勾股定理知识点+对应类型

合集下载

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;c b a H G F E D C B A b a c b a c c a b c a b abc c b a E D C B A②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数)毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数)柏拉图发现的:1,1,222+-n n n (1>n 的整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 21E DCBA例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m 。

勾股定理公式知识点总结

勾股定理公式知识点总结

勾股定理公式知识点总结一、勾股定理的证明方法勾股定理的证明有许多种方法,下面介绍其中比较常见的几种证明方法:1. 几何法证明几何法证明是最直观的证明方法之一,它利用几何图形和性质进行推理。

一种常见的几何法证明是利用平行四边形的性质,将直角三角形的两个直角边分别构造成平行四边形的边,利用平行四边形的对角线相等性质即可证明勾股定理。

2. 代数法证明代数法证明是利用代数运算推导出勾股定理成立的证明方法。

一种常见的代数法证明是利用两个直角三角形组成一个正方形,通过展开式的数字运算推导出勾股定理成立。

3. 数学归纳法证明数学归纳法是一种数学论证方法,通过证明当n=k时定理成立,再证明当n=k+1时定理也成立,从而得出在一切正整数n上定理成立的论证方法。

勾股定理的证明中也可以使用数学归纳法证明。

4. 数学分析法证明数学分析法是通过数学函数的图像分析证明定理的方法。

通过分析直角三角形和斜边的关系,利用函数的性质进行推导,可以证明勾股定理成立。

以上是勾股定理的几种常见的证明方法,它们都是通过不同的数学思维和方法来证明同一个定理的正确性。

在学习和掌握勾股定理时,可以通过比较不同的证明方法,增加对定理的理解和掌握。

二、勾股定理的应用场景勾股定理是数学中的基础定理,它被广泛地应用于各种实际问题中。

下面将介绍一些勾股定理在实际应用中的具体场景:1. 地理测量在地理测量中,经常需要利用勾股定理来计算直角三角形的边长。

例如,利用直角三角形的边长和角度来计算地球上两点的距离,或者计算某一点的具体位置等。

2. 建筑设计在建筑设计中,经常需要利用勾股定理来设计直角三角形结构的建筑物。

例如,在设计楼梯的高度和跨度,或者在设计房屋的墙角和斜面等方面,都需要用到勾股定理。

3. 机械制造在机械制造中,勾股定理也有广泛的应用。

例如,在设计机械零件的装配结构、角度、长度等方面,都需要用到勾股定理来进行计算和设计。

4. 航空航天在航空航天领域,勾股定理也有重要的应用。

勾股定理知识点总结(经典、实用)

勾股定理知识点总结(经典、实用)

第三章、勾股定理 一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。

公式的变形:a 2 = c 2- b 2, b 2= c 2-a 2 。

符号语言:注意:前提一定是直角三角形.a ,b 也可能是斜边,分清斜边直角边.勾股定理的证明 :勾股定理的证明方法很多,常见的的方法是面积相等---根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理勾股定理的证明方法很多,常见的是拼图的方法 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证勾股定理的适用范围 : 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

2、勾股定理的逆定理如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。

cb aHG F EDCB A bacbac cabcab a bcc baED CBA(分类讨论,数形结合)最大边的平方<最小边的平方+中间边的平方是锐角三角形 最大边的平方>最小边的平方+中间边的平方是钝角三角形说明:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c ;(2)分别求出c 2与a 2+b 2,判定c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。

八年级勾股定理知识点必考题型

八年级勾股定理知识点必考题型

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(2)结论:① 有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。

② 有一个角是45°的直角三角形是等腰直角三角形。

③ 直角三角形斜边的中线等于斜边的一半。

例题:例1:已知直角三角形的两边,利用勾股定理求第三边。

(1) 在 Rt △ ABC 中,/ C=90°① 若 a=5, b=12,贝U c= ________ ;② 若 a : b=3 : 4, c=10 贝U Rt A ABC 的面积是= _______ 。

(2)如果直角三角形的两直角边长分别为n 2-1 , 2n勾股定理知识点及主要题型 【知识点归纳】1、已知直角三角形的两边,求第三边勾股定理 2、求直角三角形周长、面积等问题3、验证勾股定理成立 勾股定理 勾股定理的逆定理勾股定理的应用 1、 勾股数的应用2、 判断三角形的形状3、 求最大、最小角的问题 I 1面积问题 2、 求长度问题 3、最短距离问题」4、航海问题 5、 网格问题 6、 图形问题 考点一:勾股定理(1 )对于任意的直角三角形,如果它的两条直角边分别为 a 、b ,斜边为c ,那么一定有a 2b 2(n>1),那么它的斜边长是(2 2 2C. c b = aD.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7 或 25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。

(1) 直角三角形两直角边长分别为 __________ 5和12,则它斜边上的高为。

(2) 已知 Rt △ ABC 中,/ C=90 °,若 a+b=14cm , c=10cm ,贝U Rt △ ABC 的面积是( )A 、24 cm 2B 、36 cm 2c 、48 cm 2D 、60 cm 2(3)已知x 、y 为正数,且|X 2-4I + (y 2-3) 2=0,如果以x 、y 的长为直角边作一个直角三 角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A 、 5B 、 25C 、 7D 、 15考点二:勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长 a,b,c 有关系,a 2 • b 2二c 2,那么这个三角 形是直角三角形。

勾股定理(知识点+题型分类练习)

勾股定理(知识点+题型分类练习)

ABCabc弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方。

常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

3. 勾股数:①满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等③用含字母的代数式表示n组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)5.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90°B(2)在直角三角形中,30°角所对的直角边等于斜边的一半。

勾股定理知识点+对应类型

勾股定理知识点+对应类型

勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方ABCa b c弦股勾勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。

2. 勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;例 在ABC ∆中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,已知:a=13, b=12, c=5. ABC ∆ 是什么三角形?4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)利用勾股定理,作出长为n 的线段类型四:利用勾股定理作长为的线段【变式】在数轴上表示的点。

作法:如图所示在数轴上找到A 点,使OA=3,作AC ⊥OA 且截取AC=1,以OC 为半径,以O 为圆心做弧,弧与数轴的交点B 即为。

勾股定理知识点+类型+题型有答案版

勾股定理知识点+类型+题型有答案版

勾股定理知识点知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(3)勾股定理的一些变式:c2=a2+b2, a2=c2-b2, b2=c2-a2, c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。

知识点四:勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。

熟悉下列勾股数,对解题有很大帮助:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.②如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。

勾股定理考查类型类型一:勾股定理的直接用法在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。

勾股定理的证明常用拼图的方法。

通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。

2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。

3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。

勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。

勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。

在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。

同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。

勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。

a^2+b^2=c^2$是勾股定理的基本公式。

如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。

勾股定理的实际应用有很多。

例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。

现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。

同时梯子的顶端B下降至B′。

那么BB′的长度是小于1m的(选项A)。

又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。

设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。

八下数学勾股定理知识点及常考题型

八下数学勾股定理知识点及常考题型

八下数学勾股定理知识点及常考题型1、勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。

其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。

2、勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC 是以△C为直角的直角三角形(若c²>a²+b²,则△ABC是以△C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。

3、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常考题1、用对称法求平面中最短问题如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.解:如图,连接BD交AC于O,连接ED与AC交于点P,连接已知BD△AC,且BO=OD,△BP=PD,则BP+EP=ED,此时最短.△AE=3,AD=1+3=4,由勾股定理得ED2=AE2+AD2=32+42=25=52△ED=BP+EP=5.2、用平移法求平面中最短问题如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬几厘米?将台阶面展开,连接AB,如图,线段AB即为壁虎所爬的最短路线.△BC=30×3+10×3=120(cm),AC=50 cm,在Rt△ABC中,根据勾股定理,得AB2=AC2+BC2=16 900,△AB=130 cm.所以壁虎至少爬行130 cm.3、利用勾股定理证明线段之间的平方关系如图,△C=90°,AM=CM,MP△AB于点P.求证:BP2=BC2+AP2.证明:如图,连接BM.△PM△AB,△△BMP和△AMP均为直角三角形.△BP2+PM2=BM2,AP2+PM2=AM2.同理可得BC2+CM2=BM2.△BP2+PM2=BC2+CM2.又△CM=AM,△CM2=AM2=AP2+PM2.△BP2+PM2=BC2+AP2+PM2.△BP2=BC2+AP2.。

(完整版)勾股定理知识点+对应类型

(完整版)勾股定理知识点+对应类型

第二章勾股定理、平方根专题第一节勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。

(完整word版)勾股定理知识点+对应类型(良心出品必属精品)

(完整word版)勾股定理知识点+对应类型(良心出品必属精品)

第二章 勾股定理、平方根专题第一节 勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方ABCa b c弦股勾勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。

2. 勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );勾股定理和 平方根勾股定理平方根 立方根 实数近似数、 有效数字判定直角三角形勾股定理的验证定义、性质 开平方运算开立方运算定义、性质(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

勾股定理知识点及典型例题

勾股定理知识点及典型例题

勾股定理知识点及典型例题一、勾股定理:勾股定理定义为:直角三角形两直角边的平方和等于斜边的平方,即a²+b²=c²,其中a和b是直角三角形的两条直角边,c是斜边。

勾股定理的逆定理为:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。

勾股数是满足a²+b²=c²的三个正整数a,b,c。

注意,若a,b,c为勾股数,那么ka,kb,kc同样也是勾股数。

常见的勾股数有3,4,5;6,8,10;9,12,15;5,12,13.判断直角三角形的方法有两种:一是如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

二是如果有一个角为90°或两个角互余,那么这个三角形是直角三角形。

具体判断方法是确定最大边(不妨设为c),若c=a+b,则为直角三角形;若a+bc,则为锐角三角形。

直角三角形斜边上的中线等于斜边的一半,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

勾股定理的作用有四个:一是已知直角三角形的两边求第三边;二是已知直角三角形的一边,求另两边的关系;三是用于证明线段平方关系的问题;四是利用勾股定理,作出长为a,b,c的直角三角形。

二、勾股定理的证明:勾股定理的证明方法有很多种,其中常见的是拼图的方法。

具体证明过程如下:在直角三角形ABC中,以BC为底边,作等腰直角三角形ABD,连接AD,则AD=AB,BD=BC。

因此,AB²=AD²+BD²=AD²+BC²,即a²=b²+c²。

1.一个无盖的正方体盒子内有两只昆虫,昆虫甲在顶点C1处,昆虫乙在棱BB1的中点E处。

昆虫乙要在最短时间内捕捉到昆虫甲,可以沿着路径A→E→C1爬行。

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类勾股定理作为数学中的一条基本定理,是数学中的重要知识点。

它描述了直角三角形三条边之间的关系,充分利用了勾股定理可以解决很多与直角三角形相关的问题。

下面将对勾股定理的知识点进行归纳,并对常见的勾股定理题型进行分类。

一、知识点归纳:1.勾股定理的表述:直角三角形斜边的平方等于两直角边平方和。

2.勾股定理的符号表示:对于直角三角形ABC,设斜边为c,两直角边分别为a和b,可以表示为:$a^2+b^2=c^2$。

3.勾股定理的逆定理:如果一个三角形的三边满足$a^2+b^2=c^2$,其中a、b、c为三角形的边长,那么这个三角形一定是直角三角形。

4.勾股定理的证明方法:勾股定理有多种不同的证明方法,比如平方构造法和几何法。

5.勾股定理的推广应用:勾股定理不仅适用于直角三角形,还可以推广应用到其他类型的几何形状中。

二、题型归类:根据勾股定理的应用不同场景,常见的题型可以归类为以下几种:1.求边长问题:(1)已知两边求第三边:已知直角三角形两直角边的长度,求斜边的长度。

(2)已知一边求另一边:已知直角三角形一边和斜边的长度,求另一边的长度。

(3)已知斜边和一边求另一边:已知直角三角形一边和斜边的长度,求未知边的长度。

2.求角度问题:(1)已知两边求夹角:已知直角三角形两直角边的长度,求两直角边之间的夹角。

(2)已知斜边和一边求夹角:已知直角三角形一边和斜边的长度,求斜边与该边之间的夹角。

3.判断问题:(1)判断是否为直角三角形:已知三角形的三边长度,判断是否为直角三角形。

4.应用问题:(1)三角形的面积问题:已知直角三角形的两个直角边的长度,求其面积。

(2)其他几何问题:如斜边长为x的直角三角形,边的长度与斜边比为1:4,求边的长度。

以上是一些常见的勾股定理题型,通过不同的题目训练可以更好地掌握勾股定理的应用和解题思路。

在解题的过程中,需要根据问题的具体要求,合理运用勾股定理的知识,灵活运用数学方法,进行推导和计算,以得到准确的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形
一、直角三角形的定义
二、直角三角形有关的定理
1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2、勾股定理的逆定理:如果三角形三边长a,b,c满足a2+b2=c2。

,那么这个三角形是直角三角形。

3、在直角三角形中30度的角所对的直角边等于斜边的一半,
4、在直角三角形中斜边上的中线等于斜边上的一半。

三、直角三角形的证明;
1、证直角:A直径所对的圆周角是直角B、菱形的对角线互相垂直平分。

C:其它
2、勾股定理的逆定理:如果三角形三边长a,b,c满足a2+b2=c2。

,那么这个三角形是直角三角形。

四、特殊的直角三角形(30,60,90或45,45,90)
1、30,60,90:已知一边可求其余两边。


2、45,45,90:已知一边可求其余两边。


五、其它:
1、定理:经过证明被确认正确的命题叫做定理。

2、.我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)
勾股定理
(一)结合三角形:
1.若∆ABC 的三边a 、b 、c 满足条件2a c b a c b 2624103382
2++=+++,试判断∆ABC
的形状。

(二)、实际应用: 1. 梯子滑动问题:
(1)一架长2.5m 的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m (如图),如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将向左滑动 米
(4)小明想知道学校旗杆的高度,他发现旗杆上的绳子吹到地面上还多1 m ,当他把绳子的下端拉开5米后,发现绳子下端刚好触到地面,试问旗杆的高度为 米
B
A
Q
N
M
P
(三). 爬行距离最短问题:
3.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两相对的端点,A 点有一只昆虫想到B 点去吃可口的食物,则昆虫沿着台阶爬到B 点的最短路程是 分米?
4. 如图,一只蚂蚁沿边长为a 的正方体表面从点A 爬到点B ,则它走过的路程最短为( ) A.
a 3 B. ()
a 21+ C. a 3 D.a 5
(四)方向问题:
1. 有一次,小明坐着轮船由A 点出发沿正东方向AN 航行,在A 点望湖中小岛M ,测得∠MAN =30°,当他到B 点时,测得∠MBN =45°,AB =100米,你能算出AM 的长吗?
M
A B N
2.一轮船在大海中航行,它先向正北方向航行8 km,接着,它又掉头向正东方向航行15千米.
⑴此时轮船离开出发点多少km?
⑵若轮船每航行1km,需耗油0.4升,那么在此过程中轮船共耗油多少升?
(五)利用三角形面积相等:
1.如图,小正方形边长为1,连接小正方形的三个得到,可得△ABC,则边AC上的高为()
A.
2
2
3
B.
5
10
3
C.
5
5
3
D.
5
5
4
A
B
C
P'
A
B C
P
(六)旋转问题:
1.如图,点P是正△ABC内的点,且PA=6,PB=8,PC=10,若将△PAC绕点A旋转后,得到△AB
P',则点P与点P’之间的距离为,∠APB=
3.如图所示,P为正方形ABCD内一点,将∆ABP绕B顺时针旋转︒
90到∆CBE的位置,若BP=a,求:以PE为边长的正方形的面积
已知直角三角形ABC 中,∠ACB=︒90,CA=CB ,圆心角为︒45,半径长为CA 的扇形CEF 绕点C 旋转,且直线CE 、CF 分别与直线AB 交于点M 、N ,当扇形CEF 绕点C 在∠ACB 的内部旋转时,如图,试说明MN 2
2
2
BN AM +=的理由。

如图所示,已知在∆ABC 中,AB=AC ,∠BAC=︒90,D 是BC 上任一点,求证:BD 2
2
2
2AD CD =+。

已知∠AOB=90°,在∠AOB 的平分线OM 上有一点C ,将一个三角板的直角顶点与点C 重合,它的两条直角边分别与OA 、OB (或它们的反向延长线)相交于点D 、E 。

当三角板绕点C 旋转到CD 与OA 垂直时,如图①,易证:OC OE OD 2=
+;当三角板
绕点C 旋转到CD 与OA 不垂直时,如图②、③这两种情况下,上述结论还是否成立?若成立,请给与证明;若不成立,线段OE 、OC 、OD 之间有怎样的等量关系?请写出你的猜想,
E
B
A
C
M N F
不需证明。

试一试:对于第1问,OD=CE,问题的实质是
2
2
2OC
OE=,
OC
OE
2
2
=
,对于第二
问,通过作辅助线,将问题转化为第1问可解决。

(七)折叠问题:
1.如图,矩形纸片ABCD的长AD=9㎝,宽AB=3㎝,将其折叠,使点D与点B重合,那么折叠后DE的长是多少?
2.如图,在长方形ABCD中,将∆ABC沿AC对折至∆AEC位置,CE与AD交于点F。

(1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长
3.如图,在长方形ABCD中,DC=5,在DC边上存在一点E,沿直线AE把△ABC折叠,使点D恰好在BC边上,设此点为F,若△ABF的面积为30,求折叠的△AED的面积
D
C
B
A
F E
4.如图所示,有一个直角三角形纸片,两直角边AC=6㎝,BC=8㎝,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
5.如图,∠B=90°,AB=BC=4,AD=2,CD=6 △ACD 是什么三角形?为什么?
把△ACD 沿直线AC 向下翻折,CD 交AB 于点E ,若重叠部分面积为4,求D'E 的长。

E D C
B
A C'。

相关文档
最新文档