(典型题讲解专练)2014届高考物理一轮复习《机械能守恒定律》(含解析)
2014高考物理一轮(全套)答案
参考答案45分钟单元能力训练卷(一)1.C [解析] 由于x =v 2t =82×1 m =4 m<5.9 m ,故刹车试验符合规定.2.B [解析] 无论加速度正在增大还是正在减小,只要加速度与速度同向,物体速度就一直增大,当加速度减小到零时,物体速度达到最大,速度不再增大,但位移会继续增大,本题只有选项B 正确.3.A [解析] 甲车中的乘客以甲车为参考系,相当于甲车静止不动,乙车以初速度v 0向西做匀减速运动,速度减为零之后,再向东做匀加速运动,A 正确;乙车中的乘客以乙车为参考系,相当于乙车静止不动,甲车以初速度v 0向东做匀减速运动,速度减为零之后,再向西做匀加速运动,B 错误;以地面为参考系,当两车速度相等时,距离最远,C 、D 错误.4.C [解析] 质点甲在第1 s 内向负方向运动,其他三个质点在第1 s 内均向正方向运动,而平均速度是矢量,选项A 错误.质点丙在前2 s 内一直向正方向运动,不可能回到出发点,选项B 错误.第2 s 内,质点甲、丙、丁的速度大小都在增大,选项C 正确.前2 s 内质点乙、丙都向正方向运动,且第2 s 末位移相同,选项D 错误.5.C [解析] 根据v -t 图象,在0~2 s 内和4 s ~6 s 内,图线位于横轴上方,这表示物体的运动方向与规定的正方向相同,2 s ~4 s 内,图线位于横轴下方,表示物体运动的方向与规定的正方向相反.在第1 s 末前后瞬间,图线都位于横轴上方,表示物体的运动方向都与正方向相同,选项A 错误;在v -t 图象中,图线的斜率表示加速度,物体在第2 s 内和第4 s 内对应图线的斜率不同,所以加速度不同,选项B 错误;根据“面积法”,图线与横轴在4 s 内所围的面积表示位移为0,故物体在4 s 末返回出发点,选项C 正确;物体在5 s 末仍然沿正方向远离出发点运动,只不过开始做减速运动,到6 s 末速度降为0,所以物体在6 s 末离出发点最远,且最大位移为1 m ,选项D 错误.6.CD [解析] A 、B 两个物体的速度均为正值,故运动方向相同,选项A 错误;t =4 s 时,A 、B 两个物体的速度大小相同,相距最远,选项B 错误,选项C 正确;在相遇前,A 、B 两个物体的最远距离为(15-5)×4×12m =20 m ,选项D 正确.7.AD [解析] 小盒子B 向被测物体发出短暂的超声波脉冲后,经过12t 1时间到达被测物体并被反射折回,再经过12t 1时间回到小盒子B ,在该过程中,超声波经过的路程为2x 1,所以超声波的速度为v 声=2x 1t 1,选项A 正确;从小盒子B 发射超声波开始计时,经时间Δt 0再次发射超声波脉冲,经过12(t 2-Δt 0)时间到达被测物体并被反射折回,再经过12(t 2-Δt 0)回到小盒子B ,该过程中,超声波经过的路程为2x 2,所以,超声波的速度为v 声=2x 2t 2-Δt 0,选项B 错误;被测物体在12t 1时刻第一次接收到超声波,在Δt 0+12(t 2-Δt 0)即12(t 2+Δt 0)时刻第二次接收到超声波,该过程中被测物体发生的位移为x 2-x 1,所以物体的平均速度为v =x 2-x 112(t 2+Δt 0)-12t 1=2(x 2-x 1)t 2-t 1+Δt 0,故选项C 错误,选项D 正确.8.Ⅰ.(1)3.0×10-2 9×10-2 (2)能 利用(x 6-x 4)-(x 4-x 2)=4aT 2可以求出位置4的具体位置(其他方法合理均可)[解析] 从图中读出位置5、6之间的距离为37.5 cm -24.0 cm =13.5 cm ,位置2、3之间的距离为6.0 cm -1.5 cm =4.5 cm ,由x 56-x 23=3aT 2,求出a =3.0×10-2 m/s 2;位置4对应的速度为v 4=x 352T =9×10-2 m/s ;欲求4的具体位置,可以采用逐差法利用(x 6-x 4)-(x 4-x 2)=4aT 2求解.Ⅱ.(1)D (2)v 22—h 速度平方的二分之一 重物下落的高度[解析] (1)打点计时器需接交流电源;重力加速度与物体的质量无关,所以不要天平和砝码;计算速度需要测相邻计数点间的距离,需要毫米刻度尺.(2)由公式v 2=2gh ,如绘出v 22—h 图象,其斜率也等于重力加速度.9.0.8 s [解析] 设货车启动后经过时间t 1两车开始错车,则有 x 1+x 2=180 m ,其中x 1=12at 21,x 2=vt 1,联立解得t 1=10 s.设货车从开始运动到两车错车结束所用时间为t 2,在数值上有 x 1′+x 2′=(180+10+12) m =202 m. 其中x 1′=12at 22,x 2′=vt 2,联立解得t 2=10.8 s.故两车错车的时间Δt =t 2-t 1=0.8 s.10.4 m/s [解析] 设小球甲在斜面上运动的加速度为a 1,运动时间为t 1,运动到B 处时的速度为v 1,从B 处到与小球乙相碰所用时间为t 2,则a 1=gsin30°=5 m/s 2由hsin30°=12a 1t 21,得t 1=4ha 1=0.2 s 则t 2=t -t 1=0.8 s ,v 1=a 1t 1=1 m/s 小球乙运动的加速度a 2=μg =2 m/s 2 小球甲、乙相遇时满足:v 0t -12a 2t 2+v 1t 2=L代入数据解得:v 0=4 m/s.45分钟单元能力训练卷(二)1.A [解析] 取滑块为研究对象,受力分析如图所示,由平衡条件得Nsin θ=mg ,即N =mgsin θ,选项C 、D 错误;由Ftan θ=mg ,得F =mgtan θ,选项A 正确,选项B 错误.2.A [解析] 根据f =μF N ,物体与桌面间的滑动摩擦力和最大静摩擦力均为40 N ,故当用15 N 、30 N 、80 N 的水平拉力拉物体时,物体受到的摩擦力依次为15 N 、30 N 、40 N ,A 正确.3.A [解析] 木块A 和木板B 均处于平衡状态,受力分析后可以知道,地面与木板B 之间没有摩擦力,A 和B 间的滑动摩擦力等于F ,A 正确,B 错误;若木板以2v 的速度运动或用力2F 拉木板B ,木块A 受到的滑动摩擦力为F ,C 、D 错误.4.C [解析] 如图所示,对C 点进行受力分析,由平衡条件可知,绳CD 对C 点的拉力F CD =mgtan30°,对D 点进行受力分析,绳CD 对D 点的拉力F 2=F CD =mgtan30°,F 1方向一定,则当F 3垂直于绳BD 时,F 3最小,由几何关系可知,F 3=F CD cos30°=12mg.5.B [解析] 对球受力分析如图所示,球受重力G 、墙对球的支持力N 1′和板对球的支持力N 2′而平衡.作出N 1′和N 2′的合力F ,它与G 等大反向.在板BC 逐渐放至水平的过程中,N 1′的方向不变,大小逐渐减小,N 2′的方向发生变化,大小也逐渐减小,如图所示,由牛顿第三定律可知:N 1=N 1′,N 2=N 2′.选项B 正确.6.BD [解析] 木块A 、B 分别受弹簧的弹力为F =kx =5 N ,则用F =7 N 的水平力作用在木块A 上后,A 受水平向左的静摩擦力为2 N ,选项A 、C 错误,选项B 正确;木块在B 水平方向上只受弹簧的弹力和地面的静摩擦力,二者等大反向,即木块B 受到静摩擦力为5 N ,选项D 正确.7.BC [解析] 由图乙可知,物块A 沿斜面匀速下滑,故物块A 一定受到重力、斜面对A 的支持力和摩擦力三个力的作用,A 错误,B 正确;以A 、B 为一个系统,由于系统在水平方向上无加速度,水平方向合外力必定为零,故地面对斜面体的作用力竖直向上,C 正确,D 错误.8.Ⅰ.(1)AB (2)C [解析] (1)本实验中应以所研究的一根弹簧为实验对象,在弹性限度内通过增减钩码的数目来改变对弹簧的拉力,从而探究弹力与弹簧伸长的关系,A 、B 正确,C 、D 错误.(2)考虑弹簧自身重力的影响,当不挂钩码时,弹簧的伸长量x>0,C 正确.Ⅱ.(1)④⑤①③② (2)ABD[解析] (1)做该实验的过程中应该首先将三根橡皮条拴在图钉上,这样便于测橡皮条的原长,之后就要固定两个图钉拉第三个图钉到适当的位置进行实验,把第三个图钉也固定好后就可测每根橡皮条的长度并计算出伸长量,最后按照胡克定律转换成力作出力的图示进行实验研究,所以正确的实验步骤是④⑤①③②.(2)该实验的关键是应用三个共点力平衡的推论进行实验原理的改进,应用胡克定律将测量力的大小转换为测量橡皮条的长度,选项A 、B 正确;任何实验都有误差,误差是不可避免的,不能因为有误差就把实验完全否定,选项C 错误;实验的误差有系统误差和偶然误差,三根橡皮条不能做到粗细、长短完全相同,是该实验误差的主要来源之一,选项D 正确.9.52[解析] 平衡后绳圈c 受力如图所示,有F 1=m 2g F 2=m 1g由图中几何关系及平衡条件可知 F 2F 1=l 2+⎝⎛⎭⎫l 22l=52解得m 1m 2=52.10. (1)100 N (2)200 N[解析] (1)对A 进行受力分析,可知A 受到四个力的作用,分解绳的拉力,根据平衡条件可得N 1=m A g +Tsin θ, f 1=Tcos θ, 其中f 1=μ1N 1解得T =μm A gcos θ-μ1sin θ=100 N.(2)对B 进行受力分析,可知B 受6个力的作用 地面对B 的支持力N 2=m B g +N 1, 而N 1=m A g +Tsin θ=160 N 故拉力F =μ2N 2+μ1N 1=200 N.45分钟单元能力训练卷(三)1.C [解析] 物体在不受外力作用时保持原有运动状态不变的性质叫惯性,故牛顿第一定律又叫惯性定律,A 正确.牛顿运动定律都是在宏观、低速的情况下得出的结论,在微观、高速的情况下不成立,B 正确.牛顿第一定律说明了两点含义,一是所有物体都有惯性,二是物体不受力时的运动状态是静止或匀速直线运动,牛顿第二定律并不能完全包含这两点意义,C 错误.伽利略的理想实验是牛顿第一定律的基础,D 正确.2.C [解析] 相同大小的力作用在不同的物体上产生的效果往往不同,故不能从效果上去比较作用力与反作用力的大小关系,选项C 正确.3.B [解析] 物体与地面间最大静摩擦力F f =μmg =0.2×2×10 N =4 N .由题给F -t 图象知,0~3 s 内,F =4 N ,说明物体在这段时间内保持静止不动;3~6 s 内,F =8 N ,说明物体做匀加速运动,加速度a =F -fm =2 m/s 2;6 s 末物体的速度v =at =2×3 m/s =6 m/s ;在6~9 s 内,物体以6 m/s 的速度做匀速运动;9~12 s 内,物体以2 m/s 2的加速度做匀加速运动.作出v -t 图象如图所示,故0~12 s 内的位移x =12×6×3 m +6×3 m +12×(6+12)×3m =54 m.4.D [解析] 当电梯静止时,弹簧被压缩了x ,说明弹簧弹力kx =mg ;弹簧又被继续压缩了x 10,弹簧弹力为1.1mg ,根据牛顿第二定律有1.1mg -mg =ma ,电梯的加速度为g10,且方向是向上的,电梯处于超重状态,符合条件的只有D. 5.D [解析] 用水平力F 将B 球向左推压缩弹簧,平衡后弹簧弹力为F.突然将水平力F 撤去,在这一瞬间,B 球的速度为零,加速度为Fm,选项D 正确.6.BD [解析] 小煤块刚放上传送带后,加速度a =μg =4 m/s 2,故小煤块加速到与传送带同速所用的时间为t 1=v 0a =0.5 s ,此时小煤块运动的位移x 1=v 02t 1=0.5 m ,而传送带的位移为x 2=v 0t 1=1 m ,故小煤块在传送带上的划痕长度为l =x 2-x 1=0.5 m ,C 错误,D 正确;之后小煤块匀速运动,故运动到B 所用的时间t 2=x -x 1v 0=1.75 s ,故小煤块从A 运动到B 所用的时间t =t 1+t 2=2.25 s ,A 错误,B 正确.7.BD [解析] 由速度图象可得,在0~2 s 内,物体做匀加速运动,加速度a =ΔvΔt =0.5m/s 2,2 s 后,物体做匀速运动,合外力为零,即推力等于阻力,故0~2 s 内的合外力F 合=21.5 N -20 N =1.5 N ,由牛顿第二定律可得:m =F 合a =1.50.5 kg =3 kg ,选项A 错误;由匀速运动时F =mgsin α+μmg cos α,解得:μ=39,选项B 正确;撤去推力F 后,物体先做匀减速运动到速度为零,之后所受的合外力为F 合′=mgsin α-μmg cos α=10 N>0,所以物体将下滑,下滑时的加速度为a′=F 合′m =103m/s 2,选项C 错误,选项D 正确.8.Ⅰ.(1)用交流电源;木板右侧垫起以平衡摩擦力;小车应放在靠近打点计时器处;细线应与木板平行(任写两条即可) (2)4.0[解析] (1)“验证牛顿第二定律”的实验中,通过打点计时器测量加速度,而打点计时器需要使用交流电源;小车运动中受到摩擦力,故需要使木板形成斜面以平衡摩擦力;小车应放在靠近打点计时器处.(2)小车运动的加速度a =(x 6+x 5+x 4)-(x 3+x 2+x 1)9(2T )2=4.0 m/s 2. Ⅱ.(1)如图所示 (2)0.2[解析] (1)由a =(x 3+x 4)-(x 1+x 2)4T 2可得,5条纸带对应的加速度分别为:a 1=0.25m/s 2,a 2=0.49 m/s 2,a 3=0.75 m/s 2,a 4=0.99 m/s 2,a 5=1.26 m/s 2,在a —F 坐标系中描点连线.(2)由牛顿第二定律知,F =ma ,m =F a =1k ,其中k 为a —F 图线的斜率,由图可得k =5,故m=0.2 kg.9.(1)1.0 m/s 2(2)0.25[解析] (1)根据运动学公式有:s =12at 2,解得a =2s t 2=2×0.51.02 m/s 2=1.0 m/s 2. (2)物体运动过程受力如图所示.根据胡克定律有F =kx =200×0.9×10-2 N =1.8 N 根据牛顿第二定律有 F -f -mgsin37°=ma则f =F -mgsin37°-ma =1.8 N -0.2×10×0.6 N -0.2×1.0 N =0.4 N 又N =mgcos37°=0.2×10×0.8 N =1.6 N 根据滑动摩擦力公式f =μN 得: μ=f N =0.41.6=0.25.10.(1)3 s (2)26 N[解析] (1)对于B,在未离开A时,其加速度为a B1=μ1mgm=1 m/s2设经过时间t1后B离开A,离开A后B的加速度为a B2=-μ2mgm=-2 m/s2设A从B下抽出瞬间B的速度为v B,有v B=a B1t112a B1t 21+v2B-2a B2=s联立解得t1=2 s则t2=v B-a B2=1 s所以B运动的时间是t=t1+t2=3 s(2)设A的加速度为a A,则根据相对运动的位移关系得12a A t 21-12a B1t21=L-s解得a A=2 m/s2根据牛顿第二定律得F-μ1mg-μ2(m+M)g=Ma A解得:F=26 N.45分钟滚动复习训练卷(一)1.C[解析] 小球受重力和向上的弹力,在平衡位置上方,F合=mg-F弹,且弹力逐渐增大,合力减小,加速度减小但方向一直向下,速度增大;在平衡位置下方,F合=F弹-mg,且弹力继续增大,合力增大,加速度增大但方向向上,速度减小.2.D[解析] 对物块进行受力分析可知,由于初始状态弹簧被拉伸,所以物块受到的摩擦力水平向左,当倾角逐渐增大时,物块所受重力沿斜面方向的分力逐渐增大,所以摩擦力先逐渐减小,弹力与重力沿斜面方向的分力平衡时,摩擦力变为0;当倾角继续增大时,摩擦力向上且逐渐增大,故选项D正确.3.C[解析] 若绳对B的拉力恰好与B的重力沿斜面向下的分力平衡,则B与C间的摩擦力为零,A项错误;将B和C看成一个整体,则B和C受到细绳向右上方的拉力作用,故C有向右滑动的趋势,一定受到地面向左的摩擦力,B项错误,C项正确;将细绳剪断,若B依然静止在斜面上,利用整体法判断,B、C整体在水平方向不受其他外力作用,处于平衡状态,则地面对C的摩擦力为0,D项错误.4.A[解析] 若摩擦力与拉力同向,则F+f=ma b,f=ma a,解得F=f=0.1 N;若摩擦力与拉力反向,则f-F=ma a,f=ma b,解得f=0.2 N,F=0.1 N,A错误,B、C、D正确.5.C[解析] 由于A、B之间的最大静摩擦力F1大于B、C之间的最大静摩擦力F2,当外力F小于F2时,A、B静止不动;当F大于F2时,A、B一起加速运动,由牛顿第二定律有:F-F2=(m A+m B)a,由于F逐渐增大,故加速度逐渐增大,对木板,当其最大加速度a m=F1-F2m B,此时F=F1+m Am B(F1-F2);当F再增大时,A、B即开始相对滑动,对木板B有:F 1-F 2=m B a ,此后木板B 做匀变速直线运动,选项C 正确.6.CD [解析] v -t 图象描述速度随时间变化的规律,并不代表运动轨迹,0~1 s 内物体速度方向始终为正方向,所以物体是做正向的直线运动,选项A 错误;1~2 s 内物体的速度为正,方向应向右,速度大小不断减小,选项B 错误;1~3 s 内物体的加速度为-4 m/s 2,表示加速度方向向左,大小为4 m/s 2,选项C 正确;v -t 图象中图象与坐标轴所围“面积”代表位移,时间轴上方的面积明显大于下方的面积,故物体的总位移为正,方向向右,物体位于出发点右方,选项D 正确.7.AC [解析] 车减速上坡,其加速度沿斜面向下,将其加速度正交分解为竖直向下和水平向左的加速度,故乘客处于失重状态,受到水平向左的摩擦力,受到的合力沿斜面向下,A 正确,B 、D 错误;因乘客在上坡,故重力做负功,重力势能增加,C 正确.8.(1)C (2)打点计时器与纸带间存在摩擦[解析] (1)处理纸带求加速度,一定要知道计数点间的距离,故要有米尺;打点计时器就是测量时间的工具,故不需要秒表;重力加速度的值和物体的质量无关,故不需要天平.(2)加速度小了,说明物体受到了阻力作用,据此说一条理由就行.9.(1)图略 (2)正比例关系 (3)平衡摩擦力时木板抬得过高 没有平衡摩擦力或平衡摩擦力不够[解析] (1)若a 与F 成正比,则图象是一条过原点的直线.同时,因实验中不可避免出现误差,所以在误差允许的范围内图象是一条过原点的直线即可.连线时应使尽可能多的点在直线上,不在直线上的点应大致对称地分布在直线两侧,离直线较远的点应视为错误数据,不予考虑.(2)由图可知a 与F 的关系是正比例关系.(3)图中甲在纵轴上有截距,说明绳对小车拉力为零时小车就有加速度a 0,可能是平衡摩擦力过度所致.乙在横轴上有截距,可能是实验前没有平衡摩擦力或平衡摩擦力不够.10. (1)1.5 m/s 2 1 m/s 2 0.5 m/s 2 (2)3∶2 (3)20 m[解析] (1)由v -t 图象可求出,物块冲上木板后做匀减速直线运动的加速度大小a 1=10-44 m/s 2=1.5 m/s 2,木板开始做匀加速直线运动的加速度大小a 2=4-04 m/s 2=1 m/s 2,物块和木板达到共同速度后一起做匀减速运动的加速度大小a 3=4-08m/s 2=0.5 m/s 2.(2)对物块冲上木板的减速阶段有 μ1mg =ma 1对木板在水平地面上的加速阶段有 μ1mg -μ2(m +M)g =Ma 2对物块和木板达到共同速度后的减速阶段有 μ2(m +M)g =(M +m)a 3 联立解得m M =32.(3)由v -t 图可以看出,物块相对于木板滑行的距离Δx 对应图中△ABC 的面积,故Δx =10×4×12m =20 m.45分钟单元能力训练卷(四)1.D2.B [解析] 轨道对小球的支持力始终与小球运动方向垂直,轨道对小球不做功;小球从P 运动到Q 的过程中,重力做正功,动能增大,可判断v P <v Q ;根据v =ωr ,又r P >r Q ,可知ωP <ωQ ,A 错误,B 正确.根据a =v 2r ,由v P <v Q ,r P >r Q ,可知a P <a Q ,C 错误.在最高点有mg +F N =ma ,即F N =ma -mg ,因a P <a Q ,所以F Q >F P ,D 错误.3.B [解析] 由开普勒第三定律a 3T 2=k 可知,只要椭圆轨道的半长轴与圆轨道的半径相等,它们的周期就是相同的,A 项错误;沿椭圆轨道运行的一颗卫星在关于长轴(或短轴)对称的点上时,线速度的大小是相同的,B 项正确;同步卫星的轨道半径、周期、线速度等都是相同的,C 项错误;经过同一点的卫星可以在不同的轨道平面内,D 项错误.4.A [解析] 飞镖做平抛运动,运动到靶子处的时间为t =xv ,当v ≥50 m/s 时,t ≤0.1 s ,飞镖下落高度为h =12gt 2≤5 cm ,落在第6环以内,A 错误,B 正确;若要击中第10环的圆内,则飞镖运动的时间t ≤2R 0g=0.002 s ,所以飞镖的速度v 至少应为505m/s ,C 正确;同理,若要击中靶子,则飞镖运动的时间t ≤2R 1g=0.02 s ,所以飞镖的速度v 至少应为25 2 m/s ,D 正确.5.C [解析] 若使质点到达斜面时位移最小,则质点的位移应垂直斜面,如图所示,有x =v 0t ,y =12gt 2,且tan θ=x y =v 0t 12gt2=2v 0gt ,所以t =2v 0gtan θ=2v 0gtan37°=8v 03g ,选项C 正确.6.BD [解析] 滑雪者开始时做平抛运动,水平方向做匀速运动,竖直方向做自由落体运动,加速度为g ,落到斜坡后,滑雪者沿斜坡以gsin30°的加速度匀加速下滑,将运动分解水平方向做匀加速运动,竖直方向做匀加速运动,加速度a 1=gsin30°·sin30°=14g ,故选项A 、C 错误,选项B 、D 正确.7. AC [解析] “空间站”运行的加速度及其所在高度处的重力加速度均完全由其所受的万有引力提供,选项A 正确;由G Mm R 2=m v 2R得v =GMR,运动速度与轨道半径的平方根成反比,并非与离地高度的平方根成反比,选项B 错误;由G MmR 2=m ⎝ ⎛⎭⎪⎫2πT 2R 得T =2πRRGM,所以“空间站”运行周期小于地球自转的周期,站在地球赤道上的人观察到“空间站”向东运动,选项C 正确;“空间站”内的宇航员随“空间站”做匀速圆周运动,处于非平衡状态,选项D 错误.8.Ⅰ.2πnr 1r 3r 2[解析] 前进速度即为Ⅲ轮的线速度,因为同一个轮上的角速度相等,而同一条传送链上的线速度大小相等,所以可得:ω1r 1=ω2r 2,ω2=ω3,又有ω1=2πn ,v =ω3r 3,所以v =2πnr 1r 3r 2.Ⅱ.34∶1 1∶316 [解析] 同步卫星的周期为T 1=24 h .由开普勒第三定律,有R 31T 21=R 32T 22,得R 1R 2=341;卫星做匀速圆周运动时由万有引力充当向心力,G Mm R 2=ma ,得a 1a 2=R 22R 21=1316. 9.(1)2gl (2)12l g[解析] (1)飞镖被投掷后做平抛运动.从掷出飞镖到击中气球,经过时间t 1=lv 0=l g此时飞镖在竖直方向上的分速度 v y =gt 1=gl故此时飞镖的速度大小 v =v 20+v 2y =2gl.(2)飞镖从掷出到击中气球过程中下降的高度h 1=12gt 21=l 2气球从被释放到被击中过程中上升的高度 h 2=2l -h 1=3l2气球上升的时间t 2=h 2v 0=3l 2v 0=32l g可见,t 2>t 1,所以应先释放气球. 释放气球与掷飞镖之间的时间间隔 Δt =t 2-t 1=12l g. 10.(1)2π (R +h )3Gm 月 (2)T 02πGm 月(R +h )3(3)2π2R T 0(R +h )3Gm 月[解析] (1)“嫦娥二号”的轨道半径r =R +h ,由G mm 月r 2=m 4π2T2r ,可得“嫦娥二号”卫星绕月运行的周期T =2π (R +h )3Gm 月.(2)在月球自转一周的过程中,“嫦娥二号”将绕月运行的圈数n =T 0T =T 02π Gm 月(R +h )3.(3)摄像机只要将月球的“赤道”拍摄全,就能将月面各处全部拍摄下来;卫星绕月球转一周可对月球“赤道”拍摄两次,所以摄像机拍摄时拍摄到的月球表面宽度至少为s =2πR 2n=2π2R T 0 (R +h )3Gm 月. 45分钟单元能力训练卷(五)1.D [解析] 由能量守恒定律可知,运动员减小的机械能转化为床垫的弹性势能,故选项A 错误;当F 弹=mg 时,a =0,在此之前,F 弹<mg ,加速度方向向下(失重),物体做加速运动;在此之后,F 弹>mg ,加速度方向向上(超重),物体做减速运动,选项B 错误选项D 正确;从A 位置到B 位置,由动能定理得,W 合=-E k0,选项C 错误.2.C [解析] 对两个过程分别应用机械能守恒定律得:m B gH -m A gH =12(m A +m B )v 2,2m A gH -m B gH =12(2m A +m B )v 2,联立解得m A m B =22,选项C 正确. 3.B [解析] 当两个物块共同向上运动时弹簧弹力减小,弹簧弹力恰好为零时,两个物块的共同加速度为重力加速度,此时两个物块恰好分离,A 物块做竖直上抛运动,由竖直上抛运动的规律可求得A 、B 分离时的初速度v =2gh =2 m/s ,当B 回到弹簧原长位置时,弹簧弹力又恰好为零,弹簧在此过程中做功为零,B 的动能与分离时的动能相同,速度仍为2 m/s ,B 正确.4.D [解析] 物块匀速运动时,速度沿斜面向上,故传送带顺时针传动.0~t 1内,物块沿传送带向下运动,物块对传送带的滑动摩擦力向下,物块对传送带做负功,选项A 错误;由图乙可知,在t 1时刻,物块的速度减为零,之后向上加速运动,所以μmg cos θ>mgsin θ,即μ>tan θ,选项B 错误;0~t 2内,传送带对物块做的功W 加上物块重力做的功W G 等于物块动能的增加量,即W +W G =12mv 22-12mv 21,而根据v -t 图象可知物块的位移小于零,故W G >0,选项C 错误; 在0~t 2内时间内,物块与传送带之间有相对滑动,系统的一部分机械能会通过“摩擦生热”转化为热量即内能,其大小Q =fx 相对,该过程中,物块受到的摩擦力f 大小恒定,设0~t 1内物块的位移大小为x 1,t 1~t 2内物块的位移大小为x 2,对0~t 2内的物块应用动能定理有:-fx 1+fx 2+W G =ΔE k ,即-ΔE k =f(x 1+x 2)-W G ,由图乙知x 相对>x 1-x 2,,选项D 正确.5.D [解析] 汽车速度最大时, 汽车所受到的牵引力F 1=f =P v m,根据牛顿第二定律F -f =ma 得,P v -P v m =ma ,即a =P m (1v -1v m ),图象斜率k =P m ,横轴截距b =1v m,所以汽车的功率P 、汽车行驶的最大速度v m 可求,由f =P v m可解得汽车所受到阻力,选项A 、B 、C 正确;汽车不是匀加速运动,故不能求出汽车运动到最大速度所需的时间,选项D 错误.6.AC [解析] 设斜面倾角为θ,物体受到的合力F 沿斜面向下,F =mgsin θ-f ,故F不随t 变化,选项A 正确;根据牛顿第二定律知加速度a =F m也不变,由v =at 知,v -t 图象为过原点的一条倾斜直线,选项B 错误;物体做匀加速运动,故位移x =12at 2,x -t 图象是开口向上的抛物线的一部分,选项C 正确;设物体起初的机械能为E 0,t 时刻的机械能为E ,则E =E 0-fx =E 0-f·12at 2,E -t 图象是开口向下的抛物线的一部分,选项D 错误. 7.BD [解析] A 、B 及弹簧组成的系统机械能守恒,选项A 错误,选项B 正确;B 在运动过程中,除重力外弹簧对其做功,所以B 的机械能不守恒,因此根据机械能守恒定律m B gh =12m B v 2解得的v =2gh = 2 m/s 是错误的,选项C 错误;根据系统机械能守恒,到达地面时的机械能与刚释放时的机械能相等,又弹簧处于原长,则E =E k =m A g(L +h)+m B gh +E p =6 J ,选项D 正确.8.(1)钩码的重力 mg (2)①(x 1+x 2)f 4 ②Mf 232[(x 6+x 7)2-(x 1+x 2)2] mg(x 2+x 3+x 4+x 5+x 6)[解析] (1)滑块匀速下滑时,有Mgsin α=mg +f ,滑块匀速下滑时,滑块所受合力F =Mgsin α-f =mg.(2)v A =x 1+x 24T =(x 1+x 2)f 4;v F =(x 6+x 7)f 4,从A 到F 动能的增加量ΔE k =12Mv 2F -12Mv 2A =Mf 232[(x 6+x 7)2-(x 1+x 2)2],合力F 做的功W F =mg(x 2+x 3+x 4+x 5+x 6). 9.(1) 2gLsin θ-2μgL cos θ+v 202gsin θ+2μg cos θ (2) 2gLsin θ+v 202μgcos θ[解析] (1)设滑块第一次与挡板碰撞后上升离开挡板P 的最大距离为x.对滑块应用动能定理有mg(L -x)sin θ-μmg cos θ(L +x)=0-12mv 20解得x =2gLsin θ-2μgL cos θ+v 202gsin θ+2μg cos θ. (2)最终滑块必停靠在挡板处,设滑块在整个运动过程中通过的路程为s.根据能量守恒定律得mgLsin θ+12mv 20=μmgs cos θ 解得s =2gLsin θ+v 202μgcos θ. 10.(1)4 m/s (2)R ≤0.24 m 或R ≥0.6 m[解析] (1)根据牛顿第二定律:对滑块有μmg =ma 1对小车有μmg =Ma 2当滑块相对小车静止时,两者速度相等,即v 0-a 1t =a 2t由以上各式解得t =1 s ,此时小车的速度为v 2=a 2t =4 m/s.滑块的位移x 1=v 0t -12a 1t 2 小车的位移x 2=12a 2t 2 相对位移L 1=x 1-x 2联立解得L 1=3 m ,x 2=2 mL 1<L ,x 2<s ,说明滑块滑离小车前已具有共同速度,且共速时小车与墙壁还未发生碰撞,故小车与墙壁碰撞时的速度为:v 2=4 m/s.(2) 滑块与墙壁碰后在小车上做匀减速运动,运动L 2=L -L 1=1 m 后滑上半圆轨道. 若滑块恰能通过最高点,设滑至最高点的速度为v m .则mg =m v 2m R根据动能定理得-μmgL 2-mg·2R =12mv 2m -12mv 22 解得R =0.24 m若滑块恰好滑至14圆弧到达T 点时就停止,则滑块也能沿圆轨道运动而不脱离圆轨道. 根据动能定理得-μmgL 2-mgR =0-12mv 22解得R =0.6 m所以滑块不脱离圆轨道必须满足:R ≤0.24 m 或R ≥0.6 m.45分钟滚动复习训练卷(二)1.A [解析] 若一个鸡蛋大约55 g ,鸡蛋抛出的高度大约为60 cm ,则将一只鸡蛋抛出至最高点的过程中对鸡蛋做的功等于鸡蛋重力势能的增加量,即W =mgh =55×10-3×10×60×10-2 J =0.33 J ,A 正确.2.D [解析] “天宫一号”和“神舟八号”绕地球做圆周运动,是万有引力充当了“天宫一号”和“神舟八号”做圆周运动的向心力,根据万有引力定律和向心力的公式可得G Mm r 2=ma =m v 2r =m 4π2T 2r =mω2r ,所以a =GM r 2,v =GM r ,T =2πr 3GM ,ω=GM r 3;根据“神舟八号”与“天宫一号”运行轨道示意图可得,“天宫一号”的轨道半径大于“神舟八号”的轨道半径,根据a =GM r2,“神舟八号”轨道半径小,加速度比“天宫一号”大,选项A 错误;根据v =GM r ,“神舟八号”轨道半径小,运行的速率比“天宫一号”大,选项B 错误;根据T =2πr 3GM ,“神舟八号”轨道半径小,运行的周期比“天宫一号”短,选项C 错误;根据ω=GM r 3,“神舟八号”轨道半径小,运行的角速度比“天宫一号”大,选项D 正确.3.C [解析] 对全过程分析,由于物体再次经过P 点时位移为零,所以合外力做功为零,动能增量为零,初、末速率应相等,选项C 正确.4.C [解析] 小球沿管上升到最高点的速度可以为零,选项A 、B 错误;小球在水平线ab 以下的管道中运动时,由外侧管壁对小球的作用力F N 与小球重力在背离圆心方向的分力F 1的合力提供向心力,即:F N -F 1=m v 2R +r,因此,外侧管壁一定对小球有作用力,而内侧壁无作用力,选项C 正确;小球在水平线ab 以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,选项D 错误.5.D [解析] 平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,所以水平位移图象为倾斜直线,水平速度图象为平行横轴的直线,竖直位移图象为曲线且各点切线的斜率随时间逐渐变大,竖直速度图象为倾斜的直线,斜率等于重力加速度;沿斜面下滑运动可分解为水平方向的匀加速直线运动和竖直方向的匀加速直线运动,且竖直加速度分量小于重力加速度,所以水平位移图象为曲线且各点切线的斜率随时间逐渐变大,水平速度图象为向上倾斜的直线,竖直位移图象为曲线且各点切线的斜率随时间逐渐变大,竖直速度图象为倾斜的直线,斜率小于重力加速度.选项D 正确.6.AC [解析] 由于引力与质量乘积成正比,所以在质量密集区引力会增大,提供的向心力增大了,探测器会发生向心现象,引力做功,导致探测器飞行速率增大.7.BC [解析] 当盒子速度最大时,kx =(m A +m B )gsin θ,此时弹簧仍处于压缩状态,弹性势能不为零,选项A 错误;除重力外,只有A 对B 的弹力对B 做功,对应B 机械能的增加量,选项B 正确;对A 、B 组成的系统,弹簧弹力对系统做的正功等于弹簧弹性势能的减小量,也等于系统机械能的增加量,选项C 正确;对A 应用动能定理可知,A 所受重力、弹簧弹力、B 对A 的弹力做功之和等于A 动能的增加量,因B 对A 的弹力对A 做负功,故知A 所受重力和弹簧弹力做功的代数和大于A 动能的增量,选项D 错误.8. (1)左 (2)B (3)1.88 1.84 (4)在误差允许的范围内,重物下落过程中机械能守恒[解析] (1)重物在下落过程中做加速运动,纸带上相邻两点间的距离增大,故纸带左端与重物相连;(2)重物做匀变速直线运动,在某段时间内的平均速度等于这段时间中间时刻的瞬时速度,故可计算纸带上B 点对应的重物的瞬时速度,应取图中的O 点和B 点来验证机械能守恒定律.从O 点到B 点,重物的重力势能减少ΔE p =mgh B =1.88 J ,B 点对应的速度v B =h AC 2T=(23.23-15.15)×10-22×0.02m/s =1.92 m/s ,物体动能的增加量ΔE k =12mv 2B =1.84 J .可得出结论:在误差允许的范围内,重物下落过程中机械能守恒.9.(1)36 km (2)1.25×105 N (3)3.42×105 N ,与前进方向相同[解析] (1)由图象知海监船先做匀加速直线运动再匀速最后做匀减速直线运动.加速阶段a 1=20-015×60m/s 2=145 m/s 2 x 1=v m 2t 1=202×15×60 m =9×103m 匀速阶段x 2=v m t 2=20×(35-15)×60 m =2.4×104 m。
【全程复习】2014届高考物理第一轮复习方略 5.4功能关系 能量守恒定律A课时提能演练(含解析) 新人教版-推
时提能演练(含详细解析)5.4 功能关系 能量守恒定律 A
(40 分钟 100 分)
一、选择题(本题共 8 小题,每题 9 分,至少一个答案正确,选不全得 5 分,共 72 分)
1.(2012·无锡模拟)如图所示,汽车在拱形桥上由 A 匀速率运动到 B,以下说法正确的是( )
A.牵引力与克服摩擦力做的功相等
B.合外力对汽车不做功
C.牵引力和重力做的总功大于克服摩擦力做的功
D.汽车在上拱形桥的过程中克服重力做的功转化为汽车的重力势能
2.如图为一粗糙的四分之一圆弧轨道,半径为 R,轨道圆心 O 与 A 点等高,一质量
为 m 的小球在不另外施力的情况下,能以速率 v 沿轨道自 A 点匀速运动到 B 点,取
以 v0 3
gR 的初速度由 A 点开始向 B 点滑行,AB=5R,并滑上光滑的半径为 R 的 1 圆弧 4
BC,在 C 点正上方有一离 C 点高度也为 R 的旋转平台,沿平台直径方向开有两个离轴心距
离相等的小孔 P、Q,旋转时两孔均能达到 C 点的正上方.若滑块滑过 C 点后从 P 孔上升又
恰能从 Q 孔落下,求:
小球在 A 点时为计时起点,且此时的重力势能为零.重力加速度为 g.则在此过程中,
下列说法正确的是( )
A.重力做功的平均功率为 1 mgv 2
B.重力做的功等于小球克服摩擦力做的功
C.小球重力势能随时间的变化关系为
D.小球的机械能随时间的变化关系为 E 1 mv2 mgRsin vt
Ep
一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程中,下列说法
正确的是( )
2014高考人教通用版物理一轮复习精练 第15讲 机械能守恒定律及其应用含解析
第15讲机械能守恒定律及其应用错误!1.第30届夏季奥林匹克运动会于2012年7月28日至8月13日在伦敦斯特拉特福德奥林匹克体育场举行.奥运会中的投掷链球、铅球、铁饼和标枪等体育比赛项目都是把物体斜向上抛出的运动,如图K15-1所示.这些物体从被抛出到落地的过程中( )图K15-1A.物体的机械能先减小后增大B.物体的机械能先增大后减小C.物体的动能先增大后减小,重力势能先减小后增大D.物体的动能先减小后增大,重力势能先增大后减小2.2012·武昌调研如图K15-2所示,轻弹簧下端固定在水平面上,一小球从高处下落到竖直放置的轻弹簧上,则在以后的运动过程中,下列叙述中正确的是(弹簧始终竖直且在弹性限度内)( )图K15-2A.当小球刚接触弹簧时,小球的动能最大B.当小球刚接触弹簧时,小球与弹簧组成的系统的势能最大C.当小球运动至最高点时,小球与弹簧组成的系统的势能最大D.当小球运动至最低点时,小球与弹簧组成的系统的势能最小3.如图K15-3所示,斜面体置于光滑水平地面上,其光滑斜面上有一物块由静止沿斜面下滑,在物块下滑过程中,下列说法不正确的是( )图K15-3A.物块的重力势能减少,动能增加B.斜面体的机械能增加C.斜面体对物块的弹力垂直于接触面,不对物块做功D.物块和斜面体组成的系统机械能守恒错误!4.2012·江南仿真卷如图K15-4所示,小球沿水平面以初速度v0通过O点进入半径为R的竖直半圆弧轨道,不计一切阻力,下列说法中正确的是( )图K15-4A.球进入竖直半圆轨道后做匀速圆周运动B.若小球恰能通过半圆弧最高点P,则球运动到P时向心力也恰好为零C.若小球能通过半圆弧最高点P,则小球落地点时的动能为错误! mgRD.若小球恰能通过半圆弧最高点P,则小球落地点离O点的水平距离为2R5.2012·山西仿真模拟三如图K15-5所示,ABCD是一段竖直平面内的光滑轨道,AB段与水平面成α角,CD段与水平面成β角,其中BC段水平,且其长度大于L。
高三物理一轮复习专题实验6 验证机械能守恒定律(含解析)
实验6:验证机械能守恒定律一、实验目的验证机械能守恒定律.二、实验原理在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能守恒。
若物体从静止开始下落,下落高度为h 时的速度为v,恒有mgh=错误!m v2。
故只需借助打点计时器,通过纸带测出重物某时刻的下落高度h和该时刻的瞬时速度v,即可验证机械能守恒定律。
测定第n点的瞬时速度的方法是:测出第n点相邻的前、后两段相等时间间隔T内下落的高度x n-1和x n+1(或用h n-1和h n+1),然后由公式v n=错误!或由v n=错误!可得v n(如图所示)。
三、实验器材铁架台(带铁夹)、电磁打点计时器与低压交流电源(或电火花打点计时器)、重物(带纸带夹子)、纸带数条、复写纸片、导线、毫米刻度尺。
四、实验步骤1.安装器材:如图所示,将打点计时器固定在铁架台上,用导线将打点计时器与低压电源相连,此时电源开关应为断开状态。
2.打纸带:把纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,待计时器打点稳定后再松开纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带。
3.选纸带:分两种情况说明(1)若选第1点O到下落到某一点的过程,即用mgh=错误!m v2来验证,应选点迹清晰,且1、2两点间距离小于或接近2 mm的纸带,若1、2两点间的距离大于2 mm,这是由于打点计时器打第1个点时重物的初速度不为零造成的(如先释放纸带后接通电源等错误操作会造成此种结果)。
这样第1个点就不是运动的起始点了,这样的纸带不能选。
(2)用错误!m v错误!-错误!m v错误!=mgΔh验证时,由于重力势能的相对性,处理纸带时选择适当的点为基准点,这样纸带上打出的第1、2两点间的距离是否为2 mm就无关紧要了,所以只要后面的点迹清晰就可以选用。
2014届高三物理一轮夯实基础检测《机械能守恒定律》(含详细解析)
机械能守恒定律高考常考题型:选择题+计算题1. (2013·南京模拟)自由下落的物体,其动能与位移的关系如图1所示。
则图中直线的斜率表示该物体的( )A.质量B.机械能C.重力大小D.重力加速度图12.如图2所示,竖立在水平面上的轻弹簧,下端固定,将一个金属球放在弹簧顶端(球与弹簧不连接),用力向下压球,使弹簧被压缩,并用细线把小球和地面拴牢(图甲)。
烧断细线后,发现球被弹起且脱离弹簧后还能继续向上运动(图乙)。
那么该球从细线被烧断到刚脱离弹簧的运动过程中,下列说法正确的是( ) 图2A.弹簧的弹性势能先减小后增大B.球刚脱离弹簧时动能最大C.球在最低点所受的弹力等于重力D.在某一阶段内,小球的动能减小而小球的机械能增加3.如图3所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )A.斜劈对小球的弹力不做功B.斜劈与小球组成的系统机械能守恒图3C.斜劈的机械能守恒D.小球机械能的减小量等于斜劈动能的增大量4.如图4所示,在高1.5 m的光滑平台上有一个质量为2 kg的小球被一细线拴在墙上,球与墙之间有一根被压缩的轻质弹簧。
当烧断细线时,小球被弹出,小球落地时的速度方向与水平方向成60°角,则弹簧被压缩时具有的弹性势能为(g=10 m/s2)( ) 图4 A.10 J B.15 JC.20 J D.25 J5.打开水龙头,水顺流而下,仔细观察将会发现连续的水流柱的直径在流下的过程中,是逐渐减小的(即上粗下细),设水龙头出口处半径为1 cm,安装在离接水盆75 cm高处,如果测得水在出口处的速度大小为1 m/s,g=10 m/s2,不考虑空气阻力,则水流柱落到盆中时的半径为( )A.1 cm B.0.75 cmC.0.5 cm D.0.25 cm6.如图5所示,质量、初速度大小都相同的A、B、C三个小球,在同一水平面上,A球竖直上抛,B球以倾斜角θ斜向上抛,空气阻力不计,C球沿倾角为θ的光滑斜面上滑,它们上升的最大高度分别为h A、h B、h C,则( )图5A.h A=h B=h C B.h A=h B<h CC.h A=h B>h C D.h A=h C>h B7.(2013·福建高考)如图6所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦)。
2014届高考物理第一轮复习方略5.3机械能守恒定律及其应.
《全程复习》 2014 届高考物理全程复习方略(人教版- 第一轮)课时提能演练(含详细解析) 5.3 机械能守恒定律及其应用(40 分钟 100 分)一、选择题 ( 本题共 8 小题,每题9 分,最少一个答案正确,选不全得 5 分,共 72 分)1.一轻质弹簧,固定于天花板上的O点处,原长为 L,以下列图,一个质量为 m的物块从 A 点竖直向上抛出,以速度v 与弹簧在 B 点相接触,尔后向上压缩弹簧,到C点时物块速度为零,在此过程中无机械能损失,则以下说法正确的选项是( )A. 由 A 到 C的过程中,动能和重力势能之和不变B. 由 B 到 C的过程中,弹性势能和动能之和不变C.由 A 到 C的过程中,物块m的机械能守恒D.由 B 到 C的过程中,物块与弹簧组成的系统机械能守恒2. 以下列图,一匀质杆长为2r ,从图示地址由静止开始沿圆滑面ABD滑动, AB是半径为r 的1圆弧, BD为水平面 . 则当杆滑到BD地址时的速度大小为( )4A.gr B.grC.2grD.2gr23.(2012 ·长沙模拟 ) 一个少儿在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度,少儿从高处开始下落到弹起的整个过程中,他的运动速度v 随时间 t 变化的图线以下列图,图中只有Oa段和 cd 段为直线 . 则依照该图线可知( )A. 少儿在蹦床上的过程仅在t 1到 t 3的时间内B. 少儿在蹦床上的过程仅在t 1到 t 5的时间内C.蹦床的弹性势能增大的过程在t 1到 t 2的时间内D.蹦床的弹性势能增大的过程在t 1到 t 5的时间内4. 一不计质量的直角形支架的两直角臂长度分别为 2 l和l,支架可绕水平固定轴 O在竖直平面内无摩擦转动,支架臂的两端分别连接质量为m和 2m的小球 A 和 B,开始时 OA臂处于水平川点,以下列图,由静止释放后,则可能的是( )A.OB 臂能到达水平川点B.OB 臂不能够到达水平川点C.A、 B 两球的最大速度之比为v A∶ v B=2∶ 1D.A、 B 两球的最大速度之比为v A∶ v B=1∶ 25.(2011 ·山东高考 ) 以下列图,将小球 a 从地面以初速度v0竖直上抛的同时,将另一起样质量的小球 b 从距地面h 处由静止释放,两球恰在h 处相遇(不计空气阻力).则( )2A. 两球同时落地B. 相遇时两球速度大小相等C.从开始运动到相遇,球 a 动能的减少许等于球 b 动能的增加量D.相遇后的任意时刻,重力对球 a 做功功率和对球 b 做功功率相等6. 某空降兵从飞机上跳下,他从跳离飞机到落地的过程中沿竖直方向运动的v-t图象如图所示,则以下说法正确的选项是( )A.0 ~ 10 s 内空降兵和伞整体所受重力大于空气阻力B. 第 10 s 末空降兵打开降落伞,此后做匀减速运动至第15 s 末C.10 ~ 15 s 内空降兵竖直方向的加速度方向向上,大小在逐渐减小D.15 s后空降兵保持匀速下落,此过程中机械能守恒7. 以下列图,劲度系数为k 的轻质弹簧,一端系在竖直放置的半径为R 的圆环极点P,另一端系一质量为m的小球,小球穿在圆环上做无摩擦的运动. 设开始时小球置于 A 点,弹簧处于自然状态,当小球运动到最低点时速率为v, 对圆环恰好没有压力 .以下解析正确的选项是( )A. 从 A 到 B 的过程中,小球的机械能守恒B. 从 A 到 B 的过程中,小球的机械能减少C.小球过 B 点时,弹簧的弹力为 2vmg mRD.小球过 B 点时,弹簧的弹力为v 2mg m2R8. 以下列图,一根不能伸长的轻绳两端各系一个小球 a 和 b,跨在两根固定在同一高度的圆滑水平细杆 C 和 D 上,质量为 m 的 a 球置于地面上,质量为 m 的 ba b球从水平川点静止释放. 当 b 球摆过的角度为90°时,a 球对地面压力恰好为零,以下结论正确的选项是( )A.m a∶ m b=3∶ 1B.m a∶ m b=2∶ 1C.若只将细杆 D 水平向左搬动少许,则当b球摆过的角度为小于90°的某值时, a 球对地面的压力恰好为零D.若只将细杆 D 水平向左搬动少许,则当b球摆过的角度仍为90°时, a 球对地面的压力刚好为零二、计算题 ( 本大题共 2 小题,共28 分,要有必要的文字说明和解题步骤,有数值计算的要注明单位 )9.(14分)以下列图,半径分别为R 和 r 的甲、乙两个圆滑的圆形轨道部署在同一竖直平面上,轨道之间有一条水平轨道CD相通,一小球以必然的速度先滑上甲轨道,经过动摩擦因数为μ的 CD段,又滑上乙轨道,最后走开两圆轨道,若小球在两圆轨道的最高点对轨道的压力都恰好为零,试求CD段的长度 .10.(2012 ·十堰模拟 )(14 分 ) 以下列图,粗糙弧形轨道和两个圆滑半圆轨道组成翘尾巴的S形轨道 . 圆滑半圆轨道半径为 R ,两个圆滑半圆轨道连接处 CD 之间留有很小空隙,恰好能够使小球经过, CD 之间距离可忽略 . 粗糙弧形轨道最高点 A 与水平面上 B 点之间的高度为 h. 从 A 点静止释放一个可视为质点的小球,小球沿翘尾巴的 S 形轨道运动后从 E 点水平飞出,落到水平川面上, 落点到与 E 点在同一竖直线上 B 点的距离为 s. 已知小球质量 m ,不计空气阻力,求:(1) 小球从 E 点水平飞出时的速度大小;(2) 小球运动到半圆轨道的 B 点时对轨道的压力;(3) 小球沿翘尾巴 S 形轨道运动时战胜摩擦力做的功.答案解析1. 【解析】 选 D. 物块由 A 到 C 的过程中,只有重力、弹簧弹力做功,因此物块与弹簧组成的系统机械能守恒, 由 A 到 B 的过程中, 弹性势能不变, 物块动能与重力势能之和不变,但物块由 B 到 C 的过程中, 弹性势能增大, 物块的机械能减小, 重力势能增大,弹性势能与动能之和减小,故只有 D 正确 .2. 【解析】 选 B. 诚然杆在下滑过程中有转动发生,但初始状态静止,末状态匀速平动,整个过程无机械能损失,故由机械能守恒定律得:1 mv2 E p mgr解得:v = gr . 故B22正确 .3. 【解题指南】 解答本题时应注意以下两点:(1) 少儿在落到蹦床前和弹离蹦床后均做匀变速直线运动.(2) 少儿接触蹦床后,速度为零从前,蹦床的弹性势能素来增大 .【解析】 选 B.t 1 时刻开始少儿的加速度开始变化,说明少儿此时开始与蹦床接触, t 5 时刻以后少儿的加速度与 0~ t 1 时间相同,说明 t 5 时刻开始少儿走开蹦床,故 A 错误, B 正确; t 3时刻少儿的速度为零,此时少儿运动到最低点,蹦床的弹性势能最大,故弹性势能增大的过程在 t 1到 t 3时间内, C、D 均错误 .4. 【解析】选 A、 C.当 OB臂到达水平川点时,质量为m的小球重力势能减少2mg l,质量为2m的小球重力势能增加2mg l ,依照机械能守恒,可知这是可能的,因此 A 正确, B 错误;两个小球转动的角速度ω 相同,依照v=ω R 可知, A、B 两球的最大速度之比为v A∶ v B=2∶ 1, 故 C正确, D错误 .5. 【解析】选 C. 设两球释放后经过时间t 相遇,因它们的位移大小相等,故有1 gt2 ,得 v0=gt, 这表示相遇时 a 球的速度为零,依照竖直上抛运动的对称性v0 t 1 gt22 2可知 a 球从抛出至落地时间为2t ,而 b 球的落地时间小于2t ,选项 A、B 错误;从开始到相遇, a 球的机械能守恒, a 球的动能减少许等于mgh/2;b 球的机械能守恒, b 球的动能增加量等于 mgh/2,选项 C正确;相遇后的任意时刻,a、 b 球的速度均不相等,重力大小相同,因此重力的功率不相等,选项D错误 .6.【解析】选A、C.由图象可知,0~10 s 内空降兵和伞向下做加速运动,说明整体所受重力大于空气阻力,选项 A 正确;第 10 s 末空降兵打开降落伞,由图象可知,整体做减速运动,说明加速度方向向上;v-t 图象斜率越来越小,说明加速度逐渐减小,选项 B 错误而选项 C 正确; 15 s 后空降兵保持匀速下落,此过程中机械能减少,选项D错误.7. 【解析】选 B、 C.从 A 到 B 的过程中,因弹簧对小球做负功,小球的机械能将减少,A 错误,B 正确;在 B 点对小球应用牛顿第二定律可得:v 2 , 解得v 2 ,CF B mg F B mgm mR R正确,D 错误.【变式备选】重 10 N 的滑块在倾角为30°的斜面上,从 a 点由静止下滑,到 b点接触到一个轻弹簧,滑块压缩弹簧到 c 点开始弹回,返回 b 点走开弹簧,最后又回到 a 点,已知 ab= 1 m, bc= 0.2 m ,那么在整个过程中,以下选项不正确的是( )A. 滑块动能的最大值是 6 JB. 弹簧弹性势能的最大值是 6 JC.从 c 到 b 弹簧的弹力对滑块做的功是 6 JD.整个过程系统机械能守恒【解析】 选 A. 滑块和弹簧组成的系统,在滑块的整个运动过程中,只发生动能、重力势能和弹性势能之间的相互转变,系统的机械能守恒, D 正确;滑块从 a 到 c, 重力势能减小了 mgacsin306 J ,全部转变成弹簧的弹性势能,A 错误,B 正确; 从 c 到 b 弹簧恢复原长,经过弹簧的弹力对滑块做功,将 6 J 的弹性势能全部转变成滑块的机械能,C 正确.8. 【解析】 选 A 、 D.设 Db 段绳长为 L ,则 b 球摆至最低点时,1m b v b2m b gL,2F T m b gv b 2 , 可得: F T =3m b g, 因此时 a 球对地面压力恰好为零,可得:F T =m a g, 故有:m bLm a ∶m b =3∶ 1, A 正确, B 错误;若细杆D 水平向左搬动少许,使 L 变大,但其实不影响绳的拉力 F 的大小,依旧有 F =3mg=mg, 故当 b 球摆过的角度为TTba90°时 ,a 球对地面的压力恰好为零, C 错误, D 正确 .9. 【解析】 设小球经过 C 点时的速度为 v C ,经过甲轨道最高点的速度为v 1, 依照小球对轨道压力为零,有2mg mv 1R①(2 分)取轨道最低点所在水平面为参照平面,由机械能守恒定律有1mv C 2 mg 2R 1mv 1 222② (2 分)联立①②式,可得v C5gR(1 分)设小球经过 D 点的速度为 v D ,经过乙轨道最高点的速度为 v 2,则有:2mgm v2r③ (2 分)取轨道最低点所在水平面为参照平面,由机械能守恒定律有:1mv D2mg 2r1mv 2 222④(2 分)联立③④式,可得v D5gr(1 分)设 CD段长度为l,对小球经过CD段的过程,由动能定理有:mgl 1 mv D 2 1 m v C 22 2(2 分)解得: 5 R rl 2(2 分 )答案: 5 R r2【总结提升】机械能守恒定律应用三要点(1) 正确采用研究对象,必定明确机械能守恒定律针对的是一个系统,而不是单个物体.(2)灵便采用零势能地址,重力势能常选最低点或物体的初始地址为零势能地址,弹性势能选弹簧原长为零势能地址 .(3)运用机械能守恒定律解题的要点在于确定“一个过程”和“两个状态” . 所谓“一个过程”是指研究对象所经历的力学过程,认识研究对象在此过程中的受力情况以及各力的做功情况;“两个状态”是指研究对象在此过程中的开始和结束时所处的状态,找出研究对象分别在初状态和末状态的动能和势能 .10. 【解析】 (1) 小球从 E 点水平飞出做平抛运动,设小球从 E 点水平飞出时的速度大小为v E, 由平抛运动规律,1 gt2s v E t, 4R2联立解得2gsv ER4(4 分)(2)小球从 B 点运动到 E 点的过程,机械能守恒1mv B2 mg4R 1mv E22 2(2 分)解得2v B 28gR s g8R 在 B 点2 Fmg mvBR(2 分)得2Fmgs9mg28R(1 分)由牛顿第三定律可知小球运动到B 点时对轨道的压力为2 ,方向竖直向下 . Fmgs9mg2 8R(1 分)(3) 设小球沿翘尾巴的 S 形轨道运动时战胜摩擦力做的功为W ,则mg h 4RW1mv E 22得2Wmg h 4Rmgs16R(4 分)答案: (1)s 2g(2)mgs 2 , 方向竖直向下(3)4 R9mg28Rmg h 4R mgs 216R。
高考物理一轮复习6.4机械能守恒定律--功能关系和能量守恒定律-(原卷版+解析)
考向二功能关系与图像的结合
【典例3】(2021·湖北高考)如图(a)所示,一物块以一定初速度沿倾角为30°的固定斜面上滑,运动过程中摩擦力大小f恒定,物块动能Ek与运动路程s的关系如图(b)所示。重力加速度大小取10 m/s2,物块质量m和所受摩擦力大小f分别为()
A.m=0.7 kg,f=0.5 NB.m=0.7 kg,f=1.0 N
考点20机械能守恒定律--功能关系和能量守恒定律
新课程标准
1.理解能量守恒定律,体会守恒观念对认识物理规律的重要性。能用能量守恒定律分析生产生活中的有关问题。
命题趋势
考查的内容主要体现对能量观念的认识、模型建构和科学推理等物理学科的核心素养。往往与动力学、运动学以及电磁学等主干知识相结合,并密切联系实际,难度较大,突出体现高考的选择性特征.
(1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加
(2)摩擦生热Q=Ff·x相对
电能
安培力做功等于电能变化量
(1)安培力做正功,电能减少(2)安培力做负功,电能增加
W电能=E2-E1=ΔE
二、两种摩擦力做功特点的比较
类型
比较
静摩擦力做功
滑动摩擦力做功
不同点
能量ห้องสมุดไป่ตู้转化方面
只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能
试题情境
生活实践类
各种体育比赛项目、各种生产工具、各种娱乐项目和传送带等.
功能关系的理解和应用、能量守恒及转化问题
学习探究类
含弹簧系统能量守恒问题,传送带、板块模型的功能关系的理解和应用、能量守恒及转化问题
考向一功能关系的理解和应用
考向二功能关系与图像的结合
(新课标Ⅰ版)2014届高考物理 (第02期)名校试题解析分项汇编 专题5 机械能(含解析)新人教版
专题6 机械能〔解析版〕全国新课标Ⅰ卷有其特定的命题模板,无论是命题题型、考点分布、模型情景等,还是命题思路和开展趋向方面都不同于其他省市的地方卷。
为了给新课标全国卷考区广阔师生提供一套专属自己的复习备考资料,物理解析团队的名校名师们精心编写了本系列资料。
本资料以全国新课标Ⅰ卷考区的最新名校试题为主,借鉴并吸收了其他省市最新模拟题中对全国新课标Ⅰ卷考区具有借鉴价值的典型题,优化组合,合理编排,极限命制。
备注:新课标Ⅰ卷专版所选试题和新课标Ⅱ卷专版所选试题不重复,欢迎同时下载使用。
一、单项选择题1.【2014•江西长治二中高三第二次月考】如下列图,甲、乙两种粗糙面不同的传送带,倾斜放于水平地面,与水平面的夹角一样,以同样恒定速率v向上运动。
现将一质量为m的小物体〔视为质点〕轻轻放在A处,小物体在甲传送带上到达B处时恰好达到速率v;在乙上到达离B竖直高度为h的C处时达到速率v,B处离地面高度皆为H。
如此在物体从A到B 过程中A.小物块在两种传送带上具有的加速度一样B.将小物体传送到B处,两种传送带消耗的电能相等C.两种传送带对小物体做功相等D.将小物体传送到B处,两种系统产生的热量相等2.【2014•江西南昌三中高三第二次月考】如下列图,斜面高h,质量为m的物块,在沿斜面向上的恒力F作用下,能匀速沿斜面向上运动,假设把此物块放在斜面顶端,在沿斜面向下同样大小的恒力F作用下物块由静止向下滑动,滑至底端时其动能的大小为( )A.mghB.2mghC.2FhD.Fh3.【2014•江西奉新一中高三第二次月考】如下列图,一竖直绝缘轻弹簧的下端固定在地面上,上端连接一带正电小球P,小球所处的空间存在着方向竖直向上的匀强电场,小球平衡时,弹簧恰好处于原长状态。
现给小球一竖直向上的初速度,小球最高能运动到M点。
在小球从开始运动到运动至最高点时,如下说法正确的答案是〔〕A.小球电势能的减少量大于小球重力势能的增加量B.小球机械能的改变量等于电场力做的功C.弹簧弹性势能的增加量等于小球动能的减少量D.小球动能的减少量等于电场力和重力做功的代数和4.【2014•江西奉新一中高三第二次月考】一只船在水中航行时所受阻力与其速度成正比.现此船由静止开始沿直线航行,假设保持牵引力恒定,经过时间t1后,速度为v,加速度为a1,最终以速度2v匀速运动;假设保持牵引力的功率恒定,经过时间t2后,速度为v,加速度为a2,最终也以2v的速度匀速运动,如此有〔〕A.t1=t2B. a2=2a1C.t1<t2D.a2=3a15.【2014•江西奉新一中高三第二次月考】如图,分别用力F1、F2、F3将质量为m的物体由静止沿同一固定光滑斜面以一样的加速度从斜面底端拉到斜面的顶端,在此过程中,F1、F2、F3做功的功率大小关系是〔〕A.P1=P2=P3B.P1>P2=P3 C.P3>P2>P1 D.P1>P2>P36.【2013•湖南五市十校高三联考】一小孩从公园中的滑梯上加速滑下,对于其机械能变化情况,如下说法中正确的答案是〔〕A.重力势能减小,动能不变,机械能减小B. 重力势能减小,动能增加,机械能减小C. 重力势能减小,动能增加,机械能增加D. 重力势能减小,动能增加,机械能不变7.【2013•湖南五市十校高三联考】质量为10kg的物体,在变力F作用下沿x轴做直线运动,力随位移x的变化情况如下列图.物体在x=0处速度为1m/s,一切摩擦不计,如此物体运动到x=16m处时,速度大小为〔〕A. 2m/sB. 3m/sC. 4m/sD. m/s8.【2013•湖北黄冈等七市高三联考】2011年国际泳联世界跳水系列赛站女子3米板决赛中,吴敏霞以402.30分的成绩获得冠军。
高考物理第一轮复习限时规范训练:机械能守恒定律及其应用(解析版)
一轮复习限时规范训练机械能守恒定律及其应用一、选择题:在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~7题有多项符合题目要求.1、关于机械能守恒,下列说法中正确的是( )A.物体做匀速运动,其机械能肯定守恒B.物体所受合力不为零,其机械能肯定不守恒C.物体所受合力做功不为零,其机械能肯定不守恒D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能削减答案:D解析:物体做匀速运动其动能不变,但机械能可能变,如物体匀速上升或下降,机械能会相应的增加或削减,选项A错误;物体仅受重力作用,只有重力做功,或受其他力但其他力不做功或做功的代数和为零时,物体的机械能守恒,选项B、C错误;物体沿竖直方向向下做加速度为5 m/s2的匀加速运动时,物体肯定受到一个与运动方向相反的力的作用,此力对物体做负功,物体的机械能削减,故选项D正确.2.如图所示,表面光滑的固定斜面顶端安装肯定滑轮,小物块A,B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A,B处于同一高度并恰好处于静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块( )A.速率的改变量不同B.机械能的改变量不同C.重力势能的改变量相同D.重力做功的平均功率相同答案:D解析:由题意依据力的平衡有m A g=m B g sin θ,所以m A=m B sin θ.依据机械能守恒定律mgh=12mv2,得v=2gh,所以两物块落地速率相等,选项A错误;因为两物块的机械能守恒,所以两物块的机械能改变量都为零,选项B错误;依据重力做功与重力势能改变的关系,重力势能的改变为ΔE p=-W G=-mgh,所以E p A=m A gh=m B gh sin θ,E p B=m B gh,选项C错误;因为A、B两物块都做匀变速运动,所以A重力的平均功率为P A=m A g·v2,B重力的平均功率P B=m B g·v2sin θ,因为m A=m B sin θ,所以PA=P B,选项D正确.3.静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.不计空气阻力,在整个上升过程中,物体机械能随时间改变关系是( )A B C D答案:C解析:物体受恒力加速上升时,恒力做正功,物体的机械能增大,又因为恒力做功为W=F·12at2,与时间成二次函数关系,选项A、B两项错误;撤去恒力后,物体只受重力作用,所以机械能守恒,D项错误,C项正确.4.如图所示,粗细匀称、两端开口的U形管内装有同种液体,起先时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流淌,当两液面高度相等时,右侧液面下降的速度为( )A.18gh B.16ghC.14gh D.12gh答案:A解析:设管子的横截面积为S ,液体的密度为ρ.打开阀门后,液体起先运动,不计液体产生的摩擦阻力,液体机械能守恒,液体削减的重力势能转化为动能,两边液面相平常,相当于右管12h 高的液体移到左管中,重心下降的高度为12h ,由机械能守恒定律得ρ·12hS ·g ·12h =12ρ·4hS ·v 2,解得,v =gh8.选项A 正确.5.如图所示,一质量为m 的小球套在光滑竖直杆上,轻质弹簧一端固定于O 点,另一端与该小球相连.现将小球从A 点由静止释放,沿竖直杆运动到B 点,已知OA 长度小于OB 长度,弹簧处于OA ,OB 两位置时弹力大小相等.在小球由A 到B 的过程中( )A .加速度等于重力加速度g 的位置有两个B .弹簧弹力的功率为零的位置有两个C .弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功D .弹簧弹力做正功过程中小球运动的距离等于小球克服弹簧弹力做功过程中小球运动的距离答案:AC解析:在运动过程中A 点为压缩状态,B 点为伸长状态,则由A 到B 有一状态弹力为0且此时弹力与杆不垂直,加速度为g ;当弹簧与杆垂直时小球加速度为g .则有两处加速度为g ,故A 项正确;在A 点速度为零,弹簧弹力功率为0,弹簧与杆垂直时弹力的功率为0,有一位置的弹力为0,其功率为0,共3处,故B 项错误;因A 点与B 点弹簧的弹性势能相同,则弹簧弹力对小球所做的正功等于小球克服弹簧弹力所做的功,故C 项正确;因小球对弹簧做负功时弹力大,则弹簧弹力做正功过程中小球运动的距离大于小球克服弹簧弹力做功过程中小球运动的距离,故D 项错误.6.如图所示,滑块A ,B 的质量均为m ,A 套在固定竖直杆上,A ,B 通过转轴用长度为L 的刚性轻杆连接,B 放在水平面上并紧靠竖直杆,A ,B均静止.由于微小扰动,B起先沿水平面对右运动.不计一切摩擦,滑块A,B视为质点.在A下滑的过程中,下列说法中正确的是( ) A.A,B组成的系统机械能守恒B.在A落地之前轻杆对B始终做正功C.A运动到最低点时的速度为2gLD.当A的机械能最小时,B对水平地面的压力大小为2mg答案:AC解析:A,B组成的系统中只有动能和势能相互转化,故A、B组成的系统机械能守恒,选项A正确;分析B的受力状况和运动状况:B先受到竖直杆向右的推力,使其向右做加速运动,当B的速度达到肯定值时,杆对B有向左的拉力作用,使B向右做减速运动,当A落地时,B的速度减小为零,所以杆对B先做正功,后做负功,选项B错误;由于A、B组成的系统机械能守恒,且A到达最低点时B的速度为零,依据机械能守恒定律可知选项C正确;B先做加速运动后做减速运动,当B的速度最大时其加速度为零,此时杆的弹力为零,故B对水平面的压力大小为mg,由于A、B组成的系统机械能守恒,故此时A机械能最小,选项D错误.7.如图所示,A,B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B,C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手限制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直,右侧细线与斜面平行.已知A的质量为4m,B,C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,起先时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C 恰好离开地面.下列说法错误的是( )A.斜面倾角α=60°B.A获得的最大速度为2g m 5kC.C刚离开地面时,B的加速度最大D .从释放A 到C 刚离开地面的过程中,A ,B 两小球组成的系统机械能守恒答案:ACD解析:释放A 后,A 沿斜面下滑至速度最大时C 恰好离开地面,此时细线中拉力等于4mg sin α,弹簧的弹力等于mg ,则有4mg sin α=mg +mg ,解得斜面倾角α=30°,选项A 错误;释放A 前,弹簧的压缩量为x =mg k ,A 沿斜面下滑至速度最大时弹簧的伸长量为x ′=mg k,由机械能守恒定律得4mg ·2x sin α-mg ·2x =12·4mv 2+12mv 2,解得A 获得的最大速度为v =2g m 5k,选项B 正确;C 刚离开地面时,B 的加速度为零,选项C 错误;从释放A 到C 刚离开地面的过程中,A ,B 两小球、地球、弹簧组成的系统机械能守恒,选项D 错误.二、非选择题8.如图所示,跨过同一高度处的定滑轮的细线连接着质量相同的物体A 和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h =0.2 m ,起先时让连着A 的细线与水平杆的夹角θ1=37°,由静止释放B ,当细线与水平杆的夹角θ2=53°时,A 的速度为多大?在以后的运动过程中,A 所获得的最大速度为多大?(设B 不会遇到水平杆,sin 37°=0.6,sin 53°=0.8,取g =10 m/s 2) 解:设绳与水平杆夹角θ2=53°时,A 的速度为v A ,B 的速度为v B ,此过程中B 下降的高度为h 1,则有mgh 1=12mv 2A +12mv 2B ,其中h 1=h sin θ1-hsin θ2,v A cos θ2=v B ,代入数据,解以上关系式得v A ≈1.1 m/s.A 沿着杆滑到左侧滑轮正下方的过程,绳子拉力对A 做正功,A 做加速运动,此后绳子拉力对A 做负功,A 做减速运动.故当θ1=90°时,A 的速度最大,设为v A m ,此时B 下降到最低点,B 的速度为零,此过程中B 下降的高度为h 2,则有mgh 2=12mv 2A m ,其中h 2=h sin θ1-h ,代入数据解得v A m =1.63 m/s. 9.如图所示,水平地面与一半径为l 的竖直光滑圆弧轨道相接于B 点,轨道上的C 点位置处于圆心O 的正下方.在距地面高度为l 的水平平台边缘上的A 点,质量为m 的小球以v 0=2gl 的速度水平飞出,小球在空中运动至B 点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g ,试求:(1)B 点与抛出点A 正下方的水平距离x ;(2)圆弧BC 段所对的圆心角θ;(3)小球滑到C 点时,对圆轨道的压力.解:(1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律得l =12gt 2,x =v 0t 联立解得x =2l .(2)由小球到达B 点时竖直分速度v 2y =2gl ,tan θ=v y v 0,解得θ=45°. (3)小球从A 运动到C 点的过程中机械能守恒,设到达C 点时速度大小为v C ,由机械能守恒定律有mgl ⎝ ⎛⎭⎪⎪⎫1+1-22=12mv 2C -12mv 20 设轨道对小球的支持力为F ,有F -mg =m v 2C l解得F =(7-2)mg由牛顿第三定律可知,小球对圆轨道的压力大小为F ′=(7-2)mg ,方向竖直向下.10.如图所示,在竖直空间有直角坐标系xOy ,其中x 轴水平,一长为2l 的细绳一端系一小球,另一端固定在y 轴上的P 点,P 点坐标为(0,l ),将小球拉至细绳呈水平状态,然后由静止释放小球,若小钉可在x 正半轴上移动,细绳承受的最大拉力为9mg ,为使小球下落后可绕钉子在竖直平面内做圆周运动到最高点,求钉子的坐标范围.解:当小球恰过圆周运动的最高点时,钉子在x 轴正半轴的最左侧,则有mg =m v 21r 1 小球由静止到圆周的最高点这一过程,依据机械能守恒定律有mg (l -r 1)=12mv 21 x 1=2l -r 12-l 2解得x 1=73l 当小球处于圆周的最低点,且细绳张力恰达到最大值时,钉子在x 轴正半轴的最右侧,则有F max -mg =m v 22r 2小球由静止到圆周的最低点这一过程,依据机械能守恒定律有 mg (l +r 2)=12mv 22x 2=2l -r 22-l 2解得x 2=43l 因而钉子在x 轴正半轴上的范围为73l ≤x ≤43l .。
高考物理一轮复习学案 第19讲 机械能 机械能守恒定律(解析版)
第19讲机械能机械能守恒定律(解析版)1.理解重力势能的概念,知道重力做功与重力势能变化的关系2.理解弹性势能的概念,知道弹簧的弹力做功与弹性势能变化的关系3.理解机械能守恒定律,并能应用其解决有关问题一、重力势能和弹性势能1.重力做功的特点(1)重力做功与路径无关,只与始、末位置的高度差有关。
(2)重力做功不引起物体机械能的变化。
2.重力势能大小E p=mgh矢标性重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同系统性重力势能是物体和地球共有的相对性重力势能的大小与参考平面的选取有关。
重力势能的变化是绝对的,与参考平面的选取无关与重力做功的关系W G=-(E p2-E p1)=-ΔE p,即重力对物体做的功等于物体重力势能的减少量3.弹性势能(1)大小:弹簧的弹性势能的大小与弹簧的形变量及劲度系数有关。
(2)弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小,弹力做负功,弹性势能增加。
二、机械能守恒定律1.内容在只有重力或弹力做功的物体系统内,动能和势能可以互相转化,而总的机械能保持不变。
2.机械能守恒的条件只有重力或弹力做功。
3.守恒三种表达式(1)E1=E2(E1、E2分别表示系统初、末状态时的总机械能)。
(2)ΔE k=-ΔE p或ΔE k增=ΔE p减(表示系统势能的减少量等于系统动能的增加量)。
(3)ΔE A=-ΔE B或ΔE A增=ΔE B减(表示系统只有A、B两物体时,A增加的机械能等于B 减少的机械能)。
1.[多选]一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。
假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( ) A.运动员到达最低点前重力势能始终减小B.蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D.蹦极过程中,重力势能的改变与重力势能零点的选取有关【答案】ABC【解析】到达最低点前高度始终在降低,所以重力势能始终减小,A正确;绳张紧后的下落过程,伸长量逐渐增大,弹力做负功,弹性势能增大,B正确;在蹦极过程中,只有重力与系统内弹力做功,故系统机械能守恒,C正确;重力势能的改变与重力做功有关,重力做功只与始、末位置高度差有关,与零势能面的选取无关,D错误。
2014高考物理一轮复习 基础知识题组 34 机械能
(满分:100分时间:45分钟)一、单项选择题(每小题3分,共9分)1.以下说法中正确的是() A.物体做匀速运动,它的机械能一定守恒B.物体所受合力的功为零,它的机械能一定守恒C.物体所受合力不等于零,它的机械能可能守恒D.物体所受合力等于零,它的机械能一定守恒答案 C解析物体做匀速运动时动能不变,但是高度可以改变,重力势能改变,所以A错误;合力的功为零,只是动能不变,B错误;物体所受合力不等于零,例如只在重力作用下的运动,机械能守恒,所以C正确;D选项实质与A选项相同,所以错误.2.如图1甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图乙所示,则()图1A.t1时刻小球动能最大B.t2时刻小球动能最大C.t2~t3这段时间内,小球的动能先增加后减少D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能答案 C解析0~t1时间内,小球做自由落体运动,落到弹簧上并往下运动的过程中,小球重力与弹簧对小球弹力的合力方向先向下后向上,故小球先加速后减速,t2时刻到达最低点,动能为0,A、B错;t2~t3时间内,小球向上运动,合力方向先向上后向下,小球先加速后减速,动能先增加后减少,C对;t2~t3时间内,由能量守恒知小球增加的动能等于弹簧减少的弹性势能减去小球增加的重力势能,D错.3. 某兴趣小组对一辆自制遥控小车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v -t 图象,如图2所示(除2 s ~10 s 时间段图象为曲线外,其余时间段图象均为直线).已知在小车运动的过程中,2 s ~14 s 时间段内小车的功率保持不变,在14 s 末停止遥控而让小车自由滑行,小车的质量为1.0 kg ,可认为在整个运动过程中小车所受的阻力大小不变.则下列说法不正确的是( )图2A .小车受到的阻力大小为1.5 NB .小车加速阶段的功率为9 WC .小车匀速行驶阶段的功率为9 WD .小车加速过程中位移大小为42 m答案 B解析 在14 s ~18 s 时间段:a =Δv t=1.5 m/s 2,则F f =ma =1.5 N ,A 正确;在0~2 s 内小车做匀加速运动,由P =F v 可知,小车的功率逐渐增大,B 不正确;在10 s ~14 s 内小车做匀速直线运动,牵引力F ′=F f ,P =F ′v =1.5×6 W =9 W ,C 正确;0~2 s内:x 1=3 m, 2 s ~10 s 内根据动能定理:Pt -F f x 2=12m v 22-12m v 21,得x 2=39 m ,则x =x 1+x 2=42 m ,D 正确.二、多项选择题(每小题5分,共35分)4. 竖直上抛一球,球又落回原处,已知空气阻力的大小正比于球的速度,则下列说法中正确的是 ( )A .球在上升过程中克服重力做的功大于下降过程中重力做的功B .球在上升过程中克服重力做的功等于下降过程中重力做的功C .球在上升过程中克服重力做功的平均功率大于下降过程中重力做功的平均功率D .球在上升过程中克服重力做功的平均功率等于下降过程中重力做功的平均功率 答案 BC解析 上升过程重力做负功,克服重力做的功和下降过程重力做的功相等,所以B 选W项正确.考虑到空气阻力,上升时间比下降时间短,根据P=t可知,C选项正确.5. 如图3,人站在自动扶梯上不动,随扶梯匀速上升的过程中 ( )图3A .人克服重力做功,重力势能增加B .支持力对人做正功,人的动能增加C .合外力对人不做功,人的动能不变D .合外力对人不做功,人的机械能不变答案 AC解析 人在上升时,克服重力做功,重力势能增加,A 对.支持力向上做正功,但人的动能不变,合外力做功为零,B 错,C 对;人的机械能等于动能加上重力势能,应增加,D 错.6. 如图4所示,将一轻弹簧固定在倾角为30°的斜面底端,现用一质量为m 的物体将弹簧压缩锁定在A 点,解除锁定后,物体将沿斜面上滑,物体在运动过程中所能到达的最高点B 距A 点的竖直高度为h ,物体离开弹簧后沿斜面向上运动的加速度大小等于重力加速度g .则下列说法正确的是( )图4A .弹簧的最大弹性势能为mghB .物体从A 点运动到B 点的过程中系统损失的机械能为mghC .物体的最大动能等于弹簧的最大弹性势能D .物体最终静止在B 点答案 BD解析 物体离开弹簧上滑时,有mg sin θ+μmg cos θ=ma =mg ,又因为θ=30°,所以mg sin θ=μmg cos θ=12mg ,μ=tan θ;根据功能关系:E pm =mgh +Q 大于mgh ,A 项错误;机械能损失ΔE =Q =μmg cos θ·h sin 30°=mgh ,B 项正确;物体最大动能的位置在A 点上方,合外力为零处,即kx ′=mg sin θ+μmg cos θ,E pm =E km +mgh ′+μmg cosθ·h ′sin θ,C 项错误;因为μ=tan θ,所以物体可以在B 点静止,D 项正确.7. 如图5所示,光滑水平面上放着足够长的木板B ,木板B 上放着木块A ,A 、B 接触面粗糙,现用一水平拉力F 作用在B 上使其由静止开始运动,用F f1代表B 对A 的摩擦力,F f2代表A 对B 的摩擦力,下列说法正确的有( )图5A .力F 做的功一定等于A 、B 系统动能的增加量B .力F 做的功一定小于A 、B 系统动能的增加量C .力F f1对A 做的功等于A 动能的增加量D .力F 、F f2对B 做的功之和等于B 动能的增加量答案 CD解析 当水平拉力F 较小时,二者一起运动,力F 做的功一定等于A 、B 系统动能的增加量;当水平拉力F 较大时,二者发生相对滑动,力F 做的功一定大于A 、B 系统动能的增加量,选项A 、B 错误;由动能定理,力F f1对A 做的功等于A 动能的增加量,力F 、F f2对B 做的功之和等于B 动能的增加量,选项C 、D 正确.8. 如图6所示,竖直环A 半径为r ,固定在木板B 上,木板B 放在水平地面上,B 的左右两侧各有一挡板固定在地上,B 不能左右运动,在环的最低点静放有一小球C ,A 、B 、C 的质量均为m .现给小球一水平向右的瞬时速度v ,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起(不计小球与环的摩擦阻力),瞬时速度必须满足 ( )图6A .最小值4grB .最大值6grC .最小值5grD .最大值7gr答案 CD解析 要保证小球能通过环的最高点,在最高点最小速度满足mg =m v 20r,由最低点到最高点由机械能守恒定律得,12m v 2min =mg ·2r +12m v 20,可得小球在最低点瞬时速度的最小值为5gr ;为了不会使环在竖直方向上跳起,在最高点有最大速度时对环的压力为mg ,满足3mg =m v 21r ,从最低点到最高点由机械能守恒定律得:12m v 2max =mg ·2r +12m v 21,可得小球在最低点瞬时速度的最大值为7gr .9. 如图7所示,光滑的水平轨道AB 与半径为R 的光滑的半圆形轨道BCD 相切于B 点,其中半圆轨道在竖直平面内,B 点为最低点,D 点为最高点,一小球以一定的初速度沿AB 射入,恰能通过最高点,设小球在最高点D 的重力势能为零,则关于小球在B 点的机械能E 与轨道对小球的支持力F 的说法正确的是( )图7A .E 与R 成正比B .E 与R 无关C .F 与R 成正比D .F 与R 无关答案 AD解析 小球恰能通过最高点,则在最高点重力充当向心力,有mg =m v 2R,因为小球在最高点D 的重力势能为零,则小球在D 点的机械能为12m v 2,由机械能守恒定律可知:小球在B 点的机械能与在D 点的机械能相等,则E =12m v 2=12mgR ,所以E 与R 成正比,故A 项正确,B 项错误;从B 点到D 点小球机械能守恒,可得:12m v 2=12m v 20-2mgR ,在B 点有:F -mg =m v 20R,可解得F =6mg ,所以F 与R 无关,故C 项错误,D 项正确. 10.如图8所示,在光滑固定的曲面上,放有两个质量分别为1 kg 和2 kg 的可视为质点的小球A 和B ,两球之间用一根轻质弹簧相连,用手拿着A 如图所示竖直放置,AB 间距离L =0.2 m ,小球B 刚刚与曲面接触且距水平面的高度h =0.1 m .此时弹簧的弹性势能E p =1 J ,自由释放A 后两球以及弹簧从静止开始下滑到光滑地面上,以后一直沿光滑地面运动,不计一切碰撞时机械能的损失,g 取10 m/s 2.则下列说法中正确的是( )图8A .下滑的整个过程中弹簧和A 球组成的系统机械能守恒B .下滑的整个过程中两球及弹簧组成的系统机械能守恒C .B 球刚到地面时,速度是 2 m/sD .当弹簧处于原长时,以地面为参考平面,两球在光滑水平面上运动时的机械能为6 J 答案 BD解析 由于弹簧和B 之间有作用力,弹簧和A 球组成的系统机械能不守恒,A 项错误;由于没有摩擦,系统只有弹簧弹力和重力做功,则B 项正确;因为弹簧作用于B ,并对B 做功,B 的机械能不守恒,而 2 m/s 是根据机械能守恒求解得出的,所以C 项错误;根据系统机械能守恒,到地面时的机械能与刚释放时的机械能相等,又弹簧处于原长,则E =m A g (L +h )+m B gh +E p =6 J ,D 项正确.三、非选择题(共56分)11.(12分)在验证机械能守恒定律的实验中,使质量为m =200 g 的重物自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图9所示.O 为纸带下落的起始点,A 、B 、C 为纸带上选取的三个连续点.已知打点计时器每隔T =0.02 s 打一个点,当地的重力加速度为g =9.8 m/s 2,那么图9(1)计算B 点瞬时速度时,甲同学用v 2B =2gx OB ,乙同学用v B =x AC 2T.其中所选择方法正确的是______(填“甲”或“乙”)同学.(2)同学丙想根据纸带上的测量数据进一步计算重物和纸带下落过程中所受的阻力,为此他计算出纸带下落的加速度为________m/s 2,从而计算出阻力F f =________N.(3)若同学丁不慎将上述纸带从OA 之间扯断,他仅利用A 点之后的纸带能否实现验证机械能守恒定律的目的?______.(填“能”或“不能”)答案 (1)乙 (2)9.5 0.06 (3)能解析 (1)如用v 2B =2gx OB 求v B ,就等于认为机械能已经守恒了,应选用v B =x AC 2T. (2)由Δx =aT 2知a =Δx T 2=BC -AB T 2=[23.23-19.20-(19.20-15.55)]×10-20.022 m/s 2 =9.5 m/s 2由mg -F f =ma 知F f =mg -ma =0.06 N.(3)能.可利用12m (v 22-v 21)=mgh 12验证. 12.(12分) 如图10所示,轨道ABC 被竖直地固定在水平桌面上,A 距离水平地面高H =0.75 m ,C 距离水平地面高h =0.45 m .一质量m =0.10 kg 的小物块自A 点从静止开始下滑,从C 点以水平速度飞出后落在水平地面上的D 点.现测得C 、D 两点的水平距离为l =0.60 m .不计空气阻力,取g =10 m/s 2.求:图10(1)小物块从C 点运动到D 点经历的时间;(2)小物块从C 点飞出时速度的大小;(3)小物块从A 点运动到C 点的过程中克服摩擦力做的功.答案 (1)0.3 s (2)2.0 m/s (3)0.1 J解析 (1)小物块从C 水平飞出后做平抛运动,由h =12gt 2得小物块从C 到D 运动的时间t = 2h g=0.3 s (2)从C 点飞出时速度的大小v =l t=2.0 m/s (3)小物块从A 运动到C 的过程中,根据动能定理得mg (H -h )+W f =12m v 2-0摩擦力做功W f =12m v 2-mg (H -h )=-0.1 J 此过程中克服摩擦力做的功W f ′=-W f =0.1 J.13.(16分)(2012·北京·23)摩天大楼中一部直通高层的客运电梯,行程超过百米.电梯的简化模型如图11甲所示.考虑安全、舒适、省时等因素,电梯的加速度a 是随时间t 变化的.已知电梯在t =0时由静止开始上升,a -t 图象如图乙所示.电梯总质量m =2.0×103 kg.忽略一切阻力,重力加速度g 取10 m/s 2.图11(1)求电梯在上升过程中受到的最大拉力F 1和最小拉力F 2;(2)类比是一种常用的研究方法.对于直线运动,教科书中讲解了由v -t 图象求位移的方法.请你借鉴此方法,对比加速度和速度的定义,根据图乙所示的a -t 图象,求电梯在第1 s 内的速度改变量Δv 1和第2 s 末的速率v 2;(3)求电梯以最大速率上升时,拉力做功的功率P ;再求在0~11 s 时间内,拉力和重力对电梯所做的总功W .答案 (1)2.2×104 N 1.8×104 N (2)0.5 m/s1.5 m/s (3)2.0×105 W 1.0×105 J解析 (1)由牛顿第二定律,有F -mg =ma由a -t 图象可知,F 1和F 2对应的加速度分别是a 1=1.0 m/s 2,a 2=-1.0 m/s 2,则F 1=m (g +a 1)=2.0×103×(10+1.0) N =2.2×104 NF 2=m (g +a 2)=2.0×103×(10-1.0) N =1.8×104 N(2)类比可得,所求速度变化量等于第1 s 内a -t 图线与t 轴所围图形的面积,可得Δv 1=0.5 m/s同理可得2 s 内的速度变化量Δv 2=v 2-v 0=1.5 m/sv 0=0,第2 s 末的速率v 2=1.5 m/s(3)由a -t 图象可知,11 s ~30 s 内速率最大,其值v m 等于0~11 s 内a -t 图线与t 轴所围图形的面积,此时电梯做匀速运动,拉力F 等于重力mg ,所求功率P =F v m =mg ·v m =2.0×103×10×10 W =2.0×105 W由动能定理得,总功W =E k2-E k1=12m v 2m -0=12×2.0×103×102 J =1.0×105 J.14.(16分)如图12所示,水平光滑的桌面上静止放置一条长为l =1.6 m 的纸带,纸带上正中间位置放置有一质量为m =1.0 kg 的小铁块,纸带的左边恰好在桌面的左边缘,小铁块与纸带间的动摩擦因数为μ=0.1.现让纸带从t =0时刻开始一直保持v =1 m/s 的速度向左匀速运动.已知桌面高度为H =0.8 m ,g =10 m/s 2,小铁块在运动过程中不翻滚,不计空气阻力.求:图12(1)小铁块从开始运动到桌面边缘过程中所经历的时间并在图13中画出此过程小铁块的v -t 图象;图13(2)小铁块抛出后落地点到抛出点的水平距离;(3)小铁块从开始运动到桌面边缘过程中产生的内能.答案 (1)见解析 (2)0.4 m (3)0.5 J解析 (1)小铁块开始时做匀加速运动,由μmg =ma 得a =1 m/s 2速度达到纸带v =1 m/s 的速度所用时间t 1=v a得 t 1=1 s若小铁块1 s 内一直做匀加速运动,运动的位移为x 1=12at 21,解得x 1=0.5 m<12l 由以上可知:小铁块先做匀加速运动,后以v =1 m/s 的速度做匀速运动,匀速运动所用时间t 2=12l -x 1v =0.3 s11 小铁块从开始运动到桌面边缘过程中所经历的时间 t =t 1+t 2=1.3 sv -t 图象如图所示(2)小铁块抛出后做平抛运动,水平方向:x =v t 0竖直方向:H =12gt 20,联立解得x =0.4 m (3)纸带在1 s 内一直做匀速运动,运动的位移为 x 2=v t 1得x 2=1 m小铁块与纸带间的相对位移为:Δx =x 2-x 1=0.5 m 由功能关系可知:Q =μmg Δx ,得Q =0.5 J.。
高考物理一轮复习 专题20 机械能守恒定律(讲)(含解析)
专题20 机械能守恒定律1.掌握重力势能、弹性势能的概念,并能计算.2.掌握机械能守恒的条件,会判断物体的机械能是否守恒.3.掌握机械能守恒定律的三种表达形式,理解其物理意义,并能熟练应用.一、重力做功与重力势能1.重力做功的特点(1)重力做功与路径无关,只与初末位置的高度差有关.(2)重力做功不引起物体机械能的变化.2.重力势能(1)概念:物体由于被举高而具有的能.(2)表达式:E p =mgh .(3)矢标性:重力势能是标量,正负表示其大小.3.重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.(2)定量关系:重力对物体做的功等于物体重力势能的减少量.即W G =-(E p2-E p1)= -ΔE p .二、弹性势能1.概念:物体由于发生弹性形变而具有的能.2.大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.3.弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系,用公式表示:W =-ΔE p .三、机械能和机械能守恒定律1.机械能:动能和势能统称为机械能,其中势能包括弹性势能和重力势能.2.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.(2)表达式:mgh 1+21mv 21=mgh 2+21mv 22 3.守恒条件:只有重力或弹簧的弹力做功.考点一机械能守恒定律的理解与应用1.机械能守恒的条件(任一条件均可)(1)物体只受重力作用.(2)存在其他力作用,但其他力不做功,而只有重力(或弹簧弹力)做功.(3)相互作用的物体组成的系统只有动能和势能的相互转化,无其他形式能量的转化.2.机械能守恒定律的表达式ΔE p=-ΔE k;(不需要选零势能面)E k+E p=E k′+E p′;(一定要选零势能面)ΔE增=ΔE减.(不需要选零势能面)★重点归纳★1.机械能守恒的判定方法(1)做功条件分析法:若物体系统内只有重力和弹簧弹力做功,其他力均不做功,则系统的机械能守恒.(2)能量转化分析法:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转变成其他形式的能(如没有内能增加),则系统的机械能守恒.特别提醒:(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;只有重力做功不等于只受重力作用.(2)对一些绳子突然绷紧、物体间碰撞等,除非题目特别说明,否则机械能必定不守恒.(3)对于系统机械能是否守恒,可以根据能量的转化进行判断.2.机械能守恒定律的表达形式及应用(1)守恒观点①表达式:E k1+E p1=E k2+E p2或E1=E2.②意义:系统初状态的机械能等于末状态的机械能.③注意问题:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.(2)转化观点①表达式:ΔE k=-ΔE p.②意义:系统(或物体)的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.③注意问题:要明确势能的增加量或减少量,即势能的变化,可以不选取零势能参考平面.(3)转移观点①表达式:ΔE A增=ΔE B减.②意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量.③注意问题:A 部分机械能的增加量等于A 部分末状态的机械能减初状态的机械能,而B 部分机械能的减少量等于B 部分初状态的机械能减末状态的机械能.★典型案例★如图所示,小球在竖直向下的力F 作用下,将竖直轻弹簧压缩,若将力F 撤去,小球将向上弹起并离开弹簧,直到速度为零时为止,则小球在上升过程中①小球的动能先增大后减小 ②小球离开弹簧时动能最大 ③小球动能最大时弹性势能为零 ④小球动能减为零时,重力势能最大,以上说法正确的是: ( )A.①②④B.①④C.②③D.①②③④【答案】B【解析】【名师点睛】本题关键分析小球的受力情况,确定小球的运动情况,其中,重力和弹力相等时是一个分界点.★针对练习1★(多选)某娱乐项目中,参与者抛出一小球取撞击触发器,从而进入下一关。
高考物理一轮复习第六单元机械能第3讲机械能守恒定律及其应用练习(含解析)新人教版
第3讲机械能守恒定律及其应用1 重力做功与重力势能(1)重力做功的特点:重力做功与路径无关,只与初、末位置的高度差有关。
(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
②定量关系:物体从位置A到位置B的过程中,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p。
③重力势能的变化量是绝对的,与参考面的选取无关。
湖南长沙雅礼中学月考)(多选)质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,下列说法正确的是()。
A.物体的重力势能减少2mghB.物体的机械能保持不变C.物体的动能增加2mghD.物体的机械能增加mgh【答案】CD2 弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能。
(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大。
(3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式可表示为W=-ΔE p。
【温馨提示】弹性势能是由物体的相对位置决定的。
同一根弹簧的伸长量和压缩量相同时,弹簧的弹性势能相同。
(2018江苏南京10月模拟)如图所示,在光滑水平面上有一物体,它的左端固定连接一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是()。
A.弹簧的弹性势能逐渐减少B.弹簧的弹性势能逐渐增加C.弹簧的弹性势能先增加再减少D.弹簧的弹性势能先减少再增加【答案】D3 机械能守恒定律(1)内容:在只有重力或弹力做功的系统内,动能与势能可以互相转化,而总的机械能保持不变。
(2)机械能守恒定律的三种表达形式及应用①守恒观点:a.表达式,E k1+E p1=E k2+E p2或E1=E2。
b.意义,系统初状态的机械能等于末状态的机械能。
安徽专用2014届高考物理一轮复习训练新人教版:专题五机械能守恒定律(Word版含解析).pdf
专题五 机械能守恒定律(2012·高考天津卷)如图甲所示静止在水平地面的物块A受到水平向右的拉力F作用与时间t的关系如图乙所示设物块与地面的静摩擦力最大值f则( ) A.0~t1时间内F的功率逐渐增大 .时刻物块A的加速度最大时刻后物块A做反向运动 .时刻物块A的动能最大 (2012·高考安徽卷)如图所示在竖直平面内有一半径为R的圆弧轨道半OA水平竖直一个质量为m的小球自A的正上方P点由静止开始自由下落小球沿轨道到达最高点B时恰好对轨道没有压力.已知AP=2R重力加速度为g则小球从P到B的运动过程中( )重力做功2mgR机械能减少mgR合外力做功mgR克服摩擦力做功 (2012·高考福如图表面光滑的固定斜面顶端安装一定滑轮小物块A用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻处于同一高度并恰好处于静止状态.剪断轻绳后A下落沿斜面下滑则从剪断轻绳到物块着地两物块( )速率的变化量不同 .机械能的变化量不同重力势能的变化量相同 .重力做功的平均功率相同 (2012·高考江苏卷)如图所示细线的一端固定于O点另一端系一小球.在水平拉力作用下小球以恒定速率在竖直平面内由A点运动到B点.在此过程中拉力的瞬时功率变化情况是( )逐渐增大 .逐渐减小先增大后减小 .先减小后增大 (2012·高考重庆卷)如可测量轮胎与地面间动摩擦因数其主要部件有:底部固定有轮胎橡胶片的摆锤和连接摆锤的轻质细杆.摆锤的质量为m细杆可绕轴O在竖直平面内自由转动摆锤重心到O点距离为L.测量时测量仪固定于水平地面将摆锤从与O等高的位置处静止释放.摆锤到最低点附近时橡胶片紧压地面擦过一小段距离s(s),之后继续摆至与竖直方向成θ角的最高位置.若摆锤对地面的压力可视为大小为F的恒力重力加速度为g求:(1)摆锤在上述过程中损失的机械能;(2)在上述过程中摩擦力对摆锤所做的功;(3)橡胶片与地面之间的动摩擦因数.【解析】选对项物块静止不动的功率为零故错误.对项时刻由F-f知最大故正确.对项物块先加速后减速运动方向不变故错.t物块一直加速故t时刻动能最大.所以正【解析】选在最高点恰无压力则:,vB=. 从P到B由动能定理得:(2R-R)-Wmv-0. 可得:WmgR. 重力做功与路径无关项错;机械能的减少看摩擦力做功多少E=WmgR,B项错;合外力的功W合mv=mgR,C项错;由WmgR知正确.【解析】选绳剪断前由平衡条件得m即m绳剪断后由机械能守恒定律可知着地速率的变化量相同机械能都不变化重力势能变化量因质量不同故不同重力做功的平均功率对A:P,PA==mAg,对B:t===mBg.又m故P选项正确.【解析】选由动能定理:W则拉力的瞬时功率变化与重力瞬时功率变化相同.由P=mgv可知大小均不变二者夹角α逐渐增大(90范围则P逐渐增大正确.【解析】选以地面为零势面初始位置的机械能终点位置的机械能E(1-) 损失的机械能此过程中机械能损失原因为摩擦力做功所以W由动能定理W可得 【答案】(1)mgL (2)-mgL (3)。
(福建专用)2014届高考物理三轮 典型专题检测卷 机械能守恒定律 功能关系
机械能守恒定律功能关系一、选择题(本题共8小题,每小题8分,共64分。
每小题只有一个选项正确)1.在下面列举的实例中,哪种情况机械能是守恒的()A.汽车在水平面上加速运动B.抛出的手榴弹或标枪在空中的运动(不计空气阻力)C.拉着物体沿光滑斜面匀速上升D.汽车关闭油门后沿水平公路向前滑行的过程2.(2013·宁德一模)质量为m的带电小球,在充满匀强电场的空间中水平抛出,小球运动时的加速度方向竖直向下,大小为g。
当小球下降高度为h时,不计空气阻力,重力加速度为g,下列说法正确的是()A.小球的动能减少了mghB.小球的动能增加了mghC.小球的电势能减少了mghD.小球的电势能增加了mgh3.如图甲所示,在倾角为θ的光滑斜面上,有一个质量为m的物体在沿斜面方向的力F的作用下由静止开始运动,物体的机械能E随位移s的变化关系如图乙所示。
其中0~s1过程的图线是曲线,s1~s2过程的图线为平行于s轴的直线,则下列说法中正确的是()A.物体一直沿斜面向上运动B.在0~s1过程中,物体的加速度一直减小C.在0~s2过程中,物体先减速再匀速D.在s1~s2过程中,物体的加速度为gsinθ4.(2013·汕头一模)蹦床运动员与床垫接触的过程可简化为下述模型:运动员从高处落到处于自然状态的床垫(A位置)上,随床垫一同向下做变速运动到达最低点(B位置),如图所示。
有关运动员从A运动至B的过程,下列说法正确的是()A.运动员的机械能守恒B.运动员的速度一直减小C.合力对运动员做负功D.运动员一直处于超重状态5.(2013·济南一模)如图所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点。
下列说法中错误的是()A.小球从A出发到返回A的过程中,位移为零,外力做功为零B.小球从A到C与从C到B的过程,减少的动能相等C.小球从A到C与从C到B的过程,速度的变化率相等D.小球从A到C与从C到B的过程,损失的机械能相等6.(2013·泉州一模)如图所示,竖直向上的匀强电场中,绝缘轻质弹簧直立于地面上,上面放一个质量为m的带正电的小球,小球与弹簧不连接。
高考物理一轮复习详细讲义(教师版):机械能守恒定律
第三节机械能守恒定律【基础梳理】提示:mgh地球参考平面-ΔE p弹性形变形变量-ΔE p重力或弹力重力或弹力E′k+E′p-ΔE pΔE B减【自我诊断】判一判(1)克服重力做功,物体的重力势能一定增加.()(2)重力势能的变化与零势能参考面的选取有关.()(3)弹簧弹力做负功时,弹性势能减少.()(4)物体在速度增大时,其机械能可能在减小.()(5)物体所受合外力为零时,机械能一定守恒.()(6)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒.()提示:(1)√(2)×(3)×(4)√(5)×(6)√做一做把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示.迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙).忽略弹簧的质量和空气阻力.则小球从A位置运动到C位置的过程中,下列说法正确的是()A.经过位置B时小球的加速度为0B.经过位置B时小球的速度最大C.小球、地球、弹簧所组成系统的机械能守恒D.小球、地球、弹簧所组成系统的机械能先增大后减小提示:C机械能守恒的判断【知识提炼】(1)机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;“只有重力或弹力做功”不等于“只受重力或弹力作用”.(2)对于一些绳子突然绷紧、物体间碰撞等情况,除非题目特别说明,否则机械能必定不守恒.(3)对于系统机械能是否守恒,可以根据能量的转化进行判断.严格地讲,机械能守恒定律的条件应该是对一个系统而言,外力对系统不做功(表明系统与外界之间无能量交换),系统内除了重力和弹力以外,无其他摩擦和介质阻力做功(表明系统内不存在机械能与其他形式之间的转换),则系统的机械能守恒.【跟进题组】1.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒解析:选CD.甲图中重力和弹簧弹力做功,系统机械能守恒,但弹簧的弹性势能增加,A的机械能减少,A错;B物体下滑,B对A的弹力做功,A的动能增加,B的机械能减少,B错;丙图中A、B组成的系统只有重力做功,机械能守恒,C对;丁图中小球受重力和拉力作用,但都不做功,小球动能不变,机械能守恒,D对.2.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是( )A .子弹的机械能守恒B .木块的机械能守恒C .子弹和木块总机械能守恒D .子弹和木块上摆过程中机械能守恒解析:选D.子弹射入木块过程,系统中摩擦力做负功,机械能减少;而共同上摆过程,系统只有重力做功,机械能守恒.综上所述,整个过程机械能减少,减少部分等于克服摩擦力做功产生的热量.单个物体的机械能守恒问题 【知识提炼】1.机械能守恒定律的表达式2.求解单个物体机械能守恒问题的基本思路【典题例析】(2016·高考全国卷Ⅲ)如图,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.[审题指导] 对小球从开始下落到运动过程中一直只有重力做功,满足机械能守恒条件.利用圆周运动的向心力知识就可判断能否到达C 点.[解析] (1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒得 E k A =mg R4①设小球在B 点的动能为E k B ,同理有 E k B =mg 5R4② 由①②式得E k B ∶E k A =5∶1.③ (2)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力F N 应满足F N ≥0④ 设小球在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有F N +mg =m v 2CR 2⑤由④⑤式得,v C 应满足mg ≤m 2v 2CR⑥ 由机械能守恒有mg R 4=12m v 2C⑦由⑥⑦式可知,小球恰好可以沿轨道运动到C 点. [答案] (1)5∶1 (2)见解析【迁移题组】迁移1 机械能守恒定律在圆周运动中的应用1.一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R ,圆轨道2的半径是轨道1的1.8倍,小球的质量为m ,若小球恰好能通过轨道2的最高点B ,则小球在轨道1上经过A 处时对轨道的压力为( )A .2mgB .3mgC .4mgD .5mg解析:选C.小球恰好能通过轨道2的最高点B 时,有mg =m v 2B1.8R ,小球在轨道1上经过A 处时,有F +mg =m v 2AR ,根据机械能守恒定律,有1.6mgR +12m v 2B =12m v 2A ,解得F =4mg ,由牛顿第三定律可知,小球对轨道的压力F ′=F =4mg ,选项C 正确.迁移2 机械能守恒定律在平抛运动中的应用2.如图,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小.解析:(1)设环到b 点时速度为v b ,圆弧轨道半径为r ,小环从a 到b 由机械能守恒有 mgr =12m v 2b①环与bc 段轨道间无相互作用力,从b 到c 环做平抛运动 h =12gt 2② s =v b t③ 联立可得r =s 24h④代入数据得r =0.25 m.(2)环从b 点由静止下滑至c 点过程中机械能守恒,设到c 点时速度为v c ,则 mgh =12m v 2c⑤ 在bc 段两次过程中环沿同一轨迹运动,经过同一点时速度方向相同 设环在c 点时速度与水平方向间的夹角为θ,则环做平抛运动时 tan θ=v yv b⑥ v y =gt⑦联立②③⑥⑦式可得 tan θ=22⑧则环从b 点由静止开始滑到c 点时速度的水平分量v cx 为v cx =v c cos θ⑨ 联立⑤⑧⑨三式可得 v cx =2310 m/s.答案:(1)0.25 m (2)2310 m/s多个物体(连接体)的机械能守恒问题【知识提炼】1.多物体机械能守恒问题的解题思路2.多个物体的机械能守恒问题,往往涉及“轻绳模型”“轻杆模型”以及“轻弹簧模型”. (1)轻绳模型三点提醒①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等. ②用好两物体的位移大小关系或竖直方向高度变化的关系.③对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒.(2)轻杆模型三大特点①平动时两物体线速度相等,转动时两物体角速度相等.②杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.③对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒.(3)轻弹簧模型“四点”注意①含弹簧的物体系统在只有弹簧弹力和重力做功时,物体的动能、重力势能和弹簧的弹性势能之间相互转化,物体和弹簧组成的系统机械能守恒,而单个物体和弹簧机械能都不守恒.②含弹簧的物体系统机械能守恒问题,符合一般的运动学解题规律,同时还要注意弹簧弹力和弹性势能的特点.③弹簧弹力做的功等于弹簧弹性势能的减少量,而弹簧弹力做功与路径无关,只取决于初、末状态弹簧形变量的大小.④由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零).【典题例析】(多选)如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距h ,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a 、b 可视为质点,重力加速度大小为g .则( )A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg[审题指导] 首先判断机械能是否守恒,然后把两滑块的速度关系找出来,利用机械能守恒定律求解问题.[解析] 由题意知,系统机械能守恒.设某时刻a 、b 的速度分别为v a 、v b .此时刚性轻杆与竖直杆的夹角为θ,分别将v a 、v b 分解,如图.因为刚性杆不可伸长,所以沿杆的分速度v ∥与v ′∥是相等的,即v a cos θ=v b sin θ.当a 滑至地面时θ=90°,此时v b =0,由系统机械能守恒得mgh =12m v 2a ,解得v a =2gh ,选项B 正确;同时由于b 初、末速度均为零,运动过程中其动能先增大后减小,即杆对b 先做正功后做负功,选项A 错误;杆对b 的作用力先是推力后是拉力,对a 则先是阻力后是动力,即a 的加速度在受到杆的向下的拉力作用时大于g ,选项C 错误;b 的动能最大时,杆对a 、b 的作用力为零,此时a 的机械能最小,b 只受重力和支持力,所以b 对地面的压力大小为mg ,选项D 正确.[答案] BD【迁移题组】迁移1 轻绳模型 1.(2019·哈尔滨六中检测)如图所示,物体A 的质量为M ,圆环B 的质量为m ,通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,长度l =4 m ,现从静止释放圆环.不计定滑轮和空气的阻力,g 取10 m/s 2,若圆环下降h =3 m 时的速度v =5 m/s ,则A 和B 的质量关系为( )A .M m =3529B .M m =79C .M m =3925D .M m =1519解析:选A.圆环下降3 m 后的速度可以按如图所示分解,故可得v A =v cos θ=v h h 2+l2,A 、B 和绳子看成一个整体,整体只有重力做功,机械能守恒,当圆环下降h =3 m 时,根据机械能守恒可得mgh =Mgh A +12m v 2+12M v 2A ,其中h A =h 2+l 2-l ,联立可得M m =3529,故A正确.迁移2 轻杆模型 2.(2019·山东烟台模拟)如图所示,可视为质点的小球A 和B 用一根长为0.2 m 的轻杆相连,两球质量均为1 kg ,开始时两小球置于光滑的水平面上,并给两小球一个大小为2 m/s ,方向水平向左的初速度,经过一段时间,两小球滑上一个倾角为30°的光滑斜面,不计球与斜面碰撞时的机械能损失,重力加速度g 取10 m/s 2,在两小球的速度减小为零的过程中,下列判断正确的是( )A .杆对小球A 做负功B .小球A 的机械能守恒C .杆对小球B 做正功D .小球B 速度为零时距水平面的高度为0.15 m解析:选D.由于两小球组成的系统机械能守恒,设两小球的速度减为零时,B 小球上升的高度为h ,则由机械能守恒定律可得mgh +mg (h +L sin 30°)=12·2m v 20,其中L 为轻杆的长度,v 0为两小球的初速度,代入数据解得h =0.15 m ,选项D 正确;在A 球沿斜面上升过程中,设杆对A 球做的功为W ,则由动能定理可得-mg (h +L sin 30°)+W =0-12m v 20,代入数据解得W =0.5 J ,选项A 、B 错误;设杆对小球B 做的功为W ′,对小球B ,由动能定理可知-mgh +W ′=0-12m v 20,代入数据解得W ′=-0.5 J ,选项C 错误.迁移3 轻弹簧模型 3.(2016·高考全国卷Ⅱ)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动.重力加速度大小为g .(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.解析:(1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能.由机械能守恒定律,弹簧长度为l 时的弹性势能为E p =5mgl ①设P 的质量为M ,到达B 点时的速度大小为v B ,由能量守恒定律得E p =12M v 2B +μMg ·4l ②联立①②式,取M =m 并代入题给数据得v B =6gl③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足m v 2l-mg ≥0 ④设P 滑到D 点时的速度为v D ,由机械能守恒定律得 12m v 2B =12m v 2D+mg ·2l ⑤ 联立③⑤式得v D =2gl⑥ v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出.设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2⑦ P 落回到AB 上的位置与B 点之间的距离为s =v D t ⑧ 联立⑥⑦⑧式得s =22l .⑨(2)为使P 能滑上圆轨道,它到达B 点时的速度不能小于零.由①②式可知5mgl >μMg ·4l ⑩ 要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C .由机械能守恒定律有12M v 2B≤Mgl ⑪联立①②⑩⑪式得53m ≤M <52m .答案:见解析迁移4 非质点类模型4.有一条长为L =2 m 的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/sB .522 m/sC . 5 m/sD .352m/s 解析:选B.设链条的质量为2m ,以开始时链条的最高点为零势能面,链条的机械能为E =E p +E k =-12×2mg ×L 4sin θ-12×2mg ×L 4+0=-14mgL (1+sin θ)链条全部滑出后,动能为 E ′k =12×2m v 2重力势能为E ′p =-2mg L2由机械能守恒可得E =E ′k +E ′p 即-14mgL (1+sin θ)=m v 2-mgL解得v =12gL (3-sin θ)=12×10×2×(3-0.5) m/s =522m/s 故B 正确,A 、C 、D 错误.机械能守恒定律的应用球到达最低点时的速度大小;球到达最低点的过程中,杆对球在圆环右侧区域内能达到的最高点位【对点训练】如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .现将环从与定滑轮等高的A 处由静止释放,当环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是(重力加速度为g )( )A .环刚释放时轻绳中的张力等于2mgB .环到达B 处时,重物上升的高度为(2-1)dC .环在B 处的速度与重物上升的速度大小之比为22D .环减少的机械能大于重物增加的机械能解析:选B.环释放后重物加速上升,故绳中张力一定大于2mg ,A 项错误;环到达B 处时,绳与直杆间的夹角为45°,重物上升的高度h =(2-1)d ,B 项正确;如图所示,将B 处环速度v 进行正交分解,重物上升的速度与其分速度v 1大小相等,v 1=v cos 45°=22v ,所以,环在B 处的速度与重物上升的速度大小之比等于2,C 项错误;环和重物组成的系统机械能守恒,故D 项错误.(多选)(2019·哈尔滨模拟)将质量分别为m 和2m 的两个小球A 和B ,用长为2L 的轻杆相连,如图所示,在杆的中点O 处有一固定水平转动轴,把杆置于水平位置后由静止自由释放,在B 球顺时针转动到最低位置的过程中(不计一切摩擦)( )A .A 、B 两球的线速度大小始终不相等B .重力对B 球做功的瞬时功率先增大后减小C .B 球转动到最低位置时的速度大小为 23gL D .杆对B 球做正功,B 球机械能不守恒解析:选BC.A 、B 两球用轻杆相连共轴转动,角速度大小始终相等,转动半径相等,所以两球的线速度大小也相等,选项A 错误;杆在水平位置时,重力对B 球做功的瞬时功率为零,杆在竖直位置时,B 球的重力方向和速度方向垂直,重力对B 球做功的瞬时功率也为零,但在其他位置重力对B 球做功的瞬时功率不为零,因此,重力对B 球做功的瞬时功率先增大后减小,选项B 正确;设B 球转动到最低位置时速度为v ,两球线速度大小相等,对A 、B 两球和杆组成的系统,由机械能守恒定律得2mgL -mgL =12(2m )v 2+12m v 2,解得v=23gL ,选项C 正确;B 球的重力势能减少了2mgL ,动能增加了23mgL ,机械能减少了,所以杆对B 球做负功,选项D 错误.(建议用时:35分钟)一、单项选择题1.(2019·北京模拟)将一个物体以初动能E 0竖直向上抛出,落回地面时物体的动能为E 02.设空气阻力恒定,如果将它以初动能4E 0竖直上抛,则它在上升到最高点的过程中,重力势能变化了( )A .3E 0B .2E 0C .1.5E 0D .E 0解析:选A.设动能为E 0,其初速度为v 0,上升高度为h ;当动能为4E 0,则初速度为2v 0,上升高度为h ′.由于在上升过程中加速度相同,根据v 2=2gh 可知,h ′=4h 根据动能定理设摩擦力大小为f ,则f ×2h =E 02,因此f ×4h =E 0.因此在升到最高处其重力势能为3E 0,所以答案为A.2.(2019·无锡模拟)如图所示,斜劈劈尖顶着竖直墙壁静止于水平面上,现将一小球从图示位置静止释放,不计一切摩擦,则在小球从释放到落至地面的过程中,下列说法正确的是( )A .斜劈对小球的弹力不做功B .斜劈与小球组成的系统机械能守恒C .斜劈的机械能守恒D .小球重力势能减少量等于斜劈动能的增加量解析:选B.不计一切摩擦,小球下滑时,小球和斜劈组成的系统只有小球的重力做功,小球重力势能减少量等于斜劈和小球的动能增加量,系统机械能守恒,B 正确,C 、D 错误;斜劈对小球的弹力与小球位移间夹角大于90°,故弹力做负功,A 错误.3.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大解析:选A.不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等,故只有选项A 正确.4.(2019·兰州模拟)如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A .2RB .5R 3C.4R3D .2R 3解析:选C.设A 、B 的质量分别为2m 、m ,当A 落到地面上时,B 恰好运动到与圆柱轴心等高处,以A 、B 整体为研究对象,则A 、B 组成的系统机械能守恒,故有2mgR -mgR =12(2m +m )v 2,A 落到地面上以后,B 仍以速度v 竖直上抛,上升的高度为h =v 22g ,解得h =13R ,故B 上升的总高度为R +h =43R ,选项C 正确. 5.如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变解析:选B.圆环沿杆下滑的过程中,圆环与弹簧组成的系统动能、弹性势能、重力势能之和守恒,选项A、D错误;弹簧长度为2L时,圆环下落的高度h=3L,根据机械能守恒定律,弹簧的弹性势能增加了ΔE p=mgh=3mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误.6.如图所示,竖直平面内的半圆形光滑轨道,其半径为R,小球A、B质量分别为m A、m B,A和B之间用一根长为l(l<R)的轻杆相连,从图示位置由静止释放,球和杆只能在同一竖直面内运动,下列说法正确的是()A.若m A<m B,B在右侧上升的最大高度与A的起始高度相同B.若m A>m B,B在右侧上升的最大高度与A的起始高度相同C.在A下滑过程中轻杆对A做负功,对B做正功D.A在下滑过程中减少的重力势能等于A与B增加的动能解析:选C.选轨道最低点为零势能点,根据系统机械能守恒条件可知A和B组成的系统机械能守恒,如果B在右侧上升的最大高度与A的起始高度相同,则有m A gh-m B gh=0,则有m A=m B,故选项A、B错误;小球A下滑、B上升过程中小球B机械能增加,则小球A机械能减少,说明轻杆对A做负功,对B做正功,故选项C正确;A下滑过程中减少的重力势能等于B上升过程中增加的重力势能和A与B增加的动能之和,故选项D错误.7.如图所示,粗细均匀、两端开口的U形管内装有同种液体,开始时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为( )A . 18ghB . 16ghC .14gh D .12gh解析:选A.当两液面高度相等时,减少的重力势能转化为整个液体的动能,如解析图所示,由机械能守恒定律可得18mg ·12h =12m v 2,解得v =18gh . 二、多项选择题 8.(2019·宁波调研)某娱乐项目中,参与者抛出一小球去撞击触发器,从而进入下一关.现在将这个娱乐项目进行简化,假设参与者从触发器的正下方以速率v 竖直上抛一小球,小球恰好击中触发器.若参与者仍在刚才的抛出点,沿A 、B 、C 、D 四个不同的光滑轨道分别以速率v 抛出小球,如图所示.则小球能够击中触发器的可能是( )解析:选CD.竖直上抛时小球恰好击中触发器,则由-mgh =0-12m v 2,h =2R 得v =2gR .沿图A 中轨道以速率v 抛出小球,小球沿光滑圆弧内表面做圆周运动,到达最高点的速率应大于或等于gR ,所以小球不能到达圆弧最高点,即不能击中触发器.沿图B 中轨道以速率v 抛出小球,小球沿光滑斜面上滑一段后做斜抛运动,最高点具有水平方向的速度,所以也不能击中触发器.图C 及图D 中小球在轨道最高点速度均可以为零,由机械能守恒定律可知小球能够击中触发器.9.(2019·苏北四市调研)如图所示,固定在竖直面内的光滑圆环半径为R ,圆环上套有质量分别为m 和2m 的小球A 、B (均可看做质点),且小球A 、B 用一长为2R 的轻质细杆相连,在小球B 从最高点由静止开始沿圆环下滑至最低点的过程中(已知重力加速度为g ),下列说法正确的是( )A .A 球增加的机械能等于B 球减少的机械能 B .A 球增加的重力势能等于B 球减少的重力势能C .A 球的最大速度为2gR3D .细杆对A 球做的功为83mgR解析:选AD.系统机械能守恒的实质可以理解为是一种机械能的转移,此题的情景就是A 球增加的机械能等于B 球减少的机械能,A 对,B 错;根据机械能守恒定律有:2mg ·2R -mg ·2R =12×3m v 2,所以A 球的最大速度为4gR3,C 错;根据功能关系,细杆对A 球做的功等于A 球增加的机械能,即W A =12m v 2+mg ·2R =83mgR ,故D 对.10.把质量是0.2 kg 的小球放在竖立的弹簧上,并把球往下按至A 的位置,如图甲所示.迅速松手后,弹簧把球弹起,球升至最高位置C (图丙).途中经过位置B 时弹簧正好处于自由状态(图乙).已知B 、A 的高度差为0.1 m ,C 、B 的高度差为 0.2 m ,弹簧的质量和空气阻力都可以忽略,重力加速度g =10 m/s 2.则下列说法正确的是( )A .小球从A 上升至B 的过程中,弹簧的弹性势能一直减小,小球的动能一直增加 B .小球从B 上升到C 的过程中,小球的动能一直减小,势能一直增加 C .小球在位置A 时,弹簧的弹性势能为0.6 JD .小球从位置A 上升至C 的过程中,小球的最大动能为 0.4 J解析:选BC.小球从A 上升到B 的过程中,弹簧的形变量越来越小,弹簧的弹性势能一直减小,小球在A 、B 之间某处的合力为零,速度最大,对应动能最大,选项A 错误;小球从B 上升到C 的过程中,只有重力做功,机械能守恒,动能减少,势能增加,选项B 正确;根据机械能守恒定律,小球在位置A 时,弹簧的弹性势能为E p =mgh AC =0.2×10×0.3 J=0.6 J ,选项C 正确;小球在B 点时的动能为E k =mgh BC =0.4 J <E km ,选项D 错误. 11.(2019·温州高三模拟)如图所示,在竖直平面内半径为R 的四分之一圆弧轨道AB 、水平轨道BC 与斜面CD 平滑连接在一起,斜面足够长.在圆弧轨道上静止着N 个半径为r (r ≪R )的光滑小球(小球无明显形变),小球恰好将圆弧轨道铺满,从最高点A 到最低点B 依次标记为1、2、3…、N .现将圆弧轨道末端B 处的阻挡物拿走,N 个小球由静止开始沿轨道运动,不计摩擦与空气阻力,下列说法正确的是( )A .N 个小球在运动过程中始终不会散开B .第1个小球从A 到B 过程中机械能守恒C .第1个小球到达B 点前第N 个小球做匀加速运动D .第1个小球到达最低点的速度v <gR解析:选AD.在下滑的过程中,水平面上的小球要做匀速运动,而曲面上的小球要做加速运动,则后面的小球对前面的小球有向前挤压的作用,所以小球之间始终相互挤压,冲上斜面后后面的小球把前面的小球往上压,所以小球之间始终相互挤压,故N 个小球在运动过程中始终不会散开,故A 正确;第一个小球在下落过程中受到挤压,所以有外力对小球做功,小球的机械能不守恒,故B 错误;由于小球在下落过程中速度发生变化,相互间的挤压力变化,所以第N 个小球不可能做匀加速运动,故C 错误;当重心下降R2时,根据机械能守恒定律得:12m v 2=mg ·R 2,解得:v =gR ;同样对整体在AB 段时,重心低于R2,所以第1个小球到达最低点的速度v <gR ,故D 正确.12.如图所示,滑块A 、B 的质量均为m ,A 套在固定倾斜直杆上,倾斜直杆与水平面成45°角,B 套在固定水平直杆上,两直杆分离不接触,两直杆间的距离忽略不计且杆足够长,A 、B 通过铰链用长度为L 的刚性轻杆(初始时轻杆与水平面成30°角)连接,A 、B 从静止释放,B 沿水平面向右运动,不计一切摩擦,滑块A 、B 均视为质点,在运动的过程中,下列说法正确的是( )A .当A 到达与B 同一水平面时v B =22v A。
2014年广东省高考模拟理综物理分类汇编——机械能守恒定律
2014年广东省各地高考模拟理综物理分类汇编——机械能一、单选题1.2014届广东省六校第一次联考)3.在平直公路上从静止开始以加速度a 作匀加速直线运动的汽车,质量为m ,牵引力恒为F ,受到的阻力恒为f 。
则当汽车的速度为v 时,汽车发动机的功率为 DA .mavB .Fv 21 C .fv D .Fv 2.(2014届惠州第二次调研考试)16.物体在外力作用下由静止开始作直线运动,经过时间t 速度为v ,若外力的功率恒定,则在这段时间内的位移s 为( )DA s =v tB s =v t /2C s <v t /2D s >v t /23.(2014届揭阳一中、潮州金山中学高三上学期期中)14.运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列分析正确的是( )AA .阻力对运动员始终做负功B .阻力对运动员先做正功后做负功C .运动员受到的合外力始终做负功D .重力做功使运动员的重力势能增加4.(2014届广州市二模)15.跳伞运动员在下降过程中沿竖直方向运动的v -t 图象如图,则0~t 1过程中( )A A .速度一直在增大 B .加速度一直在增大C .机械能保持不变D .位移为121t v m 5.(2014届广东省清远第一次调研)15.滑雪运动员沿斜坡下滑了一段距离,重力对他做功为2000J ,物体克服阻力做功100J 。
则物体的( )AA .机械能减小了100JB .动能增加了2100JC .重力势能减小了1900JD .重力势能增加了2000J二、双选题1.(2014届广州市海珠区综合测试二)18.物体在竖直向上的拉力和重力的作用下竖直向上运动,运动的v -t 图像如图所示.则( )ACA .在0~2s 时间内物体处于失重状态B .第1s 末和第4s 末合力的功率相等C .在2~3s 时间内拉力和重力是一对平衡力D .在0~5s 时间内拉力做功为零 2.(2014届广州市海珠区综合测试二)19. 用一水平拉力使质量为m 的物体从静止开始沿粗糙的水平面运动,物体的v -t 图象如图所示.下列表述正确的是( )AC/sv 1A .在0-t 1时间内拉力逐惭减少B .在0-t 1时间内物体做曲线运动C .在t 1-t 2时间内拉力的功率不为零D .在t 1-t 2时间内合外力做功221mv 3.(2014届广州市海珠区综合测试二)21.质量为m 的木块从半径为R 的半球形碗的碗囗下滑到碗底的过程中,碗囗及碗底是固定不动的,如果由于摩擦力的作用使得木块的速率不变,如图所示,那么( )ABA .虽然物块速率不变,但木块并非处于平衡状态B .木块下滑过程中所受的合外力大小保持不变C .木块下滑过程中机械能守恒D .木块下滑过程中摩擦力的大小不变4.(2014届惠州第一次调研考试)18、如图为某城市车站的站台。
2014年高考物理机械能及其守恒定律试题归类例析解析
2014年高考物理机械能及其守恒定律试题归类例析【例1】(2014 •重庆卷)某车以相同功率在两种不同的水平路面上行驶, 受到的阻力分别为车重的k i 和k 2倍,最大速率分别为v i 和V 2,则【答案】B【例2】(2014 •全国卷II 卷)取水平地面为重力势能零点。
一物块从某 一高度水平抛出,在抛出点其动能与重力势能恰好相等。
不计空气阻力,该物块 落地时的速度方向与水平方向的夹角为( )A. IB. -C.-5筑D .【解析】建立平抛运动模型,设物体水平抛出的初速度为 V 。
,抛出时的高度为h 。
根据题意,由2 1 ' ,有. •;由于竖直方向物体做自由 落体运动,则落地的竖直速度 〔。
所以落地时速度方向与【解选项B 正确。
水平方向的仙&=—=夹角1【答案】B【例3】(2014 •全国卷II卷)一物体静止在粗糙水平地面上,现用一大小为F i的水平拉力拉动物体,经过一段时间后其速度变为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用々、「二分别表示拉力F i、F2所做的功,分别表示前后两次克服摩擦力所做的功,贝9()A B .:=",[-';!c.讥,二:斗D. r【解析】由于物体两次受恒力作用做匀加速运动,由于时间相等,末速度之比为1:2,则加速度之比为1:2,位移之比为1:2。
而摩擦力不变,由W=-F f • x1 01 .得:f珂;由动能定理: 1 ,‘’ 1 ,整理得:「•二—二|,故C正确。
【答案】C【例4】(2014 •全国卷II卷)如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下。
重力加速度大小为g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为A. Mg- 5Mg B . Mgpmg C. Mgn5mg D. Mg+10mg1 2mg 2R- -mv 【解析】根据机械能守恒,小圆环到达大圆环低端时:… 2 ,2 严V尺F -用£ =悄一对小圆环在最低点,由牛顿定律可得:^ ;对大圆环,由平衡可知:“」f解得m「二,选项C正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五 机械能守恒定律
1.如图甲所示,静止在水平地面的物块A ,受到水平向右的拉力F 作用,F 与时间t 的关系如图乙所示,设物块与地面的静摩擦力最大值f m 与滑动摩擦力大小相等,则( )
A .0~t 1时间内F 的功率逐渐增大
B .t 2时刻物块A 的加速度最大
C .t 2时刻后物块A 做反向运动
D .t 3时刻物块A 的动能最大
2.如图所示,在竖直平面内有
一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,
一个质量为m 的小球自A 的正上方P 点由静止开始
自由下落,小球沿轨道到达最高点B 时恰好对轨道
没有压力.已知AP =2R ,重力加速度为g ,则小球
从P 到B 的运动过程中( )
A .重力做功2mgR
B .机械能减少mgR
C .合外力做功mgR
D .克服摩擦力做功12
mgR
3.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A 、
B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,
A 、
B 处于同一高度并恰好处于静止状态.剪断轻绳后A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块( )
A .速率的变化量不同
B .机械能的变化量不同
C .重力势能的变化量相同
D .重力做功的平均功率相同
4.如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉
力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程
中拉力的瞬时功率变化情况是( )
A .逐渐增大
B .逐渐减小
C .先增大,后减小
D .先减小,后增大
5.如图所示为一种摆式摩擦因
数测量仪,可测量轮胎与地面间动摩擦因数,其主要
部件有:底部固定有轮胎橡胶片的摆锤和连接摆锤的
轻质细杆.摆锤的质量为m ,细杆可绕轴O 在竖直平
面内自由转动,摆锤重心到O 点距离为L .测量时,测
量仪固定于水平地面,将摆锤从与O 等高的位置处静
止释放.摆锤到最低点附近时,橡胶片紧压地面擦过
一小段距离s (s ≪L ),之后继续摆至与竖直方向成θ角的最高位置.若摆锤对地面的压力可视为大小为F 的恒力,重力加速度为g ,求:
(1)摆锤在上述过程中损失的机械能;
(2)在上述过程中摩擦力对摆锤所做的功;
(3)橡胶片与地面之间的动摩擦因数.
答案:
1.【解析】选BD.对A 项,0~t 1物块静止不动,F 的功率为零,故A 错误.对B 项,t 2时刻,由F -f m =ma 知,a 最大,故B 正确.对C 项,物块先加速后减速运动,方向不变,故C 错.t 1~t 3物块一直加速,故t 3时刻动能最大.所以D 正确.
2.【解析】选D.在最高点恰无压力,则:
mg =m v 2
B R
,v B =gR . 从P 到B ,由动能定理得:
mg (2R -R )-W f =12mv 2
B -0.
可得:W f =12
mgR . 重力做功与路径无关,W G =mgR ,A 项错;机械能的减少看摩擦力做功多少,-ΔE =W f =12mgR ,B 项错;合外力的功W 合=12mv 2B =12mgR ,C 项错;由W f =12
mgR 知D 正确. 3.【解析】选D.绳剪断前由平衡条件得m A g =m B g sin θ即m A =m B sin θ.绳剪断后,由机械能守恒定律可知,着地时速度大小相等,速率的变化量相同,机械能都不变化,重力势能变化量因质量不同故不同,重力做功的平均功率,对A :P A =W A /t ,W A =m A gh ,t =2h /g ,
P A =m A gh 2h /g
=m A g gh /2,对B :t =2h g sin 2θ,P B =W B t =m B gh 2h g sin 2θ
=m B g gh sin 2θ2.又m A =m B sin θ,故P A =P B ,选项D 正确.
4.【解析】选A.由动能定理:W F -W G =0,则拉力的瞬时功率变化与重力瞬时功率变化相同.
由P =mgv cos α可知,mg 、v 大小均不变,二者夹角α逐渐增大(90°~180°范围内),则P 逐渐增大,A 正确.
5.【解析】选以地面为零势面,初始位置的机械能
E 1=mgL ,终点位置的机械能E 2=mgL (1-cos θ)
损失的机械能,ΔE =E 1-E 2=mgL cos θ,此过程中机械能损失原因为摩擦力做功,所以W f =-ΔE =-mgL cos θ.
由动能定理W f =-μFs =-mgL cos θ可得 μ=mgL cos θFs
【答案】(1)mgL cos θ (2)-mgL cos θ (3)
mgL cos θFs。