3Experimental Isobaric Vapor
名词解释
无机化学名词解释1、溶解度(solubility):在指定温度下,单位体积饱和溶液中所含溶质的量(g or mol)。
2、稀溶液的依数性(colligative properties):稀溶液的仅由其中所含溶质分子的数目决定,而与溶质的本性无关的性质称作稀溶液的依数性。
136:溶液蒸汽压3、Raoul定律:在一定温度下,难挥发非电解质稀溶液的蒸汽压下降与溶液的摩尔分数成正比,而与溶液的本性无关。
4、溶液渗透压(osmotic pressure):为维持只允许溶剂分子通过的膜所隔开的溶液与溶剂之间的渗透平衡而需要的额外的压力称作该溶液的渗透压。
5、敞开系统(open system):系统与环境之间既有物质交换又有能量交换。
6、封闭系统(closed system):系统与环境之间没有物质交换只有能量交换。
7、孤立系统(isolated system):亦称隔离系统,系统与环境之间既没有物质交换又没有能量的交换。
8、等温过程(isothermal process):在环境温度恒定下,系统始、终态温度相同且等于环境的温度的过程。
9、等压过程(isobaric process):在环境压力恒定下,系统始、终态压力相同且等于环境压力的过程。
10、等容过程(isochoric process):系统的体积保持不变的过程。
11、绝热过程(adiabatic process):系统与环境之间没有热传递的过程。
12、Hess定律:一个化学反应,不论是一步完成的还是分几部完成的,其热效应总是相同的。
13、标准摩尔生成焓(standard molar enthalpy of formation):化学热力学规定,某温度下,由处于标准状态的各种元素的最稳定单质生成标准状态下的1mol某纯物质的热效应,称作该温度下这种纯物质的标准摩尔生成焓。
14、标准摩尔燃烧焓(standard molar enthalpy of combustion):在标准压力和指定温度下,1mol物质完全燃烧的恒压热效应称为该物质的标准摩尔燃烧焓。
Aspen Plus在三氟乙酸、氯化氢和水共沸精馏研究中的应用
2021年第1期有机氟工业Organo - Fluorine Industry•11•Aspen Plus 在三氟乙酸、氯化氢和水共沸精馏研究中的应用宋昌平1李景通1吴韦韦2王毅3崔永文1李永哲1(1.山东东岳未来氢能材料股份有限公司,山东淄博255000; 2.山东理工大学,山东淄博255000;3.中国石油工程建设有限公司西南分公司,四川成都610000)摘要:利用Aspen P lu s 软件对三氟乙酰氯水解生产三氟乙酸的工艺开展模拟。
借助数据库数据绘制了 HC 1和H 20、 CF 3C 00H 和H 20以及HC 1和CF 3COOH 的二元相图。
根据相图差异,采用“粗分离-共沸精馏-解析精馏”工艺,获得高纯度 三氟乙酸产品和达标氯化氢尾气。
模拟结果与试验数据一致,通过计算对工艺进行优化,确定工艺参数以及明确工艺路线。
关键词:Aspen Plus ;三氟乙酸;三氣乙酰氯;共沸精馏;副产盐酸〇 刖目1922年,Swarts 教授[1]首次采用铬酸氧化间三氟甲基苯胺获得三氟乙酸,此后三氟乙酸的生产T 艺得到大量的研究与关注。
三氟乙酸是一种重要的 含氟中间体,可以用于生产医药、农药、生化试剂和 有机合成试剂等产品。
目前,以工业副产的三氟乙 酰氯为原料生产三氟乙酸的工艺,已成为很多企业 减少三氟乙酰氯污染的首选方案。
Aspen P lu s 软件具有强大的单元操作模型、工程计算能力和多种热力学方法,随着近年来版本的 更新,氟化工领域的物性数据库得到了不断的完善,其在氟化工领域的应用得到了扩展[2]。
工业副产三氟乙酰氯水解生产三氟乙酸的工 艺,其化学反应式如下:CF3C0C1 + H20 —K :F3C00H + HC1该反应须确保三氟乙酰氯完全转化,从而减小 尾气处理量,减少环保压力。
因此,水在体系内须一 直保持过量。
虽然产生的三氟乙酸和氯化氢均可以 与水形成共沸物,但利用二者与水形成共沸物的物 性差异,可以进行共沸精馏实现氯化氢和水的分离,进而通过解析法获得高纯度三氟乙酸。
放射物理单词
vacancy:空的
favored:可能是拼错了
Auger:同锇歇电子
Fraction:部分
Isomer:同质异能素(质子数和中子数都同,核能态不同)
Enunciate:清晰讲述/解释等
Penetrate:穿过
Instructive:指导的
nitrogen 氮
Chapter 4 (2)
1. dosimetry 放射剂量学
2. tissue-air 组织
3. backscatter逆散射
4. depict 描述 描写
5. irradiate 辐射 照射
6. calibration 教标
7. dosimeter 放射剂量计
perturb 扰动 摄动
homogeneous 同类的, 相似的
photon 光子
negligible 可忽略的
perturbation 扰动 摄动
finite 有限的
geometry 几何
composite 组成
equivalent 等效
affix 词缀 使附于
bracket 括号
Cumulate:应该是 accumulate 积累
Hypothetical:假设
Exponentially:指数地
rectangle :长方形
dosage:剂量值
proportional: 正比的
vertical:垂直的
horizontal:水平的
intersection:交叉的
collision 碰撞
bremsstrahlung 轫致(辐射)
燃气专业外语翻译
1.1工程热力学基础Thermodynamics is a science in which the storage, transformation, and transfer of energy are studied. Energy is stored as internal energy (associated with temperature), kinetic energy (due to motion), potential energy (due to elevation) and chemical energy (due to chemical composition); it is transformed from one of these forms to another; and it is transferred across a boundary as either heat or work.热力学是一门研究能量储存、转换及传递的科学。
能量以内能(与温度有关)、动能(由物体运动引起)、势能(由高度引起)和化学能(与化学组成相关)的形式储存。
不同形式的能量可以相互转化,而且能量在边界上可以以热和功的形式进行传递。
In thermodynamics, we will derive equations that relate the transformations and transfers of energy to properties such as temperature, pressure, and density. Substances and their properties, thus, become very important in thermodynamics. Many of our equations will be based on experimental observations that have been organized into mathematical statements or laws; the first and second laws of thermodynamics are the most widely used.在热力学中,我们将推导有关能量转化和传递与物性参数,如温度、压强及密度等关系间的方程。
基于离子液体萃取分离甲醇-乙腈共沸物机理的综合实验教学设计
ISSN 1002-4956 CN11-2034/T实验技术与管理Experimental Technology and Management第38卷第3期202丨年3月Vol.38No.3Mar.2021D O I: 10.16791 /j .cnki.sjg.2021.03.012基于离子液体萃取分离甲醇-乙腈共沸物机理的综合实验教学设计朱久娟,范寒寒,梁树平,孙兵(中国地质大学(北京)数理学院,北京100083 )摘要:结合大地质类物理化学和仪器分析的教学要求及学科前沿方向,该文设计了离子液体笮取分离甲醇-乙腈共沸物机理的综合实验s通过动态汽液相平衡釜-气相色谱联用实验方案,以丨-r基-3-甲基咪唑=氟甲磺酸盐([BM IM]OTF)为萃取剂、甲醇-乙腈共沸物系为研究对象,通过研究离子液体对甲醇-乙腈物系等压相平衡的影响,分析离子液体萃取分离共沸物系的机理.该实验结合物理化学、仪器分析、大学化学等专业课程内容,将学科基础知识与大型仪器创新研究有机融合,夯实学生理论知识,激发学生科研兴趣,提高学生创新能力=关键词:萃取分离;共沸物分离;实验教学中图分类号:06-3;G642.423 文献标识码:A 文章编号:1002-4956(2021)03-0057-04Comprehensive experiment teaching design based on separation of methanol-acetonitrile azeotrope with ionic liquidZHU Jiujuan,FAN Hanhan,LIANG Shuping,SUN Bing(School of Science, China University of Geosciences (Beijing), Beijing 100083, China)Abstract: Combined with the teaching requirements and frontier direction of physical chemistry and instrumental analysis in geology, a comprehensive experiment on the extraction and separation mechanism of methanol acetonitrile azeotrope by ionic liquid is designed. The effect of ionic liquid on isobaric phase equilibrium of methanol acetonitrile system is studied, and the mechanism of extraction separation of azeotropic system by ionic liquid is analyzed by using l-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM] OTF) as extractant and methanol acetonitrile azeotrope system as the research object. This experiment combines physical chemistry, instrumental analysis, college chemistry and other professional courses, organically integrates the basic knowledge of the discipline with the innovative research of large-scale instruments, tamps students' theoretical knowledge, stimulates their interest in scientific research, and improves their innovative ability.Key words: extraction; azeotrope separation; experiment teaching萃取分离技术是目前分离共沸物应用最为广泛的 分离技术[1_2],离子液体作为一种新型无污染的绿色萃 取剂,具有可设计性强、稳定性好、难挥发性和良好 的导电性等特点,不仅可以解决传统萃取剂(有机溶剂、无机盐、复合溶剂)分离过程中的能耗问题,同时还可以减轻无机盐对设备的腐蚀,降低有机溶剂对 环境的污染[3_41。
F-2103 Vapor OZONO DUAL FRIO CALOR 商品说明书
1F-2103 VAPOR OZONO DUAL FRIO/CALORNOTA IMPORTANTEEste equipo cumple con la reglamentación correspondienteLea atentamente el siguiente manualEste aparato debe ser utilizado por personal calificadoFICHA TÉCNICAVaporizador ozono con emisión de vapor y pulverización fría. Diseño ligero, moderno y funcional. Equipado con esenciero para fragancias. Pie regulable en altura y cinco ruedas para facilitar el desplazamiento.AJUSTESLímite altura superior Límite altura inferior Rotación del brazo Rotación cabezal 125 97 - 360°DEPOSITO DE AGUAMaterial CapacidadMetacrilato 0.91CARACTERISTICAS DE FUNCIONAMIENTO Tiempo de precalentamiento 6 min (Aprox) CARACTERISTICAS ELECTRICAS Voltaje nominal FrecuenciaPotencia nominal 100~120V 50Hz/60Hz 850W Esenciero Si OzonoSi Deposito para hierbas NoPulverización fríaSiManual de usuarioAparatología Biomedica y Estética2PANEL FRONTALINSTRUCCIONES DE USORELLENADO CON AGUALevante el depósito de agua del atomizador de frío y vierta agua destilada en el vaso de agua a través del conducto. Mantenga el nivel del agua entre el nivel “MAX” y los niveles de “MIN”TRATAMIENTO DE AROMATERAPIAPonga unas gotas de aceite esencial en el depósito d el cabezal atomizador.INICIO DEL TRATAMIENTO1. Encienda el botón “POWER”: El calentador comienza a funcionar. Después de aproximadamente 6 minutos, el vapor saldrá del atomizador.2. A partir de este momento, puede encender la tecla “OZONE”: La lámpara de ozono se enciende y comienza a funcionar.3. Cada vez que el nivel del agua alcance el límite inferior, apague el botón “POWER”. Levante el depósito de agua del atomizador de frío y vierta agua destilada en el vaso de agua a través del conducto. Mantenga el nivel del agua en tre los niveles “MAX” y “MIN”FUNCIONAMIENTO DE VAPORIZADOR DE FRIO1. Retire el depósito de agua fría. Desenrosque la tapa en sentido contrario a las agujas del reloj y vierta unacantidad medida de agua destilada.32. Coloque el depósito de agua fría en la posición correcta y presione hacia abajo.3. 3. Encienda la tecla “MOISTURE”.4.El nivel del agua en el depósito bajará para suministrar el agua que desaparece de la cisterna, mientras que el vaporizador esté operativo. Cada vez que el nivel del agua en la cisterna alcance el límite inferior y el tanque no contenga suficiente agua para suministrar, el ordenador principal cortará el suministro eléctricoautomáticamente y dejará de funcionar. En este momento, retire el depósito de agua y v ierta una cantidad adecuada de agua destilada. Vuelva a colocar el depósito de agua a la cisterna para seguir trabajando.5. Hay un tapón en la parte inferior para el vaciado del depósito.ADVERTENCIA• No use ninguna sustancia que no sea agua destilada. Utilice con precaución los aceites esenciales o hierbas para no contaminar el agua utilizada en el vaporizador.• NUNCA apunte directamente el chorro de vapor hacia la cara del cliente.• NUNCA utilice el equipo vaporizador en ambientes húmedos o insuficientemente ventilados. • NUNCA utilice el vaporizador en el exterior.• NUNCA intente abrir la carcasa/caja protectora del vaporizador usted mismo.• Si el cable eléctrico estuviera roto, solicite a un profesional que le suministre otro y lo cambie para evitar riesgos, o contacte con el proveedor.• No deje que el vaporizador funcione sin agua, si lo hiciera se anularía la garantíaSUGERENCIA DEL TRATAMIENTOTIPO DE PIEL DISTANCIA TIEMPOPiel grasa, mala circulación sanguínea 25cm 15 min Piel normal 25cm 10 min Piel sensible, piel seca 30cm 5 min Expansión de los vasos capilares 30cm 5 minPRECAUCIÓN• Cuando utilice la máquina, no apunte el atomizador a la cara del cliente hasta que el vapor salga en una capa fina y uniforme.• El vapor primero debe rociar la mandíbula del cliente y luego e l resto de la cara4FAQSi la unidad funciona, pero no emite vapor de agua. • Verifique que la tapa herbal esté bien cerrada.• Compruebe que el anillo de plástico se encuentre bien colocado entre el vaso de agua y la estructura principal. • Compruebe que la bandeja del vaso de agua esté correctamente ajustada. • Compruebe el nivel del agua.Si la unidad emite vapor de agua mezclado con agua caliente.1. Limpie el vaso de agua con vinagre y enjuáguelo con agua limpia.2. Llene el recipiente con agua limpia y añada de 8 a 10 gotas de vinagre. Haga funcionar el vaporizador durante el tiempo de un ciclo (¡no lo use con un paciente!).3. Cuando termine el tiempo de funcionamiento, apague el vaporizador y enjuague el vaso con agua limpia.4. Haga funcionar el vaporizador durante 2 ciclos enteros con agua limpia.MANTENIMIENTOEs recomendable limpiar el vaporizador al menos una vez a la semana y también descalcificar el calentador de agua. Por favor, siga los siguientes pasos:1. Una vez que el vaporizador esté frío, retire el vaso de agua.2. Llene el recipiente con la adecuada solución de descalcificación / agua y déjela reposar durante la noche.3. Elimine el agua y enjuague con agua limpia para eliminar cualquier residuo del producto de descalcificación.4. Rellene con agua y ponga marcha el vaporizador durante al menos un ciclo con el fin de eliminar cualquier residuo que quede en el vaporizador.5. Retire el vaso y enjuáguelo como antes.6. Rellene con agua y ya estará listo para su uso.Nota: Si no se elimi nan todos los residuos de descalcificación puede hacer que el vaporizador los ‘escupa’. Si esto ocurre, simplemente repita el procedimiento de enjuague y llenado hasta que el problema se haya resueltoCONTENIDO DEL PAQUETE• base para 5 brazos - 1 • brazo con ruedas - 5 • poste - 1• barra deslizante – 1 • soporte depósito - 1 • rosca de ajuste – 1 • placa de presión - 1 • arandela - 1• arandela grower - 1 • tornillo hexagonal - 1 • llave - 1 • fd-2103 - 1• depósito de agua 10054 1 • junta de sellado - 1• depósito de agua fría 10007 1 • fieltro de lana - 9 • tornillo - 1 • tapón – 2Calle130#58-20L2-977039428-3044050547@************************************************************。
TA 产品:Vapor Sorption 分析器技术参数与特点说明书
TA I NSTRUMENTS•New Castle, DE USA +1-302-427-4000•Lindon, Utah USA +1-801-763-1500•Crawley, United Kingdom +44-1293-658900•Shanghai, China +86-21-54263960•Taipei, Taiwan +88-62-25638880•Tokyo, Japan +81-3-5759-8500•Seoul, Korea +82-2-3415-1500•Bangalore, India +91-80-28398963•Paris, France +33-1-30-48-94-60•Eschborn, Germany +49-6196-400-600•Brussels, Belgium +32-2-706-0080•Etten-Leur, Netherlands +31-76-508-7270•Milano, Italy +39-02-27421-283•Barcelona, Spain +34-93-600-9300•Melbourne, Australia +61-3-9553-0813•Mexico City, Mexico+5255-5524-7636L OCAL OFFICESV APOR S ORPTION A NALYSIS VTI-SA3 Technical Specifications4 VTI-SA Technology5 VTI-SA3 Sorption Analyzer 10 Q5000SA13 Technical Specifications14 Q5000SA Technology15 Applications214Balance Capacity 1.5 g Dynamic Range 150 mg Weighing Accuracy +/- 0.1% Weighing Precision +/- 0.01% Sensitivity 0.1 µg Signal Resolution 0.1 µg Temperature ControlPeltier Elements Experimental Temperature Range 5 to 60ºC Maximum Drying Temperature 150°C Isothermal Stability+/- 0.1ºC Relative Humidity Control Range 2 to 98% RH Accuracy +/- 1% RHHumidity ControlClosed Loop, Dew Point AnalyzerOrganic Solvent CapabilityIncludedT ECHNICAL S PECIFICATIONSVTI-SAThe Model VTI-SA Vapor Sorption Analyzer is a continuous vapor flow sorption instrument for obtaining precision water and organic vapor isotherms at temperatures ranging from 5ºC to 60ºC at ambient pressure. The VTI-SA Analyzer embodies the features of VTI’s original SGA design with almost two decades of field-proven performance: the isothermal aluminum block construction, the three isolated thermal zones and chilled-mirror dew point analyzer for primary humidity measurements… all to provide excellent temperature and RH stability.3S YMMETRICAL M ICROBALANCE D ESIGNThe VTI-SA Analyzer is a symmetrical vapor sorption instrument where both the sample and reference chambers are exposed to the sameconditions of temperature and humidity. In this symmetrical design water or organic vapor sorption onto the hangdown wires andsample holders are differentially eliminated and the resultant data represents the uptake by the sample alone. This eliminates the needfor background subtraction experiments and associated uncertainty typical in competitive, asymmetrical systems.R ESOLUTION AND S TABILITY OF THE M ICROBALANCEThe VTI-SA balance boasts a 0.1 microgram sensitivity optimized for pharmaceutical applications. Also, for more effective work inpharmaceutical studies, the design provides an enhanced stability by maintaining the balance compartment at a constant temperature,independent of the sample temperature. Because the balance is maintained at constant temperature, the user has the option of dryingthe sample at temperatures other than the experimental temperature, or to run different temperature and RH profiles without removingthe sample.567Balance Capacity1g Temperature Controlled Thermobalance Included Dynamic Range 100 mg Weighing Accuracy +/- 0.1% Weighing Precision +/- 0.01% Sensitivity < 0.1 µg Baseline Drift* < 5 µg Signal Resolution 0.01 µg Temperature Control Peltier Elements Temperature Range 5 to 85 ˚C Isothermal Stability+/- 0.1 ˚C Relative Humidity Control Range 0 to 98% RH Accuracy+/- 1% RH Autosampler – 10 samples**Included Platinum™ Software IncludedSample PansMetal Coated Quartz 180 µLPlatinum 50, 100 µL Aluminum Sealed Pan 20 µL*Over 24 hours at 25 ˚C and 20% RH with empty metal coated quartz pans**Optional tray accommodates 25 samples for use with platinum and sealed aluminum pans14T ECHNICAL SPECIFICATIONST HERMOBALANCEThe heart of the Q5000 SA is our latest high performance thermobalance maintained at a constant 35.00 ˚C by three symmetrically arranged heaters in a well-insulated, gas-purged chamber. Isolated from the furnace by a water-cooled plate, the sensitive, null-balance design features the latest in precision weighing technology. A key feature of the design for sorption analysis operation is the perfect symmetry of the balance assembly. Customer benefits of the patented design include sensitive, reliable operation with superior baseline flatness and exceptional accuracy and precision in weight change detection; factors that are critical for proper gravi-metric sorption analysis performance and are totally free from any vapor condensation or electrostatic forces.The Q5000 SA is a compact, benchtop instrument that delivers the performance and reliability required in a leading sorption analyzer designed for the study of materials under controlled conditions of temperature and relative humidity. Its modern, user-friendly design features a high sensitivity, temperature-controlled thermobalance, an innovative humidity generation system, a 10-position autosampler, and our latest Advantage™ software with Platinum™ features.Q5000 SA T ECHNOLOGY15MFC N2RH SensorH UMIDITY C ONTROL C HAMBERThe patented design features a pair of mass flow controllers (MFCs) that accurately meter and proportion gas to a symmetrical,well-insulated, aluminum block. The block contains a humidifier, gas transmission and mixing lines, plus easily accessible, identicallyarranged, sample and reference measurement chambers. Temperature regulation of the block interior from 5 to 85 °C is performed byfour thermoelectric (Peltier) devices in conjunction with a thermistor in a closed-loop system. The mass flow controllers adjust the amountsof wet (saturated) and dry gas to obtain humidities from 0 to 98% RH. Identical sensors are located adjacent to the sample andreference crucibles, and provide a continuous indication of humidity. Benefits of the design include precise temperature control andhighly consistent atmosphere within the sample and reference chambers.1718H YDRATE F ORMATION C HARACTERIZATION OFM ORPHOLOGICAL S TABILITYE VALUATION OFA MORPHOUS S TRUCTURE A NALYZING S MALL A MOUNTS OF P HARMACEUTICALSS AMPLE T HROUGHPUT: VTI-SA3O RGANIC V APOR S ORPTION(VTI-SA)。
气象学术英语核心词汇
词汇A词汇词义a10-level limited area primitive equation model10层有限区域原始方程模式a low-level jet低层急流a low-level polar trough低空极地槽a strong vortex强大的涡旋absolute humidity绝对湿度(a,等效于水汽密度ρv)absolute vorticity绝对涡度active-monsoon periods季风活跃期aerological commission高空(气象)委员会aerosol气溶胶air density空气密度air masses气团air-mass interface气团界面altostratus高层云an ice particle冰粒子annual cycle年循环anticlockwise逆时针anvil cloud(s)砧状云area weighted average面积加权平均atmospheric blocking大气阻塞atmospheric pressure大气压词汇B词汇词义baroclinic atmosphere斜压大气baroclinicity斜压性barotropic正压的barotropic atmosphere正压大气barotropic forecast正压(模式)预报1词汇词义blizzard occur暴风雪boundary conditions边界条件boundary layer边界层break phase of the monsoon季风中断期break-monsoon季风中断词汇C词汇词义carbon dioxide二氧化碳carbon emission碳排放central difference中心差分/中央差分cirrostratus卷层云cirrus卷云climate change气候变化clockwise顺时针cold front冷锋cold occlusion冷式锢囚锋cold pool冷池computational stability计算稳定性condensation level凝结高度convective cloud band对流云带convective instability对流稳定性convergence辐合conveyor belt传送带correlation coefficient相关系数cumulonimbus积雨云curtail缩减2词汇D词汇词义database数据库day-to-day change日变化diagnostic equation诊断方程discharge of carbon dioxide二氧化碳排放divergence辐散divergence of the geostrophic wind地转风散度dominant characteristic显性特性doppler radar多普勒雷达downburst(s)下击暴流downdraft下沉气流drizzle毛毛雨dynamical instability动力不稳定dynamical meteorology动力气象学dynamics of the atmosphere大气动力学词汇E词汇词义earth’s albedo地球行星反照率earth’s surface地球表面easterly wind东风eddy motion涡旋运动eddy-viscosity forces湍流黏性力effective grid length足够的网格距el niño and southern oscillation厄尔尼诺和南方涛动emission control排放控制exosphere逃逸层extended range prediction延伸(中期)预报extreme weather极端天气3词汇F词汇词义finite difference有限差分finite difference methods有限差分方法finite differences有限差分floating ice浮冰fossil fuels化石燃料free atmosphere自由大气freezing level冻结高度freezing rain冻雨freezing rain冻雨friction layer(上部)摩擦层,又称为Ekman层(Ekman layer)frictional force摩擦力frontal cloud锋面云frontal wave cyclone锋面波气旋frontal wave depression锋面波低压frontal waves锋面波frontal zone锋区frontogenesis锋生frontolysis锋消fundamental equations基本方程组词汇G词汇词义general circulation大气环流geopotential instability位势不稳定geostrophic approximation地转近似geostrophic wind地转风global community国际社会global warming全球变暖4词汇词义gravity wave重力波grazing animals食草动物greenhouse gases温室气体greenhouse warming温室效应ground-based地基的ground-based instrument地基装置词汇H词汇词义Hadley circulation哈得来环流hailstone冰雹hailstorm雹暴hailstorm model冰雹模式heat source热源heavy downpour倾盆大雨high concentration高浓度horizontal and vertical gradient of temperature水平和垂直温度梯度horizontal and vertical gradients of wind风的水平和垂直梯度horizontal grid水平网格horizontal inhomogeneity水平不均匀horizontal resolution水平分辨率human activities人类活动hurricane龙卷词汇I词汇词义in terms of就……看in the history of civilization文明史5词汇词义index of the southern oscillation南方涛动指数indian monsoon印度季风区indian monsoon rainfall印度季风降水individual weather disturbance个别天气扰动infrared radiation红外辐射infrastructure基础设施inhomogeneous不均匀intermediate layer中间层interplanetary space星际空间isobaric pattern等压模式isothermal temperature distribution等温分布词汇L词汇词义lapse rate直减率large-scale atmospheric phenomena大尺度大气现象large-scale heat and momentum transfer长距离热量、动量传输latent heat of condensation凝结潜热leading edge前沿lifting condensation level抬升凝结高度(LCL) long-range forecasting长期预测long-term record长期记录long-term variation长期变率longwave radiation长波辐射lower clouds低云low-frequency change低频变化#词汇M6marine life海洋生物Massachusetts Institute of Technology abbr.MIT麻省理工学院medium and high-level clouds中高层云melt snow融雪mesopause中间层顶meso-scale models中尺度模型meso-scale precipitation areas(mpas)中尺度降水区域mesosphere中层meteorological literature气象文献meteorological parameters气象要素middle and high latitudes中高纬mid-latitude weather中纬度天气mid-latitude weather variation中纬度天气变化modified cold air变性冷空气moisture convergence水汽辐合momentum flux动量通量momentum transfer动量输送monsoon季风monsoon breaks季风中断monsoon onset季风爆发monsoon region季风区monsoon system季风系统multicell or supercell thunderstorms多单体/超级单体雷暴multicell thunderstorms多单体雷暴mutual stagnation相互停滞词汇Nnatural evolution自然进化nimbostratus雨层云non-adiabatic heating非绝热性加热non-divergent level无辐散层7natural evolution自然进化non-filtered equation非滤波方程(即原始方程)non-hydrostatic mesoscale models非静力中尺度模式northern hemisphere北半球Norwegian meteorologist挪威气象学家numerical integration数值积分numerical model数值模型numerical solution数值解词汇O词汇词义objective analysis scheme客观分析方案observed situation观察情况ocean-atmosphere system海气系统operational forecasting业务预报operational forecasting of monsoon rainfall季风降水业务预报orographic barrier/orographic effects地形屏障作用/地形作用orographic effects地形效应oxygen molecule氧气分子ozone layer臭氧层ozone molecule臭氧分子词汇P词汇词义parallel tracks并行轨道parameterizing physical processes参数法物理过程partial differential equations偏微分方程photochemical reaction光化学反应physical processes物理过程8词汇词义polar and middle latitudes两极和中纬度positive feedback正反馈potential instability位势不稳定practical values实用价值pressure differences气压差prevailing current盛行气流prevailing wind盛行风primitive equation原始方程primitive equation models原始方程模型prognostic equation预报方程词汇Q词汇词义quasi-biennial oscillation准双年振荡词汇R词汇词义radar echo雷达回波rainfall intensity降水强度rainy season雨季relative humidity相对湿度(RH)词汇S9词汇词义salinity of marshes沼泽盐度sea level rise海平面上升sea surface temperature海面温度seasonal evaporation季节性蒸发set out阐明severe storm强风暴short-term variation短期变率shortwave radiation短波辐射sigma coordinate systemσ坐标系significant variation显著变化small-scale convection cells小尺度对流单体snow cover积雪soil moisture土壤湿度solar power太阳能solar radiation太阳辐射southern hemisphere南半球spatial coherence空间相干性specific humidity比湿(q)squall lines飑线square horizontal grid水平网格state of art最新水平state of ground地形状态steering current引导气流storm surge风暴潮stratiform cloud band层状云带stratocumulus层积云stratopause平流层顶stratosphere平流层stratus层云stream function流函数strong blast强风subsidence inversion下沉逆温10词汇词义subtropical continent副热带大陆suction vortices抽吸涡旋summer hemisphere夏半球summer monsoon夏季季风summer monsoon rainfall夏季季风降水supercell thunderstorms超单体雷暴supercooled drops过冷水滴synoptic and dynamical framework天气动力框架synoptic and dynamical meteorology天气动力气象学synoptic meteorology天气学synoptic scale天气尺度systematic errors系统性误差词汇T词汇词义temperate cyclone温带气旋temperate latitude cyclone温带气旋temperature inversion逆温the annual cycle年循环the arabian sea阿拉伯海the atlantic ocean大西洋the distribution of precipitation降水分布the indian ocean印度洋the intensity of the monsoon rains季风雨强度the ocean-atmosphere systems海气系统the quasi-biennial oscillation(qbo)and atmospheric blocking准双年振荡和大气阻塞the rain season雨季the western north pacific西北太平洋the whole indian monsoon rainfall全印度季风降水thermal low-pressure热低压11词汇词义thermally forced planetary scale热力强迫行星尺度thermodynamic effect热力学效应thermodynamic effects热力效应thermopause热层顶thermosphere热层time step时间步长topography and exchanges of energy地形与能量交换tornado龙卷风transition region过渡区tropical cyclone热带气旋tropical cyclone热带气旋tropical deforestation热带森林砍伐tropics热带tropopause对流层顶troposphere对流层tropospheric jet对流层急流typhoon台风词汇U词汇词义ultraviolet radiation紫外辐射updraft上升气流upper sphere上层大气upper-level wind高空风词汇V12词汇词义vertical and horizontal directions垂直和水平方向vertical inhomogeneity垂直不均匀vertical motion垂直运动vertical temperature profile垂直温度廓线vertical velocity垂直速度vertical velocity垂直速度visible light可见光volcanic eruption火山爆发vorticity equation涡度方程词汇W词汇词义Walker circulation沃克环流warm front暖锋warm occlusion暖式锢囚锋warm sector暖区water droplets水滴water vapor蒸汽waterspouts水龙卷wave depression波状低压weather disturbances天气扰动weather map天气图westerly wind西风wind shear风切变、热成风winter hemisphere冬半球winter monsoon冬季季风world meteorological organization abbr.WMO.世界气象组织13。
减压汽液相平衡实验装置研制
减压汽液相平衡实验装置研制李佳书; 疏其朋; 李进龙【期刊名称】《《实验室研究与探索》》【年(卷),期】2019(038)009【总页数】4页(P104-107)【关键词】汽液平衡; 减压; 实验装置; 自动控制【作者】李佳书; 疏其朋; 李进龙【作者单位】常州大学石油化工学院江苏常州213164【正文语种】中文【中图分类】TQ013.1; O642.40 引言流体相平衡是工业过程设计、运行、控制和优化不可或缺的基础物性,它决定着工艺过程模拟计算的正确性和精度。
流体相平衡可以通过热力学模型获得,如经验关联、活度系数、状态方程等[1-3]。
随着量子化学和计算机技术的进步,相平衡也可通过先验性模型进行预测,如COSMO-RS[4]、COSMO-SAC[5]等。
虽然模型方法可以获得流体相平衡性质,但必须基于实验数据,否则就无法知晓模型方法是否正确,且模型方法中特征参数均需由实验数据回归获得,因此通过实验方法测量不同条件下相平衡数据至关重要[6]。
对流体相平衡性质的测量,根据不同实验方法或获得的数据类型,可将其分为静态法,循环法或等温、等压平衡法等。
流体相平衡发展至今,文献中已经公开了海量的实验数据,包括减压、常压和高压数据,常压数据居多[7-8],减压数据较少[9]。
在实际过程中,由于处理物系的特殊性,如温敏性、高沸点等物质分离,常需减压条件下的相平衡数据,而对于实验系统内部压力低于环境压力的减压系统,必须考虑压力的恒定和控制、样品在线采集、外界扰动等问题,这些问题直接影响相平衡数据测量的准确性。
基于不同测量原理,文献已有报道不同减压相平衡实验装置[9-12]。
本文基于Ellis蒸馏瓶[10]测量原理,对平衡室、冷凝管、取样口结构进行改进,同时增加减压稳压系统、在线取样系统和自动控制系统,实现减压条件下汽液相平衡数据的测量、在线取样和自动控制,保证在获得可靠实验数据的同时实验过程连续、高效、安全运行。
化学热力学基础习题解答
第一章 化学热力学基础1-1 气体体积功的计算式 dV P W e ⎰-= 中,为什么要用环境的压力e P 在什么情况下可用体系的压力体P答: 在体系发生定压变化过程时,气体体积功的计算式 dV P W e ⎰-= 中,可用体系的压力体P 代替e P ;1-2 298K 时,5mol 的理想气体,在1定温可逆膨胀为原体积的 2 倍; 2 定压下加热到373K ;3定容下加热到373K;已知 C v,m = ·mol -1·K -1;计算三过程的Q 、W 、△U 、△H 和△S;解 1 △U = △H = 02 kJ nC Q H m P P 72.13)298373(,=-==∆W = △U – Q P = - kJ3 kJ nC Q U m V V 61.10)298373(,=-==∆W = 01-3 容器内有理想气体,n=2mol , P=10P,T=300K;求 1 在空气中膨胀了1dm 3,做功多少 2 膨胀到容器内压力为 lP,做了多少功3膨胀时外压总比气体的压力小 dP , 问容器内气体压力降到 lP 时,气体做多少功解:1此变化过程为恒外压的膨胀过程,且Pa P e 510=2此变化过程为恒外压的膨胀过程,且Pa P e 510=3 VnRT P dP P P e =≈-= 1-4 1mol 理想气体在300K 下,1dm 3定温可逆地膨胀至10dm 3,求此过程的 Q 、W 、△U 及△H;解: △U = △H = 01-5 1molH 2由始态25℃及P 可逆绝热压缩至 5dm -3, 求1最后温度;2最后压力; 3 过程做功;解:1 3511178.2410298314.81-=⨯⨯==dm P nRT V W f dl p A dl p dVδ=-⋅=-⋅⋅=-⋅外外外2 Pa V nRT P 53222104.91053.565314.81⨯=⨯⨯⨯==- 3 )2983.565(314.85.21)(12,-⨯⨯⨯-=--=∆-=T T nC U W m V1-6 40g 氦在3P 下从25℃加热到50℃,试求该过程的△H 、△U 、Q 和W ;设氦是理想气体; He 的M=4 g·mol -1解: J nC Q H m P P 3.519625314.825440)298323(,=⨯⨯⨯=-==∆ W = △U – Q P =1-7 已知水在100℃ 时蒸发热为 J·g -1,则100℃时蒸发30g 水,过程的△U 、△H 、 Q 和W为多少计算时可忽略液态水的体积解: mol n 67.11830== 1-8 298K 时将1mol 液态苯氧化为CO 2 和 H 2O l ,其定容热为 -3267 kJ·mol -1 , 求定压反应热为多少解: C 6H 6 l + g → 6CO 2 g +3 H 2O l1-9 300K 时2mol 理想气体由ldm -3可逆膨胀至 10dm -3 ,计算此过程的嫡变;解: 11229.3810ln 314.82ln -⋅=⨯==∆K J V V nR S 1-10.已知反应在298K 时的有关数据如下C 2H 4 g + H 2O g → C 2H 5OH l△f H m /kJ·mol -1 - -C P , m / J·K -1·mol -1计算1298K 时反应的△r H m ;2反应物的温度为288K,产物的温度为348K 时反应的△r H m ;解1 △r H m = - + - = - kJ·mol -12 288K C 2H 4 g + H 2O g → C 2H 5OH l 348K↓△H 1 ↓△H 2 ↑△H 3298K C 2H 4 g + H 2O g → C 2H 5OH l 298K△r H m = △r H m 298K + △H 1 + △H 2 + △H 3= - + + ×298-288 + × 348-298×10-3= - kJ·mol -11-11 定容下,理想气体lmolN 2由300K 加热到600K ,求过程的△S;已知11,,)006.000.27(2--⋅⋅+=mol K J T C N m P解: T R C C m P m V 006.069.18,,+=-=1-12 若上题是在定压下进行,求过程的嫡变;解: ⎰+=∆600300006.000.27dT T T S 1-13 下,2mol 甲醇在正常沸点时气化,求体系和环境的嫡变各为多少已知甲醇的气化热△H m = ·mol -1解: 132.2082.337101.352-⋅=⨯⨯=∆=∆K J T H n S m 体系 1-14 绝热瓶中有373K 的热水,因绝热瓶绝热稍差,有4000J 的热量流人温度为298K 的空气中,求1绝热瓶的△S 体;2环境的△S 环;3总熵变△S 总;解:近似认为传热过程是可逆过程△S 总 = △S 体 + △S 环 = ·K -11-15 在298K 及标准压力下,用过量100%的空气燃烧 1mol CH 4 , 若反应热完全用于加热产物,求燃烧所能达到的最高温度;CH 4 O 2 CO 2 H 2O g N 2△f H m /k J ·mol -1- 0 - -C P , m / J·K -1·mol -1解; 空气中 n O 2 = 4mol , n N 2 = n O 2 ×79%÷21%= 15molCH 4g +2 O 2 → CO 2 g + 2H 2O g△r H m 298K = 2× + – = - kJ反应后产物的含量为:O 2 CO 2 H 2O g N 2n / mol 2 1 2 15 - ×103 + 2×+ 15× + + 2× T-298 = 0T = 1754K1-16.在110℃、105Pa 下使 1mol H 2Ol 蒸发为水蒸气,计算这一过程体系和环境的熵变;已知H 2Og 和H 2Ol 的热容分别为 J·K -1·g -1和 J·K -1·g -1,在100℃、105Pa 下H 2Ol 的的汽化热为 J·g -1;解: 1mol H 2Ol , 110℃, 105Pa ----→ 1mol H 2Og , 110℃, 105Pa↓H1 , S1↑H3 , S31mol H2Ol , 100℃, 105Pa ----→1mol H2Og , 100℃, 105PaH2 , S2= kJ= J·K-11-17 1mol ideal gas with C v,m= 21J·K-1·mol-1,was heated from 300K to 600K by 1 reversible isochoric process; 2reversible isobaric process. Calculate the △U separately.解:1由题知△U = n C v,m △T = 1×21×600-300= 6300J2 对由于△U只是温度的函数,所以△U2 = △U1 = 6300J1-18 Calculate the heat of vaporization of 1mol liquid water at 20℃, . △vap H m water = kJ·mol-1, C p,m water = J·K-1·mol-1, C p,m water vapor = J·K-1·mol-1 at 100℃, .解:1mol H2Ol , 20℃, 105Pa ----→1mol H2Og , 20℃, 105Pa↓H1 , ↑H3 ,1mol H2Ol , 100℃, 105Pa ----→1mol H2Og , 100℃, 105PaH2H+ nCp,mg △T△H =△H1 + △H2 +△H3 = nCp,ml △T+ n△vapθm= 1××100-20×10-3+ 1× + 1××20-100×10-3= kJ。
卡梅伦液压数据手册(第 20 版)说明书
iv
⌂
CONTENTS OF SECTION 1
☰ Hydraulics
⌂ Cameron Hydraulic Data ☰
Introduction. . . . . . . . . . . . . ................................................................ 1-3 Liquids. . . . . . . . . . . . . . . . . . . ...................................... .......................... 1-3
4
Viscosity etc.
Steam data....................................................................................................................................................................................... 6
1 Liquid Flow.............................................................................. 1-4
Viscosity. . . . . . . . . . . . . . . . . ...................................... .......................... 1-5 Pumping. . . . . . . . . . . . . . . . . ...................................... .......................... 1-6 Volume-System Head Calculations-Suction Head. ........................... 1-6, 1-7 Suction Lift-Total Discharge Head-Velocity Head............................. 1-7, 1-8 Total Sys. Head-Pump Head-Pressure-Spec. Gravity. ...................... 1-9, 1-10 Net Positive Suction Head. .......................................................... 1-11 NPSH-Suction Head-Life; Examples:....................... ............... 1-11 to 1-16 NPSH-Hydrocarbon Corrections.................................................... 1-16 NPSH-Reciprocating Pumps. ....................................................... 1-17 Acceleration Head-Reciprocating Pumps. ........................................ 1-18 Entrance Losses-Specific Speed. .................................................. 1-19 Specific Speed-Impeller. .................................... ........................ 1-19 Specific Speed-Suction...................................... ................. 1-20, 1-21 Submergence.. . . . . . . . . ....................................... ................. 1-21, 1-22 Intake Design-Vertical Wet Pit Pumps....................................... 1-22, 1-27 Work Performed in Pumping. ............................... ........................ 1-27 Temperature Rise. . . . . . . ...................................... ........................ 1-28 Characteristic Curves. . ...................................... ........................ 1-29 Affinity Laws-Stepping Curves. ..................................................... 1-30 System Curves.. . . . . . . . ....................................... ........................ 1-31 Parallel and Series Operation. .............................. ................. 1-32, 1-33 Water Hammer. . . . . . . . . . ...................................... ........................ 1-34 Reciprocating Pumps-Performance. ............................................... 1-35 Recip. Pumps-Pulsation Analysis & System Piping...................... 1-36 to 1-45 Pump Drivers-Speed Torque Curves. ....................................... 1-45, 1-46 Engine Drivers-Impeller Profiles. ................................................... 1-47 Hydraulic Institute Charts.................................... ............... 1-48 to 1-52 Bibliography.. . . . . . . . . . . . ...................................... ........................ 1-53
如何写摘要
风格
Matrine extraction using reverse micelles of a non-ionic trialkyl phosphine oxide (TRPO) surfactant was studied. Theoretical analysis and experimental results showed that the driving forces for the extraction are the coordination forces between matrines and TRPOs.
细节
能用名词做定语不要用动名词做定语, measurement accuracy vs. measuring accuracy 能用形容词做定语就不要用名词做定语。 experimental results vs. experiment results 可直接用名词或名词短语作定语的情况下,要少用of 句型。 measurement accuracy vs. accuracy of measurement equipment structure vs. structure of equipment
An abstract should include 1.Why, background。 2.What 研究的问题。 3.How 过程和方法。 4.Result and why it is important 结果
例子1
水-正丙醇-正丁醇三元体系常见于乙炔法生产1,4-丁二醇 工艺产生的废液中,对该体系汽液平衡数据进行测定是对其 进行分离回收的前提,而目前文献中,仅在极窄的温度范围内 有很少的相关数据。本文测定了99.2kPa时,在正丙醇与正丁 醇的配料体积比分别为1/4、3/7、2/3、1/1和3/2,水含量直 至恒沸组成条件下水-正丙醇-正丁醇溶液的三元汽液平衡数据, 从而明显扩大了该体系的实验数据及温度适用范围;研究中 还用扩展型UNIQUAC方程关联该体系的汽液平衡数据,通过 单纯型法回归获得三元体系组分之间的相互作用能参数。计 算结果表明,建立的模型应用相同的相互作用能参数,可以 很好的关联本实验测定的数据及文献数据,一方面说明本实 验数据与文献数据有很好的一致性,另一方面也表明建立的 UNIQUAC模型可以可靠的预测水-正丙醇-正丁醇的汽液平 衡数据。
乙酸异戊酯+异戊醇和乙酸异戊酯+正己醇体系汽液平衡
乙酸异戊酯+异戊醇和乙酸异戊酯+正己醇体系汽液平衡周峰;陈长旭;许春建【摘要】在50.00和101.33 kPa下,采用改进的Rose汽液平衡釜测量乙酸异戊酯+异戊醇和乙酸异戊酯+正己醇体系的汽液平衡数据。
乙酸异戊酯+异戊醇在50.00 kPa下形成最低共沸物。
使用Herington法对汽液平衡数据进行热力学一次性检验,结果表明测得的汽液平衡数据符合热力学一致性。
对实验数据使用NRTL、Wilson和UNIQUAC活度系数模型进行关联,回归获得相应的二元交互参数,模型计算的温度和组成与实验值相比均方差小于0.20 K和0.0050,表明3种模型的拟合结果与实验数据吻合较好。
通过Wilson模型预测乙酸异戊酯+异戊醇体系在98.4 kPa时共沸点消失。
为化工数据库增添了内容,为乙酸异戊酯体系的工程设计和进一步深入研究奠定了基础。
%Isobaric vapor-liquid equilibrium data of the binary systems isoamyl acetate + isoamyl alcohol and isoamyl acetate +n-hexanol at 50.00 and 101.33 kPa were measured using a vapor-liquid equilibrium still. The isoamyl acetate + isoamyl alcohol system formed a minimum temperature azeotrope at 50.00 kPa. The thermodynamic consistency of the VLE experimental data were checked by Herington method, and the results were satisfied with Gibbs-Duhem’s thermodynamic consistency. The experimental measurements for the binary systems were correlated by nonrandom two-liquid (NRTL), Wilson and universal quasichemical (UNIQUAC) activity coefficient models. Then, the corresponding parameters for the three models were obtained. Compared with the experimental data, the root-mean-square deviations of the boiling temperature and the vapor mole fraction calculated with thecorrelated parameters were less than 0.20 K and 0.0050, respectively. The calculated results showed that the experimental data agreed well with NRTL, Wilson and UNIQUAC models. Wilson activity coefficient model was used to predict the azeotropic phenomenon of isoamyl acetate+isoamyl alcohol, which indicated that the azeotrope would disappear at 98.4 kPa. This work provided important engineering data for chemical database and further study in the engineering design containing isoamyl acetate.【期刊名称】《化工学报》【年(卷),期】2017(068)002【总页数】7页(P560-566)【关键词】汽液平衡;乙酸异戊酯;异戊醇;正己醇;热力学模型【作者】周峰;陈长旭;许春建【作者单位】化学工程联合国家重点实验室,天津大学化工学院,天津 300072;化学工程联合国家重点实验室,天津大学化工学院,天津 300072;化学工程联合国家重点实验室,天津大学化工学院,天津 300072【正文语种】中文【中图分类】O642.42乙酸异戊酯,俗称香蕉水,具有特殊水果香味,作为香精、添加剂等广泛应用于食品、制药、纺织等领域。
IB物理词汇
Physics Glossary IntroductionAabsolute zero 绝对零度absorb 吸收acceleration 加速度action 作用、行为accuracy 准确性(度)addition 增加、加法air resistance 空气阻力ammeter 电流表、安培计Ampere 安培(电流强度单位)amplitude 振幅angle 角度angular displacement 角位移antinode 波腹area 面积atom 原子atmospheric pressure 大气压强attract 吸引average 平均的、平均数Avogadro's number 阿伏加德罗常数Bbalance 平衡barometer 气压计battery 电池bimetallic strip 双金属片boiling point 沸点Brownian motion 布朗运动boiling point 沸点Boyle’s law 玻意尔定律buoyant force/ bouyancy 浮力bubble 气泡、冒泡Ccalorie 卡路里capacity 能力、容量Celsius Scale 摄氏温标centimetre / centimeter 厘米centre 中心centre of gravity 重心centre of mass 质心centripetal force 向心力changes of state 物态变化Charles’ law 查理定律circular motion 圆周运动coal 煤collision 碰撞compression 压缩conduction 热传导conductor 导体container 容器convection 热对流conservation 守恒、保护constant 常数、恒定的Coulomb 库仑crack 破裂、裂缝crystal 晶体、水晶的current 流通、电流Ddamping 阻尼、减幅decay 衰减、衰变deceleration 减速、反向加速度decimal places/ points 小数位、小数点decimeter 分米decrease 减少(量)degree 度、等级、程度density 密度depth 深度diameter 直径diffraction 衍射diffusion 扩散、弥散direct current 直流direction 方向dispersion 色散、散布distance 距离displacement 位移distance 距离Doppler effect 多普勒效应dynamics 动力学Eecho 回声efficiency 效率、功效elastic collision 弹性碰撞electric charge 电荷electric potential 电势electric field 电场electricity 电流electron-volt 电子伏electromotive force 电动势energy 能量kinetic energy 动能thermal energy 热能solar energy 太阳能potential energy 势能wave energy 波能、海浪能nuclear energy 核能wind energy 风能chemical energy 化学能mechanical energy 机械能equilibrium 平衡evaporate 蒸发、挥发evaporation 蒸发expand 膨胀、扩张thermal expansion 热膨胀explosion 爆炸experiment 实验Ffield 场field strength 场强度first law of thermal dynamics 热力学第一定律flux 流量、流出force 力external force 外力internal force 内力net force/ resultant force 合力normal force 法向力、支持力drag force 牵引阻力、拖曳力frame of reference 参照系free body diagram 受力分析图free electrons 自由电子free fall 自由下落freezing point 凝固点frequency 频率friction 摩擦力fuel 燃料fossil fuel 化石燃料nuclear fuel 核燃料fundamental units 基本单位frozen 冻结的fuse 熔化、融合fusion 熔化(n.)Ggalaxy 星系gas law 气体定律gaseous 气态的global warming 全球暖化gradient 斜率、坡度gram 克(质量单位)gravitational force/gravity 重力、地球引力gravity 重力、地球引力gravitational potential 重力势greenhouse effect 温室效应Hhalf-life 半衰期heat 热(特指吸收的热量)height 高度hertz 赫兹(频率单位)Hooke's law 胡克定律horizontal 水平的、横向的Iideal gas 理想气体impulse 冲量inertia 惯性infrared 红外线internal 内在的、内部的instantaneous 瞬时的insulator 绝缘体intensity 强度isolated system 孤立(隔离)系统isobaric 等压线、等压的isochoric 等体积的isothermal 等温线、等温的isotopesJjoule 焦耳KKelvin Scale 开氏温标、绝对温标kilogram 千克kilometer 千米kilowatt 千瓦kinematics 运动学kinetic energy 动能kinetic theory of gas 气体分子运动论Llaser 激光latent heat 潜热law 定律length 长度lens 透镜light year 光年linear 线性的、直线的liquid 液体liquefy 液化(v.) liquefaction 液化(n.)load 负载、装载longitudinal wave 纵波Mmagnetic field 磁场magnet 磁体、磁铁mass 质量matter 物质magnitude 大小、量级measurement 测量、量度melt 熔化、融化melting point 熔点mercury barometer 水银气压计micrometer 微米micrometer screw gauge 千分尺、螺旋测微计microscope 显微镜microwave 微波milliampere 毫安milligram 毫克millimeter 毫米milliliter 毫升model 模型、建模mole 摩尔momentum 动量Nnegative 负的、负数neutral 中性的neutron 中子Newton’s laws of motion 牛顿运动定律node 节点、波结normal 法线、垂直的normal force 正压力、法向力nuclear 原子核的nuclear fusion 核聚变nuclear fission 核裂变nuclear fuels 核燃料Nucleus 原子核Oohm 欧姆Ohmic conductor 欧姆导体orbit 轨道oscillation 振荡、振动PPascal 帕斯卡particle 粒子、微粒pendulum 摆period 周期phase 相、位相phase angle 相位角phase difference 相位差photo gate 光电门photon 光子piston 活塞plasma 等离子态potential divider 分压器power 功率output power 输出功率input power 输入功率precision 精密度pressure 压强principle 原理principle of conservation of momentum 动量守恒原理principle of conservation of energy 能量守恒原理proportional 比例be directly proportional to 成正比例be inversely proportional to 成反比例proton 质子Qquantity 量、数量quantum 量子Rradiation 辐射radio wave 无线电波ray 射线、光线reaction 反作用、反应red shift 红移reflection 反射refraction 折射relative 相对的resistance 阻力、电阻resistivity 电阻率resistor 电阻器resolution 分辨率resonance 共振、共鸣rotation 旋转、自转Sscalar 标量scale 刻度、标度scientific notation 科学记数法series 串联的shrink 收缩SI units 国际标准单位significant figure/ digit 有效数字slope 斜率、斜坡solid 固体specific heat capacity 比热容speed 速率spring 弹簧states of matter 物态stationary 静止的、平稳的steam 蒸气stopwatch 秒表substance 物质superposition 叠加、重合Ttemperature 温度temperature scale 温标tension 拉力、张力thermal equilibrium 热平衡thermal expansion 热膨胀thermometer 温度计thermodynamics 热力学thermometer 温度计thermostat 恒温器timer 计时器total internal reflection 全反射Uuncertainty 不确定度Fractional uncertainty 相对不确定度Absolute uncertainty 绝对不确定度Percentage uncertainty 百分不确定度uniform linear motion 匀速直线运动unit 单位derived unit 导出单位fundamental unit 基本单位Vvacuum 真空vapor/ vapour (水)蒸气vaporization 蒸发、汽化(n.)vaporize 蒸发、汽化(v. ) variable 变量、可变因素independent variable 自变量dependent variable 因变量controlled variable 控制变量vector 矢量velocity 速度average velocity 平均速度final velocity/ terminal velocity 末速度initial velocity 初速度instantaneous velocity 瞬时速度vibration 振动voltage 电压WWatt 瓦特work 功weight 重力wave 波。
制冷与空调专业英语词汇
制冷与空调专业英语词汇初级词汇环境surroundings热库hot source热源heat source冷源heat sink , cold source焓enthalpy熵entropy功work热量heat能量守恒energy conservation 理想气体idea gas真实气体actual gas沸点boiling point凝结condensation沸腾boiling池内沸腾pool boiling膜态沸腾film boiling相变change of phase压缩compression膨胀expansion节流throttling潜热latent heat显热sensible heat制冷refrigeration氟利昂11 freon 11氟利昂12 freon 12氟利昂13 freon 13氟利昂14 freon 14氟利昂22 freon 22制冷剂refrigerant氨ammonia二氧化碳carbon dioxide二氧化硫sculpture dioxide甲烷methane乙烷ethane丙烷propane乙烯ethylene稳态Steady state非稳态unsteady state传热学heat transfer传热heat transmission 换热heat exchange热流heat flow吸收率absorptive反射率reflectivity熔化fusion熔点melting point升华sublimation三相点triple point临界状态critical state临界温度critical temperature临界压力critical pressure凝固solidification凝固点solidification point沸点boiling point凝结condensation摄氏温度centigrade scale放气管air bleeder散气式通风air blow aeration鼓风机air blower吹气,空气吹污air blowing吹气管air blowpipe压缩空气瓶air bottle空气室air box空气制动器air brake排气孔air bleed hole空气室air barrel湿蒸气wet vapor过热superheat过热蒸气superheated vapor过热度degree of superheat过冷sub cooling过冷液体sub cooled liquid气-液混合物liquid-vapor mixture 干度quality冷凝点condensation point冷凝液condensate共沸混合物isentropic mixture共沸性zoetrope共沸点isentropic point辐射radiation核态沸腾nucleate boiling对流沸腾convective boiling膜状凝结film condensation珠状凝结drop condensation饱和状态saturation state饱和温度saturation temperature饱和压力saturation pressure饱和液体saturation liquid饱和蒸气saturation vapor饱和蒸气压saturated vapor pressure 过饱和supersaturating过饱和蒸气supersaturated vapor热力过程thermodynamic process等温过程isothermal process等压过程isobaric process等容过程isochoric process绝热过程adiabatic process绝热指数adiabatic exponent多变过程polytrophic process多变指数polytrophic exponent等焓过程isenthalpic process等熵过程isentropic process可压缩性compressibility热流量heat flow rate热流密度density of heat flow rate温度场temperature field导热heat conduction导热系数thermal conductivity热扩散系数thermal diffusivity对流换热convective heat transfer自然对流free convection强制对流forced convection等焓膨胀isenthalpic expansion热阻thermal resistance接触热阻thermal contact resistance 热滞后thermal lag传质mass transfer分子扩散molecule diffusion对流扩散convective diffusion绝热膨胀adiabatic expansion多变膨胀polytropic expansion节流膨胀throttling expansion 等焓节流isenthalpic throttling热力循环thermodynamic cycle工质working substance热机循环engine cycle制冷循环refrigeration cycle可逆循环reverse cycle卡诺循环Carnot cycle逆卡诺循环reverse Carnot cycle朗肯循环Rankine cycle斯特林循环Stirling cycle空气制冷循环air refrigeration池内沸腾pool boiling膜态沸腾film boiling核态沸腾nucleate boiling对流沸腾convective boiling膜状凝结film condensation珠状凝结drop condensation绝热压缩adiabatic compression多变压缩polytropic compression压缩指数compression exponent冰熔当量ice melting equivalent理论功率idea power指示功率indicated power指示效率indicated efficiency轴功率shaft horse power机械效率mechanical efficiency总效率Overall efficiency制冷系数coefficient of performance 空调负荷air conditioning load气流组织air distribution气流组织air distribution空气处理单元air handling unit风淋室air shower制冷工程refrigeration engineering 制冷工作者refrigerationist制冷工程师refrigeration engineer 制冷技术员refrigeration technician 制冷技工refrigeration mechanic 辐射换热radiation heat transfer对流放热系数the convective coefficient of heat transfer热力学thermodynamics统计热力学statistical thermodynamic 热力学系统thermodynamic system 孤立系isolated system热力学平衡状态thermodynamicequilibrium state 制冷剂循环量circulating mass ofrefrigerant可逆过程reversible process不可逆过程irreversible process热力学第一定律first law ofthermodynamics热力学第二定律Second law ofthermodynamics热力学第三定律third law ofthermodynamics零定律zero principle内能internal energy理想气体状态方程idea gas stateequation理想气体常数perfect gas constant 压缩性系数coefficient ofcompressibility压力-比容图pressure and specificvolume diagram温度-熵图temperature - entropydiagram双级压缩制冷循环two-stage compression refrigeration cycle氨双级压缩制冷循环ammoniatwo-stage compression refrigeration cycle氟利昂双级压缩制冷循环freontwo-stage compression refrigeration cycle覆叠式制冷循环cascade refrigeration 辐射换热系数radiation heat transfer coefficient传热系数the coefficient of heat transfer 平壁传热heat transfer through a plate 圆管传热heat transfer through a tube 肋壁传热heat transfer through a fin wall吸收式制冷循环absorption refrigeration cycle蒸气压缩制冷循环vapor compression refrigeration cycle液态制冷剂过冷循环liquid refrigerat subcooled cycle蒸气过热循环vapor supor superheated cycle混合制冷剂制冷循环mixture cycle焦耳-汤姆逊效应Joule Thomson effect焦耳-汤姆逊系数Joule Thomson coefficient蒸气喷射制冷循环vapor jet refrigeration cycle制冷剂循环容积circulating volume of refrigerant单位压缩功compress work per mass 热力完善度thermodynamic perfect degree制冷安装技工refirgeration installation mechanic制冷维修技工refrigeration serviceman 单位轴功率制冷量refrigreation effect per shaft horse-power运转工况下的制冷量rating under working conditions产冷量refrigerating capacity制冷量refrigerating effect单位制冷量refrigerating capacity per weighing单位容积制冷量refrigerating capacity per unit of swept volume容积效率V olumetric efficiency冷凝热量condenser heat过冷热量heat of subcooling标准制冷量Standard rating直接回水系统direct return system。
常压下六甲基二硅醚-1,2-二氯乙烷汽液平衡数据的测定与关联
河北工业大学学报JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY第42卷第3期V ol.42No.32013年6月June 2013文章编号:1007-2373(2013)03-0033-05常压下六甲基二硅醚-1,2-二氯乙烷汽液平衡数据的测定与关联李春利,张静,方静(河北工业大学化工学院,天津300130)摘要使用改进的Othmer 釜测定了常压(101.3kPa )下六甲基二硅醚-1,2-二氯乙烷二元物系的等压汽液平衡数据.实验数据通过Herington 面积积分法检验,符合热力学一致性.采用NRTL 、Wilson 、UNIQUAC 三种热力学模型分别对实验数据进行关联,得到模型参数,并将汽液平衡数据的计算值与实验值进行对比.结果表明,常压下六甲基二硅醚-1,2-二氯乙烷二元物系具有最低共沸点,共沸温度为354.73K ,六甲基二硅醚的摩尔分数为0.1995(质量分数29.02%).通过计算值与实验值的对比,表明NRTL 模型在预测常压下六甲基二硅醚-1,2-二氯乙烷二元物系汽液平衡数据时,能较好地重现实验数据,拟合精度较高.关键词六甲基二硅醚;1,2-二氯乙烷;汽液平衡;测定;关联中图分类号TE 624文献标志码ADetermination and correlation of vapor-liquid equilibrium data for hexamethyl disiloxane-ethylene dichloride system at 101.3kPaLI Chun-li ,ZHANG Jing ,FANG Jing(School of Chemical Engineering,Hebei University o f Technolo g y ,Tianjin 300130,China )Abstra ctIsobaric vapor-liquid equilibrium (VLE )data for hexamethyl disiloxane (HMDSO )-e thylene dichloride(EDC )system was determined by a double circulation VLE kettle at 101.3kPa.Test was made for thermodynamic c on-sistency of the exper imental data by Herington method.The experimental data was correlated by NRTL,Wilson and UN-IQUAC models,estimated model parameters,respectively.The VLE data was calculated by obtained parameters and compared with experimental data.The results show that HMDSO-EDC system had a minimum azeotropic temperature at 354.73K,the mole fraction of HMDSO was 0.1995(mass fraction was 29.02%).The comparison made between cal-culative data and experimental data show that NRTL was better than Wilson and UNIQUAC models for calculating the VLE data for HMDSO-EDC system at 101.3kPa.Key wor dshexamethyl disiloxane;ethylene dichloride;vapor-liquid equilibrium;determination;corre lation六甲基二硅醚(C 6H 18Si 2O ),又名硅醚、六甲基二硅氧烷,是一种重要的有机溶剂和化工合成原料,也常被用作硅油、硅橡胶、气相色谱固定液体、分析试剂和憎水剂等,因其具有优良的溶解性被广泛应用于医药中间体的合成.在某抗生素原料药的生产中,产生了大量的六甲基二硅醚-1,2-二氯乙烷工业废液.由于存在共沸现象,给分离工作造成一定难度.然而关于六甲基二硅醚-1,2-二氯乙烷二元物系的汽液平衡数据尚未见文献报道.本文首先使用改进的Othmer 釜[1-2]测定了常压下六甲基二硅醚-1,2-二氯乙烷的汽液平衡数据,并分别采用NRTL [3-5]、Wilson [6]、UNIQUAC [7]3种热力学模型对实验数据进行关联,得到了模型参数,以期为化工工程设计提供基础数据.1实验部分1.1实验装置采用改进的Othmer 釜测定汽液平衡数据,容积45mL .用电加热套加热,用经过标定的水银温度计测定收稿日期:3基金项目:河北省应用基础研究计划重点基础研究项目(Z 3656);河北省自然科学基金(B )作者简介:李春利(63),男(汉族),教授.201-04-201940201220207219-34河北工业大学学报第42卷平衡温度,其精度为±0.01K ,采用恒压系统将实验压力控制在101.3kPa .实验装置如图1所示.1.2实验方法精确配制实验物料(实验试剂主要物性参数见表1),放入平衡釜加热室.采用电加热套缓慢加热,通过恒压系统将实验压力控制在101.3kPa .当温度计示数趋于稳定时,用微量进样器从汽相样品取样口取样0.3L ,使用气相色谱仪分析样品.每隔5min 分析1次,直至3次分析结果的绝对偏差在允许范围内(<0.05%),即认为达到平衡.记录平衡温度、汽液两相的组成及含量.样品分析采用SP-3420型气相色谱仪,TCD 热导池检测器,北京北分瑞利分析仪器有限公司产品;N2000V3.30色谱工作站,浙江大学智达信息工程有限公司产品;色谱柱为3m ×3mm ×2mm 的PEG 柱,柱温、汽化室温度、检测器温度分别为140℃、160℃、150℃.载气为氢气,柱前压力0.1MPa .采用面积归一化法计算汽液相平衡组成.表1实验试剂的主要物性参数及规格T ab.1Physical properties and specifications of the reagents used in the experiments苯甲苯六甲基二硅醚1,2-二氯乙烷CAS 71-43-2108-88-3107-46-0107-06-2分子式C 6H 6C 7H 8C 6H 18Si 2O C 2H 4Cl 2英文缩写B M B HMDSO EDC 相对分子质量/g mol178.1192.13162.3898.96沸点/K 353.25383.78372.65356.63临界温度/K 562.09593.95518.70561.15临界压力/MPa4.90 4.05 1.915.37规格分析纯,质量分数99.5%分析纯,质量分数99.5%分析纯,质量分数99.5%分析纯,质量分数99.0%2实验数据与处理2.1汽液平衡装置的可靠性验证采用改进的Othmer 釜测定了常压下苯-甲苯二元物系的汽液平衡数据,以组分的摩尔分数表示,结果见表2.由于本物系属于理想物系,因此采用理想物系的相平衡方程计算与液相平衡的汽相组成,与汽相组成的实验值作比较,计算绝对偏差和相对偏差,结果见表2.由表可知,实验值与理论计算值之间的绝对偏差小于0.02,相对偏差小于0.1,均在允许的范围内.说明实验数据的准确性,同时也证明了汽液平衡图1汽液平衡装置示意图Fig.1Schematic of vapor-liquid equilibrium kettle1.加热室;2.液相样品收集槽;3.真空绝热夹套;4.温度计套管;5.汽相冷凝器;6.汽相样品收集槽;7.汽液分离室;8.汽液提升管;9.汽液混合室;10.真空泵;11.压力计;12.内部加热管;13.液相样品取样口;14.汽相样品取样口表2常压下苯(1)-甲苯(2)二元物系的汽液平衡数据T ab.2VLE data of B (1)-MB (2)system at 101.3kP aT /K exp,lexp,lcal,l383.740.00000.00000.00000.0000-379.170.08790.20090.18270.01820.0995375.310.20030.36890.37600.00710.0188371.780.30110.49800.51370.01570.0306368.360.39700.61800.61630.00170.0028365.140.48910.70980.69330.01650.0239362.500.59140.78930.77700.01230.0159359.920.70020.85210.85310.00100.0011357.560.80300.91420.91210.00210.0023355.410.90250.95750.96070.00320.0033354.320.94660.97850.97470.00380.00393533101234512H 2O879146H 2O air11air 13.41.00001.00001.00000.0000-35李春利,等:常压下六甲基二硅醚-1,2-二氯乙烷汽液平衡数据的测定与关联第3期装置具有一定的可靠性.表2中:=exp,lca l,l;=/ca l,l;e x p与ca l分别表示汽相中组分含量的实验值与计算值;为绝对误差;为相对误差.2.2六甲基二硅醚-1,2-二氯乙烷物系汽液平衡数据的测定与关联2.2.1汽液平衡数据的测定采用改进的Othmer 釜测定了常压下六甲基二硅醚-1,2-二氯乙烷二元物系的汽液平衡数据,以组分的摩尔分数表示,结果见表3.表3常压下六甲基二硅醚(3)-1,2-二氯乙烷(4)二元物系的汽液平衡数据Tab.3VLE data of HMDSO (3)-EDC (4)system at 101.3kPaT /K343434356.020.02910.97090.04320.9568 2.5690 1.0091355.400.07470.92530.09440.9056 2.2319 1.0219354.930.13030.86970.15210.8479 2.0939 1.0331354.730.20520.79480.19380.8062 1.7053 1.0817354.760.25080.74920.21390.7861 1.5385 1.1179355.040.31100.68900.23860.7614 1.3712 1.1670355.430.34520.65480.25140.7486 1.2850 1.1925355.810.39980.60020.28410.7159 1.2382 1.2294356.460.44500.55500.29420.7058 1.1277 1.2843357.010.49600.50400.32370.6763 1.0934 1.3321358.340.57040.42960.39520.6048 1.1117 1.3410360.850.68020.31980.48220.5178 1.0495 1.4279362.470.74070.25930.52250.47750.9921 1.5463364.750.80650.19350.62590.3741 1.0164 1.5164367.450.87280.12720.74010.2599 1.0219 1.4801370.340.93910.06090.86920.13081.02201.43102.2.2汽液相平衡模型当体系压力不高时,汽相可视为理想气体[8],若忽略压力对液相逸度的影响,汽液相平衡关系式可简化为=(1)式中:为体系的压力,kPa ;,分别为组分i 的液相摩尔组成和汽液摩尔组成;为饱和蒸汽压,kPa;为活度系数.体系中各组分的饱和蒸汽压按如下5参数的Antoine 方程[9]计算:lg=+/+×lg+×+×2(2)计算六甲基二硅醚-1,2-二氯乙烷物系中各组分的活度系数,结果见表3.各组分的Antoine 方程参数见表4.表4Antoine 方程参数Tab.4Antoine equa tion paramete rs方程参数最高适用温度/K 苯31.7722725.48.44435.3534E-09 2.7187E-06562.16甲苯34.0773037.99.1635 1.0289E-112.7035E-06591.79六甲基二硅醚13.1792241.71.30260.0033 2.0403E-06518.701,2-二氯乙烷48.4233180.315.37000.00729352.6844E-14561.00最低适用温度/K278.68178.18204.93237.493热力学一致性检验为了说明汽液平衡数据的准确性,需要进行热力学一致性检验.其基本原理是G D 方程[],检2.2.ibbs-uhem 1036河北工业大学学报第42卷验方法分为积分检验法和微分检验法.Herington 面积积分法[11]属于积分检验法,本文采用此法对六甲基二硅醚-1,2-二氯乙烷汽液平衡实验数据进行热力学一致性检验.以ln 3/4对3作图,3为横坐标,横坐标以上的面积为A ,横坐标以下的面积为B ,如图2所示.=100×[/+](3)=150×m ax/m in(4)式中:ma x是两组分的沸点差,K ;m in是体系的最低沸点,K .若D <J或<10,则认为汽液平衡数据符合热力学一致性.对六甲基二硅醚-1,2-二氯乙烷体系,=3.4926,=6.7742,<,说明实验数据符合热力学一致性.2.2.4汽液平衡数据的关联对于热力学模型参数的回归,首先要确定目标函数.本文选用的目标函数是==1e xp ,c al,2+e xp,c a l,2(5)式中:N 为实验数据点数;exp,与ca l,分别表示第个数据点的平衡温度的实验值与计算值,K ;exp与cal分别表示汽相中组分含量的实验值与计算值;为方均根偏差.分别采用NRTL 、Wilson 、UNIQUAC 三种热力学模型对实验数据进行关联,得到模型参数,结果见表5.表5NRTL 、Wilson 、UNIQUAC 模型的二元交互作用参数Tab.5Binary interaction parameters of NRTL,Wilson and UNIQUAC modelsNRTL Wilso nUNIQUAC0.3--B 34202.1393525.487990.3267B 43662.917778.795924.3637A D0.23040.23440.2260M D0.53790.63010.54440.30280.37570.3083AD0.00100.00030.0003M D0.01660.02030.01840.00930.01090.0098表5中:==1e x p,ca l,21/2;==1ex p,c al,21/2;和分别表示达到平衡时,体系的温度和汽相组成的方均根偏差.由表5可知,采用NRTL 模型预测的汽液平衡数据,其温度最大偏差为0.5379,标准偏差为0.3028,汽相组成的最大偏差为0.0166,标准偏差为0.0093,优于Wilson 模型和UN-IQUAC 模型的预测结果.因此,认为NRTL 模型在预测常压下六甲基二硅醚-1,2-二氯乙烷二元物系的汽液平衡数据时效果较好.常压下六甲基二硅醚-1,2-二氯乙烷汽液平衡数据的预测值与实验值如图3所示.由图3可知,常压下六甲基二硅醚-1,2-二氯乙烷体系有最低共沸点,共沸温度为354.73K ,六甲基二硅醚的摩尔分数为5(质量分数%).图2汽液平衡数据的热力学一致性检验Fig.2Herin g ton test of VLE data of HMDSO-EDC3ln 3/4图3常压下六甲基二硅醚,二氯乙烷的汽液平衡曲线F 3VL f MDSO D 3,3/Ke xperimental data N RTL mode l0.19929.02-12-ig.E curve or H -E C37第3期李春利,等:常压下六甲基二硅醚-1,2-二氯乙烷汽液平衡数据的测定与关联3结论1)利用改进的Othmer釜测定了常压下苯-甲苯二元物系的汽液平衡数据,通过误差分析,证明了苯-甲苯二元物系汽液平衡数据的准确性,说明实验装置具有一定的可靠性.2)利用改进的Othmer釜测定了常压下六甲基二硅醚-1,2-二氯乙烷二元物系的汽液平衡数据,采用Herington面积积分法检验,证明实验数据符合热力学一致性.3)分别采用NRTL、Wilson、UNIQUAC模型对实验数据进行关联,得到模型参数,并将汽液平衡数据的预测值与实验值进行比较.结果表明,NRTL模型对常压下六甲基二硅醚-1,2-二氯乙烷物系的拟合精度较高,能很好地重现实验数据.常压下此物系在354.73K时共沸,六甲基二硅醚的摩尔分数为0.1995(质量分数29.02%).参考文献:[1]Rogals k i M,Ry b akiewicz S.Rapid and accurate method for determinatio n of vapoe-liquid equlilbrium[J].Ber Bunsongese Ph y s Chem,1977,8(10):1070-1073.[2]Zhang Wen lin,Ho u Kaihu,Mi Guanjie.Study on is o b aric VLE data for th e b inary system of thiophene and octane[J].Chem Eng Chin Univ,2007,21(6):911-913.[3]Renon H,Prausnitz J.Local composition in th ermodyn amic excess functions fo r liquid mixtures[J].AIChE J,1968,14:135-144.[4]朱自强,徐讯.化工热力学[M].第2版.北京:化学工业出版社,1991.[5]张文林,吕福喜,侯凯湖,等.丁基硫醚正辛烷二甲基亚砜三元体系液液平衡数据的测定与关联[J].河北工业大学学报,2011,40(2):37-40.[6]Wilson G.A new expression for the ex cess free en erg y of mixing[J].J Am Ch em So c,1964,86:127-130.[7]Abrams D S,Prausnitz J M.Statistical thermodynamics of liquid mixtures:A new expression for the exces s Gibbs energy of partly or completelymiscible systems[J].AIChE Journal,1975,21(1):116-128.[8]刘国维,刘禾,庞建媛.亚硝酸乙酯-乙醇-水三元体系汽液平衡的测定与关联[J].化工学报,1998,49(3):342-346.[9]NIST Standard Referen ce Databas e Number69,June2005Releas e.NIST Chemis try WebBook[DB/OL].[2012-12-23].http://webbo o /chemistry/.[10]Philip L Jackson,Richard A Wlisak.Thermody n amic consistency tests bas ed on the Gibbs-Duhem equation applied to is othermal,binary vapor-liq u id equilibrium data:data evaluation and modle testing[J].Fluid Phase Equilib ruia,1995,103:155-197.[11]Wis niak J.The Herin gto n test for thermodynamic consistency[J].Ind En g Chem Res,1994,33:177-180.[责任编辑田丰]。
热动中英文对照
工程热力学中英文对照词汇表AAbsolute entropy绝对熵Absolute pressure绝对压力Absolute temperature绝对温度Absolute zero of temperature绝对零度Adiabatic enthalpy drop绝热焓降Adiabatic exponent绝热指数Adiabatic flame temperature绝热燃烧温度Adiabatic process绝热过程Adiabatic system绝热系Anergy 火无,无用能Atmosphere大气Available energy有用能A vogadro’s hypothesis阿伏伽德罗假说BBinary vapour cycle两气循环B oltzman’s constant玻尔兹曼常数CCarnot cycle卡诺循环Carnot, N.L.S. 卡诺C arnot’s theorem卡诺定理Celsius temperature scale摄氏温标Characteristic function特性函数Chemical equilibrium化学平衡Chemical equilibrium constant化学平衡常数Chemical potential化学势Chemical thermodynamics化学热力学Clapeyron equation克拉贝龙方程Classical thermodynamics经典热力学Clausius-Clapeyron equation克劳修斯-克拉贝龙方程Clausius, R. 克劳修斯1Closed system闭口系Coefficient of performance of refrigerator制冷系数Coefficient of thermal expansion热膨胀系数Coefficient of utilization of thermal energy热能利用系数Combined cycle联合循环Compressibility factor压缩因子Compression ratio of cycle循环压缩比Compression work压缩功Condition of phase equilibrium相平衡条件Condition of stability稳定性条件Conservation of energy能量守恒Conservation of mass质量守恒Control mass控制质量Control surface控制面Control volume控制容积Continuty equation连续性方程Covergent-divergent nozzle缩放喷管Covergent nozzle渐缩喷管Criteria for equilibrium平衡判据Critical point临界点Critical state临界状态Critical flow临界流动Critical pressure ratio临界压力比Cycle循环DDegradation of energy能量贬值Density密度Diesel cycle笛塞尔循环Divergent nozzle渐扩喷管Diffuser扩压管Dissipation of energy能量耗散D olton’s law of partial pressare道尔顿分压定律Dry saturated steam干饱和蒸汽Dual cycle混合加热循环2EEffect of dissipation耗散效应Energy能量Engineering atmosphere工程大气压力Engineering thermodynamics工程热力学Enthalpy焓Enthalpy drop焓降Entropy熵Entropy balance equation熵方程Equation of energy for steady flow稳定流动能量方程Equation of state状态方程Equation of state in reduced form对比态方程Equilibrium平衡Equilibrium state平衡状态Ericsson cycle埃尔逊循环Exergy火用Expansion work膨胀功Extensive quantity尺度量FFahrenheit temperature scale华氏温标First law of thermodynamics热力学第一定律Flow work流动功Flux of entropy熵流Free energy自由能Free enthalpy自由焓Free expansion自由膨胀Friction摩擦Force力GGas气体Gas constant气体常数Gauge pressure表压力3Generalized compressibility chart通用压缩因子图Generalized work广义功Generation of entropy熵产G ibbs’ function吉布斯函数G ibbs’ J.W.吉布斯G ibbs’ phase rule吉布斯相律Gravitational potential重力位能HHeat热Heat of combustion燃烧热Heat (enthalpy) of formation生成热(生成焓)Heat of reaction反应热Heat pump热泵Heat source热源Helmhotz function亥姆霍兹函数H ess’ law赫斯定律Humidity湿度IIdeal gas equation of state理想气体状态方程Inequality of Clausius克劳修斯不等式Intensive quantity强度量Internal combustion engine内燃机Internal energy热力学能(内能)Inversion curve转变曲线Inversion temperature转变温度Irreversible cycle不可逆循环Irreversible process不可逆过程Isentropic compressibility绝热压缩系数Isentropic process定熵过程Isobaric process定压过程Isolated system孤立系Isometric process定容过程Isothermal compressibility定温压缩系数4Isothermal process定温过程JJoule, J.P. 焦耳Joule-Thomon effect焦—汤效应KKelvin, L. (Thomson, W.) 开尔文Kinetic energy动能K irchhoff’s law基尔霍夫定律LLatent heat潜热Law of corresponding states对应态定律Law of partial volume分容积定律L e Chatelier’s principle吕—查德里原理Local velocity of sound当地声速Lost available energy有用能损失MMach number马赫数Mass flow rate质量流量Maximum work from chemical reaction反应最大功Maxwell, J.C. 麦克斯韦Maxwell relations麦克斯韦关系M ayer’s formula迈耶公式Mechanical equilibrium力学平衡Metastable equilibrium亚稳定平衡Mixture of gases混合气体Moist air湿空气Moisture content含湿量Molar specific heat摩尔比热NNernst heat theorem奈斯特热定理5Nonequilibrium-thermodynamics非平衡热力学Nozzle喷管OOne dimensional flow一维流动Open system开口系Otto cycle奥托循环PParameter of state状态参数Perfect gas理想气体Perpetual motion engine永动机Perpetual motion engine of the second kind第二类永动机Phase相Polytropic process 多变过程Potential energy位能Power cycle动力循环Pressure压力Principle of increase of entropy熵增原理Process过程Psychrometer chart湿空气焓—湿图Push work推挤功Pure substance纯物质QQuantity of refrigeration制冷量Quality of vapor-liquid mixture, Dryness干度Quasi-equilibrium process准平衡过程Quasi-static process准静态过程RRankine cycle朗肯循环Ratio of pressure of cycle循环增压比Real gas实际气体Reduced parameter对比参数6Refrigerant制冷剂Refrigeration cycle制冷循环Refrigerator制冷机Regenerative cycle回热循环Reheated cycle再热循环Relative humidity相对湿度Revesed Carnot cycle逆卡诺循环Reversed cycle逆循环Reversible cycle可逆循环Reversible process可逆过程SSaturated air饱和空气Saturation pressure饱和压力Saturation state饱和状态Saturation tempperature饱和温度Saturated vapor饱和蒸汽Saturated water饱和水Second law of thermodynamics热力学第二定律Simple compressible system简单可压缩系Sink冷源Specific heat比热容Specific heat at constant pressure定压比热容Specific heat at constant volume定容比热容Specific humidity绝对湿度Specific volume比体积Stable equilibrium稳定平衡Stagnation enthalpy滞止焓Standard atmosphere标准大气压力Standard enthalpy of formation标准生成焓Standard state标准状况State状态State postulate状态公理Statistical thermodynamics统计热力学7Steady flow稳定流动Steam水蒸汽Subsonic亚声速Superheated steam过热蒸汽Supersonic超声速TTemperature温度Temperature of dew-point露点温度Temperature scale温度标尺Technical work技术功Theoretical flame temperature理论燃烧温度Thermal coefficient热系数Thermal efficiency热效率Thermal equilibrium热平衡Thermodynamic Probability热力学概率Thermodynamics热力学Thermodynamic system热力学系统Thermodynamic temperature scale热力学温标Third law of thermodynamics热力学第三定律Throttling节流Triple point 三相点UUnavailable energy无用能Universal gas constant通用气体常数VVacuum真空度V an der Waals’ equation范德瓦尔斯方程Velocity of sound声速Virial equation of state维里状态方程WWet-Bulb temperature湿球温度Wet saturated steam湿饱和蒸汽8Work功Working substance 工质ZZeroth law of thermodynamics热力学第零定律制冷专业英语基本术语制冷refrigeration蒸发制冷evaporative refrigeration沙漠袋desert bag制冷机refrigerating machine制冷机械refrigerating machinery制冷工程refrigeration engineering制冷工程承包商refrigeration contractor制冷工作者refrigerationist制冷工程师refrigeration engineer制冷技术员refrigeration technician制冷技师refrigeration technician制冷技工refrigeration mechanic冷藏工人icer制冷安装技工refrigeration installation mechanic制冷维修技工refrigeration serviceman冷藏链cold chain制冷与空调维修店refrigeration and air conditioning repair shop冷藏refrigerated preservation流体力学词汇(部分) 英汉对照Aabsolute pressure 绝对压力acceleration 加速度acceleration of gravity 重力加速度acceleration of transport 迁移加速度acoustic wave 声波adhesive forces 粘滞力, 附着力adiabatic flow 绝热流动airfoil 翼型angle of attack 冲角9angular velocity 角速度apparent shear stresses 表面剪切应力apparent stresses 表面应力Archimedes law 阿基米德定律atmospheric pressure 大气压axial-flow 轴向流动Axisymmetric around cylinder no circulation ideal flow 轴对称绕圆柱体无环流理想流动Bback pressure 背压baroclinic fluid 斜压流体barometer 气压计barotropic fluid 正压流体Bernoullis equation 伯努利方程blade 叶片body-force 质量力boundary condition 边界条件boundary layer 边界层,附面层boundary layer separation 边界层分离boundary layer thickness 附面层厚度bulk modulus 体积模量bulk stress 体积应力bundle of streamline 流束buoyant force 浮力butter layer 过渡层CCauchy-Reimam condition 柯西—黎曼条件center of pressure 压强中心coefficient 系数coefficient of compressibility 压缩系数coefficient of eddy viscosity 涡流粘性系数coefficient of viscosity 粘度粘性系数cohesive forces 粘附力combined boundary layer 组合边界层completely rough zone of turbulent pipe flow 紊流粗糙管平方阻力区10component velocity 合速度compressibility 压缩性compressible fluid 可压缩流体conservation equation of energy 能量守恒方程conservation equation of mass 质量守恒方程conservation of mechanical energy 机械能守恒conservation of moment of momentum 动量矩守恒conservation of momentum 动量守恒continuity 连续性continuum 连续介质continuum hypothesis 连续介质假设control surface 控制面control volume 控制体(积)convective acceleration 迁移加速度convergent-divergent nozzle 缩放喷嘴converging nozzle 收缩喷嘴correction coefficient 修正系数critical pressure 临界压强critical Reynolds number 临界雷诺数critical speed of sound 临界声速critical state 临界状态cross section 横截面curvature radius 曲率半径curved shock 曲面波cylindrical coordinate system 柱坐标系Ddeformation velocity 变形速度density 密度detachment 脱体differential pressure 差压,压差,压力降dimensionless number 无量纲数displacement thickness 位移厚度distribution 分布disturbance wave 扰动波doublet 偶极子11drag coefficient 阻力系数dynamic pressure 动压强dynamic similarity 动力相似性dynamic viscosity 动力粘度Eeddy zone 涡流区eddying flow 涡(紊旋)流efficiency 效率elastic wave 弹性波elevation head 位置水头energy of turbulence 湍能enthalpy 焓entropy 熵equation of continuity 连续性方程equation of energy 能量方程equation of moment –of momentum 动量矩方程equation of motion 运动方程equation of state 状态方程equilibrium 平衡Eulerian equation 欧拉方程Euler method 欧拉方法Euler's formula 欧拉公式Ffield 场flow coefficient 流量系数flow meter 流量表,流量计flow net 流网flow pattern 流型fluctuating pressure 脉动压力fluctuating stress 脉动应力fluid 流体fluid dynamics 流体动力学fluid field 流场fluid machinery 流体机械fluid mechanics 流体力学12fluid particle 流体质点fluid statics 流体静力学free surface 自由表面friction coefficient 摩擦系数friction drag 摩擦阻力frictionless fluid 无粘性流体Ggas constant 气体常数gas dynamics 气体动力学gauge pressure 表压力geometric pressure 几何压力geometric similarity 几何相似gradual contraction 渐缩gradual enlargement 渐扩Hharmonic function 调和函数headloss 压头损失heat transfer 传热Helmholtz equation 亥姆霍兹方程heterogeneous fluid 非均质流体homogeneous fluid 均质流体horizontal force 水平力horizontal line 水平线hydraulic diameter 水力直径hydraulically smooth zero of turbulent pipe flow 紊流光滑管区hydrostatics 流体静力学hydrostatics force 流体静压力hydrostatics stress 流体静应力hypersonic flow 高超音速流动(m>5)Iincompressible fluid 不可压缩流体inertial coordinate system 惯性坐标系initial condition 初始条件input 输入intensity of turbulence 紊流(强)度13interface 分界面internal energy 内能internal friction 内摩擦inviscid fluid 无粘性流体irrotational flow 无旋流动irrotational motion 无旋运动isentropic process 定熵过程isotropic flow 均质流动isotropic fluid 均质流体KKarman qotex street 卡门涡街kinematic energy 动能kinematic moleculer theory 分子运动论kinematic similarity 运动相似性kinematic viscosity 运动粘度Kutta-Joukowski theorem 库塔—儒可夫斯基定理LLagrange method 拉格朗日方法Lagrangian viewpoint 拉格朗日观点laminar boundary layer 层流边界层laminar flow 层流laminar sublayer 层流底层Laplace operator 拉普拉斯算子Laplace's equation 拉普拉斯方程Laval nozzle 拉伐尔喷管lift 升力linear acceleration 线性加速度linear velocity 线速度liquid 液体liquid fluid 流体local acceleration 当地加速度MMach angle 马赫角Mach cone 马赫锥Mach number 马赫数14mass 质量mass flowrate 质量流量material derivative 随体导数mean-time-average velocity 时均速度mechanical energy 机械能mercury 水银minor loss 局部阻力mixing-length theory 混合长理论moment of momentum 动量矩momentum integral relation 动量积分关系式momentum thickness 动量厚度moody diagram 莫迪图move velocity 平移速度multi-phase flow 多相流流动NNavier-stokes equation 纳维—斯托克斯(N-S )方程near wall region 近壁区Neuton's viscosity law 牛顿粘性定律Newtonian fluid 牛顿流体no sources and sinks 无源无汇node 节点non-steady flow 非定常流动non-uniform 非均匀流动nonviscous fluid 非粘性流体normal direction 法向normal line 法线normal shock wave 正激波normal stress 法向应力Ooblique shock 斜激波one-dimensional compressible flow 一维可压缩流动one-dimensional flow 一维流动one order tensor 一阶张量open channel flow 明渠流动open system 开口系统15order of magnitude 量级orifice 孔口orifice plate 孔板output 输出Pparallel flow 层流流动parameter 参数particle path 质点轨迹path line 迹线perfect gas 理想气体pipe flow 管流Pitot-static tube 皮托—静压管Pitot tube 皮托管plane flow 平面流动plane jet 平面射流point of inflextion 拐点point of transition 过渡点potentional energy 势能Potential flow 势流power 功率Prandtl mixing length 普朗特混合长度Prandtl number 普朗特数pressure differential 压差pressure drag 压差阻力pressure field 压强场pressure force 压力pressure gage 压强计pressure gradient 压强梯度pressure head 压强水头pressure wave 压力波Qquantum mechanics 量子力学quasi-static process 准静态过程quasi-steady theory 准定常理论R16radial velocity 经向速度ratio of specific heats 比热比real fluid 粘性流体real gas 真实气体,实际气体rectangular coordinate system 直角坐标系reduced Navier-Stokes equation 简化纳维—斯托克斯方程Reynolds number 雷诺数resonance 共振Reynolds stress 雷诺应力rotation velocity 旋转速度rotational flow 有旋流动rough-pipe zone of flow 流动的光滑管区roughness 粗糙度Ssame mass flow 均质流secondary flow 二次流流动separation point 分离点sharp-crested weir 尖顶堰shear stress 剪切力shear deformation 剪切变形shock wave 激波similarity 相似性sink 汇siphon 虹吸管skin(or wall) friction 表面(或壁)摩擦(力)small perturbance 小扰动sonic barrier 声障sonic flow 声速流动sound wave 声波source 源specific force of gravity 比重specific heat 比热speed of sound 声速spherical coordinate system 球坐标系Stokes' viscosity law 斯托克斯粘性定律17stress tenser 应力张量stress 应力stagnation point 驻点stagnation pressure 驻点压强stagnation temperature 驻点温度standard atmosphere 标准大气压static pressure 静压强steady flow 定常流动strain rate tensor 变形速度张量streamline 流线stream function 流函数streamline form 流线形streamtube 流管Strouhal number 斯特劳哈尔数subcritical flow 亚临界流动subsonic flow 亚声速流动supercritical flow 超临界流动supersonic flow 超声速流动surface force 表面力surface tension 表面张力Ttemperature gradient 温度梯度tensor 张量theory of similarity 相似性理论thermal conductivity 热传导率thermal field 温度场thin-plate orifice flowmeter 薄孔板流量计total drag 总阻力total flow 总流量total pressure 总压强traction force 拉力transformation 转换transonic flow 跨音速流动transport theorem 输运定理triangular weir 三角堰18turbo-machinery 涡轮机械turbulent boundary layer 湍流(紊流)边界层turbulent energy 湍流(紊流)能量turbulent flow 紊流turbulent jet 湍流(紊流)射流two-dimensional flow 二维流动UU - tube U 型管uniform flow 均匀流动unit vector 单位矢量unsteady flow 非定常流动Vvelocity 速度velocity circulation 速度环量velocity gradient 速度梯度velocity head 速度水头velocity of sound 音速velocity potential 速度势Venturi flowmeter 文丘里流量计vertical force 垂直力viscous sublayer 层流底层viscosity 粘度viscosity factor 粘度系数viscosity resistance 粘性阻力viscous fluid 粘性流体volume of flow 流量volume flow 容积流量von Karman integral momentum equation 卡门动量积分方程vortex 涡旋vortex flow 涡流vortex line 涡线vortex street 涡街vortex strength 涡强度vortex tube 涡管vorticity 涡量19Wwake vortex 尾涡流wave drag 波阻wave length 波长wave speed 波速well-ordered mean-time-average flow 有序时均流wind tunnel 风洞woke 尾涡区work 功压缩机制冷系统及机组制冷系统refrigeration system制冷机refrigerating machine机械压缩制冷系统mechanical compression refrigeration system蒸气压缩制冷系统vapour compression refrigeration system压缩式系统compression system压缩机compressor制冷压缩机refrigerating compressor, refrigerant compressor吸气端suction end排气端discharge end低压侧low pressure side高压侧high pressure side蒸发压力evaporating pressure吸气压力suction pressure, back pressure排气压力discharge pressure蒸发温度evaporating temperature冷凝压力condensing pressure冷凝温度condensing temperature吸气温度suction temperature回气温度back temperature排气温度discharge temperature压缩比compression ratio双效压缩dual compression单级压缩single-stage compression双级压缩compound compression20多级压缩multistage compression压缩级compression stage低压级low pressure stage高压级high pressure stage中间压力intermediate pressure中间冷却intercooling多级膨胀multistage expansion湿压缩wet compression干压缩dry compression制冷系统refrigerating system机械制冷系统mechanical refrigerating system氟利昂制冷系统freon refrigerating system氨制冷系统ammonia refrigerating system压缩式制冷系统compression refrigerating system单级压缩制冷系统single-stage compression refrigeration system双级压缩制冷系统two-stage compression refrigeration system多级制冷系统multistage refrigerating system复叠式制冷系统cascade refrigerating system混合制冷剂复叠系统mixed refrigerant cascade集中制冷系统central refrigerating plant直接制冷系统direct refrigeration system直接膨胀供液制冷系统refrigeration system with supply liquid direct expansion 重力供液制冷系统refrigeration system with supply liquid refrigerant for the evaporator by gravity液泵供液制冷系统refrigeration system with supply liquid refrigerant for evaporator by liquid pump间接制冷系统indirect refrigeration system融霜系统defrosting system热气融霜系统defrosting system by superheated vapour电热融霜系统eletrothermal defrosting system制冷系统故障breakdown of the refrigerating system冰堵freeze-up冰塞ice plug脏堵filth blockage油堵greasy blockage21液击(冲缸、敲缸)slugging湿行程wet stroke镀铜现象appearance of copper-plating烧毁burn-out倒霜frost back制冷机组refrigerating unit压缩机组compressor unit开启式压缩机组open type compressor unit开启式压缩机open type compressor半封闭式压缩机组semihermetic compressor unit半封闭式压缩机semihermetic compressor全封闭式压缩机组hermetically sealed compressor unit全封闭式压缩机hermetically sealed compressor压缩冷凝机组condensing unit全封闭式压缩冷凝机组hermetically sealed condensing unit半封闭式压缩冷凝机组semihermetically sealed condensing unit开启式压缩冷凝机组open type compressor condensing unit工业用压缩冷凝机组industrial condensing unit商业用压缩冷凝机组commercial condensing unit整马力压缩冷凝机组integral horsepower condensing unit分马力压缩冷凝机组fractional horsepower condensing unit跨式制冷机组straddle refrigerating unit热泵热泵heat pump供热热泵heating heat pump制冷与供热热泵cooling and heating heat pump热泵循环heat pump cycle性能系数coefficient of performance (COP)供热量heat output压缩式热泵compression heat pump蒸汽压缩式热泵vapour compression heat pump空气压缩式热泵air heat pump蒸汽喷射式热泵steam jet heat pump22吸收式热泵absorption heat pump低温型吸收式热泵low temperature absorption heat pump高温型吸收式热泵high temperature absorption heat pump水-气式热泵water/air heat pump土壤热源热泵ground source heat pump土壤盘管热泵ground coil heat pump水源热泵water source heat pump水盘管热泵water coil heat pump空气源热泵air source heat pump空气盘管热泵air coil heat pump热泵空气盘管heat pump air coil, air coil热泵水盘管heat pump water coil, water coil热泵土壤盘管heat pump ground coil, ground coil气-气式热泵air/air heat pump气-水式热泵air/water heat pump水-水式热泵water/water heat pump地-气式热泵soil/air heat pump地-水式热泵soil/water heat pump一次热泵primary heat pump二次热泵secondary heat pump第三级热泵tertiary pump太阳能热泵solar heat pump家用热泵domestic heat pump工业热泵industrial heat pump高温热泵high temperature heat pump温度放大器templifier热泵式热水器heat pump water heater热泵式空调器heat pump air conditioner热泵式干燥机heat pump drying plant蒸馏和浓缩用热泵heat pump for distilling and thickenning processes制冷系统自动调节流量调节flow regulation制冷剂控制器refrigerant control23膨胀阀expansion valve节流阀throttle valve热力膨胀阀thermostatic expansion valve热电膨胀阀thermal electric expansion valve内平衡热力膨胀阀internal equalizer thermostatic expansion valve外平衡热力膨胀阀external equalizer thermostatic expansion valve外平衡管external equalizer pipe内平衡管internal equalizer pipe蒸发器阻力损失pressure drop of evaporator同工质充注same material charge交叉充注cross charge吸附充注absorptive charge气体充注gas charge膨胀阀过热度superheat degree of expansion valve过热温度调节superheat temperature regulation膨胀阀容量expansion valve capacity手动膨胀阀hand expansion valve自动膨胀阀automatic expansion valve浮球调节阀float regulation valve浮球阀float valve低压浮球阀low pressure float valve高压浮球阀high pressure float valve制冷辅助设备压力容器pressure vessel贮液筒/器surge drum高压贮液筒high pressure receiver低压贮液筒low pressure receiver低压平衡筒accumulator,surge drum均压管/平衡管equalizer均压罐equalizer tank平衡罐balance tank液体分离器suction trap气液分离器flash chamber净化系统purge recovery system24油分离器oil separator集液器liquid trap集油器oil receiver,oil trap不凝性气体分离器non condensable gas purger放空气器gas purger干燥器dehydrator,drier过滤器filter,screen,strainer干燥过滤器drier-filter脱水dehydration干燥drying干燥剂desiccant硅胶silica gel活性铝activated carbon分子筛molecular sieve润滑lubrication滑油冷却器oil cooler中间冷却器intercooler,interstage cooler闪发式中间冷却器flash intercooler膨胀容器expansion tank经济器economizer喷射器ejector搅拌器agitator抽气回收装置purge recovery unit排空pump-down循环泵circulation pump液位指示器liquid level indicator窥镜sight glass液体流动指示器liquid flow indicator吸入压力表suction gauge排出压力表discharge gauge管道与附件配管tubing空调制冷配管ACR tubing管道piping,tubing25制冷管路refrigeration pipe line系统酸状况acid condition system退火annealing加压元件pressure imposing element检修门access door气封vapor lock主管main歧管manifold集管header盐水管brine line盐水集管brine header旁通管by-pass套管tube-within-a-tube伸缩弯expansion loop存油弯oil loop液环liquid loop吸入管suction line,return line消声器muffler分液贮存器accumulator排出管discharge line,hot gas line液体管liquid line冷凝液管condensate line管道附件fittings软接头connecting hose加液接头charging connection快装接头quick-release coupling,quick-coupler法兰flange接管coupling收缩管constricted tube异径内承插管reducing coupling异径外承插管double male reduction异径套管reducing bushing螺纹接管nipple阀valve截止阀stop valve26止回阀check valve角阀angle valve球阀ball type valve,ball valve闸阀gate valve操作阀service valve防通阀bypass valve二通阀two-way valve三通阀three-way valve塞子plug端盖cap垫gasket垫料gasket填料packing喇叭口接头flared joint扩口工具flaring tool胀口工具swaging tool弯曲弹簧bending spring弹簧弯管器bending spring扭矩扳手torque wrench制冷装置制冷装置refrigerating installation,refrigerating plant工业制冷装置industrial refrigerating plant商业制冷装置commercial refrigerating plant中心站房central station成套机组self-contained system规范安装code installation制冷回路refrigerating circuit热平衡heat balance货物负荷product load操作负荷service load设计负荷design load负荷系数load factor制冷装置试验与操作27试运转commissioning吹污flush气密性试验gas-tight test,air-right test密闭容器closed container漏气air infiltration放气air vent检漏leak hunting,leak detection检漏仪leak detector卤素灯halide torch电子检漏仪electronic leak detector真空试验vacuum test试验压力test pressure工作压力operating pressure,working pressure最高工作压力highest operating pressure气密试验压力gas-tight test pressure设计压力design pressure平衡压力balance pressure充气aerate,gas charging制冷剂充注refrigerant charging首次充注initial charge保护充注holding charge,service charge制冷剂不足lack of refrigerant,under-charge,gas shortage缺液starveling充灌台charging board充灌量charge充注过多overcharge供液过多overfeeding制冷剂抽空pump down of refrigerant降温试验pull down test制冷[功能]试验refrigeration test卸载起动no-load starting,unloaded start卸载机构unloader闪发flash vaporization,instantaneous vaporization闪发气体flash gas不凝性气体non condensable gas28气体排除gas purging,degassing,gasoff阀针跳动hammering,needle hammer阀振荡hunting of a valve阀片跳动valve flutter,valve bounce短期循环short-cycling异常温升overheating泄漏leak气蚀cavitation制冷剂瓶refrigerant cylinder,gas bottle检修用瓶service cylinder,gas bottle紧急泄放阀emergency-relief valve检修阀service valve安全阀pressure relief valve抽空阀pump out valve加油阀oil charge valve放油阀oil drain valve放空阀purge valve充灌阀charging valve喷液阀liquid injection valve制冷能力及计算术语制冷量refrigerating capacity总制冷量gross refrigerating capacity净制冷量net refrigerating capacity单位制冷量refrigerating capacity per weighing单位容积制冷量refrigerating capacity per unit of swept volume制冷系统制冷量system refrigerating capacity单位轴功率制冷量refrigerating effect per shaft power压缩冷凝机组制冷量compressor condensing unit refrigerating capacity制冷压缩机制冷量refrigerant compressor capacity蒸发器净制冷量net cooler refrigerating capacity空调有效显热制冷量useful sensible heat capacity of air conditioner空调有效潜热(减湿)制冷量useful latent heat (dehumidifyying) capacity of air conditioner空调器有效总制冷量useful total capacity of air conditioner29制冷剂循环量circulating mass of refrigerant制冷剂循环容积circulating volume of refrigerant单位压缩功compress work per mass示功图indicator diagram指示功indicated work摩擦功frictional work功率power摩擦功率frictional power指示功率indicated power理论功率idea power轴功率brake power效率efficiency指示效率indicated efficiency机械效率mechanical efficiency总效率overall efficiency制冷系数coefficient of performance (COP)制冷压缩机的制冷系数refrigerating compressor coefficient of performance热力完善度thermodynamical perfectness能效比energy efficiency ratio (EER)热泵供热系数heat-pump coefficient of performance热泵用压缩机的供热系数heat-pump compressor coefficient of performance容积效率volumetric efficiency容积输气量volumetric displacement实际输气量actual displacement理论输气量theoretical displacement冷凝热量condenser heat过冷热量heat of subcooling过热热量superheat运转工况下的制冷量rating under working conditions标准制冷量standard rating名义工况normal conditions试验工况test conditions运行工况operating conditions标准性能standard rating标准工况standard condition30空调工况air conditioning condition内部条件internal conditions外部条件external conditions蓄热accumulation of heat蓄冷accumulation of cold制冰能力ice-making capacity除霜结霜frost formation积霜frost deposit回霜frost back除霜defrosting化霜defrosting融霜defrosting冲霜defrosting人工除霜manual defrosting除霜周期defrosting cycle除霜循环defrosting cycle中止除霜循环off-cycle defrosting周期除霜系统cycle defrost system自动除霜automatic defrosting半自动除霜semi-automatic defrosting高速半自动除霜fast semi-automatic defrosting定时除霜time defrosting外能除霜external defrosting水除霜water defrosting水除霜系统water defrosting system热水除霜hot water defrosting热液除霜系统hot liquid defrosting system内能除霜internal defrosting热气除霜hot gas defrosting热气除霜系统hot gas defrosting system热液除霜hot liquid defrosting逆循环除霜reverse cycle defrosting31逆循环除霜系统reverse cycle defrosting system除霜用热气管hot gas line for defrosting热箱除霜thermotank defrost电加热器除霜electric heater defrosting电加热器除霜系统electric heater defrosting system暖空气除霜warm air defrosting除霜水盘drip tray,defrost pan蒸发器及冷却设备蒸发器evaporator直接冷却式蒸发器direct evaporator直接式蒸发器direct evaporator间接冷却式蒸发器indirect cooled evaporator间接式蒸发器indirect evaporator干式蒸发器dry expansion evaporator满液式蒸发器flooded evaporator再循环式蒸发器recirculation-type evaporator强制循环式蒸发器pump-feed evaporator壳盘管式蒸发器shell-and-coil evaporator壳管式蒸发器shell-and-tube evaporator喷淋式蒸发器spray-type evaporator立管式蒸发器vertical-type evaporator平行管蒸发器raceway coil螺旋管式蒸发器spiral tube evaporator“V”型管蒸发器herringbone type evaporator沉浸式盘管蒸发器submerged evaporator板式蒸发器plate-type evaporator螺旋板式蒸发器spiral sheet evaporator平板式蒸发器plate-type evaporator,tube-in-sheet evaporator管板式蒸发器tube-on-sheet evaporator凹凸板式蒸发器embossed-plate evaporator吹胀式蒸发器roll-bond evaporator压焊板式蒸发器roll-bond evaporator制冰块器的蒸发器ice cube maker evaporator结冰式蒸发器ice-bank evaporator32。
Isobaric Vapor
Transactions of Tianjin University (2018) 24:424–433https:///10.1007/s12209-018-0125-y1 3Isobaric Vapor–Liquid Equilibrium for t ert -Butyl Alcohol + Water + Propane-1,3-Diol + 1-Ethyl-3-Methylimidazolium Chloride at 101.3 kPaX ianbao C ui 1 · Q inglong C heng 1 · H aofei L iu 1 · L exing X ue 1 · J inbo Z hou 2 · Y ing Z hang 1 · T ianyang F eng 1 · K ai Z hang 1 Received: 16 April 2017 / Revised: 6 June 2017 / Accepted: 9 July 2017 / Published online: 19 January 2018© T ianjin University and Springer-Verlag GmbH Germany, part of Springer Nature 2018A bstractI n this study, we used a mixture of organic liquid propane-1,3-diol and ionic liquid 1-ethyl-3-methylimidazolium chloride ([emim]Cl) as the entrainer to separate t ert -butyl alcohol (TBA) + water. We measured the isobaric vapor–liquid equi-librium (VLE) for the quaternary system TBA + water + propane-1,3-diol + [emim]Cl at 101.3 kPa, and found the VLE data to be well correlated with the nonrandom two-liquid model. These results show that the mixed solvent of propane-1,3-diol + [emim]Cl can increase the relative volatility of TBA to water and break the azeotropic point. We found no notable synergetic eff ect between them, and observed that the liquid mixed solvent of propane-1,3-diol and [emim]Cl had lower viscosity than [emim]Cl, which makes it a promising entrainer for separating the TBA + water azeotrope in industrial applications.K eywords t ert -Butyl alcohol · W ater · P ropane-1-3-diol · 1-Ethyl-3-methylimidazolium chloride · V apor–liquid equilibrium I ntroduction T he excellent organic solvent t ert -butyl alcohol (TBA), which is often used in coatings, pharmaceutical solvents, and gasoline additives [ 1 ], is prepared using either hydration or hydrolyzation method [ 2 , 3 ]. The TBA + water mixture has a minimum boiling point azeotrope (TBA mass fraction of 88.24%) at 353.06 K, 101.3 kPa [ 4 ] and is impossible to separate by conventional distillation. Thus, special distil-lation processes [ 5 ] are utilized, such as extractive distilla-tion, azeotropic distillation, and pressure swing distillation, to separate azeotropic mixtures. Extractive distillation is widely adopted to separate azeotropes, and its key aspect of extractive distillation is the selection of a suitable solvent (entrainer). Ren et al. [ 6 ] utilized ethylene glycol as solventto separate t ert -butyl alcohol and water, and measured the corresponding vapor–liquid equilibrium (VLE).I n recent years, the use of ionic liquids (ILs) as entrainers in extractive distillation has been reported by many scholars. Room-temperature ILs are organic salts with melting points below 373 K, which are composed of organic cations and organic or inorganic anions [ 7 , 8 ]. Due to their ignorable vapor pressures, good chemical and thermal stabilities, and other designable physical–chemical properties, ILs are eas-ily handled and have high separation abilities in extractive distillation [7–17].Lei et al.[10]fi rst proposed and utilized ILs as entrainers to separate azeotropic mixtures in extrac-tive distillation. Since then, many scholars, including Orch-illés et al.[12,13],Calvar et al.[14],Zhang et al.[15–18],Cui et al.[19–22],Li et al.[23–25],and Lei et al.[26–32],have studied the application of ILs to separating azeotropic mixtures. ILs show a signifi cant salting-out eff ect, which may enhance the relative volatility between azeotropic components.T raditional extractive distillation methods use two dis-tillation columns: an extractive distillation column and an entrainer recovery column. Usually, the solvent is recycled between the two columns. In the process of solvent circu-lation, the temperature of the solvent must be kept above* X ianbao C ui c xb@ 1S tate Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology ,T ianjin University ,T ianjin 300350,C hina 2L anzhou Petrochemical Research Center of Petrochemical Research Institute ,P etroChina Co., Ltd ,L anzhou 730060 ,C hina425Isobaric Vapor–Liquid Equilibrium for t ert -Butyl Alcohol + Water + Propane-1,3-Diol +… 1 3the melting point or the pipe may become blocked. ILs are considered to be eff ective entrainers for separating many azeotropic mixtures. However, some ILs are solid at room temperature, which can hinder the utilization of recycled ILs in extractive distillation. Because ILs have excellent solubil-ity in organic solvents, dissolving ILs with high selectiv-ity in a high-boiling-point molecular liquid entrainer is an eff ective method for obtaining mixed solvents that are liq-uid in room temperature and are convenient to use [ 22 , 27 ]. Zhang et al. [ 33 ] studied [emim]Cl, [emim]OAc, [bmim]Cl, [bmim]OAc, [hmim]Cl, and [hmim]OAc for separating TBA + water. Zhang et al. [ 15 , 16 ] also investigated the use of [emim]Br, [bmim]Br, [hmim]Br, [TEA]OAc, and [TEA]Lc for separating TBA + water. Of the above ILs, [emim]Cl has been shown to be the most effi cient entrainer for TBA + water. However, the melting point of [emim]Cl is 86 °C [ 34 ]. Knight and Doherty [ 35 ] reported that the solvent feed temperature should be lower by 5–15 °C than the temperature at the top of extractive column. The boiling point of the TBA at 101.3 kPa is 82.4 °C. There-fore, the appropriate feed temperature range of the solvent ([emim]Cl) should be 67.4–77.4 °C. At that temperature range, [emim]Cl is solid. A too-high feed temperature will decrease the TBA purity at the top of column. In this study, we selected propane-1,3-diol as the cosolvent for dissolving [emim]Cl. We measured the VLE of the TBA + water + pro-pane-1,3-diol + [emim]Cl quaternary system at 101.3 kPa, and correlated it using the nonrandom two-liquid (NRTL) equation to obtain the binary parameters.E xperimental M aterials We obtained the TBA (analytical reagent grade) and pro-pane-1,3-diol (analytical reagent grade) from Guangfu Rea-gents Co., Ltd, Tianjin, China. Their declared purities were higher than 99.9 wt%, as confi rmed by gas chromatography (GC). We purchased the IL [emim]Cl with a purity higher than 99 wt% from Aolike Chemical Reagents Co., Ltd, Lan-zhou, China. The water content in each chemical was lessthan 0.03%, as determined by Karl Fischer titration. We used all of the above chemicals directly without further purifi ca-tion. Table 1 lists the chemical specifi cations.A pparatus and ProcedureW e collected the VLE data using an all-glass dynamic recir-culating still, the details of which were given in our previ-ous paper [ 22 ]. To verify the reliability of the apparatus, we measured the isobaric VLE of TBA + water at 101.3 kPa. Table 2 and Fig. 1 show the VLE data and absolute devia-tions, respectively. Here, T is equilibrium temperature; x 1 and y 1 are the mole fractions of TBA in the liquid and vapor phases, respectively. As shown in Fig. 1 , the measured VLE values were in good agreement with those in Ref. [ 15 ] andT able 1S pecifi cations ofchemical samplesaG as chromatography bK arl Fischer titration cL iquid chromatographyC omponent C AS S ample source M ass purity (%) W ater con-tent (%) A nalytical method T BA 75-65-0 G uangfu 99.9 0.02 G C a KF bP ropane-1,3-diol 504-63-2 G uangfu 99.9 0.02 G C a KF b [emim]Cl 65039-09-0 A olike 99.0 0.03 L C c KF bT able 2E xperimental VLE data for TBA(1) + water (2) binary sys-tem at 101.3 kPa S tandard uncertainties are u ( x ) = 0.001, u ( y ) = 0.001, u ( T ) = 0.1 K, u ( P ) = 0.1 kPaaΔT =T exp −T cal bΔy 1=y exp1−y cal 1T (K) x 1 y 1 ΔT (K ) a Δy 1 b355.2 0.988 0.981 − 0.10 0.005 354.5 0.942 0.902 0.05 − 0.001 353.9 0.898 0.846 0.05 0.002 353.0 0.821 0.763 − 0.10 − 0.004 352.8 0.727 0.697 0.05 − 0.003 352.7 0.667 0.662 0.05 − 0.004 352.8 0.606 0.640 0.05 0.002 353.0 0.504 0.599 0.05 − 0.001 353.1 0.480 0.592 0.05 − 0.002 353.4 0.337 0.566 − 0.10 0.002 353.6 0.301 0.559 0.00 − 0.001 354.0 0.196 0.548 0.05 − 0.002 354.6 0.102 0.529 − 0.10 − 0.003 355.7 0.072 0.508 − 0.10 0.001 357.7 0.050 0.474 0.15 0.007 362.0 0.024 0.343 − 0.10 − 0.010 373.1 0.000 0.000 − 0.10 0.000426 X. Cui et al.1 3with the calculated data from the NRTL model using thebinary parameters obtained from software ChemCAD data-bank. We measured the VLE of the TBA + water + propane-1,3-diol + [emim]Cl quaternary system using the same apparatus. For each experimental data point, we ensured the accuracy of the prepared quaternary solution with a digital balance (Mettler-Toledo AL204, Mettler-Toledo Instruments (Shanghai) Co., Ltd., Shanghai, China), whose standard uncertainty was 0.0001 g. We stirred the solution until all the solid was dissolved, and then put it into the equilibrium still and heated it to boiling.W e maintained the pressure of the still at 101.3 kPa with a pressure-controlling system, as measured by a manometer with a standard uncertainty of 0.1 kPa. We determined the temperature using a thermometer with a standard uncertainty of 0.1 K, and assumed the VLE to have been reached when the temperature remained constant for about 30 min. We withdrew samples of the equilibrium phases from the vapor and liquid sampling points for analysis, respectively.S ample AnalysisWe analyzed the samples with a GC (Beifen SP-3420, Bei-jing Beifen-Ruili Analytical Instrument (Group) Co., Ltd, China) and Karl Fischer titration. The GC was equipped with a GDX-103 packed column (2 m in length and 3 mm in diam-eter) and a thermal conductivity detector (TCD) for which the carrier gas was hydrogen with a fl ow rate of 25 mL/min. The temperatures of the column, injector, TCD, and fi lament were 443.15, 503.15, 503.15, and 543.15 K, respectively. For the liquid phase, no [emim]Cl can be detected because of its non-volatility and retention by a trap located between the injector and the chromatographic column. We diluted the liquid sample with anhydrous TBA and then analyzed it by Karl Fisher titration. In this experiment, the authenticmass of the water in the liquid sample equaled the watercontent obtained from Karl Fisher titration multiplied by the total mass of the diluted solution. Next, we obtained the water content in the liquid-phase sample. Since the ratios of TBA and propane-1,3-diol to water can be obtained by GC, we obtained the contents of TBA and propane-1,3-diol. Then, we can obtain the concentration of [emim]Cl in the liquid phase, because the summation of all the contents was equal to 1. Because of the non-volatility of the IL, we found no [emim]Cl in the vapor phase. Since the boiling point of the propane-1,3-diol is much higher than those of TBA and water, and the content of propane-1,3-diol in the quaternary solution was low, we found no propane-1,3-diol in the vapor phase. We detected only TBA and water in the vapor phase, and calibrated the concentrations of TBA and water using the calibration factors determined by the GC results of a set of known solutions [ 22 ].R esults and Discussion E xperimental DataI n Ref. [ 22 ], we verifi ed the reliability of our experimental method and apparatus in our previous work. We obtained the isobaric VLE data for the TBA( 1 ) + water ( 2 ) + propane-1,3-diol (3) + [emim]Cl (4) quaternary system at 101.3 kPa. In each series, we fi xed the mole fraction of the mixed sol-vent added to the system at 0.1 and 0.3. Tables 3 and 4 list the isobaric VLE data for these mole fractions, respectively, where x 1 – x 4 are the mole fractions of TBA, water, propane-1,3-diol, and [emim]Cl in the liquid phase, respectively; x 1 ′,x 2 ′ are the mole fractions of the TBA and water in the liquid phase, respectively, excluding propane-1,3-diol and [emim]Cl; y 1 and y 2 are the mole fractions of TBA and water in the vapor phase, respectively; and α12 is the relative volatility of TBA to water, which we calculated using the following equations, based on the assumption of the ideal vapor phase:where y i andx i are the mole fractions of component i in the vapor and liquid phases, respectively; γi is the activity coef-fi cient of component i ; P is the total pressure (101.3 kPa inthis work); and P s iis the saturated pressure of component i at equilibrium temperature, which we calculated using the Antoine equation:(1)Py i =x i γi P s i (2)α12=γ1γ2P s 1P s2,(3)lg P s i =A i −B iT +C i, Fig. 1 I sobaric VLE data of the system TBA(1) + water (2) at 101.3 kPa427Isobaric Vapor–Liquid Equilibrium for t ert -Butyl Alcohol + Water + Propane-1,3-Diol +… 1 3where A i , B i, and C i are Antoine parameters, as listed inTable 5.S ince the IL is nearly non-volatile, we set the saturation pressure as 10 −6kPa in our calculations.C orrelation of VLE Data B ased on the good correlation results obtained in the literature, the NRTL model proposed by Renon and Prausnitz [ 38 ] can be used to correlate the VLE data of systems containing ILs [ 12 –14 ,16 –22 ,27 ,30 ,31 ,33 ]. In this work, we also used the NRTL model to correlate the VLE data of the TBA(1) + water(2) + propane-1,3-diol (3) + [emim]Cl (4) quaternary system. The NRTL model we used is as follows:(4)ln γi =∑j τji G ji x j ∑k G ki x k +∑j ⎡⎢⎢⎣x j G ij ∑k G kj x k ⎛⎜⎜⎝τij−∑k τki G kj x k ∑k G kj x k ⎞⎟⎟⎠⎤⎥⎥⎦(5)τji =B jiT(6)G ji =exp (−α′ji τji ),T able 3V LE data forTBA(1) + water (2) + propane-1,3-diol (3) + [emim]Cl (4) quaternary system at 101.3 kPa with the mole fraction of propane-1,3-diol + [emim]Cl 0.1a aStandard uncertainties: u ( x ) = 0.001, u ( y ) = 0.001, u ( T ) = 0.1 K, u ( P ) = 0.1 kPaT (K)x 1x 2 x 3 x 4 x 1 ′ x 2 ′ y 1 y 2 α12 x 3 : x 4 = 1:2378.4 0.000 0.900 0.033 0.067 0.000 1.000 0.000 1.000 356.1 0.094 0.810 0.032 0.064 0.104 0.896 0.559 0.441 10.960 354.6 0.183 0.719 0.032 0.065 0.203 0.797 0.618 0.382 6.339 354.5 0.273 0.628 0.033 0.066 0.303 0.697 0.650 0.350 4.273 354.4 0.359 0.540 0.033 0.067 0.399 0.601 0.672 0.328 3.088 354.7 0.454 0.446 0.033 0.066 0.505 0.495 0.707 0.293 2.375 354.8 0.553 0.346 0.034 0.067 0.615 0.385 0.756 0.244 1.940 355.1 0.631 0.270 0.033 0.066 0.701 0.299 0.787 0.213 1.581 355.4 0.725 0.177 0.033 0.065 0.804 0.196 0.848 0.152 1.365 355.9 0.805 0.095 0.033 0.067 0.895 0.105 0.916 0.084 1.282 357.0 0.900 0.000 0.033 0.067 1.000 0.000 1.000 0.000 x 3 : x 4 = 1:1 377.3 0.000 0.900 0.050 0.050 0.000 1.000 0.000 1.000 356.7 0.093 0.809 0.049 0.049 0.103 0.897 0.535 0.465 10.023 355.2 0.184 0.713 0.051 0.051 0.205 0.795 0.603 0.397 5.893 354.8 0.272 0.630 0.049 0.049 0.301 0.699 0.627 0.373 3.903 354.7 0.358 0.540 0.051 0.051 0.399 0.601 0.657 0.343 2.886 354.6 0.454 0.447 0.050 0.050 0.504 0.496 0.693 0.307 2.225 354.7 0.542 0.360 0.049 0.049 0.601 0.399 0.729 0.271 1.790 355.0 0.620 0.282 0.049 0.049 0.688 0.312 0.766 0.234 1.489 355.4 0.714 0.188 0.049 0.049 0.791 0.209 0.828 0.172 1.270 356.0 0.801 0.098 0.050 0.050 0.891 0.109 0.900 0.100 1.097 357.4 0.900 0.000 0.050 0.050 1.000 0.000 1.000 0.000 x 3 : x 4 = 2:1 376.9 0.000 0.900 0.066 0.033 0.000 1.000 0.000 1.000 357.3 0.091 0.810 0.066 0.033 0.101 0.899 0.502 0.498 8.977 355.6 0.185 0.715 0.067 0.034 0.205 0.795 0.575 0.425 5.234 355.1 0.267 0.630 0.068 0.034 0.298 0.702 0.603 0.397 3.573 354.9 0.356 0.547 0.065 0.032 0.394 0.606 0.630 0.370 2.616 354.8 0.457 0.443 0.066 0.033 0.508 0.492 0.667 0.333 1.944 354.9 0.544 0.358 0.065 0.033 0.603 0.397 0.707 0.293 1.586 355.0 0.628 0.273 0.066 0.033 0.697 0.303 0.750 0.250 1.300 355.3 0.716 0.182 0.068 0.034 0.798 0.202 0.819 0.181 1.152 356.1 0.808 0.094 0.066 0.033 0.896 0.104 0.892 0.108 0.959 357.6 0.900 0.000 0.067 0.033 1.000 0.000 1.000 0.000428X. Cui et al.1 3where B ji is the binary interaction parameter, K; and αji ′ is the nonrandomness parameter.W e obtained the binary interaction parameters ( B 12 , B 21 , B 23 , B 32 , B 13 , and B 31 ) and nonrandomnessparameters ( α12 ′, α21 ′, α23 ′, α32 ′, α13 ′, and α31 ′) for theTBA(1) + water (2) + propane-1,3-diol (3) + [emim]Cl ( 4 ) system from the commercial software ChemCAD data-base, and regressed the other binary interaction parameters ( B 14 , B 41 , B 24 , B 42 , B 34 , and B 43 ) using the following objective function:(7)F =N ∑j =1⎡⎢⎢⎣(T cal j −T exp j 1000)2+C ∑i =1(y cal j ,i −y exp j ,i )2⎤⎥⎥⎦,T able 4V LE data forTBA(1) + water (2) + propane-1,3-diol (3) + [emim]Cl (4) quaternary system at 101.3 kPa with the mole fraction of propane-1,3-diol + [emim]Cl 0.3S tandard uncertainties: u ( x ) = 0.001, u ( y ) = 0.001, u ( T ) = 0.1 K, u ( P ) = 0.1 kPaT (K)x 1x 2 x 3 x 4 x 1 ′ x 2 ′ y 1 y 2 α12 x 3 : x 4 = 1:2 395.7 0.000 0.700 0.100 0.200 0.000 1.000 0.000 1.000 375.1 0.073 0.630 0.099 0.198 0.104 0.896 0.569 0.431 11.319 365.5 0.147 0.544 0.103 0.206 0.213 0.787 0.701 0.299 8.657 363.2 0.220 0.480 0.100 0.200 0.315 0.685 0.752 0.248 6.597 361.5 0.286 0.405 0.103 0.206 0.413 0.587 0.794 0.206 5.471 361.4 0.359 0.338 0.101 0.201 0.515 0.485 0.832 0.168 4.648 360.6 0.423 0.280 0.099 0.198 0.602 0.398 0.855 0.145 3.905 360.8 0.485 0.212 0.101 0.202 0.696 0.304 0.890 0.110 3.525 360.9 0.552 0.146 0.101 0.201 0.791 0.209 0.922 0.078 3.115 361.7 0.625 0.080 0.098 0.197 0.887 0.113 0.952 0.048 2.536 362.2 0.700 0.000 0.100 0.200 1.000 0.000 1.000 0.000 x 3 : x 4 = 1:1 393.3 0.000 0.700 0.150 0.150 0.000 1.000 0.000 1.000 372.0 0.073 0.627 0.150 0.150 0.104 0.896 0.515 0.485 9.162 363.5 0.148 0.551 0.150 0.150 0.212 0.788 0.648 0.352 6.844 362.2 0.207 0.490 0.151 0.151 0.297 0.703 0.706 0.294 5.669 361.3 0.289 0.413 0.149 0.149 0.412 0.588 0.758 0.242 4.490 361.1 0.358 0.339 0.152 0.152 0.513 0.487 0.806 0.194 3.944 360.8 0.431 0.271 0.149 0.149 0.614 0.386 0.839 0.151 3.490 360.6 0.497 0.206 0.149 0.149 0.707 0.293 0.875 0.125 2.913 360.5 0.560 0.141 0.150 0.150 0.799 0.201 0.912 0.088 2.607 360.5 0.631 0.070 0.149 0.149 0.900 0.100 0.948 0.052 2.012 361.6 0.700 0.000 0.150 0.150 1.000 0.000 1.000 0.000 x 3 : x 4 = 2:1 385.5 0.000 0.750 0.167 0.083 0.000 1.000 0.000 1.000 369.8 0.070 0.631 0.200 0.100 0.099 0.901 0.446 0.554 7.285 362.8 0.139 0.560 0.200 0.100 0.199 0.801 0.590 0.410 5.790 360.8 0.217 0.490 0.196 0.098 0.307 0.693 0.659 0.341 4.362 360.0 0.282 0.417 0.200 0.100 0.403 0.597 0.715 0.285 3.716 360.2 0.355 0.348 0.198 0.099 0.505 0.495 0.753 0.247 3.001 360.5 0.423 0.276 0.201 0.101 0.605 0.395 0.798 0.202 2.578 360.6 0.483 0.215 0.201 0.100 0.692 0.308 0.850 0.150 2.525 360.8 0.555 0.143 0.202 0.101 0.796 0.204 0.888 0.112 2.028 361.0 0.629 0.070 0.200 0.100 0.900 0.100 0.940 0.060 1.759 361.9 0.700 0.000 0.200 0.100 1.000 0.000 1.000 0.000 T able 5A ntoine parameters of TBA, water, and propane-1,3-diol C omponent i A i B i C i T BA [ 36 ]6.22619 1042.416 − 108.50 W ater [ 37 ]7.25722 1762.390 − 37.49 P ropane-1,3-diol [ 36 ]8.34759 3149.87 9.14429Isobaric Vapor–Liquid Equilibrium for t ert -Butyl Alcohol + Water + Propane-1,3-Diol +… 1 3where N is the number of data points; and C is the number of components. The equilibrium temperature T and vapor mole fraction y diff er by three orders of magnitude. To reduce the fi tting error, we selected a temperature weight factor of 1000.F ollowing the above procedure, Table 6 shows the cor-related binary interaction parameters as well as the nonran-domness parameters. As shown in Fig. 2 , the points and curves denote the experimental data and correlation results, respectively. We found the NRTL model to be in good agreement with our experimental data. Table 7 shows the maximum absolute deviation (ᦧ max m ), mean absolute devia-tions (σ m ), and root-mean-square deviation (δ m ) between the experimental and calculated mole fractions of TBA in the vapor phase and the equilibrium temperatures, indicating that the correlation results are in good agreement with the experimental data.D iscussion We found the relative volatility of TBA to water to be greatly enhanced by the addition of the mixed solvent, as shown in Figs. 3 and 4 . When enough solvent is introduced into the solution, the azeotropic point can be eliminated. We determined the relative volatility of TBA to water ( α12 ) by the ratios of the vapor pressure and activity coeffi cient, which can be expressed by α12=(γ1∕γ2)⋅(P s 1/P s 2).The ratio of the vapor pressure P s 1/P s 2is insensitive to the tem-perature, and ranges from 1.8285 to 1.9521 in this work, whereas the ratio of the activity coeffi cient ranges from 0.4917 to 5.9372. Therefore, the eff ect of the mixed sol-vent of propane-1,3-diol (3) + [emim]Cl (4) on the VLE behavior is mainly determined by γ1and γ2.As shown in Fig. 5 , when the mole fraction of the mixed solvent is fi xed at 0.1 or 0.3, γ1 is insensitive to the mole ratio of propane-1,3-diol to [emim]Cl. γ2 increases as the mole ratio of propane-1,3-diol to [emim]Cl increases. Therefore, the relative volatility α12 decreases with an increasing mole ratio of propane-1,3-diol to [emim]Cl. When the mole ratio of propane-1,3-diol to [emim]Cl is at the same level,the relative volatility α12 increases with the mole fraction of the mixed solvent in the solution. We attribute this phe-nomenon to the level of interaction between TBA and the mixed solvent being less than that between water and the mixed solvent. A single solvent, either propane-1,3-diol or [emim]Cl, can be used as the sole entrainer (Fig. 6 ). We can see in Fig. 6 that [emim]Cl produced a more signifi cant enhance-ment eff ect than propane-1,3-diol on the relative volatility with the same mole fraction. They may interact if mixed. To investigate this interaction, we examined the VLE behavior of the TBA + water + mixed solvent and the TBA + water + single solvent, with the same mole ratio of entrainer to TBA + water. In Fig. 7 , we see that the mole fraction of the mixed solvent in the solution is 0.3, and the mole ratio of propane-1,3-diol to [emim]Cl is 1:1. The mole fraction of the single solvent is 0.1765 in the ternary mixture of TBA + water + single solvent. Only the eff ect of the mixed solvent is more notable than that of both single solvents, due to the synergetic eff ect. As shown in Fig. 7 , the mixed solvent demonstrates superior selectivity to that of propane-1,3-diol, although it is similar to [emim]Cl in terms of selectivity. Hence, there exists no signifi cant synergetic eff ect between propane-1,3-diol and [emim]Cl. In addition, the selectivity of the mixed solvent is mainly dependent on [emim]Cl. Despite this fact, the mixture of [emim]Cl and propane-1,3-diol is liquid at ambient tem-perature,which reduces the risk of pipe blocking. I Ls with high viscosity increase the mass transfer resist-ance in the distillation column. In general, the addition of organic solvents will reduce the mixture viscosity. We measured the viscosity of propane-1,3-diol (3), [emim]Cl (4), and solutions of propane-1,3-diol (3) + [emim]Cl (4) with diff erent mole ratios from 354 K to 393 K using an Ubbelohde viscometer. As shown in Fig. 8 , the viscosity of the mixed solvent is much less than that of [emim]Cl, and it decreases with the increasing content of propane-1,3-diol in the solution. With a given content of propane-1,3-diol in the solution, the viscosity of the mixture decreases with increasing temperature.T able 6V alues of binary parameters in the NRTLmodel for the TBA(1) + water (2) + propane-1,3-diol(3) + [emim]Cl (4) quaternary systemaT aken from ChemCADbR egressed resultsC omponent i C omponent j a ij ′ B ij (K) B ji (K) T BA(1) a W ater(2) a 0.462 199.564 839.616 T BA(1) a P ropane-1,3-diol(3) a 0.283 86.962 102.719 T BA(1) b [emim]Cl(4) b 0.300 –478.547 614.529 W ater (2) a P ropane-1,3-diol (3) a 0.308 1028.269 − 358.570 W ater (2) b [emim]Cl (4) b 0.300 258.524 − 1153.556 P ropane-1,3-diol (3) b [emim]Cl (4) b 0.300 3204.583 − 1041.015430 X. Cui et al.1 3C onclusionIn this study, we investigated the isobaric VLE for the TBA + water + propane-1,3-diol and [emim]Cl quaternarysystem at 101.3 kPa. We found the VLE data to be well cor-related with the NRTL model results, showing that the addi-tion of the mixed solvent of propane-1,3-diol and [emim]Cl can signifi cantly improve the relative volatility of TBA toF ig. 2 I sobaric T – x 1 ′– y 1 diagram for the quaternary system TBA(1) + water (2) + propane-1,3-diol (3) + [emim]Cl (4) at101.3 kPa. a x 3 +x 4 = 0.1, x 3 : x 4 = 1:2; b x 3 + x 4 = 0.1, x 3 : x 4 = 1:1; c x 3 + x 4 = 0.1, x 3 : x 4 = 2:1; d x 3 + x 4 = 0.3, x 3 : x 4 = 1:2; e x 3 +x 4 = 0.3, x 3 : x 4 = 1:1; f x 3 + x 4 = 0.3, x 3 : x 4 = 2:1431Isobaric Vapor–Liquid Equilibrium for t ert -Butyl Alcohol + Water + Propane-1,3-Diol +… 1 3water and break the azeotropic point of TBA and water. The relative volatility of TBA to water increases with increasing amounts of [emim]Cl in the mixed solvent as well as the increasing mixed solvent mole fraction. We found no signifi -cant synergetic eff ect between propane-1,3-diol and [emim]T able 7M aximum absolute deviation ( Δmax ), mean absolute deviations ( σ ), and root-mean-square deviation ( δ ) between experimental and calculated values of the vapor-phase mole fractions and the equilibrium temperaturesaΔmax m =max ||m exp −m cal || b σm =(1∕N )∑||m exp −m cal || c δm =[(1∕N )∑(m exp −m cal)2]1∕2 . Here, m denotes y 1 or TΔmax aσb δc y 1 0.009 0.003 0.001 T (K) 0.750 0.354 0.228F ig. 3 I sobaric y 1 – x 1 ′ diagram for the quaternary system TBA(1) + water (2) + propane-1,3-diol (3) + [emim]Cl (4) at 101.3 kPaFig. 4 R elative volatility of TBA to water with the TBA mole frac-tion in the TBA(1) + water (2) + propane-1,3-diol (3) + [emim]Cl (4) quaternary system on a solvent-free basis at 101.3 kPaF ig. 5 E ff ect of mixed solvent on the activity coeffi cients of TBA ( γ1 )and water ( γ2). ax 3 + x 4 = 0.1; b x 3 + x 4 = 0.3 F ig. 6 C omparison of eff ects of single and mixed solvents on theVLE behavior of TBA and water432X. Cui et al.1 3Cl. The mixed solvent of propane-1,3-diol and [emim]Cl has a lower viscosity, which makes it a promising entrainer for separating the TBA + water azeotrope by extractive distillation.A cknowledgements T his study was supported by the Innovation Fund of Tianjin University (No. 2010XJ-0022).R eferences 1.J apar SM,Wallington TJ,Richert JFO et al (1990)The atmos-pheric chemistry of oxygenated fuel additives: t -butyl alco-hol, dimethyl ether, and methyl t -butyl ether. Int J Chem Kinet22:1257–1269 2.H an P,She J,XüN et al (2004)Study on salting-out separa-tion and industrialization of tertiary-butanol aqueous solution with potassium carbonate. Chem Ind Eng Prog 23:877–879 (in Chinese)3.Z hou J,Dong B,Li J et al (2010)Research progress of prepara-tion of isobutylene by dehydrating tert-butanol. Appl Chem Ind 39:925–928 (in Chinese)4. C heng N (2007) Solvent handbook. Chemical Industry Press, Bei-jing, China (in Chinese)5. L ei Z, Chen B, Ding Z (2005) Special distillation processes. Else-vier, Amsterdam, The Netherlands6.R en H,Zhou J,Li C et al (2017)Measurement and correlation of vapor-liquid equilibria for TBA-water-ethylene glycol ternary system. Chem Eng (China) 45:35–38 (in Chinese)7.H an X,Armstrong DW (2007)Ionic liquids in separations.Acc Chem Res 40:1079–10868. Z akrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2010) Solu-bility of carbohydrates in ionic liquids. Energy Fuels 24:737–745 9.P ereiro AB,Araújo JMM,Esperança JMSS et al (2012)Ionic liquids in separations of azeotropic systems—a review. J Chem Thermodyn 46:2–2810.L ei Z,Li C,Chen B (2003)Extractive distillation:a review.Sep Purif Rev 32:121–21311.L ei Z,Dai C,Zhu J et al (2014)Extractive distillation with ionic liquids: a review. AlChE J 60:3312–3329 12.O rchillés AV, Miguel PJ, Vercher E et al (2008) Isobaricvapor–liquid and liquid–liquid equilibria for chloroform + etha-nol + 1-ethyl-3-methylimidazolium trifl uoromethanesulfonate at 100 kPa. J Chem Eng Data 53:2642–2648 13.O rchillés AV,Miguel PJ,González-Alfaro V et al (2012)1-ethyl-3-methylimidazolium dicyanamide as a very effi cient entrainerfor the extractive distillation of the acetone + methanol system. J Chem Eng Data 57:394–39914.C alvar N,González B,Gómez E et al (2008)Vapor-liquid equi-libria for the ternary system ethanol + water + 1-ethyl-3-meth-ylimidazolium ethylsulfate and the corresponding binary sys-tems containing the ionic liquid at 101.3 kPa. J Chem Eng Data 53:820–825 15.Z hang Z,Zhang Q,Zhang Q et al (2015)Isobaric vapor-liquid equilibrium of t ert -butyl alcohol + water + triethanolamine-based ionic liquid ternary systems at 101.3 kPa. J Chem Eng Data 60:2018–2027 16.Z hang Z,Zhang Q,Zhang T et al (2016)Eff ect of methylimidazo-lium-based ionic liquids on vapor–liquid equilibrium behavior oft ert -butyl alcohol + water azeotropic mixture at 101.3 kPa. Chin J Chem Eng 24:365–37217.Z hang Z, Xu H, Zhang Q et al (2017) Separation of metha-nol + dimethyl carbonate azeotropic mixture using ionic liquids as entrainers. Fluid Phase Equilib 435:98–10318.Z hang Z,Zhang A,Wu K et al (2016)Separation of ethyl acetate and 2-propanol azeotropic mixture using ionic liquids as entrain-ers. Fluid Phase Equilib 429:331–33819.C ai J,Cui X,Zhang Y et al (2011)Isobaric vapor-liquid equi-librium for methanol + methyl acetate + 1-octyl-3-methylimi-dazolium hexafl uorophosphate at 101.3 kPa. J Chem Eng Data 56:2884–2888 20.L i R,Cui X,Zhang Y et al (2012)Vapor-liquid equilibrium and liquid-liquid equilibrium of ethyl acetate + ethanol + 1-ethyl-3-methylimidazolium acetate. J Chem Eng Data 57:911–917 21.L in R,Cui X,Yu X et al (2016)Isobaric vapor-liquid equilibrium of acetic acid + N , N -dimethylacetamide + 1-butyl-3-methylimida-zolium Bis[(trifl uoromethyl)sulfonyl]-imide. Fluid Phase Equilib 410:1–8 22.L iu H,Cui X,Zhang Y et al (2014)Isobaric vapor-liquid equilib-rium of ethanenitrile + water + 1,2-ethanediol + 1-ethyl-3-meth-ylimidazolium chloride. Fluid Phase Equilib 378:13–2023.L i Q,Zhang S,Ding B et al (2014)Isobaric vapor-liquid equi-librium for methanol + dimethyl carbonate + trifl uoromethane-sulfonate-based ionic liquids at 101.3 kPa. J Chem Eng Data 59:3488–3494Fig. 7 I nteraction of solvents propane-1,3-diol and [emim]Cl in mixed solventF ig. 8 V iscosity of the single and mixed entrainers。
严家騄版工程热力学PPT水蒸气性质和蒸汽动力循环
工程热力学——水蒸气性质和蒸汽动力循环
p-v图,T-s图上的水蒸气定压加热过程
一点,二线,三区,五态
p
T
pc
a3 b3
C p pc c3 d3 e3 T Tc Tc
a2 b2 c2 d2 e2
Tc
a1b1
c1
A
d1
e1
B
A a1 a2a3
p pc pc
C
T e3e2
Tc
b3 b2 b1
c3 d c2
查表举例(3)
在一刚性容器内充满p=0.1MPa,t=20℃的
水。由于太阳照射,使其温度升为40℃,求容器
承受的压力。
等容过程
p=0.1MPa t=20℃
v 0.0010018 m3 kg
t=40℃
储液罐很危险, 不能装满。
p 14.0MPa
工程热力学——水蒸气性质和蒸汽动力循环
查表举例(4)
h" 2584.4 s" 8.1505
0.02MPa
ts 60.09
v' 0.0010172 v" 7.6515
h' 251.46
h" 2609.6
s' 0.8321
s" 7.9092
tv
0 0.0010002 40 0.0010078 60 15.34 80 16.27 120 18.12
干饱和蒸汽
对干度x的说明:
饱和水
x = 0 饱和水 x = 1 干饱和蒸汽
0≤x ≤1
在过冷水和过热蒸汽区域,x无意义
工程热力学——水蒸气性质和蒸汽动力循环
湿饱和蒸汽区状态参数的确定
如果有1kg湿蒸气,干度为x, 即有 xkg饱和蒸汽,(1-x)kg饱和水。
工程热力学专业英语词汇
工程热力学专业英语词汇一些工程热力学的专业英语词汇Heat pump(热泵)Heat source(热源)Heat(enthalpy) of formation(生成热(生成焓))Heat(热)Helmholtz function(亥姆霍兹函数)Hess’law(赫斯定律)Humidity(湿度)Ideal gas equation of state(理想气体状态方程)Inequality of Clausius(克劳修斯不等式)Intensive quantity(强度量)Internal combustion engine(内燃机)Internal energy(热力学能(内能))Inversion curve(转变曲线)Inversion temperature(转回温度)Irreversible cycle(不可逆循环)Irreversible process(不可逆过程)Isentropic compressibility(绝热压缩系数)Isentropic process(定熵过程)Isobaric process(定压过程)Isolated system(孤立系)Isometric process(定容过程)Isothermal compressibility(定温压缩系数)Isothermal process(定温过程)Joule,J.P.(焦耳)Joule-Thomson effect(焦耳-汤普逊效应)Kelvin, L.(开尔文)Kinetic energy(动能)Kirchhoff’s law(基尔霍夫定律)Latent heat(潜热)Law of corresponding states(对应态定律)Law of partial volume(分体积定律)Le Chatelier’s princip le(吕-查德里原理)Local velocity of sound(当地声速)Lost of available energy(有效能耗散)Mach number(马赫数)Mass flow rate(质量流量)Maximum work from chemical reaction(反应最大功)Maxwell relations(麦克斯韦关系)Mayer’s formula(迈耶公式)Mechanical equilibrium(力平衡)Mixture of gases(混合气体)Moist air(湿空气)Moisture content(含湿量)Molar specific heat(摩尔热容)Nernst heat theorem(奈斯特热定理)Nozzle(喷管)One dimensional flow(一维流动)Open system(开口系)Otto cycle(奥托循环)Parameter of state(状态参数)Perfect gas(理想气体)Perfect gas(理想气体)Perpetual-motion engine of the second kind(第二类永动机)Perpetual-motion engine(永动机)Phase(相)Polytropic process(多变过程)Potential energy(位能)Power cycle(动力循环)Pressure(压力)Principle of increase of entropy(熵增原理)Process(过程)Psychrometric chart(湿空气焓-湿图)Pure substance(纯物质)Push work(推挤功)Quality of vapor-liquid mixture, Dryness(干度)Quantity of refrigeration(制冷量)Quasi-equilibrium process(准平衡过程)Quasi-static process(准静态过程)Rankine cycle(朗肯循环)Ratio of pressure of cycle(循环增压比)Real gas(实际气体)Reduced parameter(对比参数)Refrigerant(制冷剂)Refrigeration cycle(制冷循环)Refrigerator(制冷机)Regenerative cycle(回一些工程热力学的专业英语词汇热循环)Reheated cycle(再热循环)Relative humidity(相对湿度)Reversed Carnot cycle(逆卡诺循环)Reversed cycle(逆循环)Reversible cycle(可逆循环)Reversible process(可逆过程)Saturated air(饱和空气)Saturated vapor(饱和蒸汽)Saturated water(饱和水)Saturation pressure(饱和压力)Saturation temperature(饱和温度)Second law of thermodynamics(热力学第二定律)Simple compressible system(简单可压缩系)Sink(冷源)Specific heat at constant pressure(比定压热容)Specific heat at constant volume(比定容热容)Specific heat(比热容)Specific humidity(绝对湿度)Specific volume(比体积)Stagnation enthalpy(滞止焓)Standard atmosphere(标准大气压)Standard enthalpy of formation(标准生成焓)Standard state(标准状况)State postulate(状态公理)State(状态)Statistical thermodynamics(统计热力学)Steady flow(稳定流动)Steam(水蒸气)Subsonic(亚声速)Superheated steam(过热蒸汽)Supersonic(超声速)Technical work(技术功)Temperature scale(温度标尺)Temperature(温度)Theoretical flame temperature(理想燃烧温度)Thermal coefficient(热系数)Thermal efficiency(热效率)Thermal equilibrium(热平衡)Thermodynamic Probability(热力学概率)Thermodynamic system(热力学系统)Thermodynamic temperature scale(热力学温标)Thermodynamics(热力学)Third law of thermodynamics(热力学第三定律)Throttling(节流)Triple point(三相点)Unavailable energy(无效能)Universal gas constant(通用气体常数)Vacuum(真空度)Van der Waals’equation(范德瓦尔方程)Velocity of sound(声速)Virial equation of state(维里状态方程)Wet saturated steam(湿饱和蒸汽)Wet-Bulb temperature(湿球温度)Work(功)Working substance(工质)Zeroth law of thermodynamics(热力学第零定律)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Experimental Isobaric Vapor-Liquid Equilibrium for Binary Systems of Ethyl Methyl Carbonate+Methanol,+Ethanol,+Dimethyl Carbonate,or+Diethyl Carbonate at101.3kPaXuemei Zhang,*,†Jian Zuo,†and Chungui Jian‡School of Chemical Engineering and Technology,Tianjin University,Tianjin,People’s Republic of China,and Tianjin Univtech Co.Ltd.,Tianjin,People’s Republic of ChinaIsobaric vapor-liquid equilibrium(VLE)data were measured for the binary systems ethyl methyl carbonate(EMC)+methanol,+ethanol,+dimethyl carbonate(DMC),and+diethyl carbonate(DEC)at101.3kPausing a vapor-liquid equilibrium still.The thermodynamic consistency of the experimental data was verifiedby Herington1method.The experimental VLE data were correlated with the Wilson,NRTL,and UNIQUACactivity coefficient models.The results show that the calculated values of vapor phase mole fraction andboiling temperature by the Wilson,NRTL,and UNIQUAC models agree well with the experimental data.Futhermore,azeotropic behavior was observed for the binary system of ethanol+EMC.IntroductionEthyl methyl carbonate(EMC),an environmentally benignand asymmetric carbonic acid ester,is an excellent cosolventfor a nonaqueous electrolyte in the lithium battery for its suchoutstanding features as low viscosity,high dielectric constant,good solubility of lithium salts and high safety and stability.Compared with symmetric carbonates,such as dimethyl carbon-ate(DMC)and diethyl carbonate(DEC),EMC can improvethe energy density,discharge capacity,safety,and life span oflithium batteries.Besides,EMC is an important carbonylationreagent,because it includes both methyl and ethyl groups andhas the dual features of dimethyl carbonate and diethyl carbonate.It is also an excellent organic solvent with good compatibility withmany organic solvents,such as alcohols,ketones,and esters.Inview of this,many researchers devote themselves to developingsynthesis methods for ethyl methyl carbonate.Among the varioussynthesis processes for ethyl methyl carbonate,the transesterifi-cation of DMC with ethanol is environmentally benign and has arelatively high reaction equilibrium constant and thus is consideredas a feasible process.2,3The reaction system contains the followingfive components:methanol,ethanol,DMC,EMC,and DEC,which implies achallenge in the separation.Although many contributions to theprocess parameters and the utilization of EMC have come forth,4those on the vapor-liquid equilibrium(VLE)data of EMC withother components are minimal.This situation has restricted theproduction of EMC to some extent,as vapor-liquid equilibriumdata are generally the prerequisites for the design and analysisof separation processes of EMC from other components.Thus, in this work the VLE data have been measured and correlated by Wilson,NRTL,and UNIQUAC models,which provide the theoretical basis for design and analysis of the process of separation of EMC from other components.Experimental SectionMaterials.Methanol(w)0.999)and ethanol(w)0.999) were supplied by Tianjin Kewei Reagent Co.DMC(w)0.998),EMC(w)0.999),and DEC(w)0.999)were provided by Hebei Chaoyang Chemical Co.All chemicals were AR grade materials.The GLC analysis failed to show any observable impurities for all the used chemicals.Physical properties,Antoine constants,and the measured vapors to literature correlations of the pure components are shown in Tables1to3.Apparatus and Procedure.The VLE data at atmospheric pressure were measured using a circulation vapor-liquid equilibrium still(a modified Othmer still).The total volume of the still was about60cm3of which the liquid occupied about 50cm3.The details about this apparatus were described by Li et al.8During the experiments,the liquid was injected into the boiling chamber and heated.The vapor was condensed in the*To whom correspondence should be addressed.Tel.:+8602227409476. E-mail:zhangxuemei@.†Tianjin University.‡Tianjin Univtech Co.Ltd.Table1.Physical Properties of the Pure Componentscomponent methanol ethanol DMC EMC DEC M/g·mol-132.04546.07590.085104.107118.135 T b/K337.85351.445363.75381.057400.05 T c/K512.55514.05557.05560.757576.006 p c/MPa8.0845 6.1375 4.805 3.8397 3.396 V c/cm3·mol-1117516852525303.57346.06 r 1.43116 2.10556 3.06136 3.697 3.73576 q 1.4326 1.9726 2.8166 3.367 3.3566 Table2.Antoine Constants for the Pure ComponentsAntoine constants acomponent A B C temperature range/K methanol77.197361574.99-34.29175.47to512.5 ethanol77.338271650.50-41.67159.05to514.0 DMC7 6.43381413.00-44.25273.15to548.0 EMC7 6.43081466.437-49.461317.56to546.79 DEC7 5.8831223.77-84.304230.15to576.0a Antoine equation:log10(P))A-B/(T+C)with P/kPa and T/K. Table3.Measured Pure Component Vapor Pressures versus Literature Correlationsp/kPacomponent T/K this work literature correlation7 methanol337.55101.3100.9ethanol351.45101.3102.4DMC363.45101.3101.6EMC381.25101.3102.6DEC399.65101.3100.5J.Chem.Eng.Data2010,55,4896–4902489610.1021/je100494z 2010American Chemical SocietyPublished on Web09/09/2010condenser and at the same time returned to the equilibrium chamber through the vapor phase sampling port.Both liquid and condensed vapor were continuously recirculated in the still to ensure that the liquid and vapor phases were in intimatecontact during boiling.Equilibrium was assumed when constant vapor and liquid temperature was obtained in about(0.5to1) h.The system was maintained in the equilibrium state for about30min,and samples of the vapor and liquid phase were taken using a microsyringe from the sampling ports and then analyzed.This is done with minor disturbances on the equilibrium concentration and temperature since the size of the samples[(0.2to0.3)µL]is negligible compared to the volume of the still,60cm3.Temperatures were measured with Pt-100probes connected to a digital temperature meter(AMETEK DTI-1000)with an uncertainty of(0.01K according to the calibration certificate (ITS-909).The pressure of the still was measured with a pressure transducer(Digiquartz2300A)connected to a Digiquartz740Figure1.x1,y1diagram for methanol(1)+water(2)system at101.3kPa. b,this work;s,ref6.Figure2.T,x1,y1diagram for the methanol(1)+water(2)system at 101.3kPa.b,this work;s,ref6.Figure3.Thermodynamic consistency check.9,methanol(1)+EMC(2); b,ethanol+EMC(2);2,DMC(1)+EMC(2);[,EMC(1)+DEC(2).Figure4.x1,y1diagram for methanol(1)+EMC(2)system at101.3kPa. b,experimental data in this work;0,correlated results by Wilson model; 4,correlated results by NRTL model;g,correlated results by UNIQUAC model.Figure5.T,x1,y1diagram for methanol(1)+EMC(2)system at101.3 kPa.b,experimental data in this work;0,correlated results by Wilson model;4,correlated results by NRTL model;g,correlated results by UNIQUAC model.Figure6.x1,y1diagram for ethanol(1)+EMC(2)system at101.3kPa. b,experimental data in this work;f,literature data by Luo etal.(ref12); 0,correlated results by Wilson model;4,correlated results by NRTL model; g,correlated results by UNIQUAC model.Journal of Chemical&Engineering Data,Vol.55,No.11,20104897intelligent display unit (Paroscientific)with the accuracy in full scale 0.01%.The range of the pressure measurement was from (0to 2070)kPa with a temperature range from (219to 390)K.The composition of the vapor and liquid samples was determined with a gas chromatograph SP-2100supplied by Beijing Beif-enruili Analysis Instrument Ltd.after calibration with gravi-metrically prepared standard solutions.Thermal conductivity detector (TCD)was used together with a GDX-403packed column (3mm ×2m).Hydrogen was used as the carrier gas.The column inlet pressure was 0.3MPa.Detector and injector temperatures were kept at 423.15K and 438.15K respectively.The current for TCD was 170mA.At least two analyses were made for each sample.The maximum uncertainty in mole fraction was (0.001.Results and DiscussionVLE data of the binary system of methanol +water were measured at 101.3kPa to check the apparatus and experimental procedure.The comparison of the experimental data with the literature data for x ,y diagram and T ,x ,y diagram are shown in Figures 1and 2,respectively.The absolute and relative errors in vapor phase mole fraction are 0.004and 1.42%,respectively.The absolute and relative errors in boiling temperature are 0.26Table 4.Experimental VLE Data for the System of Methanol (1)+EMC (2)at 101.3kPax 1y 1T/K γ1γ20.9590.971337.950.983 3.090.9040.939338.15 1.00 2.760.8340.919338.65 1.04 2.070.7720.897339.15 1.08 1.880.7160.882339.85 1.11 1.680.6800.873340.65 1.12 1.560.5920.847342.15 1.18 1.390.4600.819344.05 1.37 1.150.2720.732348.65 1.74 1.060.2040.680352.15 1.90 1.020.1470.604357.15 1.960.9800.1170.545360.65 1.980.9620.0740.431367.15 1.990.9200.0440.303372.35 1.990.9200.0130.109379.151.960.919Table 5.Experimental VLE Data for the System of Ethanol (1)+EMC (2)at 101.3kPax 1y 1T/K γ1γ20.9580.948351.250.965 3.240.8650.886351.350.995 2.200.8030.862351.65 1.03 1.800.7250.823352.15 1.07 1.630.6420.794353.05 1.12 1.410.5270.758354.15 1.25 1.200.4020.701356.15 1.41 1.090.2800.640359.15 1.640.9830.2110.571362.65 1.710.9470.1370.487366.35 1.960.9130.0870.383370.35 2.110.9100.0530.271374.15 2.150.9170.0330.187377.152.150.911Table 6.Experimental VLE Data for the System of DMC (1)+EMC (2)at 101.3kPax 1y 1T/K γ1γ20.9390.962364.150.970 1.030.8750.920365.050.967 1.030.7850.858366.250.969 1.020.7110.804367.350.968 1.010.6390.748368.350.972 1.000.5650.686369.650.9690.9940.4820.622371.150.9840.9570.4010.543372.650.9860.9530.3180.454374.250.9910.9500.2280.345376.150.9930.9480.1730.272377.15 1.000.9540.1290.208378.250.9960.9520.0770.128379.650.9860.9470.0470.080380.250.9920.950Table 7.Experimental VLE Data for the System of EMC (1)+DEC (2)at 101.3kPax 1y 1T/K γ1γ20.8660.924383.250.9580.8960.8000.880384.500.9520.9110.7190.822385.650.9560.9290.6510.769386.950.9500.9320.5890.716388.150.9440.9380.5220.655389.250.9440.9480.4140.545391.150.9370.9640.3270.450392.650.9380.9700.2570.368394.150.9360.9660.1980.290395.150.9300.9770.1160.178396.950.9270.9740.0710.113397.950.9350.972Table 8.Thermodynamic Consistency Check Result for the Binary Systems EMC +Methanol,+Ethanol,+DMC,and +DEC at 101.3kPasystem D J D -J methanol +EMC 2.7219.21-16.45<10ethanol +EMC 2.0712.63-10.56<10DMC +EMC 5.727.15-1.43<10EMC +DEC6.257.46-1.21<10Figure 7.T ,x 1,y 1diagram for ethanol (1)+EMC (2)system at 101.3kPa.b ,experimental data in this work;f ,literature data by Luo et al.(ref 12);0,correlated results by Wilson model;4,correlated results by NRTL model;g ,correlated results by UNIQUAC model.Figure 8.x 1,y 1diagram for DMC (1)+EMC (2)system at 101.3kPa.b ,experimental data in this work;0,correlated results by Wilson model;4,correlated results by NRTL model;g ,correlated results by UNIQUAC model.4898Journal of Chemical &EngineeringData,Vol.55,No.11,2010Journal of Chemical&Engineering Data,Vol.55,No.11,20104899 Table9.Correlated Binary Interaction Parameters and Root-Mean-Square Deviations between Experimental and Calculated Values for the Binary Systems EMC+Methanol,+Ethanol,+DMC,and+DEC at101.3kParmsd model parametersσ(y1)aσ(T)b/KMethanol(1)+EMC(2)Wilson(λ12-λ22)/R)383.20K;(λ21-λ11)/R)71.73K0.009 1.11 NRTL(R)0.30)(g12-g22)/R)487.00K;(g21-g11)/R)-43.00K0.010 1.14 UNIQUAC(u12-u22)/R)-3.06K;(u21-u11)/R)279.12K0.009 1.11Ethanol(1)+EMC(2)Wilson(λ12-λ22)/R)260.82K;(λ21-λ11)/R)193.71K0.016 1.32 NRTL(R)0.30)(g12-g22)/R)465.01K;(g21-g11)/R)-28.86K0.016 1.31 UNIQUAC(u12-u22)/R)33.55K;(u21-u11)/R)139.25K0.017 1.31DMC(1)+EMC(2)Wilson(λ12-λ22)/R)-119.52K;(λ21-λ11)/R)192.11K0.007 1.06 NRTL(R)0.30)(g12-g22)/R)353.77K;(g21-g11)/R)-274.38K0.007 1.05 UNIQUAC(u12-u22)/R)167.57K;(u21-u11)/R)-134.83K0.007 1.06EMC(1)+DEC(2)Wilson(λ12-λ22)/R)1.39K;(λ21-λ11)/R)-51.83K0.0050.82 NRTL(R)0.30)(g12-g22)/R)237.79K;(g21-g11)/R)-246.44K0.0050.79 UNIQUAC(u12-u22)/R)-221.84K;(u21-u11)/R)288.82K0.0060.79 a)) ∑i)1n(y i cal-y i exp)2nσ(y1bσ(T)) ∑i)1n(T i cal-T i exp)2nTable10.Correlation Results for Methanol(1)+EMC(2)System at101.3kPaWilson NRTL UNIQUAC x1y1cal T cal/Kγ1calγ2cal y1cal T cal/Kγ1calγ2cal y1cal T cal/Kγ1calγ2cal 0.9590.971337.41 1.00 3.170.971337.42 1.00 3.150.971337.42 1.00 3.15 0.9040.943337.81 1.02 2.600.943337.82 1.02 2.600.943337.83 1.02 2.61 0.8340.918338.40 1.05 2.120.918338.41 1.05 2.120.917338.42 1.05 2.14 0.7720.901338.98 1.09 1.830.901338.98 1.09 1.830.900339.00 1.09 1.84 0.7160.887339.55 1.13 1.640.887339.52 1.13 1.630.886339.55 1.13 1.65 0.6800.878339.95 1.16 1.540.879339.91 1.16 1.530.877339.94 1.16 1.55 0.5920.857341.07 1.24 1.360.859340.99 1.25 1.340.857341.03 1.25 1.36 0.4600.819343.38 1.40 1.180.822343.28 1.41 1.170.820343.29 1.41 1.18 0.2720.727349.34 1.69 1.050.729349.35 1.69 1.050.728349.25 1.70 1.05 0.2040.666353.02 1.80 1.030.666353.09 1.80 1.020.667352.98 1.81 1.03 0.1470.588357.30 1.90 1.010.588357.38 1.90 1.010.589357.30 1.90 1.01 0.1170.531360.18 1.96 1.010.530360.25 1.95 1.010.531360.20 1.95 1.01 0.0740.414365.42 2.02 1.000.414365.45 2.02 1.000.413365.48 2.02 1.00 0.0440.293370.18 2.06 1.000.294370.16 2.07 1.000.292370.23 2.05 1.00 0.0130.107376.50 2.10 1.000.108376.46 2.12 1.000.107376.52 2.08 1.00K and 0.073%,respectively.The experimental data of this work agree well with the literature data.Thus,the apparatus and experimental method are reliable and credible.The VLE data of the binary systems EMC +methanol,+ethanol,+DMC,and +DEC were measured at 101.3kPa.The VLE data measured with the calculated activity coefficients are reported in Tables 4to 7.The general equilibrium relationship for VLE can be ex-pressed as 10where p and T are the total pressure and the temperature in theequilibrium system,respectively;x i is the mole fraction of component i in liquid phase;y i is the mole fraction of component i in vapor phase;γi is the activity coefficient of component i in the liquid phase;p i s is the saturation vapor pressure of pure liquidi at system temperature T ,which can be obtained from the Antoine equation.φi s is the fugacity coefficient of pure vapor i at equilibrium system temperature T and saturation vaporpressure p i s .φˆi v is the fugacity coefficient of component i in thevapor phase;V i L is the mole volume of pure liquid i .The Poynting factor,the exponential term in eq 1,is close to unity at low or moderate pressure;eq 1can be simplified toThe fugacity coefficients,φi s and φˆi v ,were calculated by usingthe Soave -Redlich -Kwong (SRK)equation.The activity coefficient of component i in the liquid phase,γi ,can be determined by eq 2.And the activity coefficients should satisfy the Gibbs -Duhem equation.10But experimental errors may cause deviation of the activity coefficients drawn from the experimental VLE data from the Gibbs -Duhem equation.Therefore,the thermodynamic consistency must be checked toTable 11.Correlation Results for Ethanol (1)+EMC (2)System at 101.3kPaWilsonNRTL UNIQUAC x 1y 1cal T cal /K γ1cal γ2cal y 1cal T cal /K γ1cal γ2cal y 1cal T cal /K γ1cal γ2cal 0.9580.953350.38 1.00 3.040.954350.41 1.00 2.980.954350.41 1.00 2.970.8650.888350.44 1.03 2.240.887350.48 1.03 2.250.887350.49 1.03 2.250.8030.858350.69 1.07 1.920.857350.73 1.06 1.930.857350.74 1.06 1.940.7250.828351.15 1.12 1.640.827351.18 1.12 1.640.826351.19 1.11 1.650.6420.799351.8 1.19 1.430.799351.81 1.19 1.430.798351.81 1.19 1.440.5270.758353.04 1.31 1.250.759353.01 1.31 1.250.758353.01 1.31 1.250.4020.703355.09 1.47 1.130.705355.04 1.48 1.120.704355.03 1.47 1.130.2800.625358.30 1.66 1.060.627358.28 1.66 1.050.626358.24 1.66 1.050.2110.559361.01 1.78 1.030.560361.02 1.78 1.030.560360.98 1.78 1.030.1370.455365.12 1.92 1.010.455365.16 1.91 1.010.455365.14 1.91 1.010.0870.348369.00 2.01 1.000.348369.04 2.00 1.000.347369.04 2.00 1.000.0530.247372.41 2.07 1.000.246372.44 2.07 1.000.245372.46 2.06 1.000.0330.170374.832.111.000.169374.852.101.000.169374.872.091.00Table 12.Correlation Results for DMC (1)+EMC (2)System at 101.3kPaWilsonNRTL UNIQUAC x 1y 1cal T cal /K γ1cal γ2cal y 1cal T cal /K γ1cal γ2cal y 1cal T cal /K γ1cal γ2cal 0.9390.964363..23 1.00 1.010.964363..23 1.00 1.010.964363.23 1.00 1.010.8750.924364.11 1.00 1.000.924364.10 1.00 1.010.924364.11 1.00 1.000.7850.865365.40 1.000.9970.865365.39 1.000.9970.865365.41 1.000.9960.7110.812366.51 1.000.9950.812366.50 1.000.9940.812366.52 1.000.9940.6390.756367.65 1.000.9940.757367.63 1.010.9920.756367.65 1.000.9930.5650.694368.86 1.000.9940.695368.84 1.010.9920.694368.87 1.000.9940.4820.618370.28 1.000.9950.619370.27 1.010.9930.618370.28 1.000.9950.4010.536371.73 1.000.9960.537371.72 1.000.9940.537371.72 1.000.9960.3180.445373.27 1.000.9980.445373.27 1.000.9960.445373.26 1.000.9970.2280.335375.010.9970.9990.335375.020.9980.9980.335375.000.9980.9990.1730.262376.100.9950.9990.262376.120.9950.9990.262376.090.9960.9990.1290.200377.000.993 1.000.200377.020.9920.9990.200376.990.994 1.000.0770.123378.080.991 1.000.123378.100.988 1.000.123378.080.992 1.000.0470.076378.720.9901.000.076378.730.9861.000.077378.710.9911.00Table 13.Correlation Results for EMC (1)+DEC (2)System at 101.3kPaWilsonNRTL UNIQUAC x 1y 1cal T cal /K γ1cal γ2cal y 1cal T cal /K γ1cal γ2cal y 1cal T cal /K γ1cal γ2cal 0.8660.927382.020.9970.9000.927382.060.9970.8930.928382.080.9970.8840.8000.884383.210.9940.9160.885383.260.9930.9120.886383.290.9930.9020.7190.827384.700.9890.9320.826384.770.9870.9310.827384.810.9860.9240.6510.773385.980.9830.9450.772386.050.9800.9450.773386.100.9790.9410.5890.719387.170.9760.9550.719387.230.9730.9560.719387.290.9720.9540.5220.657388.470.9680.9650.656388.520.9650.9670.655388.580.9620.9670.4140.546390.580.9540.9780.545390.610.9510.9800.543390.640.9470.9840.3270.447392.290.9410.9890.446392.300.9390.9880.443392.290.9340.9930.2570.360393.670.9290.9920.360393.660.9280.9930.358393.600.9250.9970.1980.284394.820.9190.9950.284394.800.9190.9960.283394.690.920 1.000.1160.171396.400.9040.9980.171396.380.9060.9990.173396.240.918 1.000.0710.106397.260.8950.9990.107397.240.8991.000.109397.120.9221.00p φˆi V y i )p i s φi s γi x i exp (V i L (p -p is )RT)(1)p φˆi V y i )p i s φi s γi x i (2)4900Journal of Chemical &Engineering Data,Vol.55,No.11,2010confirm whether the experimental VLE data are consistent with the Gibbs-Duhem equation.In this work,the thermodynamic consistency was checked by Herington method,1which can be expressed as followswhere S+and S-are the area of region above the horizontalcoordinate axis and that under the horizontal coordinate axis,respectively,as shown in Figure 3.T max and T min are themaximum and minimum boiling temperature in the studiedsystems,respectively.Equation3does not usually equal zero exactly because ofexperimental errors,thus Herington presented a semiempiricalmethod,in which the value of D-J must be less than10forisobaric VLE.The test results of thermodynamic consistencyare demonstrated in Figure3.The values of D,J,and D-Jare shown in Table8.The results show that the experimentalVLE data for the binary systems EMC+methanol,+ethanol, +DMC,and+DEC at101.3kPa are thermodynamically consistent.The experimental data were correlated using Wilson,NRTL,and UNIQUAC models.10The binary interaction parameters ofall models are obtained minimizing the objective function F11where NP is the number of experimental data and the super-scripts“cal”and“exp”indicate the calculated and experimental values respectively.γi,k exp is determined by eq2andγi,k cal is calculated by the Wilson,NRTL,and UNIQUAC models. The correlated binary interaction parameters of the Wilson, NRTL,and UNIQUAC models for the binary systems EMC+ methanol,+ethanol,+DMC,and+DEC at101.3kPa are shown in Table9together with the root-mean-square deviations (rmsd)of vapor mole fraction and bubble-point temperature. Vapor mole fraction,bubble-point temperature,and the liquid phase activity coefficients calculated using the correlated binary interaction parameters are given in Tables10to13and Figures 4to11.It can be seen from Tables10to13and Figures4to11that the differences among the vapor phase mole fraction and boiling temperature calculated by the Wilson,NRTL,and UNIQUAC modes are indistinct.The RMSDs of the of vapor mole fraction and bubble-point temperature calculated by using the correlated parameters are not more than0.017and1.32K,respectively. Thus,all of the three models can predict the VLE data for the binary systems EMC+methanol,+ethanol,+DMC,and+ DEC at101.3kPa well.It can also be seen from Figures6and 7that azeotropic behavior exists in the ethanol-EMC system. ConclusionsThe isobaric VLE data of the binary systems EMC+methanol, +ethanol,+DMC,and+DEC at101.3kPa were measured usingFigure9.T,x1,y1diagram for DMC(1)+EMC(2)system at101.3kPa. b,experimental data in this work;0,correlated results by Wilson model; 4,correlated results by NRTL model;g,correlated results by UNIQUAC model.∫x1)0x1)1lnγ1γ2d x1)0(3)D)100·|S+-S-S++S-|)100·∫x1)0x1)1lnγ1γ2d x1∫x1)0x1)1ln|γ1γ2|d x1(4)J)150·T max-T minT min(5)F)∑k)1NP∑i2(γi,k exp-γi,k calγi,k exp)2(6)Figure10.x1,y1diagram for EMC(1)+DEC(2)system at101.3kPa.b, experimental data in this work;0,correlated results by Wilson model;4, correlated results by NRTL model;g,correlated results by UNIQUAC model.Figure11.T,x1,y1diagram for EMC(1)+DEC(2)system at101.3kPa. b,experimental data in this work;0,correlated results by Wilson model; 4,correlated results by NRTL model;g,correlated results by UNIQUAC model.Journal of Chemical&Engineering Data,Vol.55,No.11,20104901a vapor-liquid equilibrium still.The thermodynamic consistency test shows that the experimental VLE data are thermodynamically consistent.The Wilson,NRTL and UNIQUAC models are used to correlate the experimental data.The results show that the calculated values by the Wilson,NRTL,and UNIQUAC models agree well with the experimental data.Furthermore,there is azeotropic behavior in the ethanol-EMC system.Literature Cited(1)Ziqiang,Z.;Shanjing,Y.;Zhangli,J.Principle and Application ofFluid Phase Equilibrium;Zhejiang University Press:Hangzhou,1990.(2)Hong,G.;Marcus,J.P.;Esther,S.T.Method of synthesizingunsymmetric organic carbonates and preparing nonaqueous electrolytes for alkali ion electro-chemical cells U.S.Patent5,962,720,1999.(3)Hiromi,O.;Hizuru,K.;Akiyoshi M.Nonaqueous secondary electro-chemical battery U.S.Patent5,525,443,1996.(4)Xu,L.Choosing and Controlling the Technical Process of SynthesizingEthyl Methyl Carbonate by Exchanging of Ester.Anhui Chem.Eng.(China)2006,142,35–37.(5)David,R.L.CRC Handbook of Chemistry and Physics,87th ed.;Taylor and Francis:Boca Raton,FL,2007.(6)Gmehling,J.;Onken,U.;Rearey-Nies,J.R.Vapor-Liquid EquilibriumData Collection;DECHEMA:Frankfurt,1988.(7)Jiaquan,Y.Chemical and phase equilibria of dimethyl carbonate,ethanol,ethyl methyl carbonate,enthanol,and diethyl carbonate mixture.Master thesis,Department of Chemical and material Engi-neering,National Central University,Taiwan,2008.(8)Li,Q.;Xing,F.;Lei,Z.;Wang,B.;Chang,Q.Isobaric Vapor-LiquidEquilibrium for Isopropanol+Water+1-Ethyl-3-methylimidazolium Tetrafluoroborate.J.Chem.Eng.Data2008,53,275–279.(9)Mangum, B.W.;Furukawa,G.T.Guidelines for realizing theInternational Temperature Scale of1990(ITS-90);U.S.Department of Commerce,National Institute of Standards and Technology: Springfield,1990.(10)Smith,J.M.;Van,N.H. C.;Abbott,M.M.Introduction toChemical Engineering Thermodynamics,6th ed.;McGraw-Hill: New York,2001.(11)Guanghua,G.;Yangxin,Y.Chemical Engineering Thermodynamics;Tsinghua University Press:Beijing,2000.(12)Luo,H.P.;Xiao,W.D.;Zhu,K.H.Isobaric vapor-liquid equilibriaof alkyl carbonates with alcohols.Fluid Phase Equilib.2000,175, 91–105.Received for review May11,2010.Accepted August24,2010.JE100494Z4902Journal of Chemical&Engineering Data,Vol.55,No.11,2010。