趸船波浪力计算

合集下载

船体静波浪剪力和弯矩的计算资料共23页文档

船体静波浪剪力和弯矩的计算资料共23页文档
船体静波浪剪力和弯矩的计算资料
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

趸船系缆力计算(1)

趸船系缆力计算(1)
5
泊位:趸船系锚设施布置如图所示
6
1、趸船系锚受力分析数学模型
趸船系留设施受力分析采用有限单元法,分别建立趸船、钢缆绳和铸钢锚链在设计 低水位、 设计中水位和设计高水位时的1:1有限元模型,见下图。其中趸船采用Solid45 单元模拟,弹性钢缆绳和锚链采用link10单元模拟。缆绳弹性模量为2.06×105 MPa,泊 松比为0.3,密度7800 kg/m3。
4
以重庆某物流有限公司现役斜坡式码头泊位为例来对其靠泊5000吨级船 型趸船系缆力计算方法。码头设计为3000吨级件杂货泊位,属架空斜坡滚 装货运码头,设置两条架空斜坡道,采用钢联桥与前方趸船相连,供船泊 系靠,趸船采用锚墩、锚链及自带锚具系锚。采用汽车直上趸船的浮码头 工艺,水位低于172.0m时,汽车可沿堆场道路、斜坡道、钢引桥上趸船; 当水位超过172.0m时,汽车到码头前沿182.0m平台,采用浮吊直接进行装 卸作业。趸船上配备20吨和40吨浮吊各1台。
F y c ——水流对船舶产生的水流力纵向分力(kN) Cxc、Cyc ——水流力纵向分力系数;
—— 水的密度(t/m3);
V
——水流速度(m/s);
B
——船舶吃水线以下的横向投影面积(m2) ;
S
——船舶吃水线以下的纵向投影面积(m2) ;
经计算,趸船上的计算水流力的横向和纵向分力分别为36.35kN,69.86kN; 5000吨船舶上的计算水流力的横向和纵向分力分别为137.28kN,139.48kN。
式中:FxW、FyW ——分别为作用在船舶上的风压力的横向和纵向分力(kN); AxW、AyW ——分别为船体水面以上横向和纵向受风面积(m2);
V

x
V
y

对船体波浪力计算书

对船体波浪力计算书

3.2.1 风、水流和波浪对浮体产生的作用力风、水流和波浪对浮体产生的作用力参照前苏联《波浪、冰凌和船舶对水工建筑物的荷载与作用》计算。

(1)风对浮体作用的横向分力和纵向分力见3.2.1.1。

(2)水流对浮体作用的横向分力和纵向分力水流对浮体作用的横向分力和纵向分力按以下公式计算:20.59x x x F A v =20.59y y yF A v = 式中:F x 、F y —趸船计算水流力的横向分力和纵向分力(kN);A x 、A y —浮趸水下横向和纵向阻水面积(m 2); v x 、v y —设计水流流速的横向和纵向分量(m/s)。

浮趸水面以下的阻水面积计算:A x =45×0.6=27m 2; A y =7×0.6=4.2m 2 作用在趸船上的水流力:20.5927 1.5538.27kN x F =⨯⨯=20.59 4.2 1.55 5.95kN y F =⨯⨯= (3)波浪对浮体的作用力波浪对浮体的横向分力和纵向分力按以下公式计算:1x x Q ghA χτρ= y y Q ghA χρ=式中:Qx 、Qy —趸船计算波浪力的横向分力和纵向分力(kN); χ—系数,按图3-1取用,图中ds 为浮趸吃水,ds=0.6m ;τ1—系数,按表1-3.6取用,表中αl 为浮体水下部分纵向轮廓的最大水平尺寸(m ),取αl=45m ;h —取H5%波高,h=1.3m ;Ax 、Ay —浮趸水下横向和纵向阻水面积(m 2)。

图3-1 系数χ值的曲线图表1-3.1 系数τ1/0.6/200.03s d λ==,根据图3-1, 取χ=0.85。

/48.6/20 2.25l αλ==,根据表1-3.6,取τ1=0.48。

χ作用在趸船上的计算波浪力:10.850.48 1.0259.8 1.327146.79kN x x Q ghA χρ==⨯⨯⨯⨯⨯=τ 0.85 1.0259.8 1.3 4.222.83kN y y Q ghA χρ==⨯⨯⨯⨯=风、水流和波浪对浮趸的作用力计算结果见表1-3.7。

趸船系缆力计算(1)

趸船系缆力计算(1)

11
3 系缆力计算
将风和水流荷载作用下的横向合力和纵向合力施加到有限元模型上,
计算分别考虑设计低水位(147.4米)、设计中水位(160米)和设计高水位 (172米)三种水位下系缆角度对系缆力的影响以及在各设计水位下水位变
动对系缆力影响。
12
(1)设计低、中和高水位时系缆力计算 计算得到各系缆设施的系缆力最大值及其对应的受荷工况,如下图:
水位下系缆角度对系缆力的影响以及在各设计水位下水位的变动对系缆
力影响,分析船舶靠泊时系留设施受力情况。
4
以重庆某物流有限公司现役斜坡式码头泊位为例来对其靠泊5000吨级船 型趸船系缆力计算方法。码头设计为3000吨级件杂货泊位,属架空斜坡滚 装货运码头,设置两条架空斜坡道,采用钢联桥与前方趸船相连,供船泊 系靠,趸船采用锚墩、锚链及自带锚具系锚。采用汽车直上趸船的浮码头 工艺,水位低于172.0m时,汽车可沿堆场道路、斜坡道、钢引桥上趸船; 当水位超过172.0m时,汽车到码头前沿182.0m平台,采用浮吊直接进行装 卸作业。趸船上配备20吨和40吨浮吊各1台。
15
n
——受力的系船柱数目; ——系船缆的水平投影与码头 前沿线所成夹角 ;
——系船缆与水平面之间的夹角。
3
规范上的趸船系缆力计算方法已不能满足精细化发展需求,而应
用有限元法计算分析,可以得到更准确的船舶荷载,为码头结构的计算 提供依据。 思路:计算船舶靠泊时船舶和趸船受最大水流和可能出现的风组 合作用时的纵向力和横向力总和,建立趸船系留的数学模型,考虑不同
5
: 泊位趸船系锚设施布置如图所示
6
1、趸船系锚受力分析数学模型
趸船系留设施受力分析采用有限单元法,分别建立趸船、钢缆绳和铸钢锚链在设计 低水位、 设计中水位和设计高水位时的1:1有限元模型,见下图。其中趸船采用Solid45 单元模拟,弹性钢缆绳和锚链采用link10单元模拟。缆绳弹性模量为2.06×105 MPa,泊 松比为0.3,密度7800 kg/m3。

波浪力的计算

波浪力的计算

波浪力的计算需要两方面理论的支持:波浪运动理论及波浪荷载计算理论。

前者研究波浪的运动,后者在已知波浪运动的前提下计算波浪对水中物体的作用。

几种常用的波浪普: 1.P-M谱Pierson 和Moskowitz适用于无限风速发在的波浪普。

国际船模水池会议(ITTC)推荐采用这一形式的波,故也称为ITTC波谱。

JONSWAP(Joint north sea wave project).是一种频谱。

3.应力范围的长期分布模型:1.离散型模型,2.分段连续型模型,3.连续模型。

1. 离散模型:用Hs作为波高,Tz为波浪周期,定义一个余弦波。

然后用规则波理论计算作用在结构上的波浪力。

并用准静定的方法计算结构呢I的应力。

缺陷:没有将波浪作为一个随机过程来处理。

每一海况的应力范围只有一个确的数值。

因此又称为确定性模型。

2.分段连续型模型每一短期海况中,交变应力过程是一个均值为0的平稳正态过程。

综合所有海况中应力范围的短期分布,并得出各个海况出现的疲劳,就得到应力范围的长期分布,它的形式是分段连续的。

应力范围的两种短期分布模型:1.Rayleigh分布和Rice分布。

在某一海况中交变应力均值为。

应力峰值服从Rayleigh分布。

通过计算得出应力范围也服从Rayleigh分布。

3.在船舶及海洋工程结构疲劳可靠性分析中,希望应力范围的长期分布能用一个连续的分布函数来描述。

这就是应力范围长期分布的连续模型.最常用的就是Weibull分布。

4.有义波高:(significant wave height)所有波浪中波高最大的三分之一波浪的平均高度。

用Hs表示。

5.Stokes五阶波给出了波陡的量度(H/L)H/L越大,波就越陡。

当波高与波长的比值大到一定程度时,波会破碎。

6.波速=波长与频率的乘积C=λ/T或者C=λf,其中f是频率。

或者T=2π/ω7.圆频率1.圆频率即2π秒内振动的次数,又叫角频率,和角速度的ω没有任何关系。

波浪力计算公式

波浪力计算公式

波浪力计算公式波浪力是描述海浪对海岸或其他结构物的冲击力的物理量。

它是指海浪作用于单位长度海岸线或结构物上的力量。

波浪力的计算公式可以使用斯托克斯公式来表示。

斯托克斯公式是描述波浪力计算的经典公式,它基于假设波浪是理想的正弦波。

根据斯托克斯公式,波浪力可以表示为:F = 0.5 * ρ * g * H^2 * L其中,F是波浪力,ρ是水的密度,g是重力加速度,H是波高,L 是波长。

波浪力的计算公式可以帮助我们了解海浪对海岸线或其他结构物的冲击程度。

通过计算波浪力,我们可以评估海岸线的稳定性,预测海岸侵蚀的风险,设计合适的防护工程等。

在海岸工程中,波浪力的计算是一个重要的任务。

通过对波浪力的计算,可以确定合适的海岸保护结构的尺寸和类型。

根据波浪力的大小,我们可以选择适当的海岸防护工程,如堤防、防波堤、海堤等,以减轻海浪对海岸的冲击。

除了海岸工程,波浪力的计算在海洋工程和海洋能利用领域也具有重要意义。

在海洋工程中,波浪力的计算可以用于设计海上平台、船舶和海洋结构物的稳定性。

在海洋能利用领域,波浪力的计算可以用于评估波浪能量的潜力和设计波浪能发电设备。

波浪力的计算公式是基于理想的正弦波假设。

然而,在实际情况中,海浪往往是复杂的,包含多种频率和方向的波浪成分。

因此,在实际应用中,需要考虑更复杂的波浪模型和数值方法来计算波浪力。

波浪力的计算公式是描述海浪对海岸线或其他结构物冲击力的重要工具。

它可以帮助我们评估海岸侵蚀的风险,设计合适的海岸防护工程,以及评估海洋工程和海洋能利用的可行性。

通过深入研究波浪力的计算公式,我们可以更好地理解海洋与人类活动的相互作用,保护海岸环境,促进可持续发展。

波浪力计算公式

波浪力计算公式

波浪力计算公式引言:在海洋工程中,波浪力是一个重要的参数,用于估计波浪对结构物的作用力。

波浪力的计算可以通过波浪力计算公式来实现。

本文将介绍波浪力计算公式的原理和应用,并探讨波浪力计算的相关问题。

一、波浪力计算公式的原理波浪力计算公式是根据波浪理论和结构动力学原理推导出来的。

其基本原理是根据波浪的特性和结构物的几何形状,通过计算波浪作用下的压力和力矩,进而得到波浪力的大小和方向。

二、常用的波浪力计算公式1. Morison公式:Morison公式是最常用的波浪力计算公式之一,适用于波浪作用下的柱状结构物。

该公式基于马克思-赫茨伯格(Morison)定律,考虑了波浪作用下的惯性力和阻力。

其表达式为:F = 0.5 * ρ * Cd * A * (dV/dt) + ρ * Cp * A * V * |V|其中,F为波浪力,ρ为水的密度,Cd和Cp分别为阻力系数和惯性系数,A为结构物的横截面积,V为波浪速度,dV/dt为波浪加速度。

2. Goda公式:Goda公式是一种改进的波浪力计算公式,适用于不规则波浪作用下的结构物。

该公式考虑了波浪的频率谱和结构物的响应特性,能更准确地估计波浪力。

其表达式为:F = ∫∫ (0.5 * ρ * Hs * g * S(f) * A * R(f)^2 * |H(f)|^2 * cos(θ))^0.5 df dθ其中,F为波浪力,ρ为水的密度,Hs为波浪高度,g为重力加速度,S(f)为波浪频率谱密度函数,A为结构物的横截面积,R(f)为结构物的响应函数,H(f)为波浪高度频谱密度函数,θ为波浪方向。

三、波浪力计算的应用波浪力计算公式广泛应用于海洋工程中的结构设计和安全评估。

通过计算波浪力,可以评估结构物的稳定性和安全性,为结构物的设计和施工提供依据。

例如,在海上风电场中,需要计算波浪力来评估风机基础的稳定性;在海岸工程中,需要计算波浪力来评估海堤的稳定性。

四、波浪力计算的相关问题1. 如何确定阻力系数和惯性系数?阻力系数和惯性系数是波浪力计算公式中的重要参数,可以通过试验或数值模拟来确定。

船舶操纵运动波浪力计算

船舶操纵运动波浪力计算

船舶操纵运动波浪力计算2.1 不规则波入射力计算模型依据概率统计理论,不规则波的波面可以看作是由一系列具有不同的频率、波数、波幅、传播方向以及随机分布初相位角的规则波叠加而成。

在实际应用中寻求海浪的统计特性,通常采用“波能谱”的概念来描述海浪。

海浪形成的过程是风把能量传递给水的过程。

这一过程大致可分为两个阶段,第一阶段为波浪生长阶段,当风最初作用于海面上时,海面开始出现较小的波,随着时间的增长,风不断地把能量传递给水,波浪越来越大,显然这一阶段海浪是比较复杂,其统计特性随时间不断变化,这一阶段的海浪描述描述相当复杂。

但是,当波浪渐趋稳定时,波的能量达到一定值,其统计特征基本上不随时间变化,为了这一阶段海浪的数学描述,应用波谱密度函数,从大量观察分析结果表明海浪以及船舶在波浪中的运动等均属于狭带谱的正态随机过程,因此基于以下假设:1.波浪为弱平稳的、各态历经的、均值为零的正态(高斯)随机过程。

2.波谱的密度函数为窄带。

3.波峰(最大值)为统计上独立的。

由波的方向性谱密度,不规则波的波面可用下列随机积分表示来描述:⎰⎰-∞+-+=220),(2)],()sin cos (cos[),,(ππςθωθωθωεωθηθξηξςd d S t k t (2-1)其中,),(θωςS 为波谱密度函数,表示了不规则波浪中各种频率波的能量在总能量中所占的份量。

仅考虑波沿主浪向运动的情况,并将式(2-1)转化为随船坐标系下表示为:⎰∞+--=0)(2)]()sin cos (cos[),,(ωωωεωμμςςd S t y x k t y x e (2-2)为了方便计算,将波能谱密度函数进行离散,用求和形式代替上式的积分如下:∑=+--∆=ni i ei i i t y x k S t y x 1])sin cos (cos[)(2),,(εωμμωωςς (2-3)其中,相位角i ε可视为均匀分布在(0,2π)区间内的随机变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.25 3.87 0.04 3.74 52.21
pd=γ H'/ch(2π d/L)
p0=(pd+γ d)(H'+h0')(H'+h0 px=pd+(d-Td)(p0-pd)/d
ph=p0((H'+h0')-(h-Td))/(H'+
P=(0.5(ph+p0)(h-Td)+0.5*(p0+
备注
d=HWL-Δ L0=gT2/(2π ) 查JTJ213-98规范 L=d/0.1791
h0'=π H'2cth(2π d/L)/L
H’+h0’>h-Td 在静水面以上H’+h0’ =0.3841m处波压力 γ 海水重度 kPa kN/m3 0 10.25
pd p0 ph px P
水深d处波压力强度 水面处波压力强度 趸船顶波压力强度 趸船底波压力强度 作用在趸船上总的波浪力
kPa kPa kPa kPa kN
m
m m m
15
0.72 0.0048 0.255 0.4932
h0=π H2/(4L)cth(2π d η =H/2+h0
Hr Hd H' h0’ H’+h0’ h-Td
m m m m m m
0.2466 0.7466 0.3733 0.0108 0.3841 0.38 产生越浪
Hr=KrH Hd=H+Hr H'=Hd/2
浅水波长计算
g T HWL Δ H d L0 d/L0 d/L L h 项目 重力加速度 波浪平均周期 设计高水位 港池底标高 原始波高 水深 深水波波长 单位 m/s2 s m m m m m 数值 9.81 6.3 3.96 -5 0.5 8.96 61.97 0.1446 0.1791 50.03 1.1 备注
d=HWL-Δ L0=gT2/(2π ) 查JTJ213-98规范 L=d/0.1791
波长 趸船高度
m m
作用在趸船上的波浪压力
Ld
Td h0 η Kr
趸船长度
趸船满载吃水 原始波波浪中心线 对静水面的超高值 原始波波峰 在静水面以上的高度 局部反射系数 趸船吃水T范围内 的局部反射波高 干涉波高 假想进行波波高 假(h-Td)+0.5*(p0+px)Td)Ld
h0=π H2/(4L)cth(2π d/L) η =H/2+h0
Hr=KrH Hd=H+Hr H'=Hd/2 h0'=π H'2cth(2π d/L)/L
pd=γ H'/ch(2π d/L) p0=(pd+γ d)(H'+h0')(H'+h0'+d) ph=p0((H'+h0')-(h-Td))/(H'+h0') px=pd+(d-Td)(p0-pd)/d
相关文档
最新文档