨基糖与壁酸 线粒体 DNA,叶绿体 DNA 动物细胞无细胞壁,植物细胞壁的主要成分为纤维素与 果胶 细胞骨架 细胞增殖(分裂)方式 无 无丝分裂(直接分裂) 有 以有丝分裂(间接分裂)为主 有 有 有 有 有 80S(包括 60S 与 40S 的大小亚单位) 植物叶绿体具有叶绿素 a 与 b 真核细胞 有 有 2 个染色体以上,染色体由线状 DNA 与蛋白质组成
除上述各点外,根据DNA聚合酶分析,氨基酰tRNA合成酶的作用,起始氨基酰tRNA 与肽链延长因子等分析,也提供了以上类似依据,说明古细菌与真核生物在进化上的关 系较真细菌类更为密切。因此近年来,真核细胞起源于古细菌的观点得到了加强。
腺病毒
噬菌体
HIV
思考题
P47:1,2,4,5
病毒与细胞在起源与进化中的关系
第三节 原核细胞与真核细胞
原核细胞(Prokaryotic cell)
真核细胞(Eukaryotic cell)
古细菌 (Archaebacteria)
细胞是生命活动的基本单位
一切有机体都由细胞构成,细胞是构成有机体的基本单位 细胞具有独立的、有序的自控代谢体系, 细胞是代谢与功能的基本单位 细胞是有机体生长与发育的基础 细胞是遗传的基本单位,细胞具有遗传的全能性 没有细胞就没有完整的生命
细胞的基本共性

《细胞生物学》第二章细胞基本知识ppt课件

《细胞生物学》第二章细胞基本知识ppt课件

植物细胞模式图
是代谢与功能的基本单位,具有完整的代谢和 调节体系,不同的细胞执行不同的功能;
是遗传的基本单位,具有发育的全能性
细胞概念的一些新思考
细胞是多层次、非线性的复杂结构体系
细胞是物质(结构)、能量与信息过程 精巧结合的综合体
细胞是高度有序的,具有自装配与自组 织能力的体系
组成细胞的化学元素
元素 C、H、O、N、P、S、Ca、 K、Fe、Na、Cl、Mg 化合物 无机物(水、无机盐)
弹形:形似子弹头,如狂犬病病毒等,其他 多为植物病毒;
砖形:如痘病毒、天花病毒等; 蝌蚪形:由一卵圆形的头及一条细长的尾组
成,如噬菌体
疱疹病毒 腺 病 毒
人类天花病毒
骨髓灰质炎病毒
病毒衣壳的排列
蛋白质感染因子
• S. B. Prusiner 1982年发现于患羊瘙痒病的仓鼠, 命名为prion。Prusiner因此于1997年获得诺贝尔 奖
• 克-雅二氏病:1913, 德国 不知名物质危害人
类脑细胞
• 克鲁病:1950,新几内亚发现 “笑死病” 相识 • 羊搔痒症:1959,伦敦发现羊的疾病与克鲁病 • 疯牛病:1985,英国发现,人类被感染
PRION感染
第三节 原核细胞与古核细胞
一、支原体(mycoplast)(最小、最简单的细胞) 膜,环状双螺旋DNA,多聚合糖体,700多种蛋 白;细菌的1/10,在培养基上生长
第二章 细胞基本知识概要
第一节 细胞基本概念 第二节细胞形态的生命体
- 病毒及其与细胞关系 第三节 原核细胞与古核细胞 第四节 真核细胞基本知识概要
第一节 细胞基本概念
细胞是一切生命活动的基本结构和功能单位
细胞是由膜包围的原生质团,通过质膜与周围 环境进行物质和信息交流;

第二章细胞生物学研究方法

第二章细胞生物学研究方法

第二章细胞生物学研究方法第四节细胞培养与细胞工程一、细胞培养高等生物是由多细胞构成的整体,在整体条件下要研究单个细胞或某一群细胞在体内(in vivo)的功能活动是十分困难的。

但是如果把活细胞拿到体外(in vitro)培养进行观察和研究,则要方便得多。

活细胞离体后要在一定的生理条件下才能存活和进行生理活动,特别是高等动植物细胞要求的生存条件极其严格,稍有不适就要死亡。

所以细胞培养技术(cell culture)就是选用最佳生存条件对活细胞进行培养和研究的技术。

动物细胞的生存环境与植物细胞差别很大,因而二者的培养方法很不相同。

(一)动物细胞培养细胞培养方式大致可分为两种(图2-25):一种是群体培养(mass culture),将含有一定数量细胞的悬液置于培养瓶中,让细胞贴壁生长,汇合(confluence)后形成均匀的单细胞层;另一种是克隆培养(clonal culture),将高度稀释的游离细胞悬液加入培养瓶中,各个细胞贴壁后,彼此距离较远,经过生长增殖每一个细胞形成一个细胞集落,称为克隆(clone)。

一个细胞克隆中的所有细胞均来源于同一个祖先细胞。

此外,为了制取细胞产品而设计了转鼓培养法,使用大容量的圆培养瓶,在培养过程中不断地转动,使培养的细胞始终处于悬浮状态之中而不贴壁。

图2-25 群体培养(左)和克隆培养(右)表2-3 目前实验室中常用的几种细胞系正常细胞培养的世代数有限,只有癌细胞和发生转化的细胞才能无限生长下去。

所谓转化即是指正常细胞在某种因子的作用下发生突变而具有癌性的细胞。

目前世界上许多实验室所广泛传用的HeLa细胞系就是1951年从一位名叫Henrietta Lacks的妇女身上取下的宫颈癌细胞培养而成。

此细胞系一直延用至今。

1. 原代培养(primary culture):从动物机体取出的进行培养的细胞群。

原代培养的细胞生长比较缓慢,而且繁殖一定的代数后(一般10代以内)停止生长,需要从更换培养基。

《细胞生物学》名词解释

《细胞生物学》名词解释

第二章细胞生物学的研究方法名词解释:免疫荧光技术:将免疫学方法与荧光标记技术相结合用于研究特异蛋白抗原在细胞内分布的方法。

包括荧光抗体的制备、标本的处理、免疫染色和观察记录等。

冰冻蚀刻技术:将样品断裂面结构的形貌印在复型膜上,再用电镜观察复型膜的方法。

主要用来观察膜断裂面的蛋白质颗粒和膜表面结构,图形富有立体感,且能更好地保持样品的真实结构。

原位杂交技术:用标记的核酸探针通过分子杂交确定特异核苷酸序列在染色体上或细胞中位置的方法称为原位杂交。

放射自显影技术:是用放射性同位素标记生物大分子前体物,并掺入细胞或机体中。

利用放射性同位素所发射出来的带电离子(α或β离子)作用于感光乳胶的卤化银晶体,从而产生潜影。

再经显影、定影后于显微镜下观察。

细胞中银颗粒所在部位即代表放射性同位素的标记部位。

原代培养:直接从机体取下细胞、组织或器官后立即进行的培养。

但也有把第1代至第10代以内的细胞培养统称为原代培养。

传代培养:将原代培养物转移到新的培养基上进行的培养。

细胞拆合:把核与质分离,然后把不同来源的核与质相互配合,形成核质杂交细胞。

细胞融合:是指两个或多个细胞融合成一个双核或多核细胞的现象。

单克隆抗体技术:是将产生抗体的单个B淋巴细胞同肿瘤细胞杂交最终获得单克隆抗体的技术。

第三章细胞基本知识概要名词解释:原核细胞:结构简单的细胞,没有膜包被的细胞核,如细菌等。

真核细胞:细胞核具有核被膜,细胞质中含有一些膜性细胞器的细胞。

古核细胞:是一些生长在极端特殊环境中的细菌,其形态结构和遗传结构装置与原核细胞相似,但有些分子进化特征更接近真核细胞。

细胞体积的守恒定律:器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与细胞的大小无关,把这种现象为“细胞体积的守恒定律”。

第四章细胞质膜名词解释:生物膜:细胞内的膜系统与细胞质膜统称为生物膜。

膜骨架:指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构。

第十五章细胞社会的联系名词解释:细胞表面:是指包围在细胞质外层的一个复合的结构体系和多功能体系,是细胞与细胞、细胞与外界环境相互作用并产生复杂功能的部位。

细胞生物学 第二章 细胞的概念和分子基础

细胞生物学 第二章 细胞的概念和分子基础
一、原始细胞的形成 二、原核细胞向真核细胞的演化 三、单细胞生物向多细胞生物的进化
一、原始细胞的形成
※生命源自于海洋!
自然
简单元素
条件
无机小分子 有机小分子
(C、H、O)
氨基酸 核苷酸
原始生命
生物大分子
界膜 包裹
核酸 蛋白质
多分子体系
有机分子的自发形成
以蛋白质为主体形成微球体
(一)多聚体的形成

肽键
肽键

氨基端






羧基端


★蛋白质的四级结构
1.蛋白质的一级结构(primary structure) 具有一定数目和顺序的氨基酸残基之间以肽键 为主键或有少量二硫键为副键的多肽链。
2.蛋白质的二级结构(secondary structure)
在一级结构的基础上,借氢键在氨基酸残基 之间的对应点连接,使分子结构发生折曲的 结构。分为α-螺旋、ß-折叠片层、三股螺旋 三种类型。
碱性的氨基
酸性的羧基
侧链
主要功能 蛋白质的基本结构单位。
4、核苷酸(nucleotide)
★★ 化学组成
核 苷 酸
主要功能
磷酸 戊糖
核糖 脱氧核糖
碱基
嘧 啶:T C U 嘌 呤:A G
核酸的基本结构单位。
5’端





★★


核苷酸
3’端
(二) 生物大分子执行细胞的特定功能
一、核 酸
是生物遗传的物质基础
(二)有机小分子
糖苷键
单糖
多糖
有 机
氨基酸

细胞生物学第2章作业答案

细胞生物学第2章作业答案

1.分辨率:是指能区分开两个质点间的最小距离。

原代细胞:是指从机体取出后立即培养的细胞。

传代细胞:是指适应在体外培养条件下能持续传代培养的细胞。

密度梯度离心:是将要分离的细胞组分小心地铺放在含有密度逐渐增加、高溶解性的惰性物质形成的密度梯度溶液,通过重力或离心力的作用使样品中不同组分以不同的沉降率沉降,形成不同的沉降带。

差速离心:是利用不同的离心速度产生不同的离心力将各种质量和密度不同的亚细胞组分和各种颗粒分开。

2.肉眼的分辨率是0.2mm,光学显微镜的分辨率是0.2μm,电子显微镜的分辨率是0.2nm。

3.分辨率与光源的波长、物镜镜口角和介质折射率有关。

3. 光学显微镜主要有3部分组成光学放大系统、照明系统和镜架及样品调节系统。

4. 荧光显微镜的滤光片系统由激发滤光片和阻断滤光片组成。

5. 电子显微镜以电子束作为光源。

6. 电子显微镜主要有4部分构成电子束照明系统、成像系统、真空系统和记录系统。

7. 激光扫描显共焦微镜的共焦是指聚光镜和物镜同时聚焦到同一点上,因而才能清晰的成像。

8. 碱性燃料苏木精可以染细胞核,使其呈蓝紫色;酸性染料伊红可以染细胞质,使其呈红色。

9. 细胞内特异核酸的定性与定位的研究,通常采用原位杂交技术。

10. 差速离心是利用不同的离心速度产生不同的离心力将各种质量和密度不同的亚细胞组分和各种颗粒分开。

11. 密度梯度离心是将要分离的细胞组分小心地铺放在含有密度逐渐增加、高溶解性的惰性物质形成的密度梯度溶液,通过重力或离心力的作用使样品中不同组分以不同的沉降率沉降,形成不同的沉降带。

12.福尔根反应反应可以特异显示呈紫红色的DNA的分布。

13. 苏丹Ⅳ和苏丹Ⅲ可以使脂滴着色。

14. 仙台病毒和聚乙二醇可以介导动物细胞融合。

15. 福尔根反应的原理。

其原理是:酸水解可以去除RNA,仅保留DNA,并去除DNA上嘌呤脱氧核糖核苷键的嘌呤。

使脱氧核糖的醛基暴露。

所暴露的自由醛基与希夫试剂反应呈紫红色。

细胞生物学第二章细胞基本概念

细胞生物学第二章细胞基本概念

旋菌(弧形菌)。
• 绝大多数细菌的直径在
0.5~5μm之间。
大 肠 杆 菌
弧 形 霍 乱 菌
肉 毒 梭 菌
淋 病 球 菌
(1)细菌细胞壁:主要成分是肽聚糖,由N-乙酰葡糖胺和N乙酰胞壁酸构成双糖单元,以β(1-4)糖苷键连接成大分子。 革兰氏阳性菌、革兰氏阴性菌细胞壁比较:
Gram positive bacterial cell wall structure diagram
envelope),核内包含有由DNA和蛋白质构成的
染色体(chromosome)。
• 核内1至数个小球形结构,称为核仁 (nucleolus)。
原核细胞的特征: • 没有核膜,遗传物质集中在一个没有明确界限的
低电子密度区,称为拟核(nucleoid)。
• DNA为裸露的环状双螺旋分子,通常没有结合蛋
白,没有恒定的内膜系统,核糖体为70S型。
• 原核细胞构成的生物称为原核生物,均为单细胞
生物。一般以二分裂的方式繁殖,也有的产生孢
子。
一、支原体 mycoplasma
• (3)拟核:没有核膜,DNA分子裸露,所含的遗传信息
量可编码2000~3000种蛋白质,空间构建十分精简。
• (4)核糖体:
• 约含5000~50000个。
• 沉降系数为70S,由(50S)与(30S)组成。
• 30S的小亚单位对四环素与链霉素敏感,50S的大 亚单位对红霉素与氯霉素敏感。
• (5)质粒 (plasmid) :除核区 DNA 外,是裸露的环状 DNA分子,所含遗传信息量为2~200个基因,能自我复制, 有时能整合到核 DNA 中去。质粒常用作基因重组与基因 转移的载体。
思考:青霉素的抑菌作用原理?G+or G-?

细胞生物学-细胞基本知识

细胞生物学-细胞基本知识

1
古细菌包括3类不同的细菌:、极端嗜盐细菌,嗜酸嗜热细菌和产甲烷细菌。
2
PCR(多聚酶链反应)中所使用的Taq酶就是从T.aquaticus 嗜热细菌中分离到的。
3
第三节 真核细胞
真核细胞的基本结构体系
生物膜系统
细胞骨架系统
遗传信息表达的结构系统
生物膜结构体系 真核细胞(eukaryotic cell)
原核细胞(prokaryotic cell) G+的细胞壁中壁酸含量高达90%,G -的细胞壁中壁酸含量只有5%,青霉素的主要作用是抑制壁酸的合成。
原核细胞(prokaryotic cell)
01
细菌的表面结构
02
细胞膜:磷脂双分子层和蛋白质组成。膜蛋白有受体、酶等,能完成真核细胞膜性细胞器的大部分功能。 中膜体(间体):细胞膜内折形成,扩大了膜面积。 荚膜:保护作用
真核细胞(eukaryotic cell)
真核细胞(eukaryotic cell)
真核细胞(eukaryotic cell)
真核细胞(eukaryotic cell)
真核细胞与原核细胞的比较
01
细胞大小与结构特征:细胞核,细胞器,细胞
02
骨架,细胞壁,核糖体,细胞大小
03
遗传装置:DNA形状与大小,核小体, DNA重
引起鼻咽癌的eb病毒
个体微小,20~200nm之间,可通过滤菌器,大多数病毒必须用电镜才能看见; 结构简单:核酸+蛋白质衣壳 含DNA或RNA,没有含两种核酸的病毒;
专营细胞内寄生生活----分子水平的寄生;
2
1
---由核酸(DNA或RNA)芯和蛋白质衣壳(capsid)构成,称核衣壳(nucleocapsid)。

细胞生物学[第二章细胞的统一性和多样性]课程预习

细胞生物学[第二章细胞的统一性和多样性]课程预习

第二章细胞的统一性和多样性一、细胞的基本概念(一)细胞是生命活动的基本单位要阐述为什么说细胞是生命活动的基本单位,可以从以下几个方面去理解:(1)一切有机体都由细胞构成,细胞是构成有机体的基本单位。

一切有机体均由细胞构成,只有病毒是非细胞形态的生命体。

单细胞生物的有机体仅由一个细胞构成。

多细胞生物的有机体根据其复杂程度由数百乃至万、亿计的细胞构成。

有些低等的多细胞生物体,如盘藻仅有4~8个或几十个相同的细胞组成,它们实际上是单细胞与多细胞生物之间的过渡型。

高等动物植物有机体由无数个功能与形态结构不同的细胞组成。

(2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位。

细胞本身有一套严格程序的、自动控制的代谢体系,这是由细胞自身结构的装置及其协调性所决定的,是长期进化的产物,细胞结构完整性的任何破坏,都会导致细胞代谢的有序性与自控性的失调。

(3)细胞是有机体生长与发育的基础。

一切有机体的生长与发育都以细胞的增殖与分化为基础,这是研究生物发育的基点。

有机体的生长与发育依靠细胞的分裂、细胞体积的增长、细胞的分化与凋亡来实现,细胞是生物生长与发育的基本单位。

(4)细胞是遗传的基本单位,细胞具有遗传的全能性。

每一个细胞都含有全套的遗传信息,即全套的基因,它们具有遗传的全能性。

(5)没有细胞就没有完整的生命。

(二)细胞的基本共性(1)组成细胞的基本化学元素是碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、硫(S)、钙(Ca)、钾(K)、铁(Fe)、钠(Na)、氯(C1)、镁(Mg)等。

(2)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。

真核细胞还具有内膜系统。

(3)所有的细胞都有两种核酸,即DNA和RNA作为遗传信息复制与转录的载体。

病毒只有一种核酸,DNA或者RNA。

(4)核糖体是任何细胞不可缺少的基本结构。

(5)所有细胞的增殖都是一分为二的方式进行分裂,遗传物质在分裂前复制加倍,在分裂时均匀地分配到两个子细胞内,这是生物繁衍的基础与保证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原核细胞与真核细胞的比较
ห้องสมุดไป่ตู้
真核细胞的基本结构体系
以脂质及蛋白质成分为基础的生物膜结构系统; 以核酸(DNA或RNA)与蛋白质为主要成分的 遗传信息表达系统
由特异蛋白分子装配构成的细胞骨架系统。
细胞的大小及其分析
各类细胞直径的比较
细胞类型 最小的病毒 支原体细胞 细菌细胞 动植物细胞 原生动物细胞 直径大小(μ m) 0.02 0.1~0.3 1~2 20~30(10~50) 数百至数千
细胞和细胞组分的相对大小
原核细胞与真核细胞的比较
原核细胞与真核细胞基本特征的比较
原核细胞与真核细胞的遗传结构装置和 基因表达的比较
植物细胞与动物细胞的比较
原核细胞与真核细胞基本特征的比较
特 征 细胞膜 核膜 染色体 原核细胞 有(多功能性) 无 由一个环状 DNA 分子构成的单个染色 体,DNA 不与或很少与蛋白质结合 核仁 线粒体 内质网 高尔基体 溶酶体 核糖体 光合作用结构 无 无 无 无 无 70S(包括 50S 与 30S 的大小亚单位) 蓝藻含有叶绿素 a 的膜层结构,细菌 具有菌色素 核外 DNA 细胞壁 细菌具有裸露的质粒 DNA 主要成分是氨基糖与壁酸 线粒体 DNA,叶绿体 DNA 动物细胞无细胞壁,植物细胞壁的主要成分为纤维素与 果胶 细胞骨架 细胞增殖(分裂)方式 无 无丝分裂(直接分裂) 有 以有丝分裂(间接分裂)为主 有 有 有 有 有 80S(包括 60S 与 40S 的大小亚单位) 植物叶绿体具有叶绿素 a 与 b 真核细胞 有 有 2 个染色体以上,染色体由线状 DNA 与蛋白质组成
病毒侵入细胞,病毒核酸的侵染 病毒核酸的复制、转录与蛋白质的合成 病毒的装配、成熟与释放
病毒与细胞在起源与进化中的关系
病毒是非细胞形态的生命体,它的主要生命活动
必须要在细胞内实现。病毒与细胞在起源上的关
系,目前存在3种主要观点: 生物大分子→病毒→细胞 病毒
生物大分子
细胞
生物大分子→细胞→病毒

????
“我怎样才能让它 也挤出牛奶呢?”
The propagation of infectious prion protein occurs via conversion of normal prion protein (PrPc, left) to a disease-causing form (PrPSc, right). In the refolding process, some of the -helical regions (purple coils) in PrPc unfold, forming an extended ß sheet region (flat green arrows).
RNA聚合酶
一种
三种
植物细胞与动物细胞的比较
细胞壁 液泡
叶绿体
古细菌
古细菌(archaebacteria)与真核细胞曾在进化 上有过共同历程 主要证据
进化系统树
主要证据
(1)细胞壁的成分与真核细胞一样,而非由含壁酸的肽聚糖构 成,因此抑制壁酸合成的链霉素, 抑制肽聚糖前体合 成的环丝氨酸,抑制肽聚糖合成的青霉素与万古霉素等对真 细菌类有强的抑制生长作用,而对古细菌与真核细胞却无作 用。 (2)DNA与基因结构:古细菌DNA中有重复序列的存在。此外, 多数古核细胞的基因组中存在内含子。 (3)有类核小体结构:古细菌具有组蛋白,而且能与DNA构建 成类似核小体结构。
谢与功能的基本单位
细胞是有机体生长与发育的基础
细胞是遗传的基本单位,细胞具有遗传的全能性 没有细胞就没有完整的生命
细胞概念的一些新思考
细胞是多层次非线性的复杂结构体系 细胞具有高度复杂性和组织性 细胞是物质(结构)、能量与信息过程精巧结合的综合体 细胞完成各种化学反应;
In New Guinea, the Fore-people contracted kuru by eating the brains of deceased people. Creutzfeldt-Jakob Disease (CJD) frequently arises spontaneously, while fatal familial insomnia (FFI) Gerstmann-Strä ussler-Scheinker (GSS) disease, and 10-15% of CJD are caused by mutations in the gene encoding the prion protein. A new variant CJD, diagnosed in some 20 patients, may have arisen through transmission of BSE to humans.(CJD:克-雅病,早老痴呆症; BSE:bovino spongiform encephalopathy 牛海绵状脑病) 华东师大 马继延 2010年3月Science,破 解阮病毒致病谜团。
Mycoplasma(支原体)
Mycoplasma mycoides subspecies mycoides (large colony)
Knees and ocular discharge
嗜热生物
甲烷微生物 嗜盐生物
嗜热硫细菌
"for his discovery of Prions - a new biological principle of infection"
细胞的全能性是指每个分化的细胞都含有该物
种全部的遗传信息,每一个细胞都有发育为完整 个体的潜能。
单细胞生物的有机体仅由一个细胞构成; 极低级的多细胞生物体,如盘藻仅有4个、8 个或几十个未分化的细胞组成; 多细胞生物的有机体根据其复杂程度由数百 乃至万、亿计的细胞构成; 成人的有机体大约有1014个细胞,大约有 200多种不同类型的细胞,但根据其分化程 度又可分为600多种。虽然,它们来自于同 一个受精卵,但其形态结构与功能差异很大。 它们既是高度“社会化”的集体,又是高度 分工,并保持着形态与结构的独立性的单位。
细胞需要和利用能量;
细胞参与大量机械活动; 细胞对刺激作出反应; 细胞是高度有序的,具有自组装能力与自组织体系。 细胞能进行自我调控; 繁殖和传留后代;
细胞的基本共性
所有的细胞表面均有由磷脂双分子层与镶嵌 蛋白质构成的生物膜,即细胞膜。 所有的细胞都含有两种核酸:即DNA与RNA 作为遗传信息复制与转录的载体。 作为蛋白质合成的机器─核糖体,毫无例外地 存在于一切细胞内。 所有细胞的增殖都以一分为二的方式进行分裂。
原核细胞与真核细胞的遗传结构装置和基因表达的比较
特征 DNA 量(信息量) DNA 分子数 DNA 分子结构 基因组数 基因数 大量“多余”的“重复”的 DNA 序列 基因中插入内含子 DNA 与组蛋白结合 DNA 与组蛋白以核小体及各 级高级结构构成染色质与染色体 DNA 复制的明显周期性 基因表达的调控 转录与翻译的时空关系 — 主要以操纵子方式 转录与翻译同时同地进行 十 复杂性,多层次性 核内转录,细胞质内翻译 严格的阶段性与区域性 转录后与翻译后大分子的加 工与修饰 细胞复制与分裂(DNA 传递 与分配) 无丝分裂 有丝分裂,减数分裂 — 十 — 不与或与少量类组蛋白结合 — 十 与 5 种组蛋白结合 十 原核细胞 少 1 环状 1n 几千 — 多 2 个以上 线状 2n,多 n 大于几万,十万 十 真核细胞
第二章 细胞的统一性与多样性
第一节 细胞的基本概念
第二节 原核细胞与真核细胞
第三节 非细胞形态的生命体 ——病毒及其与细胞的关系
第一节 细胞的基本概念
细胞是生命活动的基本单位 细胞概念的一些新思考 细胞的基本共性
第三节 非细胞形态的生命体
—病毒及其与细胞的关系

病毒的基本知识 病毒在细胞内增殖(复制) 病毒与细胞在起源与进化中的关系

SARS Virus
(4)有类似真核细胞的核糖体:多数古细菌类的核糖体较真 细菌有增大趋势,含有60种以上蛋白,介于真核细胞(70~84)
与真细菌(55)之间。抗生素同样不能抑制古核细胞类的核糖
体的蛋白质合成。 (5)5S rRNA:根据对5S rRNA的分子进化分析,认为古细菌 与真核生物同属一类,而真细菌却与之差距甚远。5S rRNA二 级结构的研究也说明很多古细菌与真核生物相似。 除上述各点外,根据DNA聚合酶分析,氨基酰tRNA合成酶的 作用,起始氨基酰tRNA 与肽链延长因子等分析,也提供了以
Stanley B. Prusiner
USA University of California School of Medicine San Francisco, CA, USA 获得1996年诺贝尔医学 和生理学奖
The survival factor IGF1 may prolong the life of a cell by ordering the capture of death agents. Once stimulated by IGF1 (left), the PI3-Akt pathway makes a double arrest. Akt adds phosphate groups to two death proteins, BAD and FKHRL1 (FH), creating binding sites for the bulky protein 14-3-3. Binding by 14-3-3 may prevent BAD and FH from moving around the cell and, consequently, from carrying out their death orders. These death orders may be executed when the survival factor is withdrawn (right).
相关文档
最新文档