PCB布线设计详介

合集下载

pcb布线规则及技巧

pcb布线规则及技巧

使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。

PCB布线规则详解

PCB布线规则详解

PCB布线规则详解首先,布线规则包括了几个方面,其中包括走线规则、阻抗控制、电磁兼容性、信号完整性等。

走线规则是PCB布线中最基本的规则之一、在进行布线时,需要遵循走线的最短路径原则,尽量减小线路的长度,降低延迟和功耗。

同时,应该尽量减少线路之间的交叉和重叠,以减小串扰和干扰。

阻抗控制是保证信号传输质量的关键因素。

在高频信号传输中,信号的传播速度和波形会受到阻抗的影响。

因此,布线时需要根据设计要求来选择合适的走线宽度和间距,以控制信号的阻抗。

电磁兼容性是指电路在工作过程中不受外界电磁场的干扰,同时也不对周围环境产生干扰。

为了提高电磁兼容性,布线时需要尽量减小回路面积,减小回路的环形电流,合理安排信号线和电源线的位置,采用合适的屏蔽措施等。

信号完整性是指信号在传输过程中能够保持原始波形和稳定性。

布线时需要注意信号线的走线长度、走线路径以及信号线与电源线之间的距离等因素。

同时,还需要合理的串扰抑制措施,如通过地线隔离、差分串扰抵消、电源滤波等手段来保证信号的完整性。

除了上述的基本规则外,还需要考虑电气安全、机械强度和规划性等因素。

电气安全方面,应保证回路之间的绝缘性,避免发生触电等危险情况。

机械强度方面,需要考虑布线的嵌入度和支撑度,以避免线路断裂等问题。

规划性方面,则需考虑到后续的维护和修改,合理安排设备的布局和排线,以方便后期操作。

在实际操作中,布线规则通常会有一些特殊的要求,需要根据具体的设计需求来进行调整。

例如,对于模拟电路和数字电路,布线规则可能会有所不同。

对于高速线路和低速线路,布线规则也可能会有所不同。

因此,在进行PCB布线时,需要根据具体的电路设计要求和特点来确定合适的布线规则。

总之,PCB布线规则是保证电路性能和可靠性的重要因素。

通过遵循走线原则、控制阻抗、保证电磁兼容性和信号完整性等规则,可以提高电路的性能,降低干扰,保证电路的稳定运行。

同时,还需要考虑电气安全、机械强度和规划性等方面的要求,使电路设计达到最佳状态。

PCB布线设计详介

PCB布线设计详介

PCB布线设计详介PCB布线设计是电路设计中非常重要的一个环节,其设计质量直接关系到整个电路的稳定性和性能。

本文将对PCB布线设计的相关内容进行详细的介绍。

一、PCB布线设计的基本原则1.信号传输线要尽量短,减少信号传输时的信号损失,降低噪声干扰。

2.信号线和电源线要分开布线,避免互相干扰,减少互相串扰带来的影响。

3.布线路径尽量简单,避免交叉、弯曲、折返等复杂路径,减少布线电感和电容。

4.布线要避免悬线和盲孔,减少板间电容。

5.时钟信号和高速数据线要特别注意,要尽量短,布垂直于板面,避免与其他线路交叉干扰。

二、PCB布线的技巧1.差分线路的布线差分线路的布线技术是在高速传输系统中广泛应用的一种技术。

差分线路是指将信号线和其镜像线分开布置在PCB板上的一组线路,通过差模信号传输方式来实现。

差分信号与单端信号相比,具有抗噪声干扰、抗串扰、抗EMI(电磁干扰)能力强等特点,因此在高速传输中得到了广泛的应用。

2.布局的作用PCB布局与布线设计相辅相成,布局设计是为了让布线设计得以更好地实现。

优良的布局设计可以减少电路的噪声和信号干扰,提高电路的稳定性。

在PCB布局设计中,需注意尽量采用规则的布局结构,并在PCB布局设计中安排合理的电路模块布局。

同时还要注意小功率电路与大功率电路的分离,以及布局的美观性等。

3.选择合适的信号层在PCB布线设计中,如何选择合适的信号层是选择各层布线的关键之一,正确的选择信号层具有极其重要的作用。

总结各种信号层的特点,选择合适的信号层非常重要,一般可按以下原则进行选择:a.如何选择信号层的数量:在一般的PCB布线设计中,两、四层板较为常见,根据实际需要可选择更多的层数。

b.信号层的放置顺序:一般而言,地层作为底基础层,供电层接在地上方。

地面层主要用来进行接地和铺敷地电位,因此在信号层的选择上要注意尽量使地层尽可能地与其他层隔离开来。

其余层的放置顺序和数量根据实际电路设计需要来决定。

PCB、原理图布线规范详细版

PCB、原理图布线规范详细版

第一部分布局1 层的设置在PCB的EMC设计考虑中,首先涉及的便是层的设置:单板的层数由电源、地的层数和信号层数组成:电源层、地层、信号层的相对位置以及电源、地平面的分割对单板的EMC指标至关重要。

1.1 合理的层数根据单板的电源、地的种类、信号密度、板级工作频率、有特殊布线要求的信号数量,以及综合单板的性能指标要求与成本承受能力,确定单板的层数:对于EMC指标要求苛刻 (如产品需认证CISPR16 CLASS B)而相对成本能承受的情况下,适当增加地平面乃是PCB的EMC设计的杀手铜之一。

1.1.1 Vcc、GND的层数单板电源的层数由其种类数量决定 :对于单一电源供电的 PCB,一个电源平面足够了 :对于多种电源,若互不交错,可考虑采取电源层分割 (保证相邻层的关键信号布线不跨分割区 ):对于电源互相交错(尤其是象8260等IC,多种电源供电,且互相交错)的单板,则必须考虑采用2个或以上的电源平面,每个电源平面的设置需满足以下条件•单一电源或多种互不交错的电源;•相邻层的关键信号不跨分割区;地的层数除满足电源平面的要求外,还要考虑•元件面下面(第2层或倒数第2层)有相对完整的地平面;•高频、高速、时钟等关键信号有一相邻地平面;•关键电源有一对应地平面相邻(如48V与BGND相邻)。

1.1.2 信号层数在CAD室现行工具软件中,在网表调入完毕后,EDA软件能提供一布局、布线密度参数报告,由此参数可对信号所需的层数有个大致的判断: 经验丰富的CAD工程师,能根据以上参数再结合板级工作频率、有特殊布线要求的信号数量以及单板的性能指标要求与成本承受能力,最后确定单板的信号层数。

信号的层数主要取决于功能实现,从EMC的角度,需要考虑关键信号网络(强辐射网络以及易受干扰的小、弱信号)的屏蔽或隔离措施。

1.2 单板的性能指标与成本要求面对日趋残酷的通讯市场竞争,我们的产品开发面临越来越大的压力 :时间、质量、成本是我们能否战胜对手乃至生存的基本条件。

PCB板布局布线基本规则

PCB板布局布线基本规则

PCB板布局布线基本规则PCB(Printed Circuit Board)板布局布线是电路设计中的关键步骤之一,正确合理的布局布线可以保证电路的性能与稳定性。

下面将介绍一些PCB板布局布线的基本规则。

1.分离高频与低频信号:将高频与低频信号进行分离布局,以减少干扰。

高频信号线与低频信号线应尽可能平行布线,减少交叉。

2.分离模拟与数字信号:模拟与数字信号互相干扰的可能性较大,应将二者分离布局。

同时,在两者的接口处应预留地线屏蔽来降低非线性失真。

3.分层布局:将电路分布在不同的层次上,以减少干扰。

一般将模拟信号和数字信号分布在不同的层次上,并通过地平面、电源平面等层次进行电磁屏蔽。

4.自上而下布局:从信号源开始,自上而下分布。

这样可以减少信号线的长度,降低信号线的阻抗。

在布局时应尽量控制信号线的长度,避免过长导致信号衰减。

5.电源布局:电源是整个电路的基础,应尽可能靠近电源输入端布局,减少电源线路长度,降低电源线的阻抗。

同时,电源线应与信号线分离布线,避免互相干扰。

6.地线布局:地线在板布局中同样非常重要。

应尽量缩短地线的长度,减低地线的阻抗,并合理布局地线的走向,避免地线回团。

7.路径最佳化:布局时应保证信号路径的最短化,减少信号线的长度,降低信号传输时的延迟和衰减。

8.信号线与分量之间的距离:信号线与分量之间的距离尽可能短,可以减少耦合与串扰。

9.三角规则:同一面板上尽量遵循三角形规则,将相关信号线布局成三角形状,以减少互相干扰。

10.差分线布局:对于高速信号线,采用差分传输可以减少噪声和串扰。

差分信号线应尽可能平行布线,并保持等长。

11.布线层次顺序:布线时应按照信号的重要程度进行布线,先布线主干信号,再布线次要信号。

12.符号规范:在布线过程中应遵循相应的电气规范,使用适当的符号表示不同的信号。

总的来说,PCB板布局布线中的基本规则都是为了减少干扰、降低阻抗、缩短信号路径,保证电路的性能稳定性。

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项1.确定信号的类型与分类:首先需要明确信号的类型,如模拟信号、数字信号、高频信号等。

不同类型的信号在布线时需要采取不同的方式和策略。

此外,还需要将信号进行分类,根据其功能和特性确定合适的布线规则。

2.分层布线:为了降低互穿干扰和提高信号完整性,可以采用分层布线的方式。

将信号分散在不同的层次,如将地平面和电源平面分开,通过适当的间隔和规则来设计信号路径,能够有效减少信号串扰和辐射噪声。

3.地线与电源线的布线:地线是PCB布线中非常重要的一条线路,它负责回流电流和信号的引用。

在布线中,需要确保地线的连续性和低阻抗,避免开环和电流浪涌。

电源线的布线也需要注意稳定性和电流传输的需求,尽量避免电源线与信号线相互干扰。

4.信号线的长度匹配:如果需要传输同步或高速信号,信号线的长度匹配是十分重要的。

对于时序敏感的信号,如DDR总线,需要确保信号线的长度尽量相等,以避免信号的延迟差异影响其同步性能。

5.信号线的走线规则:对于高速信号,需要遵循规范的匹配走线方式,如使用直线、星形或者差分线走线等。

避免使用锯齿形的走线方式,以降低信号的串扰和辐射。

6.分区布线:如果电路较为复杂,可以将电路划分为不同的区域进行布线,以降低信号干扰和简化布线的复杂性。

每个区域可以独立进行布线并进行适当的隔离。

7.路径优化:在布线过程中,需要考虑信号的传输路径和相互之间的交叉。

尽量采用最短路径和避免交叉的方式来优化布线,以减少信号的延迟和干扰。

8.保护地线和信号线的距离:在布线中,需要保持地线和信号线的一定距离,避免信号线受到地线干扰。

一般情况下,地线和信号线的距离应大于5倍的线宽。

9.避免锯齿形走线:尽量避免使用锯齿形走线,如信号线多次转弯或穿越。

这样的走线方式容易导致信号串扰和辐射噪声。

10.引脚分配与走线规划:在进行PCB布线之前,需要进行引脚分配和走线规划。

将输入/输出端口、复位线、时钟线等关键信号的引脚安排在合适的位置,以提高布线的可行性和稳定性。

PCB板布线技巧

PCB板布线技巧

PCB板布线技巧1.合理规划布局:在开始布线之前,应该先对PCB板进行合理规划布局。

要根据电路的功能和信号传输的需求,将元器件和功能块合理地部署在PCB板上。

在布置元器件时,应该注意使信号路径尽可能的短,并保持良好的信号完整性。

2.地线和电源线设计:地线和电源线是电路中非常重要的信号线。

在布线时,要保证地线和电源线的宽度足够大以承受电流负载,并且要尽量减小地线和电源线的阻抗。

此外,还需要注意地线和电源线之间的间距,以避免相互干扰。

3.运用差分信号线:对于高速传输信号线,可以采用差分信号线布线。

差分信号线可以提高信号的抗干扰能力,减小信号线对周围环境的敏感度。

在布线时,应保持差分信号线的长度相等,并保持一定的间距,以避免互相干扰。

4.控制信号和高频信号的布线:对于控制信号和高频信号,布线时需要格外注意。

控制信号线应尽量和地线分开,以减小相互干扰的可能性。

对于高频信号线,应尽量避免走直线,而是采用更曲折的布线方式,以减小信号的辐射和串扰。

5.设计适当的信号地方向:在布线时,需要合理地选择信号的走向。

对于高频信号和运放信号,应尽量避免穿越整个板子。

信号线的走向应避免和其他高频信号和电源线相交,以减小相互干扰的可能性。

6.控制阻抗匹配:在布线中,要注意保持信号线的阻抗匹配。

如果信号线的阻抗不匹配,会导致信号的反射和损耗,从而影响信号的传输和质量。

通过控制信号线的宽度和间距,可以实现阻抗的匹配。

7.确保信号完整性:在布线时,需要注意信号的完整性。

可以通过增加电容和电感等元器件来实现信号的滤波和隔离,以减小干扰和噪声对信号的影响。

此外,还可以采用差分对地布线来降低信号的串扰。

8.注意电流回路:在布线时,需要特别关注电流回路的设计。

电流回路的布线需要注意回路的完整性,避免出现回路断开或者电流集中在其中一小段线路上的情况,从而引起电压降低和电流过载的问题。

以上就是PCB板布线的一些技巧。

在实际设计过程中,还需要根据具体的电路设计要求和特性进行合理的布线设计,从而实现电路性能和可靠性的最优化。

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则PCB板(Printed Circuit Board),即印刷电路板,是电子元器件连接和支撑的重要组成部分。

在电子设备中,PCB板起到连接电子元件、传导电信号和供电的作用。

本文将介绍PCB板的基础知识、布局原则、布线技巧和设计规则。

一、PCB板的基础知识1.PCB板的分类:根据不同的材料和结构,PCB板可以分为单面板、双面板和多层板。

2.PCB板的制作工艺:PCB板的制作包括原材料选购、制板、布线、焊接和测试等过程。

3.PCB板的重要参数:常见的PCB板参数包括厚度、层数、焦耳效应、阻抗控制等。

二、PCB板的布局原则1.布局紧凑且合理:电子元件应尽量集中布置,以减少信号线的长度和杂散电磁干扰。

2.电气分区与热分区:将电子元件按照功能分区,以便降低信号干扰,同时考虑热量的分布和散热问题。

3.处理信号线和电源线的互相干扰:要尽量增加信号线和电源线的间距,并避免平行穿越,以减少互相干扰。

4.放置元件外围的预留空间:为元器件的安装和维修预留足够的空间,以方便组装和维护。

三、PCB板的布线技巧1.信号线和电源线布线:信号线和电源线应分开布线,以减少互相干扰。

信号线应尽量缩短长度,减少串扰和信号损耗。

2.确定信号线的走向:信号线的走线路径应避开高频干扰源和高功率设备。

一般情况下,信号线应尽量走直线,避免拐弯和交叉。

3.地线布线:地线是保证PCB板正常工作的重要线路,地线应尽量接近信号线,以减少回流噪声。

同时,地线应尽量宽,以降低电阻和噪声。

4.设置滤波电容:在PCB板上合适的位置加入滤波电容,可以有效降低电源杂波及其他噪声的干扰。

四、PCB板的设计规则1.规定LED、电位器和按键的位置和引脚间距。

2.规定电源线的规格、引脚间距和安全间距。

3.规定电子元件与焊盘的间距和接触面积。

4.规定PCB板的最小线宽、最小孔径和最小间距。

5.规定PCB板的阻焊、喷锡、丝印等工艺要求。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。

比如,将稳压电路、放大电路、数字电路等放在不同的区域内。

-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。

因此,尽量把线路缩短,减少线路长度。

-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。

因此,尽量避免线路的交叉,使布局更加清晰。

-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。

-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。

2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。

-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。

-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。

-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。

-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。

总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。

通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项布线技巧:1.确定电路结构:在布线之前,需要先确定电路结构。

将电路分成模拟、数字和电源部分,然后分别布线。

这样可以减少干扰和交叉耦合。

2.分区布线:将电路分成不同的区域进行布线,每个区域都有自己的电源和地线。

这可以减少干扰和噪声,提高信号完整性。

3.高频和低频信号分离:将高频和低频信号分开布线,避免相互干扰。

可以通过设立地板隔离和电源隔离来降低电磁干扰。

4.绕规则:维持布线规则,如保持电流回路的闭合、尽量避免导线交叉、保持电线夹角90度等。

这样可以减少丢失信号和干扰。

5.简化布线:简化布线路径,尽量缩短导线长度。

短导线可以减少信号传输延迟,并提高电路稳定性。

6.差分线布线:对于高速信号和差分信号,应该采用差分线布线。

差分线布线可以减少信号的传输损耗和干扰。

7.用地平面:在PCB设计中,应该用地平面层绕过整个电路板。

地平面可以提供一个低阻抗回路,减少对地回路电流的干扰。

8.参考层对称布线:如果PCB板有多层,应该选择参考层对称布线。

参考层对称布线可以减少干扰,并提高信号完整性。

注意事项:1.信号/电源分离:要避免信号线与电源线共享同一层,以减少互相干扰。

2.减小射频干扰:布线时要特别注意射频信号传输的地方,采取屏蔽措施,如避免长线路、使用高频宽接地等。

3.避免过长接口线:如果接口线过长,则信号传输时间会增加,可能导致原始信号失真。

4.避免过短导线:过短的导线也可能引发一些问题,如噪声、串扰等。

通常导线长度至少应该为信号上升时间的三分之一5.接地技巧:为了减少地回路的电流噪声,应该尽量缩短接地回路路径,并通过增加地线来提高接地效果。

6.隔离高压部分:对于高压电路,应该采取隔离措施,避免对其他电路产生干扰和损坏。

7.注重信号完整性:对于高速和差分信号,应该特别注重信号完整性。

可以采用阻抗匹配和差分线布线等技术来提高信号传输的稳定性。

总结起来,PCB布线需要遵循一些基本原则,如简化布线、分区布线、差分线布线等,同时需要注意电源和信号的分离、射频干扰的减小等问题。

PCB布线与布局优化技巧

PCB布线与布局优化技巧

PCB布线与布局优化技巧在电子设备的设计中,PCB(Printed Circuit Board,印刷电路板)的布线与布局对于整个电路性能和稳定性起着至关重要的作用。

优秀的PCB布线与布局可以提高电路的抗干扰能力、信号完整性和性能稳定性。

下面就介绍一些PCB布线与布局优化技巧,帮助设计师提高产品质量和性能。

1. 分割电源平面:在PCB设计中,将电源平面分割成多个部分可以减少信号干扰及电磁辐射。

分割电源平面时,需要注意将模拟和数字电源分开,避免互相干扰。

通过合理设置分割线路,可以降低信号交叉干扰,提高信噪比。

2. 最短路径布线:尽量保持布线路径短,减少信号传输的延迟和损耗。

在选取布线路径时,应避免走线交叉、绕线等现象,以确保信号传输的稳定性和可靠性。

布线时还需考虑信号走线的方向,避免信号环路和共模噪声的产生。

3. 差分信号布线:对于高速信号线,尤其是差分信号线,需要特别注意其布线。

差分信号线的长度要尽量保持一致,以减少信号失真和串扰。

此外,差分信号线应在布线过程中尽量保持相邻,以减小信号传输的时间差。

4. 阻抗匹配:在PCB设计中,特别是在高频电路中,阻抗匹配是非常重要的。

正确设计差分对地、微带线、板厚等参数,以保证信号传输的稳定性和准确性。

利用阻抗匹配技术可以尽量减小信号的反射和衰减,提高信号完整性。

5. 地线布线:地线布线是PCB设计中的关键环节。

要尽量减小地线回路面积,避免干扰信号传输。

将地线设置为宽带,减小地线阻抗,提高地线的导电性。

另外,地线布线还要尽量与信号走线相互垂直,避免共模干扰。

6. 噪声隔离:在PCB布局设计中,要将噪声源与敏感信号源隔离开来,以减少噪声对信号的影响。

在设计布局时,可以使用屏蔽罩、滤波器等措施来隔离噪声源,确保信号传输的稳定性和准确性。

7. 确保热量散发:在PCB布局设计中,要考虑电路元件的散热问题。

合理安排元件的位置,保证元件之间的通风通道畅通,以便排出热量。

在布局时应注意避免高功率元件集中布局,以减小热量聚集的风险。

PCB布线设计规范

PCB布线设计规范

PCB布线设计规范1.简化布线:布线过程应尽量简化,避免过多的逻辑设计和冗余的电路元件。

布线过程中,应根据电路的功能和信号传输需求进行电路拓扑设计,尽量减小信号干扰和电磁辐射。

2.分区布线:将电路板划分为不同的功能区域,如数字电路、模拟电路、高频电路等。

在每个区域内进行布线时应避免不同功能区之间的信号干扰。

可以通过地平面划分和信号线隔离等方式来实现。

3.信号完整性设计:在进行高速信号布线时,应关注信号完整性问题,包括信号的传输延迟、信号损耗、串扰和反射等。

布线时要注意阻抗匹配、差分信号布线和分布式电容等设计原则,以确保信号的稳定传输和抗干扰性。

4.地平面和电源平面规划:地平面和电源平面的规划是保证电路板稳定性和抗干扰性的重要手段。

布线时应尽可能保持均匀的地平面和电源平面,并增加足够的电流引线,以提供电路元件的电源和地线。

5.信号层规划:多层PCB布线时,应合理规划信号层的分配。

通常,高速信号应布线在内层,以减小信号走线的长度和干扰,同时通过在内层和外层之间设置分布式电容来提高信号的质量。

6.穿孔布局规范:穿孔布局要遵循一定原则,如保持穿孔与元器件足够的间距,以避免穿孔引脚与其他电路元件之间的短路。

同时,应根据穿孔的类型和规格选用适当的引脚布局和连接方式。

7.导线走向规范:布线时应尽量减少导线的弯曲和交叉,以降低信号干扰和电磁辐射。

对于高速信号,应遵循最短路径和最少拐弯的原则,以保证信号的传输质量。

8.过孔与盲孔设计:过孔与盲孔是PCB中常用的连接方式。

在进行过孔和盲孔设计时,应遵循规范,如适当的间距、电洞尺寸和形状,以保证连接的质量和可靠性。

9.综合考虑EMC问题:在布线设计中要综合考虑电磁兼容性(EMC)问题,包括电磁辐射和电磁感应等。

使用合适的布局和屏蔽措施,以降低电路板对周围环境的干扰,以及对外部干扰的敏感度。

10.PCB尺寸和厚度规范:在进行布线设计时,应根据电路板的尺寸和厚度要求来选择适当的布线方式和技术。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。

2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。

3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。

4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。

5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。

二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。

2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。

3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。

对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。

4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。

对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。

5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。

同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。

6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。

7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。

三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。

2.尽量减小信号线的面积,减少对周围信号的干扰。

3.尽量采用四方对称布线,减少线路不平衡引起的干扰。

4.尽量降低线路阻抗,提高信号的传输质量。

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则PCB(Printed Circuit Board)板是电子产品中常用的一种电路元件,它由导线和电子元器件组成。

在进行PCB板的设计时,需要遵循一些基础知识、布局原则、布线技巧和设计规则,以确保电路板的稳定性和可靠性。

一、PCB板基础知识1.PCB板的分类:单面板、双面板、多层板。

2.PCB板的材料:常用的材料有FR-4玻璃纤维布基板和铝基板。

3.PCB板的层次结构:底层、封装层(元器件的焊接)、布线层(导线的布局)。

4.PCB板的元器件封装:常用的有DIP封装、SMD封装和BGA封装。

二、布局原则1.分区布局原则:将整个电路板划分为功能区、电源区和信号区,使各个区域之间的干扰最小。

2.元件布局原则:将功能相似的元器件尽量靠近,减少导线长度,降低电磁干扰。

3.重要性能电路布局原则:将音频、射频等重要性能电路放置在相对比较靠近电源接口的位置,以避免电源和地的干扰。

4.高功率元件布局原则:高功率元件(如继电器、驱动板等)应远离低功率元件,以避免高功率元件的热与电磁干扰对低功率元件产生不利影响。

三、布线技巧1.信号线布线技巧:要尽量避免信号线的交叉,使信号线按照逻辑关系进行布线,减少互相干扰的可能。

2.电源线布线技巧:按照电流大小和电压的需求进行布线,尽量减小电源线的长度和电阻。

3.地线布线技巧:要保证地线的连续性和稳定性,避免形成环路和过长的回流路径。

4.时钟信号布线技巧:时钟信号的布线应尽量短且相等,以避免时钟偏差和信号失真。

5.差分信号布线技巧:差分信号的正负线要尽量靠近,长度要保持一致,以降低互相干扰的可能性。

四、设计规则1.间距规则:不同电压等级之间、信号与电源之间、信号与地之间要有足够的间距以保证安全性和稳定性。

2.导线规则:要根据电流大小和导线的宽度选择合适的线宽,以确保导线的稳定性和通气性。

3.焊盘规则:要根据元器件的引脚数目确定焊盘的大小,以保证焊接的可靠性和稳定性。

PCB布线规则与技巧

PCB布线规则与技巧

PCB布线规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一项工作,它决定了电路的性能和可靠性。

正确的布线可以确保信号传输的稳定性,降低噪音干扰,提高产品的工作效率和可靠性。

下面将介绍一些常用的PCB布线规则与技巧。

1.保持信号完整性:信号完整性是指信号在传输过程中不受噪音、串扰等干扰影响,保持原有的稳定性。

为了保持信号完整性,应尽量减少信号线的长度和走线面积,减少信号线与功率线、地线等的交叉和平行布线。

同时,在高速信号线上使用传输线理论进行布线,如匹配阻抗、差分信号布线等。

2.分离高频和低频信号:为了避免高频信号的干扰,应将高频信号线与低频信号线分开布线,并保持一定的距离。

例如,在布线时可以采用地隔离层将不同频率的信号线分离或者采用地隔离孔将不同频率的信号线连接到不同的地层。

这样可以减少高频信号的串扰和干扰。

3.合理布局:布线时应合理规划电路板的布局,将功率线和地线尽量靠近,以减少电磁干扰。

同时,尽量避免信号线与功率线、地线等平行布线,减少互穿引起的干扰。

在设计多层板时,还要考虑到信号引线的短暂电容和电感,尽量减小信号线长度,以减少信号传输时的延迟。

4.适当使用扩展板和跳线:在复杂的PCB布线中,有时无法直接连接到目标位置,这时可以使用扩展板或跳线来实现连接。

扩展板是一个小型的PCB板,可以将需要连接的器件布线到扩展板上,再通过导线连接到目标位置。

跳线可以直接用导线连接需要的位置,起到连接的作用。

但是,在使用扩展板和跳线时要注意保持信号完整性,尽量缩短导线长度,避免干扰。

5.优化地线布局:地线是电路中非常重要的部分,它不仅提供回路给电流,还能减少电磁干扰和噪音。

在布线时应保证地线的连续性和稳定性,地线应尽量靠近功率线,对于高频信号,还应采用充足的地平面来隔离。

同时,地线的走线应尽量短且直,减少环状或绕圈的走线。

6.合理规划电源线:电源线的布线要尽量靠近负载,减小电流环形和接地环形。

EDA技术知识pcb板设计中布线规则

EDA技术知识pcb板设计中布线规则

EDA技术知识pcb板设计中布线规则EDA(Electronics Design Automation)技术是指利用计算机软件来辅助电子产品设计和制造的技术。

在PCB(Printed Circuit Board)板设计中,布线规则是指根据电路原理图和设计要求,在PCB板上安排电子元件的布局和相应的连线。

下面将详细介绍EDA技术在PCB板设计中的布线规则。

1.尽量短路径:布线时应尽量缩短信号路径,减少传输延迟和信号损耗。

对于高速信号,尤其需要避免长距离走线。

在布线时,可以考虑使用不同层的布线,减少信号层间的走线距离。

2.分层布线:在设计多层PCB板时,可以将不同信号类型分布在不同的层上,减少信号之间的干扰。

例如,将模拟信号和数字信号分布在不同的信号层上。

3. 地线规则:地线(GND)是电路中非常重要的信号,应尽量减小地线的阻抗。

为了实现低阻抗的地线,可以在Ground Plane(即地平面)层上分布大面积的铜排,以提供低阻抗的回流路径。

此外,地线也应尽量靠近相关信号线,以减少回流路径的长度。

4.信号线规则:在布线时,信号线的宽度和间距需要根据电流和信号的特性来选择。

对于高速信号,信号线的宽度和间距需要根据特定规则或计算公式来确定,以保证信号的完整性。

5.保持间距:在布线过程中,应注意两个电路之间的保持间距。

保持间距是指两个电路之间必须保持一定的距离,以防止电路之间的串扰或干扰。

6.避免使用90度转角:在布线时,应尽量避免使用90度的转角,因为锐角转弯会导致信号的反射和散射,影响信号的完整性。

适当采用圆弧转弯来减小信号反射。

7.分布式阻抗匹配:在高速信号的布线中,应注意保持信号线的阻抗匹配。

可以采用电感线、微带线或同轴线等技术来实现阻抗匹配。

8.防止串扰和干扰:在布线过程中,应注意信号之间的串扰和干扰。

可以采用屏蔽层、区域分隔、增加间距等手段来减少信号的串扰和干扰。

9.小信号和大信号分布:在布线时,应将小信号和大信号分开布线,以防止小信号被大信号干扰。

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项1.合理规划电路板上的元件布局:在进行布线之前,需要根据电路的功能和结构合理规划元件的布局。

合理布局可以减少跨线和交叉线,简化布线过程,并提高电路的可靠性和抗干扰能力。

例如,将相互关联的元件集中在一起,以减少连线长度和信号传输的损耗。

2.使用地平面和电源平面:地平面和电源平面是PCB布线中非常重要的一部分。

通过在PCB中设置地平面和电源平面,可以有效减少地线和电源线的长度,减小同轴电缆的干扰和耦合,提高信号完整性和抗干扰能力。

3.利用电网连接:电网连接是PCB布线中常用的一种布线方式。

电网连接可以减小线宽和线间距,减小电路板上的导线一阶传输延迟,提高信号完整性和抗干扰能力。

在布局时,应尽量合理规划电网的结构和布线的路径。

4.分析和优化信号传输路径:信号传输路径是PCB布线中需要特别关注的一部分。

通过分析信号传输路径,可以了解信号在电路板上的传输特性,并进行优化。

例如,可以采用直线传输路径,减小信号传输的损耗和干扰;可以避免信号线与电源线、地线和其他高频信号线的交叉,减小互相干扰。

5.处理高频和高速信号:在布线中,对于高频和高速信号需要特别注意。

高频信号容易受到串扰和反射的影响,因此对于高频信号,应避免长线和小弯曲。

对于高速信号,需要注意控制传输线的阻抗匹配,减小信号的反射和射频干扰。

6.使用适当的布线规则和约束:在进行布线之前,需要根据电路设计的要求和约束设置适当的布线规则。

布线规则可以包括连线宽度、线间距、最小孔径等要素。

合理设置布线规则可以减小静电干扰和交叉干扰,提高电路的性能和可靠性。

7.进行电磁兼容性(EMC)设计:在进行布线时,需要考虑电磁兼容性设计。

电磁辐射和电磁敏感性是电路板设计中常见的问题,可以通过合理的布线和使用滤波器来减小电磁干扰。

8.进行仿真和测试:在完成布线之后,需要进行仿真和测试来验证电路的性能和可靠性。

通过仿真和测试,可以检测电路中可能存在的问题,并做出相应的调整。

PCB布线设计详

PCB布线设计详

PCB布线设计在当今激烈竞争的电池供电市场中,由于成本指标限制,设计人员常常使用双面板。

尽管多层板(4层、6层及8层)技术方案在尺寸、噪声和性能方面具有明显优势,成本压力却促使工程师们重新考虑其布线策略,采用双面板。

在本文中,我们将讨论自动布线功能的正确使用和错误使用,有无地平面时电流回路的设计策略,以及对双面板元件布局的建议。

自动布线的优缺点以及模拟电路布线的注意事项设计PCB时,往往很想使用自动布线。

通常,纯数字的电路板(尤其信号电平比较低,电路密度比较小时)采用自动布线是没有问题的。

但是,在设计模拟、混合信号或高速电路板时,如果采用布线软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题。

例如,图1中显示了一个采用自动布线设计的双面板的顶层。

此双面板的底层如图2所示,这些布线层的电路原理图如图3a和图3b所示。

设计此混合信号电路板时,经仔细考虑,将器件手工放在板上,以便将数字和模拟器件分开放置。

采用这种布线技术方案时,有几个方面需要注意,但最麻烦的是接地。

如果在顶层布地线,则顶层的器件都通过走线接地。

器件还在底层接地,顶层和底层的地线通过电路板最右侧的过孔连接。

当检查这种布线策略时,首先发现的弊端是存在多个地环路。

另外,还会发现底层的地线返回路径被水平信号线隔断了。

这种接地技术方案的可取之处是,模拟器件(12位A/D转换器MCP3202和2.5V参考电压源MCP4125)放在电路板的最右侧,这种布局确保了这些模拟芯片下面不会有数字地信号经过。

图3a和图3b所示电路的手工布线如图4、图5所示。

在手工布线时,为确保正确实现电路,需要遵循一些通用的设计准则:尽量采用地平面作为电流回路;将模拟地平面和数字地平面分开;如果地平面被信号走线隔断,为降低对地电流回路的干扰,应使信号走线与地平面垂直;模拟电路尽量靠近电路板边缘放置,数字电路尽量靠近电源连接端放置,这样做可以降低由数字开关引起的di/dt效应。

PCB布线的基本规则与技巧

PCB布线的基本规则与技巧

PCB布线的基本规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一环,它涉及到电路设计的优化、信号传输的质量以及电路板的可靠性等方面。

以下是一些PCB布线的基本规则与技巧。

1.分隔高频与低频信号:在布线过程中,应将高频和低频信号分隔开来,以减少相互干扰。

可以通过增加地线、使用地层或远离干扰源等方式实现。

2.避免信号线与电源线、地线交叉:信号线与电源线、地线交叉会引起互相干扰,影响信号的传输质量。

在布线时应尽量避免信号线与其他线路的交叉,并采取合适的措施进行隔离。

3.保持信号线的相互垂直:信号线之间保持垂直可以减少信号之间的干扰。

在布线时,应尽量使信号线垂直地通过其他信号线或电源线、地线。

4.尽量缩短信号线的长度:信号线的长度会对信号传输的延迟和损耗产生影响,因此在布线时应尽量缩短信号线的长度。

对于高频信号尤为重要。

5.使用平面与过孔进行地线连接:地线是电路板中非常重要的一条线路,它可以提供整个电路的参考电平。

在布线时,可以通过使用平面层与过孔来进行地线的连接,提高地线的连续性。

6.使用平面与过孔进行电源线连接:电源线的布线也是非常重要的,尤其是对于供电要求较高的芯片或模块。

在布线时,可以通过使用平面层与过孔来进行电源线的连接,减少电源线的阻抗。

7.控制线宽和线距:PCB布线中的线宽和线距对电路的阻抗、信号的传输速度以及电流的承载能力等都是有影响的。

在布线时要根据需要选择合适的线宽和线距,保证电路的性能。

8.避免信号环路:信号环路会引起信号的反馈和干扰,影响电路的正常工作。

在布线时应尽量避免信号环路的产生,可以采取断开一部分连接或改变布线路径等方式来解决。

9.保持信号对称性:对于差分信号线或时钟信号线,应保持信号的对称性。

在布线时应尽量使信号线的路径相同,长度相等,以减少差分信号之间的干扰。

10.考虑EMI(Electromagnetic Interference,电磁干扰):在布线过程中应考虑到电磁干扰的问题,采取一些措施来减少电磁辐射和干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB布线设计在当今激烈竞争的电池供电市场中,由于成本指标限制,设计人员常常使用双面板。

尽管多层板(4层、6层及8层)方案在尺寸、噪声和性能方面具有明显优势,成本压力却促使工程师们重新考虑其布线策略,采用双面板。

在本文中,我们将讨论自动布线功能的正确使用和错误使用,有无地平面时电流回路的设计策略,以及对双面板元件布局的建议。

自动布线的优缺点以及模拟电路布线的注意事项设计PCB时,往往很想使用自动布线。

通常,纯数字的电路板(尤其信号电平比较低,电路密度比较小时)采用自动布线是没有问题的。

但是,在设计模拟、混合信号或高速电路板时,如果采用布线软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题。

例如,图1中显示了一个采用自动布线设计的双面板的顶层。

此双面板的底层如图2所示,这些布线层的电路原理图如图3a和图3b所示。

设计此混合信号电路板时,经仔细考虑,将器件手工放在板上,以便将数字和模拟器件分开放置。

采用这种布线方案时,有几个方面需要注意,但最麻烦的是接地。

如果在顶层布地线,则顶层的器件都通过走线接地。

器件还在底层接地,顶层和底层的地线通过电路板最右侧的过孔连接。

当检查这种布线策略时,首先发现的弊端是存在多个地环路。

另外,还会发现底层的地线返回路径被水平信号线隔断了。

这种接地方案的可取之处是,模拟器件(12位A/D转换器MCP3202和2.5V参考电压源MCP4125)放在电路板的最右侧,这种布局确保了这些模拟芯片下面不会有数字地信号经过。

图3a和图3b所示电路的手工布线如图4、图5所示。

在手工布线时,为确保正确实现电路,需要遵循一些通用的设计准则:尽量采用地平面作为电流回路;将模拟地平面和数字地平面分开;如果地平面被信号走线隔断,为降低对地电流回路的干扰,应使信号走线与地平面垂直;模拟电路尽量靠近电路板边缘放置,数字电路尽量靠近电源连接端放置,这样做可以降低由数字开关引起的di/dt效应。

这两种双面板都在底层布有地平面,这种做法是为了方便工程师解决问题,使其可快速明了电路板的布线。

厂商的演示板和评估板通常采用这种布线策略。

但是,更为普遍的做法是将地平面布在电路板顶层,以降低电磁干扰。

ﻭ图1 采用自动布线为图3所示电路原理图设计的电路板的顶层ﻭ图2 采用自动布线为图3所示电路原理图设计的电路板的底层ﻭ图3a 图1、图2、图4和图5中布线的电路原理图ﻭ图3b 图1、图2、图4和图5中布线的模拟部分电路原理图有无地平面时的电流回路设计对于电流回路,需要注意如下基本事项:1. 如果使用走线,应将其尽量加粗PCB上的接地连接如要考虑走线时,设计应将走线尽量加粗。

这是一个好的经验法则,但要知道,接地线的最小宽度是从此点到末端的有效宽度,此处“末端”指距离电源连接端最远的点。

2. 应避免地环路3. 如果不能采用地平面,应采用星形连接策略(见图6)通过这种方法,地电流独立返回电源连接端。

图6中,注意到并非所有器件都有自己的回路,U1和U2是共用回路的。

如遵循以下第4条和第5条准则,是可以这样做的。

4. 数字电流不应流经模拟器件数字器件开关时,回路中的数字电流相当大,但只是瞬时的,这种现象是由地线的有效感抗和阻抗引起的。

对于地平面或接地走线的感抗部分,计算公式为V =Ldi/dt,其中V是产生的电压,L是地平面或接地走线的感抗,di是数字器件的电流变化,dt是持续时间。

对地线阻抗部分的影响,其计算公式为V= RI, 其中,V是产生的电压,R是地平面或接地走线的阻抗,I是由数字器件引起的电流变化。

经过模拟器件的地平面或接地走线上的这些电压变化,将改变信号链中信号和地之间的关系(即信号的对地电压)。

5. 高速电流不应流经低速器件与上述类似,高速电路的地返回信号也会造成地平面的电压发生变化。

此干扰的计算公式和上述相同,对于地平面或接地走线的感抗,V = Ldi/dt;对于地平面或接地走线的阻抗,V = RI 。

与数字电流一样,高速电路的地平面或接地走线经过模拟器件时,地线上的电压变化会改变信号链中信号和地之间的关系。

ﻭ图4 采用手工走线为图3所示电路原理图设计的电路板的顶层ﻭ图5 采用手工走线为图3所示电路原理图设计的电路板的底层ﻭ图6如果不能采用地平面,可以采用“星形”布线策略来处理电流回路ﻭ图7分隔开的地平面有时比连续的地平面有效,图b)接地布线策略比图a) 的接地策略理想6. 不管使用何种技术,接地回路必须设计为最小阻抗和容抗7.如使用地平面,分隔开地平面可能改善或降低电路性能,因此要谨慎使用分开模拟和数字地平面的有效方法如图7所示图7中,精密模拟电路更靠近接插件,但是与数字网络和电源电路的开关电流隔离开了。

这是分隔开接地回路的非常有效的方法,我们在前面讨论的图4和图5的布线也采用了这种技术。

工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。

尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。

模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设计就不再是最优方案了。

本文就旁路电容、电源、地线设计、电压误差和由PCB布线引起的电磁干扰(EMI)等几个方面,讨论模拟和数字布线的基本相似之处及差别。

模拟和数字布线策略的相似之处旁路或去耦电容在布线时,模拟器件和数字器件都需要这些类型的电容,都需要靠近其电源引脚连接一个电容,此电容值通常为0.1mF。

系统供电电源侧需要另一类电容,通常此电容值大约为10mF。

这些电容的位置如图1所示。

电容取值范围为推荐值的1/10至10倍之间。

但引脚须较短,且要尽量靠近器件(对于0.1mF电容)或供电电源(对于10mF电容)。

在电路板上加旁路或去耦电容,以及这些电容在板上的位置,对于数字和模拟设计来说都属于常识。

但有趣的是,其原因却有所不同。

在模拟布线设计中,旁路电容通常用于旁路电源上的高频信号,如果不加旁路电容,这些高频信号可能通过电源引脚进入敏感的模拟芯片。

一般来说,这些高频信号的频率超出模拟器件抑制高频信号的能力。

如果在模拟电路中不使用旁路电容的话,就可能在信号路径上引入噪声,更严重的情况甚至会引起振动。

对于控制器和处理器这样的数字器件,同样需要去耦电容,但原因不同。

这些电容的一个功能是用作“微型”电荷库。

在数字电路中,执行门状态的切换通常需要很大的电流。

由于开关时芯片上产生开关瞬态电流并流经电路板,有额外的“备用”电荷是有利的。

如果执行开关动作时没有足够的电荷,会造成电源电压发生很大变化。

电压变化太大,会导致数字信号电平进入不确定状态,并很可能引起数字器件中的状态机错误运行。

流经电路板走线的开关电流将引起电压发生变化,电路板走线存在寄生电感,可采用如下公式计算电压的变化:V = LdI/dt其中,V = 电压的变化;L = 电路板走线感抗;dI = 流经走线的电流变化;dt =电流变化的时间。

因此,基于多种原因,在供电电源处或有源器件的电源引脚处施加旁路(或去耦)电容是较好的做法。

电源线和地线要布在一起电源线和地线的位置良好配合,可以降低电磁干扰的可能性。

如果电源线和地线配合不当,会设计出系统环路,并很可能会产生噪声。

电源线和地线配合不当的PCB设计示例如图2所示。

此电路板上,设计出的环路面积为697cm2。

采用图3所示的方法,电路板上或电路板外的辐射噪声在环路中感应电压的可能性可大为降低。

模拟和数字领域布线策略的不同之处地平面是个难题电路板布线的基本知识既适用于模拟电路,也适用于数字电路。

一个基本的经验准则是使用不间断的地平面,这一常识降低了数字电路中的dI/dt(电流随时间的变化)效应,这一效应会改变地的电势并会使噪声进入模拟电路。

数字和模拟电路的布线技巧基本相同,但有一点除外。

对于模拟电路,还有另外一点需要注意,就是要将数字信号线和地平面中的回路尽量远离模拟电路。

这一点可以通过如下做法来实现:将模拟地平面单独连接到系统地连接端,或者将模拟电路放置在电路板的最远端,也就是线路的末端。

这样做是为了保持信号路径所受到的外部干扰最小。

对于数字电路就不需要这样做,数字电路可容忍地平面上的大量噪声,而不会出现问题。

元件的位置如上所述,在每个PCB设计中,电路的噪声部分和“安静”部分(非噪声部分)要分隔开。

一般来说,数字电路“富含”噪声,而且对噪声不敏感(因为数字电路有较大的电压噪声容限);相反,模拟电路的电压噪声容限就小得多。

两者之中,模拟电路对开关噪声最为敏感。

在混合信号系统的布线中,这两种电路要分隔开,如图4所示。

PCB设计产生的寄生元件PCB设计中很容易形成可能产生问题的两种基本寄生元件:寄生电容和寄生电感。

设计电路板时,放置两条彼此靠近的走线就会产生寄生电容。

可以这样做:在不同的两层,将一条走线放置在另一条走线的上方;或者在同一层,将一条走线放置在另一条走线的旁边,如图5所示。

在这两种走线配置中,一条走线上电压随时间的变化(dV/dt)可能在另一条走线上产生电流。

如果另一条走线是高阻抗的,电场产生的电流将转化为电压。

快速电压瞬变最常发生在模拟信号设计的数字侧。

如果发生快速电压瞬变的走线靠近高阻抗模拟走线,这种误差将严重影响模拟电路的精度。

在这种环境中,模拟电路有两个不利的方面:其噪声容限比数字电路低得多;高阻抗走线比较常见。

采用下述两种技术之一可以减少这种现象。

最常用的技术是根据电容的方程,改变走线之间的尺寸。

要改变的最有效尺寸是两条走线之间的距离。

应该注意,变量d在电容方程的分母中,d增加,容抗会降低。

可改变的另一个变量是两条走线的长度。

在这种情况下,长度L降低,两条走线之间的容抗也会降低。

另一种技术是在这两条走线之间布地线。

地线是低阻抗的,而且添加这样的另外一条走线将削弱产生干扰的电场,如图5所示。

电路板中寄生电感产生的原理与寄生电容形成的原理类似。

也是布两条走线,在不同的两层,将一条走线放置在另一条走线的上方;或者在同一层,将一条走线放置在另一条的旁边,如图6所示。

在这两种走线配置中,一条走线上电流随时间的变化(dI/dt),由于这条走线的感抗,会在同一条走线上产生电压;并由于互感的存在,会在另一条走线上产生成比例的电流。

如果在第一条走线上的电压变化足够大,干扰可能会降低数字电路的电压容限而产生误差。

并不只是在数字电路中才会发生这种现象,但这种现象在数字电路中比较常见,因为数字电路中存在较大的瞬时开关电流。

为消除电磁干扰源的潜在噪声,最好将“安静”的模拟线路和噪声I/O端口分开。

要设法实现低阻抗的电源和地网络,应尽量减小数字电路导线的感抗,尽量降低模拟电路的电容耦合。

相关文档
最新文档