经典高考物理题解析
高中物理高考题解析-认识天体运动-考题及答案
课时分层作业(八)认识天体运动题组一开普勒定律的理解1.某行星绕太阳运行的椭圆轨道如图所示,F1和F2是椭圆轨道的两个焦点,行星在A点的速率比在B点的大,则太阳是位于()A.B B.F1C.A D.F2B[根据开普勒第二定律,对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
行星在近日点速率大于在远日点速率,即A为近日点,B 为远日点,太阳位于F1,故B正确。
]2.开普勒行星运动定律为万有引力定律的发现奠定了基础,根据开普勒定律可知,以下说法中正确的是()A.开普勒定律只适用于行星绕太阳的运动,不适用于卫星绕地球的运动B.若某一人造地球卫星的轨道是椭圆,则地球处在该椭圆的一个焦点上C.开普勒第三定律a3T2=k中的k值,不仅与中心天体有关,还与绕中心天体运动的行星(或卫星)有关D.在探究太阳对行星的引力规律时,得到了开普勒第三定律a3T2=k,它是可以在实验室中得到证明的B[开普勒定律既适用于行星绕太阳的运动,也适用于卫星绕行星的运动,故A错误;根据开普勒第一定律知,人造地球卫星的轨道是椭圆时,地球处在椭圆的一个焦点上,故B正确;开普勒第三定律a3T2=k中的k值只与中心天体有关,与绕中心天体运动的行星(或卫星)无关,故C错误;开普勒第三定律是通过观测到的数据研究归纳出来的,不能在实验室中得到证明,故D错误。
]3.(多选)以下关于开普勒行星运动的公式a3T2=k的理解正确的是()A.k是一个与环绕天体无关的量B.T表示行星运动的自转周期C.T表示行星运动的公转周期D.若地球绕太阳运转轨道的半长轴为a地,周期为T地;月球绕地球运转轨道的半长轴为a月,周期为T月,则a3地T2地=a3月T2月AC[公式a3T2=k中的k与中心天体有关,与环绕天体无关,中心天体不一样时,k值不一样,地球公转的中心天体是太阳,月球公转的中心天体是地球,故A正确,D错误。
T表示行星运动的公转周期,故B错误,C正确。
高考物理动量守恒定律试题经典及解析
5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到 108K 时,可
以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:
4 2
He
___
8 4
Be
γ
。
②
8 4
Be
是一种不稳定的粒子,其半衰期为
2.6×10-16s。一定质量的
8 4
Be
,经
7.8×10-16s
后所剩下的
8 4
Be
占开始时的
械能守恒定律有 m1gh=
1 2
m1 v02
(1
分)v0=
2gh ,解得:v0=4.0 m/s(1 分)
②设物块 B 受到的滑动摩擦力为 f,摩擦力做功为 W,则 f=μm2g(1 分)
W=-μm2gx 解得:W=-1.6 J(1 分)
③设物块 A 与物块 B 碰撞后的速度为 v1,物块 B 受到碰撞后的速度为 v,碰撞损失的机械
关数学知识辅助分析、求解。
4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对 一下简化模型的计算可以粗略说明其原因.质量为 2m、厚度为 2d 的钢板静止在水平光滑 桌面上.质量为 m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成 厚度均为 d、质量均为 m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同 的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深 度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影
E
1 2
mv02
1 2
Mv2
M
m mv02
2M
E mc2
解得
m
高考物理动能与动能定理试题经典及解析
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
【物理】物理高考物理相互作用练习题含解析
【物理】物理高考物理相互作用练习题含解析一、高中物理精讲专题测试相互作用1.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。
平台足够宽,高为h=0.8m ,长为L=3.3m 。
一个质量m 1=0.2kg 的小球以v0=3m/s 的速度沿x 轴运动,到达O 点时,给小球施加一个沿y 轴正方向的水平力F 1,且F 1=5y (N )。
经一段时间,小球到达平台上坐标为(1.2m ,0.8m )的P 点时,撤去外力F1。
在小球到达P 点的同时,平台与地面相交处最内侧的M 点,一个质量m2=0.2kg 的滑块以速度v 在水平地面上开始做匀速直线运动,滑块与地面间的动摩擦因数μ=0.5,由于摩擦力的作用,要保证滑块做匀速运动需要给滑块一个外力F2,最终小球落在N 点时恰好与滑块相遇,小球、滑块均视为质点, 210/g m s =, sin370.6cos370.8︒=︒=,。
求:(1)小球到达P 点时的速度大小和方向; (2)M 、N 两点间的距离s 和滑块速度v 的大小; (3)外力F 2最小值的大小(结果可用根式表示)【答案】(1)5m/s 方向与x 轴正方向成53°(2)1.5m ;3.75m/s (325N 【解析】(1)小球在平台上做曲线运动,可分解为沿x 轴方向的匀速直线运动和沿y 轴方向的变加速运动,设小球在P 点受到p v 与x 轴夹角为α 从O 点到P 点,变力1F 做功50.80.8 1.62p y J J ⨯=⨯= 根据动能定理有221101122P W m v m v =-,解得5/p v m s = 根据速度的合成与分解有0cos p v v α=,得53α=︒,小球到达P 点时速度与x 轴正方向成53︒(2)小球离开P 点后做平抛运动,根据平抛运动规律有212h gt =,解得t=0.4s 小球位移在水平面内投影2p l v t m ==设P 点在地面的投影为P ',则 2.5P P M L y m ='=-由几何关系可得2222cos s P M l l P M θ=+-⋅⋅'',解得s=1.5m滑块要与小球相遇,必须沿MN 连线运动,由s vt =,得 3.75/v m s = (3)设外力2F 的方向与滑块运动方向(水平方向)的夹角为β,根据平衡条件 水平方向有: 2cos F f β=,其中f N μ=,竖直方向有22sin N F m g β+= 联立解得22cos sin m gF μβμβ=+由数学知识可得()2221sin F μβθ=++,其最小值22min 2251F N μ==+。
高中物理动量守恒定律试题经典及解析
高中物理动量守恒定律试题经典及分析一、高考物理精讲专题动量守恒定律1. 水平搁置长为 L=4.5m 的传递带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边沿恰于传递带右端 B 对齐;质量为 m 1=1kg的物块自传递带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摇动一个小角度即被取走。
2已知物块与传递带间的滑动摩擦因数为μ,取重力加快度 g10m/s 2 。
求:( 1)碰撞后瞬时,小球遇到的拉力是多大?( 2)物块在传递带上运动的整个过程中,与传递带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2)【分析】【详解】解:设滑块 m1与小球碰撞前向来做匀减速运动,依据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1v ,说明假定合理m 1v 1 = 12滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,依据牛顿第二定律:F m 2 gm 2 v 22l小球遇到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传递带运转距离为: S 1 vt 1 3m 滑块与传递带的相对行程为:X 1LX 1设滑块与小球碰撞后不可以回到传递带左端,向左运动最大时间为 t 2则依据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m11v1 t 2=2m22因为 x m L ,说明假定建立,即滑块最后从传递带的右端走开传递带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传递带上的总时间为2t2在滑块与传递带碰撞后的时间内,传递带与滑块间的相对行程X 22vt212m所以,整个过程中,因摩擦而产生的内能是Q m1 g x1 x22.以下图,质量M=1kg 的半圆弧形绝缘凹槽搁置在圆滑的水平面上,凹槽部分嵌有cd 和 ef 两个圆滑半圆形导轨, c 与 e 端由导线连结,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行 ce 由静止着落,并恰巧从 ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触优秀。
高考物理真题(天津卷)(试题+答案解析)
一般高等学校招生全国统一考试(天津卷)理科综合物理部分第Ⅰ卷一、单项选择题(每题6分,共30分。
每题给出旳四个选项中,只有一种选项是对旳旳)1.质点做直线运动旳速度—时间图象如图所示,该质点()A.在第1秒末速度方向发生了变化B.在第2秒末加速度方向发生了变化C.在前2秒内发生旳位移为零D.第3秒末和第5秒末旳位置相似2.如图所示,电路中R1、R2均为可变电阻,电源内阻不能忽视,平行板电容器C旳极板水平放置。
闭合开关S,电路到达稳定期,带电油滴悬浮在两板之间静止不动。
假如仅变化下列某一种条件,油滴仍能静止不动旳是()A.增大R1旳阻值B.增大R2旳阻值C.增大两板间旳距离D.断开开关S3.研究表明,地球自转在逐渐变慢,3亿年前地球自转旳周期约为22小时。
假设这种趋势会持续下去,地球旳其他条件都不变,未来人类发射旳地球同步卫星与目前旳相比()A.距地面旳高度变大B.向心加速度变大C.线速度变大D.角速度变大4.如图所示,平行金属板A、B水平正对放置,分别带等量异号电荷。
一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()A.若微粒带正电荷,则A板一定带正电荷B.微粒从M点运动到N点电势能一定增长C.微粒从M点运动到N点动能一定增长D.微粒从M点运动到N点机械能一定增长5.平衡位置处在坐标原点旳波源S在y轴上振动,产生频率为50Hz旳简谐横波向x轴正、负两个方向传播,波速均为100m/s。
平衡位置在x轴上旳P、Q两个质点随波源振动着,P、Q旳x轴坐标分别为x P=3.5m、x Q=-3 m。
当S位移为负且向-y方向运动时,P、Q两质点旳()A.位移方向相似、速度方向相反B.位移方向相似、速度方向相似C.位移方向相反、速度方向相反D.位移方向相反、速度方向相似二、不定项选择题(每题6分,共18分。
每题给出旳四个选项中,均有多种选项是对旳旳。
所有选对旳得6分,选对但不全旳得3分,选错或不答旳得0分)6.下列说法对旳旳是()A.玻尔对氢原子光谱旳研究导致原子旳核式构造模型旳建立B.可运用某些物质在紫外线照射下发出荧光来设计防伪措施C.天然放射现象中产生旳射线都能在电场或磁场中发生偏转D.观测者与波源互相远离时接受到波旳频率与波源频率不一样7.如图1所示,在匀强磁场中,一矩形金属线圈两次分别以不一样旳转速,绕与磁感线垂直旳轴匀速转动,产生旳交变电动势图象如图2中曲线a、b所示,则()A.两次t=0时刻线圈平面均与中性面重叠B.曲线a、b对应旳线圈转速之比为2∶3C.曲线a表达旳交变电动势频率为25 HzD.曲线b表达旳交变电动势有效值为10 V8.一束由两种频率不一样旳单色光构成旳复色光从空气射入玻璃三棱镜后,出射光提成a、b两束,如图所示,则a、b两束光()A.垂直穿过同一块平板玻璃,a光所用旳时间比b光长B.从同种介质射入真空发生全反射时,a光顾界角比b光旳小C.分别通过同一双缝干涉装置,b光形成旳相邻亮条纹间距小D.若照射同一金属都能发生光电效应,b光照射时逸出旳光电子最大初动能大第Ⅱ卷注意事项:本卷共4题,共72分。
高考物理100题及详细解析
高考物理最有可能考的一百题附详细解析注释:高中物理知识点【高中物理力和运动的关系、机械能和能源、动能概念、电磁感应等】第1题关于静电场,下列说法正确的是()A.电势等于零的物体一定不带电B.电场强度为零的点,电势一定为零C.同一电场线上的各点,电势一定相等D.负电荷沿电场线方向移动时,电势能一定增加答案D零电势的选取是任意的,一般选取大地或无穷远处的电势为零,如一个接地的带电体其电势就为零,选项A错误;处于静电平衡状态的导体,内部场强为零,但整个导体为等势体,电势也不一定为零,选项B错误;沿电场线方向电势降低,选项C错误;负电荷沿电场线方向移动时,电场力做负功,电势能增加,选项D正确.第2题如图,E为内阻不能忽略的电池,R 1、R2、R3为定值电阻,S0、S为开关,与分别为电压表与电流表.初始时S0与S均闭合,现将S断开,则()A.的读数变大,的读数变小B.的读数变大,的读数变大C.的读数变小,的读数变小D.的读数变小,的读数变大答案B 当S断开后,闭合电路的总电阻增加,根据闭合电路欧姆定律可知,总电流减小,故路端电压U=E-Ir增加,即的读数变大;由于定值电阻R1两端的电压减小,故R3两端的电压增加,通过R3的电流增加,即的读数变大.选项B正确.第3题三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电量为q,球2的带电量为nq,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F.现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F,方向不变.由此可知()A.n=3B.n=4C.n=5 D.n=6答案D设球1、2间的距离为r,根据库仑定律可知F=k;球3与球2接触后,两者的带电量均为nq;球3与球1接触后,两者的带电量总和平分,即各带=的电荷量;将球3移至远处后,球1、2之间的作用力大小为F=k,比较可得n=6,选项D正确.此题也可以用代入法进行判断.第4题如图,墙上有两个钉子a和b,它们的连线与水平方向的夹角为45°,两者的高度差为l.一条不可伸长的轻质细绳一端固定于a点,另一端跨过光滑钉子b悬挂一质量为m1的重物.在绳上距a端l/2的c点有一固定绳圈.若绳圈上悬挂质量为m2的钩码,平衡后绳的ac段正好水平,则重物和钩码的质量比为()A.B.2 C. D.答案C对绳圈进行受力分析,bc段绳子的拉力大小T bc=m1g.由几何知识可知平衡后,bc段与水平方向的夹角的正弦sinθ=.再由平衡条件可得T bc sinθ=m2g,则=,选项C正确.第5题如图,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜面以速度v0匀速下滑,斜劈保持静止,则地面对斜劈的摩擦力()A.等于零B.不为零,方向向右C.不为零,方向向左D.不为零,v0较大时方向向左,v0较小时方向向右答案A物块匀速下滑,由平衡条件可知受到斜劈的作用力的合力竖直向上,根据牛顿第三定律可知物块对斜劈的作用力的合力竖直向下,故斜劈没有相对地面运动的趋势,即不受地面对它的摩擦力,选项A正确.第6题如图,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是()答案B导线框刚进入磁场后,由楞次定律判断出感应电流沿逆时针方向,故可排除C、D选项.在线框的左边界到达O′点后继续向左运动的过程中,感应电流的大小不变,故可排除A选项.第7题(多选)自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是…()A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系答案ACD欧姆定律是关于导体两端电压与导体中电流关系的定律,并没有说明热现象和电现象之间存在联系,选项B错误.第8题(多选)一物体自t=0时开始做直线运动,其速度图线如图所示.下列选项正确的是()A.在0~6 s内,物体离出发点最远为30 mB.在0~6 s内,物体经过的路程为40 mC.在0~4 s内,物体的平均速率为7.5 m/sD.在5~6 s内,物体所受的合外力做负功答案BC 第5 s末,物体离出发点最远为35 m,第6 s内又反向运动了5 m,故6 s 内物体经过的路程为40 m,选项A错误、B正确.在0~4 s内的位移为30 m,故平均速度为7.5 m/s,选项C正确.在5~6 s内,物体的动能在增加,故合外力做正功,选项D错误.第9题(多选)一质量为1 kg的质点静止于光滑水平面上,从t=0时起,第1秒内受到2 N 的水平外力作用,第2秒内受到同方向的1 N的外力作用.下列判断正确的是()A.0~2 s内外力的平均功率是WB.第2秒内外力所做的功是JC.第2秒末外力的瞬时功率最大D.第1秒内与第2秒内质点动能增加量的比值是答案AD第1 s内物体运动的位移为1 m,第2 s内物体运动的位移为2.5 m.第1 s 内外力所做的功W1=2×1 J=2 J,第2 s内外力所做的功为W2=1×2.5J=2.5 J,则0~2 s内外力的平均功率为P==W,选项A正确、B错误.根据(物理学习)动能定理可知,第1 s内与第2 s内质点动能增加量的比值等于=,选项D正确.由功率公式P=Fv可知,在第1 s末外力的瞬时功率最大为4 W,选项C错误.第10题(多选)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大答案BD粒子进入磁场后做匀速圆周运动,洛伦兹力提供向心力,即qvB=m,则轨迹半径r=,周期T==.由于粒子的比荷相同,入射速度相同的粒子在磁场中的运动轨迹一定相同,选项B正确.入射速度不同的粒子,在磁场中的运动轨迹不同,但运动时间可能相同,比如,速度较小的粒子会从磁场的左边界飞出,都运动半个周期,而它们的周期相同,故选项A错误,进而可知选项C错误.由于所有粒子做圆周运动的周期相同,故在磁场中运动时间越长的,其轨迹所对的圆心角一定越大,选项D正确.第11题如图,理想变压器原线圈与-10 V的交流电源相连,副线圈并联两个小灯泡a和b.小灯泡a的额定功率为0.3 W,正常发光时电阻为30 Ω.已知两灯泡均正常发光,流过原线圈的电流为0.09 A,可计算出原、副线圈的匝数比为______,流过灯泡b 的电流为______ A.答案10∶30.2 解析:小灯泡a的额定电压U a==V=3 V,原、副线圈的匝数比==.由功率关系可得UI=P a+U a I b,则I b=0.2A.第12题2011年4月10日,我国成功发射第8颗北斗导航卫星.建成以后北斗导航系统将包含多颗地球同步卫星,这有助于减少我国对GPS导航系统的依赖.GPS由运行周期为12小时的卫星群组成.设北斗导航系统的同步卫星和GPS导航卫星的轨道半径分别为R1和R2,向心加速度分别为a1和a2,则R1∶R2=______,a1∶a2=______.(可用根式表示)答案∶11∶解析:同步卫星的运行周期为T1=24 h,GPS卫星的运行周期T2=12 h.由G=m R可知==,再由G=ma可知==.第13题图1是改装并校准电流表的电路图.已知表达的量程为I g=600 μA、内阻为R g,是标准电流表.要求改装后的电流表量程为I=60 mA.完成下列填空:(1)图1中分流电阻R P的阻值应为______(用I g、R g和I表示).(2)在电表改装完成后的某次校准测量中,表的示数如图2所示,由此读出流过电流表的电流为______ mA.此时流过分流电阻R P的电流为______ mA(保留1位小数).答案(1)R g(2)49.549.0解析:(1)根据并联电路的特点有I g R g=(I-I g)R P,则R P=R g.(2)电流表的读数为49.5 mA.此时流过分流电阻的电流为×49.5 mA=49.0 mA.第14题现要通过实验验证机械能守恒定律.实验装置如图1所示:水平桌面上固定一倾斜的气垫导轨;导轨上A点处有一带长方形遮光片的滑块,其总质量为M,左端由跨过轻质光滑定滑轮的细绳与一质量为m的砝码相连;遮光片两条长边与导轨垂直;导轨上B点有一光电门,可以测量遮光片经过光电门时的挡光时间t.用d表示A点到导轨底端C点的距离,h表示A与C的高度差,b表示遮光片的宽度,s 表示A、B两点间的距离,将遮光片通过光电门的平均速度看作滑块通过B点时的瞬时速度.用g表示重力加速度.完成下列填空和作图:图1(1)若将滑块自A点由静止释放,则在滑块从A运动至B的过程中,滑块、遮光片与砝码组成的系统重力势能的减小量可表示为______,动能的增加量可表示为______.若在运动过程中机械能守恒,与s的关系式为=______.(2)多次改变光电门的位置,每次均令滑块自同一点(A点)下滑,测量相应的s与t值.如果如下表所示:以s为横坐标,为纵坐标,在答题卡对应图2位置的坐标纸中描出第1和第5个数据点;根据5个数据点作直线,求得该直线的斜率k=______×104 m-1·s-2(保留3位有效数字).图2答案:由测得的h、d、b、M和m数值可以计算出s直线的斜率k0,将k和k0进行比较,若其差值在实验允许的范围内,则可认为此实验验证了机械能守恒定律.答案(1)Mg-mgs(M+m)()2g(2)描点和图线见解析图 2.40(2.20~2.60均正确)解析:(1)滑块的重力势能减小Mg·s·,砝码的重力势能增加mg·s,故系统的重力势能的减小量为Mg·s·-mg·s=Mg-mgs.滑块通过B点时的瞬时速度v=,系统动能的增加量为(M+m)v2=(M+m)()2.若在运动过程中机械能守恒,则有(M-m)gs=(M+m)()2,则=g.(2)第1和第5个数据点及所作直线见下图.直线的斜率约为k=2.36×104 m-1·s-2.第15题如图,水平地面上有一个坑,其竖直截面为半圆,ab为沿水平方向的直径.若在a点以初速度v0沿ab方向抛出一小球,小球会击中坑壁上的c点.已知c点与水平地面的距离为圆半径的一半,求圆的半径.答案4(7-4)解析:设半圆的圆心为O,半径为R,Ob与Oc夹角为θ,由题给条件得θ=①设小球自a点到c点所经时间为t,由平抛运动规律及几何关系得R(1+cosθ)=v0t②=gt2③联立①②③式得R=4(7-4).第16题如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m.竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好.求:(1)细线烧断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度.答案(1)2(2)解析:(1)设任意时刻杆MN向上的速度大小为v1,M′N′向下的速度大小为v2,加速度大小分别为a1和a2,所受安培力大小为f,则有E=Bl(v1+v2)①I=②f=BIl③①②式中E和I分别为回路中的电动势和电流.由牛顿定律得F-3mg=0④F-mg-f=ma1⑤2mg-f=2ma2⑥联立④⑤⑥式得a=2a2⑦因两杆初速均为0,故任意时刻=2.(2)加速度为0时两杆的速度达到最大值,分别用V1、V2表示,由以上各式得V1=V2=.第17题(1)关于空气湿度,下列说法正确的是______(填入正确选项前的字母.选对1个给2分,选对2个给4分;选错1个扣2分,最低得0分).A.当人们感到潮湿时,空气的绝对湿度一定较大B.当人们感到干燥时,空气的相对湿度一定较小C.空气的绝对湿度用空气中所含水蒸气的压强表示D.空气的相对湿度定义为水的饱和蒸汽压与相同温度时空气中所含水蒸气的压强之比(2)如图,容积为V1的容器内充有压缩空气.容器与水银压强计相连,压强计左右两管下部由软胶管相连,气阀关闭时,两管中水银面等高,左管中水银面上方到气阀之间空气的体积为V2.打开气阀,左管中水银面下降;缓慢地向上提右管,使左管中水银面回到原来高度,此时右管与左管中水银面的高度差为h.已知水银的密度为ρ,大气压强为p0,重力加速度为g;空气可视为理想气体,其温度不变.求气阀打开前容器中压缩空气的压强p1.答案(1)BC(2)p0+(1+)ρgh解析:(1)用空气中所含水蒸气的压强表示的湿度叫做空气的绝对湿度,选项C 正确.影响人们对干爽与潮湿感受的因素并不是绝对湿度的大小,而是相对湿度,即空气中水蒸气的压强与同一温度时水的饱和汽压之比.人们感到干燥时,空气的相对湿度一定较小;感到潮湿时,空气的相对湿度一定较大.选项A、D错误,B正确.(2)设气阀闭合时,左管中空气压强为p′,因左右两管中的水银面等高,故p′=p0①打开气阀后,容器中有一部分空气进入左管,可按这部分空气与左管中原有空气不混、但气体分界面移动来处理.设移动的长度为h0,此时左管及容器中空气压强为p2,有p2=p0+ρgh②设左管的截面积为S,空气经历等温过程,由玻意耳定律得p2(V1+Sh0)=p1V1③p2(V2-Sh0)=p′V2④联立①②③④式得p1=p0+(1+)ρgh.第18题(1)一列简谐横波在t=0时的波形图如图所示.介质中x=2 m处的质点P沿y 轴方向做简谐运动的表达式为y=10sin(5πt)cm.关于这列简谐波,下列说法正确的是______(填入正确选项前的字母.选对1个给2分,选对2个给4分;选错1个扣2分,最低得0分).A.周期为4.0 sB.振幅为20 cmC.传播方向沿x轴正向D.传播速度为10 m/s(2)一赛艇停在平静的水面上,赛艇前端有一标记P离水面的高度为h1=0.6 m,尾部下端Q略高于水面;赛艇正前方离赛艇前端s1=0.8 m处有一浮标,示意如图.一潜水员在浮标前方s2=3.0 m处下潜到深度为h2=4.0 m时,看到标记刚好被浮标挡住,此处看不到航尾端Q;继续下潜Δh=4.0 m,恰好能看见Q.求:(ⅰ)水的折射率n;(ⅱ)赛艇的长度l.(可用根式表示)答案(1)CD(2)(ⅰ)(ⅱ)(-3.8) m解析:(1)由P点振动方程可求周期T===0.4 s,A项错误;由题图可知振幅为10 cm,B项错误;由P点振动方程可知,P点下一个时刻位移为正,即向y轴正方向运动,再根据波形图可以判断波沿x轴正向传播,C项正确;由波速公式v=λf得,v=10 m/s,所以D项正确.(2)(ⅰ)设下潜深度为h2时,从标记P发出到人眼的光线在水面的入射角为i,折射角为r,光路图如图所示(未按比例图),则有sin i=①sin r=②由折射定律得水的折射率为n=③联立①②③式,并代入数据得n=④(ⅱ)当恰好能看见船尾Q时,船尾发出到人眼光线的折射角等于全反射临界角,设为θ,则sinθ=⑤由几何关系得l+s1+s2=(h2+Δh)tanθ⑥由④⑤⑥式及题给条件得l=(-3.8)m.第19题(1)2011年3月11日,日本发生九级大地震,造成福岛核电站严重的核泄漏事故.在泄漏的污染物中含有131I和137Cs两种放射性核素,它们通过一系列衰变产生对人体有危害的辐射.在下列四个式子中,有两个能分别反映131I和137Cs的衰变过程,它们分别是______和______(填入正确选项前的字母).131I和137Cs原子核中的中子数分别是______和______.A.X1→Ba+n B.X2→Xe+ eC.X3→Ba+ e D.X4→Xe+p(2)一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P 相对静止.重力加速度为g.求:(ⅰ)木块在ab段受到的摩擦力f;(ⅱ)木块最后距a点的距离s.答案(1)B C7882(2)(ⅰ)(ⅱ)L解析:(1)根据质量数守恒可判断,131I和137Cs的衰变方程分别为B和C.再根据核电荷数守恒,131I和137Cs的质子数分别为53和55,则中子数分别为78和82.(2)(ⅰ)设木块到达最高点时,木块和物体P的共同速度为V,由水平方向动量守恒和功能原理得mv0=(m+2m)V①m=mgh+(m+2m)V2+fL②联立①②式得f=(-3gh)③(ⅱ)设木块停在ab之间时,木块和物体P的共同速度为V′,由水平方向动量守恒和功能原理得mv0=(m+2m)V′④m=(m+2m)V′2+f(2L-s)⑤联立③④⑤式得s=L.第20题(不定项)了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要.以下符合史实的是()A.焦耳发现了电流热效应的规律B.库仑总结出了点电荷间相互作用的规律C.楞次发现了电流的磁效应,拉开了研究电与磁相互关系的序幕D.牛顿将斜面实验的结论合理外推,间接证明了自由落体运动是匀变速直线运动答案ABC项中应为奥斯特发现了电流的磁效应,D项中应为伽利略将斜面实验的结论合理外推.第21题(不定项)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方答案AC地球对卫星的万有引力提供卫星做匀速圆周运动的向心力,有==m=ma,可知,r越大、v、a越小,T越大.由题意可知,甲卫星的轨道半径较大,则其周期较大,加速度较小,A、C两项正确;第一宇宙速度等于近地卫星的速度,是所有卫星环绕速度的最大值,C项错误;甲卫星为地球同步卫星,轨道位于赤道平面内,运行时不能经过北极的正上方,D项错误.第22题(不定项)如图所示,将小球a从地面以初速度v0竖直上抛的同时,将另一相同质量的小球b从距地面h处由静止释放,两球恰在处相遇(不计空气阻力).则…()A.两球同时落地B.相遇时两球速度大小相等C.从开始运动到相遇,球a动能的减少量等于球b动能的增加量D.相遇后的任意时刻,重力对球a做功功率和对球b做功功率相等答案C设两球释放后经过时间t相遇,因它们的位移大小相等,故有v0t-gt2=gt2,得v0=gt,这表明相遇时a球的速度为零,根据竖直上抛运动的对称性可知a球从抛出至落地时间为2t,而b球的落地时间小于2t,A、B两项错误;从开始到相遇,球a的机械能守恒,球a的动能减小量等于mgh/2,球b的机械能守恒,球b的动能增加量等于mgh/2,C项正确;相遇后的任意时刻,a、b球的速度均不等,重力大小相同,所以重力的功率不等,D项错误.第23题(不定项)如图所示,将两相同的木块a、b置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.开始时a、b均静止,弹簧处于伸长状态,两细绳均有拉力,a所受摩擦力F fa≠0,b所受摩擦力F fb=0.现将右侧细绳剪断,则剪断瞬间()A.F fa大小不变B.F fa方向改变C.F fb仍然为零D.F fb方向向右答案AD右侧细绳剪断瞬间,其拉力变为零.弹簧上的弹力不变,物体b受水平向右的摩擦力,D项正确;剪断细绳瞬间,由于弹簧上的弹力不变,物体a所受摩擦力不变,A项正确.第24题(不定项)为保证用户电压稳定在220 V,变电所需适时进行调压,图甲为调压变压器示意图.保持输入电压u1不变,当滑动接头P上下移动时可改变输出电压.某次检测得到用户电压u2随时间t变化的曲线如图乙所示.以下正确的是()A.u2=190sin(50πt)VB.u2=190sin(100πt)VC.为使用户电压稳定在220 V,应将P适当下移D.为使用户电压稳定在220 V,应将P适当上移答案BD由题图可知,u2的变化周期T=0.02 s,则ω==100π rad/s,B项正确;由于u2偏小,为使其有效值增大为220 V,根据变压器的变压规律=可知,应减小变压比,即将P适当上移,D项正确.第25题(不定项)如图所示,在两等量异种点电荷的电场中,MN为两电荷连线的中垂线,a、b、c三点所在直线平行于两电荷的连线,且a和c关于MN对称、b 点位于MN上,d点位于两电荷的连线上.以下判断正确的是()A.b点场强大于d点场强B.b点场强小于d点场强C.a、b两点间的电势差等于b、c两点间的电势差D.试探电荷+q在a点的电势能小于在c点的电势能答案BC根据电场线分布规律可知,d点场强大于两电荷连线的中点O的场强,而O的场强大于b的场强,所以b的场强小于d的场强,B项正确,A项错误;由于电场关于MN对称,所以ab的电势差等于bc的电势差,C项正确;从a到c移动试探正电荷,电场力做正功,电势能减小,D项错误.第26题(不定项)如图甲所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d,置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用a c表示c的加速度,E k d表示d的动能,x c、x d分别表示c、d相对释放点的位移.图乙中正确的是()图甲图乙答案BD0~h内,c做自由落体运动,加速度等于重力加速度g;d自由下落h进入磁场前的过程中,c做匀速运动,位移为2h;当d刚进入磁场时,其速度和c刚进入时相同,因此cd回路中没有电流,c、d均做加速度为g的匀加速运动,直到c离开磁场,c离开磁场后,仍做加速度为g的加速运动,而d做加速度小于g的加速运动,直到离开磁场,B、D两项正确.第27题(1)某探究小组设计了“用一把尺子测定动摩擦因数”的实验方案.如图所示,将一个小球和一个滑块用细绳连接,跨在斜面上端.开始时小球和滑块均静止,剪断细绳后,小球自由下落,滑块沿斜面下滑,可先后听到小球落地和滑块撞击挡板的声音.保持小球和滑块释放的位置不变,调整挡板位置,重复以上操作,直到能同时听到小球落地和滑块撞击挡板的声音.用刻度尺测出小球下落的高度H、滑块释放点与挡板处的高度差h和沿斜面运动的位移x.(空气阻力对本实验的影响可以忽略)①滑块沿斜面运动的加速度与重力加速度的比值为________.②滑块与斜面间的动摩擦因数为________.③以下能引起实验误差的是________.a.滑块的质量b.当地重力加速度的大小c.长度测量时的读数误差d.小球落地和滑块撞击挡板不同时(2)某同学利用图甲所示电路,探究了电源在不同负载下的输出功率.图甲图象.②根据所画UI图象,可求得电流I=0.20 A时电源的输出功率为________ W.(保留两位有效数字)③实验完成后,该同学对实验方案进行了反思,认为按图甲电路进行实验操作的过程中存在安全隐患,并对电路重新设计.在图乙所示的电路中,你认为既能测出电源在不同负载下的输出功率,又能消除安全隐患的是________.(R x阻值未知)图乙答案(1)①②(h-)③cd(2)①如图所示②0.37(或0.36)③bc解析:(1)①由x=at2得滑块沿斜面的加速度a=,由H=gt2得重力加速度g=,则a/g=x/H.②根据a=g sinα-μg cosα,其中sinα=h/x,cosα=,则=-μ,得μ==(h-) .③根据μ=(h-)及得到过程可知,引起实验误差的是长度(x、h、H)测量时的读数误差和小球落地及滑块撞击挡板不同时,c、d两项正确.(2)②根据图象可知,当I=0.20 A时,U=1.84 V,则输出功率P=UI=0.37 W.③图甲电路中存在的安全隐患是当滑动触头滑到最右端时,电源被短路.图乙b电路中滑动触头滑到最左端时,由于R x的存在,避免了上述安全隐患,c电路中滑动触头滑到最右端时,由于R x存在,避免电源短路.第28题如图所示,在高出水平地面h=1.8 m的光滑平台上放置一质量M=2 kg、由两种不同材料连接成一体的薄板A,其右段长度l1=0.2 m且表面光滑,左段表面粗糙.在A最右端放有可视为质点的物块B,其质量m=1 kg,B与A左段间动摩擦因数μ=0.4.开始时二者均静止,现对A施加F=20 N水平向右的恒力,待B脱离A(A尚未露出平台)后,将A取走.B离开平台后的落地点与平台右边缘的水平距离x=1.2 m.(取g=10 m/s2)求:。
高考物理:带你攻克电磁感应中的典型例题(附解析)
高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
高中物理高考题解析-认识万有引力定律-考题及答案
课时分层作业(九) 认识万有引力定律题组一 太阳与行星间引力1.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( )A .地球吸引月球的力约为地球吸引苹果的力的1602 B .月球公转的加速度约为苹果落向地面加速度的1602C .自由落体在月球表面的加速度约为地球表面的16D .苹果在月球表面受到的引力约为在地球表面的160B [若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万有引力定律,则应满足G Mmr 2=ma ,即加速度a 与距离r 的平方成反比,由题中数据知,选项B 正确。
]题组二 万有引力定律2.设地球是半径为R 的均匀球体,质量为M ,若把质量为m 的物体放在地球的中心,则物体受到的地球的万有引力大小为( )A .零B .无穷大C .GMmR 2D .无法确定A [有的同学认为:由万有引力公式F =Gm 1m 2r 2,由于r →0,故F 为无穷大,从而错选B 。
设想把物体放到地球的中心,此时F =G m 1m 2r 2已不适用,地球的各部分对物体的吸引力是对称的,故物体受到的地球的万有引力是零,故A 正确。
]3.在某次测定引力常量的实验中,两金属球的质量分别为m 1和m 2,球心间的距离为r ,若测得两金属球间的万有引力大小为F ,则此次实验得到的引力常量为( )A .Fr m 1m 2B .Fr 2m 1m 2C .m 1m 2FrD .m 1m 2Fr 2B [由万有引力定律F =G m 1m 2r 2得G =Fr 2m 1m 2,所以B 项正确。
]4.2019年1月,我国“嫦娥四号”探测器成功在月球背面软着陆。
在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )A B C DD [在“嫦娥四号”探测器“奔向”月球的过程中,根据万有引力定律,可知随着h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述F 随h 变化关系的图像是D ,D 正确。
高考物理经典例题
高考物理经典例题【高考物理经典例题解析】作者:AI助手前言:高考是每个学生都要经历的一场考试。
而物理作为高考科目之一,是考生普遍认为较为困难的科目之一。
因此,在备战高考时,掌握经典例题是非常重要的。
本文将介绍几道高考物理经典例题,并对其解答进行详细解析,帮助考生提高解题能力。
一、题目一:一个长度为L的均匀导线,绕成一个半径为R的大圆。
现将导线塑料化,厚度为d,求塑料化后导线的阻值。
解析:首先根据题目描述,可以得出导线是一个圆环,塑料化后的导线也是一个圆环。
根据导线的长度L和半径R,可以计算出导线的原始阻值R0。
而塑料化后的导线除了长度不变,其他参数都发生了变化,所以我们需要重新计算导线的阻值R1。
根据导线的几何形状和材料,可以利用电阻公式R=ρ(l/A),其中ρ为导线的比电阻率,l为导线的长度,A为导线的横截面积。
由于导线是均匀的,我们只需计算出导线的断面积即可。
原始导线的断面积A0为πR²,塑料化后的导线断面积A1为π(R+d)²-πR²。
带入电阻公式,可以得到导线的阻值R1为R0(π(R+d)²-πR²)/πR²。
二、题目二:一辆汽车以60km/h的速度行驶,突然刹车,经过4s停下。
求汽车的加速度和刹车过程中汽车行驶的距离。
解析:首先使用公式v=at,其中v为速度,a为加速度,t为时间,将给定的速度、时间代入求得加速度a为15m/s²。
接下来计算刹车过程中汽车行驶的距离s。
根据公式s=vt+1/2at²,其中s为距离,v为初速度,a为加速度,t为时间。
刹车过程中汽车的初速度为60km/h,转换成m/s为60×1000/3600=16.67m/s,时间为4s。
带入公式计算,得到汽车的行驶距离s为66.67m。
三、题目三:一水平放置的质量为m的物体,受到一保持恒力大小为F的力作用,开始时速率为v0,移动了s的距离。
高中物理高考题解析-功-考题及答案
课时分层作业(十二)功题组一对功的理解与正、负功的判断1.如图所示,用电梯将两箱相同的货物从一楼运送到二楼,其中图甲是用扶梯台式电梯运送,图乙是用履带式自动电梯运送,假设两种情况下电梯都是匀速地运送货物,下列说法正确的是()图甲图乙A.两种情况下电梯对货物的支持力都对货物做正功B.图乙中电梯对货物的支持力对货物做正功C.图甲中电梯对货物的支持力对货物不做功D.图乙中电梯对货物的支持力对货物不做功D[在题图甲中,货物随电梯匀速上升时,货物受到的支持力竖直向上,与货物位移方向的夹角小于90°,故此种情况下支持力对货物做正功,选项C 错误;题图乙中,货物受到的支持力与电梯接触面垂直,此时货物受到的支持力与货物位移方向垂直,故此种情况下支持力对货物不做功,故选项A、B错误,D正确。
]2.下面关于功的说法正确的是()A.一位同学背着书包在水平地面上行走,该同学对书包做了正功B.滑动摩擦力阻碍物体间的相对运动,所以滑动摩擦力一定做负功C.举重运动员,举着杠铃在头的上方停留10 s,运动员对杠铃做了正功D.静摩擦力和滑动摩擦力不一定都做负功D[该同学给书包的力竖直向上,书包的速度沿水平方向,两者垂直,所以该同学对书包不做功,A错误;滑动摩擦力阻碍物体间的相对运动,但不一定阻碍物体的运动,所以滑动摩擦力可能做正功,B错误;举重运动员,举着杠铃在头的上方停留10 s,杠铃未移动,运动员对杠铃不做功,C错误;静摩擦力和滑动摩擦力可能做负功、可能做正功,也可能不做功,D正确。
]3.如图所示,稳站在商店自动扶梯水平踏板上的人,随扶梯斜向上做加速运动,则在此过程中()A.人只受到重力和踏板的支持力作用B.人受到的重力和踏板的支持力大小相等方向相反C.支持力对人做正功D.支持力对人做功为零C[人随扶梯向上加速运动时,受踏板支持力、静摩擦力(水平向右)和重力作用,人处于超重状态。
支持力大于重力,故A、B错误;支持力与位移方向夹角小于90°,故支持力对人做正功,C正确,D错误。
高考物理答案及试题解析
高考物理答案及试题解析一、选择题1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
因此,当作用力增大时,物体的加速度将如何变化?A. 增大B. 减小C. 不变D. 无法确定答案:A解析:根据牛顿第二定律,\( F = ma \),其中 \( F \) 代表作用力,\( m \) 代表物体质量,\( a \) 代表加速度。
当作用力 \( F \) 增大时,加速度 \( a \) 也会相应增大,因此选项 A 正确。
2. 光在真空中的传播速度是多少?A. \( 2.99 \times 10^8 \) m/sB. \( 3.00 \times 10^8 \) m/sC. \( 3.01 \times 10^8 \) m/sD. \( 2.98 \times 10^8 \) m/s答案:B解析:光在真空中的传播速度是一个常数,其值为 \( 3.00 \times10^8 \) m/s。
这是光速的标准值,因此选项 B 正确。
二、填空题3. 电磁波的波长、频率和速度之间的关系是:\( c = \lambda\times f \),其中 \( c \) 代表光速,\( \lambda \) 代表波长,\( f \) 代表频率。
如果电磁波的频率为 \( 5 \times 10^9 \) Hz,波长为 \( 6 \times 10^{-2} \) m,那么电磁波的速度是多少?答案:\( 3.00 \times 10^8 \) m/s解析:根据公式 \( c = \lambda \times f \),将给定的频率 \( f= 5 \times 10^9 \) Hz 和波长 \( \lambda = 6 \times 10^{-2} \) m 代入,计算得到电磁波的速度 \( c \) 为 \( 3.00 \times 10^8 \) m/s。
三、计算题4. 一辆汽车以 \( 20 \) m/s 的速度行驶,突然刹车,刹车时的加速度为 \( -5 \) m/s²。
1979年高考物理试题
1979年高考物理试题解析本文将对1979年高考物理试题进行解析,让我们一起来看看这些经典试题。
问题一:一物体自由落体运动,已知t=2s时速度v=20m/s,t=3s时速度v=10m/s,求物体从静止开始下落到时速度为20m/s的时间和自由落体运动的加速度大小。
解析:根据自由落体运动的特点,我们可以利用速度和时间的关系求解。
首先,速度和加速度的关系为v=at,其中a为加速度。
由于自由落体运动只有一个方向,速度和加速度同向,因此加速度为负值。
根据题干中的信息,t=2s时v=20m/s,t=3s时v=10m/s。
根据速度和时间的关系,我们可以列出两个方程:20 = a * 2 10 = a * 3通过解这个方程组,可以求得加速度a为-10 m/s^2。
由于加速度为负值,表示向下运动,即自由落体运动的加速度为10 m/s^2。
接下来,我们需要求解从静止开始下落到时速度为20m/s的时间。
根据速度和加速度的关系,我们可以得到v = at。
代入已知的值,20 = -10 * t,解得t=2s。
因此,物体从静止开始下落到时速度为20m/s的时间为2秒,自由落体运动的加速度大小为10 m/s^2。
问题二:一质点在光滑的水平桌面上以2m/s的速度运动,通过长为6m的不均匀变形成杆,使杆从水平方向转过30°并以1.5m/s的速度射出,请利用机械能守恒原理求出杆在变形过程中所受的阻力。
解析:在变形过程中,杆所受的阻力和重力做功,由于杆没有上升或下降,所以重力做的功等于零。
因此,阻力所作的功等于杆的增加的动能。
根据题干中的信息,质点速度由2m/s减少到1.5m/s,由于质点与杆的运动是一体的,所以杆的速度也减少相同的幅度,即由2m/s减少到1.5m/s。
根据动能公式K = 1/2 * mv^2,我们可以计算出质点在不均匀变形过程中损失的能量。
由于机械能守恒,这部分能量被阻力所做的功吸收。
质点的质量可以由动能公式计算得到,假设为m kg。
高中物理高考真题解析(含答案)-电场和磁场的基本性质
第7讲 电场和磁场的基本性质1.(2012·江苏单科, 1)真空中, A 、 B 两点与点电荷Q 的距离分别为r 和3r , 则A 、 B 两点的电场强度大小之比为( )A .3∶1B .1∶3C .9∶1D .1∶9解析 由库仑定律F =kQ 1Q 2r 2和场强公式E =F q知点电荷在某点产生电场的电场强度E =kQ r2, 电场强度大小与该点到场源电荷的距离的二次方成反比, 则E A ∶E B =r 2B ∶r 2A =9∶1, 选项C 正确.答案 C2.(2013·江苏卷, 3)下列选项中的各14圆环大小相同, 所带电荷量已在图中标出, 且电荷均匀分布, 各14圆环间彼此绝缘.坐标原点O 处电场强度最大的是解析 设14圆环的电荷在原点O 产生的电场强度为E 0, 根据电场强度叠加原理, 在坐标原点O 处, A 图的场强为E 0, B 图场强为2E 0 , C 图场强为E 0, D 图场强为0, 因此本题答案为B.答案 B3.(2014·江苏卷,4)如图3-7-1所示,一圆环上均匀分布着正电荷,x轴垂直于环面且过圆心O.下列关于x轴上的电场强度和电势的说法中正确的是( )A.O点的电场强度为零,电势最低B.O点的电场强度为零,电势最高C.从O点沿x轴正方向,电场强度减小,电势升高D.从O点沿x轴正方向,电场强度增大,电势降低图3-7-1解析根据圆环的对称性可知,O点处的场强为零,又由正电荷在无限远处场强为零,故从O点沿x轴正方向,电场强度先增大,后减小,电势应逐渐降低,O点处的电势最高,故B项正确,A、C、D均错误.答案 B主要题型:选择题和计算题(计算题在第4、6讲已讲),以选择题为主知识热点1.(1)库仑定律、电场强度、点电荷的场强,及场强的叠加.(2)电场强度、电势、电势能与电场线之间的关系.(3)带电粒子在匀强电场中的运动.(已讲)2.带电粒子在匀强磁场中的运动.(已讲)物理方法(1)矢量运算法(平行四边形定则) (2)模型法(3)对称法(4)守恒法(5)补偿法命题趋势(1)2015年高考,预计点电荷的场强,电场强度与电势(差)、电势能和电场线之间的关系以及电场力做功与电势能变化的关系仍会出现,并很可能会以选择题的形式进行考查.带电粒子在匀强电场中的运动有可能会以选择题或计算题的形式出现.(2)近三年江苏省高考试题没有单独考查安培力及安培力作用下导体的平衡及运动问题,预计在2015年高考中这部分内容应是考查的重点.热点一对电场强度的理解及计算1.(多选)(2014·全国卷新课标Ⅱ,19)关于静电场的电场强度和电势,下列说法正确的是( )A .电场强度的方向处处与等电势面垂直B .电场强度为零的地方, 电势也为零C .随着电场强度的大小逐渐减小, 电势也逐渐降低D .任一点的电场强度总是指向该点电势降落最快的方向解析 电场线与等势面垂直, 而电场强度的方向为电场线的方向, 故电场强度的方向与等势面垂直, 选项A 正确; 场强为零的地方电势不一定为零, 例如等量同种正电荷连线的中点处的场强为零但是电势大于零, 选项B 错误; 场强大小与电场线的疏密有关, 而沿着电场线的方向电势是降低的, 故随电场强度的大小逐渐减小, 电势不一定降低, 选项C 错误; 任一点的电场强度方向总是和电场线方向一致, 而电场线的方向是电势降落最快的方向, 选项D 正确.答案 AD2. (2014·武汉市部分学校调研)在孤立的点电荷产生的电场中有a 、 b 两点, a 点的电势为φa , 场强大小为E a , 方向与连线ab 垂直.b 点的电势为φb , 场强大小为E b , 方向与连线ab 的夹角为30°.则a 、 b 两点的场强大小及电势高低的关系是( )A .φa >φb , E a =E b 2B .φa <φb , E a =E b2C .φa >φb , E =4E bD .φa <φb ,E a =4E b图3-7-2解析 将E a 、 E b 延长相交, 其交点为场源点电荷的位置, 由点电荷的场强公式E =kQ r2, 可得E a =4E b ; 分别过a 、 b 做等势面, 电场线由高的等势面指向低的等势面, 则φb >φa , 选项D 正确. 答案 D3. 如图3-7-3所示, 在一正三角形ABC 的三个顶点处分别固定三个电荷量均为+q 的点电荷, a 、 b 、 c 分别为三角形三边的中点, O 点为三角形三条中线的交点.选无穷远处为零电势面, 则下列说法中正确的是( )A .a 点的电场强度为零、 电势不为零B .b 、 c 两点的电场强度大小相等、 方向相反C .a 、 b 、 c 三点的电场强度和电势均相同D .O 点的电场强度一定为零, 电势一定不为零图3-7-3解析 由于电场强度是矢量, 根据矢量的叠加原理, 三角形底边B 、 C 两点的点电荷在a 点的合场强为零, 但三角形顶点A 处的点电荷会在a 处产生一个竖直向下的场强, 所以a 点的电场强度不为零, 由于三角形三个顶点的点电荷均为正点电荷, 所以a 、 b 、 c 、 O 点的电势均不为零,选项A错误;根据电场的叠加原理,三个点电荷在b点产生的场强方向沿Bb连线方向,在c点产生的场强方向沿Cc方向,所以在b、c两点处,三个点电荷所产生的场强大小相等方向不是相反的,选项B错误;由对称性可知,a、b、c三点的电场强度大小相等但方向不同,电势相同,选项C错误;根据矢量叠加原理和几何关系可知,B、C 两处的点电荷产生的场强一定与A处点电荷产生的场强大小相等、方向相反,所以O处的合场强一定为零,电势一定不为零,选项D 正确.答案 D4. (多选)如图3-7-4所示,图甲中MN为足够大的不带电的薄金属板.在金属板的右侧,距离为d的位置上放入一个电荷量为+q的点电荷O,由于静电感应产生了如图所示的电场分布.P是金属板上的一点,P点与点电荷O之间的距离为r,几位同学想求出P点的电场强度的大小,但发现很难.他们经过仔细研究,从图乙所示的电场得到了一些启示,经过查阅资料他们知道:图甲所示的电场分布与图乙中虚线右侧的电场分布是一样的.图乙中两异号点电荷电荷量的大小均为q,它们之间的距离为2d,虚线是两点电荷连线的中垂线.由此他们分别对P点的电势和电场强度作出以下判断,其中正确的是( )图3-7-4A .P 点的电势为零B .P 点的电势大于零C .P 点电场强度的方向垂直于金属板向左, 大小为2kqd r3 D .P 点电场强度的方向垂直于金属板向左, 大小为2kq r 2-d 2r3 解析 选项分两组, A 、 B 两项判断P 点电势, C 、 D 两项计算P 点场强.金属板MN 接地, 电势为零, 则金属板上P 点电势为零, A 正确、 B 错误;类比图乙中的电场线方向可知, 金属板所在位置及P 点场强方向均垂直于金属板向左, 大小由等量异种电荷分别在中垂线上产生的场强叠加得知, 由于对称, 带电荷量分别为+q 和-q 的点电荷在P 点产生的场强大小均为E +=E -=k q r 2, 由相似三角形关系得E E +=2d r, 解得E =2kqd r3, C 正确、 D 错误. 答案 AC1.高考对电场强度的考查, 往往会和对电势的考查结合在一起进行, 目的就是刻意对考生制造思维上的混乱, 以此来考查考生对物理基本概念的区分和辨别能力.2.解决此类问题的关键就是要明确电场强度是矢量,其运算规则为平行四边形定则;而电势为标量,其运算规则为代数运算规则.3.常用的思维方法——对称法.热点二电场性质的理解与应用5.(2014·淮安市高三考前信息卷)如图3-7-5所示,椭圆ABCD 处于一匀强电场中,椭圆平面平行于电场线,AC、BD分别是椭圆的长轴和短轴,已知电场中A、B、C三点的电势分别为φA=14 VφB =3 V、φC=-7 V,由此可得D点的电势为( )A.8 V B.6 V C.4 V D.2 V图3-7-5解析A、B、C、D顺次相连将组成菱形,由公式U=Ed可知,φA -φB=φD-φC或φA-φD=φB-φC,解得φD=4 V.选项C正确. 答案 C6.(2014·徐州市高三检测)在地面上插入一对电极M和N,将两个电极与直流电源相连,大地中形成恒定电流和恒定电场.恒定电场的基本性质与静电场相同,其电场线分布如图3-7-6所示,P、Q 是电场中的两点.下列说法正确的是( )图3-7-6A.P点场强比Q点场强大B.P点电势比Q点电势高C.P点电子的电势能比Q点电子的电势能大D.电子沿直线从N到M的过程中所受电场力恒定不变解析因为电场线密集处场强大,所以P点场强小于Q点场强,选项A错误;因为沿电场线电势降低,所以P点电势高于Q点电势,选项B正确;根据“负电荷在电势高处电势能低”,可知P点电子的电势能比Q点电子的电势能小,选项C错误;沿直线从N到M 的过程中,电场线先逐渐变稀疏,然后变密集,故此过程中,电子所受电场力先减后增,选项D错误.答案 B7.(2014·山东卷,19)如图3-7-7所示,半径为R的均匀带正电薄球壳,其上有一小孔A.已知壳内的场强处处为零;壳外空间的电场,与将球壳上的全部电荷集中于球心O时在壳外产生的电场一样.一带正电的试探电荷(不计重力)从球心以初动能E k0沿OA方向射出.下列关于试探电荷的动能E k与离开球心的距离r的关系图线,可能正确的是( )图3-7-7解析壳内场强处处为零,试探电荷在壳内运动时动能不变,排除选项C、D;由动能定理可得,ΔE kΔr=F,即在E-r图象中图线切线的斜率数值上等于电场力的大小,距离球壳越远试探电荷所受电场力越小,图象的斜率越小,正确选项为A.答案 A8.(多选) (2014·全国卷新课标Ⅰ,21)如图3-7-8,在正点电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°.M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN,φP=φF,点电荷Q 在M 、 N 、 P 三点所在平面内, 则( )A .点电荷Q 一定在MP 的连线上B .连接PF 的线段一定在同一等势面上C .将正试探电荷从P 点搬运到N 点, 电场力做负功D .φP 大于φM图3-7-8解析 作∠MNP 的角平分线交MP 于G , 则MG =GN 又因φM =φN , 所以点电荷Q 应放在G 点, 选项A 正确; 点电荷的等势面为球面, 所以选项B 错; 沿电场线的方向电势降低, 所以φP >φM , φP >φN , 故将正电荷从P 点搬运到N 点, 电场力做正功.选项D 正确, C 错误.答案 AD判断电场性质的常用方法(1)判断场强强弱⎩⎪⎨⎪⎧ 根据电场线或等势面的疏密根据公式E =k Q r 2和场强叠加原理(2)判断电势高低⎩⎪⎨⎪⎧ 根据电场线的方向根据φ=E p q(3)判断电势能大小⎩⎪⎨⎪⎧根据E p =qφ根据ΔE p =-W 电,由电场力做功情况判断热点三 安培力及安培力作用下导体的平衡与运动9.(多选)(2014·浙江卷, 20)如图3-7-9甲所示, 两根光滑平行导轨水平放置, 间距为L , 其间有竖直向下的匀强磁场, 磁感应强度为B .垂直于导轨水平对称放置一根均匀金属棒.从t =0时刻起, 棒上有如图乙所示的持续交变电流I , 周期为T , 最大值为I m , 图甲中I 所示方向为电流正方向.则金属棒( )图3-7-9A.一直向右移动B.速度随时间周期性变化C.受到的安培力随时间周期性变化D.受到的安培力在一个周期内做正功解析由I-t图可知,安培力随时间的变化关系与之相同.所以金属棒先向右匀加速运动,再做向右匀减速运动,然后重复运动,故选项A、B、C均正确.安培力先做正功,后做负功,故选项D错.答案ABC图3-7-1010.(多选)在竖直向下的匀强磁场中,“Γ”型金属导轨间距为0.5 m,右段在水平面内,左段竖直,如图3-7-10所示.两根质量均为0.06 kg的导体棒分别放在水平段和竖直段,并通过绝缘细线跨过定滑轮P 相连,导轨水平段光滑,导体棒cd与导轨竖直段间动摩擦因数为0.4.闭合开关S,发现两导体棒静止在导轨上,则下列各组磁感应强度的大小和电流值能满足要求的是( )A.B=0.5 T,I=2 A B.B=0.5 T,I=1 AC.B=1.0 T,I=1.5 A D.B=0.8 T,I=2.6 A解析 要使两导体棒静止在轨道上, 则ab 、 cd 受力平衡, ab 所受安培力水平向右, 细线的拉力水平向左, 大小F =F A =BIl ; cd 所受四个力如图所示, 其中静摩擦力的方向可能竖直向上或竖直向下,因此有F N =BIl , F ±μF N -mg =0, 联立解得BI =mg l 1±μ, 代入数据解得0.857 T·A≤BI ≤2 T·A, 四组选项中BI 在此范围内的是A 、C.答案 AC11.美国研发的强力武器轨道电磁炮在前日的试射中, 将炮弹以5倍音速, 击向200公里外目标, 射程为海军常规武器的10倍, 且破坏力惊人.电磁炮原理如图3-7-11所示, 若炮弹质量为m , 水平轨道长L , 宽为d , 轨道摩擦不计, 炮弹在轨道上做匀加速运动.要使炮弹达到5倍音速(设音速为v ), 则( )图3-7-11A .炮弹在轨道上的加速度为v 22LB .磁场力做的功为52mv 2 C .磁场力做功的最大功率为125mv 32LD .磁场力的大小为25mdv 22L 解析 炮弹在轨道上做初速度为零的匀加速直线运动, 由公式“v 2=2ax ”得a =5v 22L , A 错误; 不计摩擦, 磁场力做的功等于炮弹增加的动能, 即W =12m (5v )2=25mv 22, B 错误; 由动能定理得BIdL =12m (5v )2, 磁场力的大小BId =m 5v 22L , 则磁场力的最大功率P m =BId ·(5v )=m 5v 22L·(5v )=125mv 32L, C 正确、 D 错误. 答案 C 12.(2014·重庆卷, 8)某电子天平原理如图3-7-12所示, E 形磁铁的两侧为N 极, 中心为S 极, 两极间的磁感应强度大小均为B , 磁极宽度均为L , 忽略边缘效应, 一正方形线圈套于中心磁极, 其骨架与秤盘连为一体, 线圈两端C 、 D 与外电路连接, 当质量为m 的重物放在秤盘上时, 弹簧被压缩, 秤盘和线圈一起向下运动(骨架与磁极不接触), 随后外电路对线圈供电, 秤盘和线圈恢复到未放重物时的位置并静止, 由此时对应的供电电流I 可确定重物的质量.已知线圈匝数为n , 线圈电阻为R , 重力加速度为g .问:图3-7-12(1)线圈向下运动过程中, 线圈中感应电流是从C 端还是从D 端流出?(2)供电电流I 是从C 端还是从D 端流入? 求重物质量与电流的关系.(3)若线圈消耗的最大功率为P , 该电子天平能称量的最大质量是多少?解析 (1)由右手定则可知线圈向下运动, 感应电流从C 端流出.(2)设线圈受到的安培力为F A , 外加电流从D 端流入.由F A =mg ①和F A =2nBIL ②得m =2nBL g I ③ (3)设称量最大质量为m 0,由m =2nBL gI ④ 和P =I 2R ⑤得m 0=2nBL g P R⑥ 答案 (1)电流从C 端流出(2)从D 端流入 m =2nBL g I (3)2nBL g P R安培力作用下的平衡与运动问题的求解思路:热点四 带电粒子在磁场中运动的临界极值问题图3-7-1313.(多选)(2014·领航高考冲刺卷三)在磁感应强度大小为B 、 方向垂直纸面向里的正方形(边长为l )匀强磁场区域, ab 边和cd 边为挡板, 从ad 边中点O 垂直磁场射入一带电粒子, 速度大小为v 0, 方向与ad 边夹角为30°, 如图3-7-13所示, 已知粒子的电荷量为q 、 质量为m (重力不计).则下列说法正确的是( )A .若粒子带负电, 粒子恰能从d 点射出磁场, 则v 0=qBl 2mB .若粒子带正电, 粒子恰不碰到cd 挡板, 则v 0=qBl 2mC .若粒子带正电, 粒子恰能从b 点射出磁场, 则v 0=qBl mD .若粒子带正电, 粒子能从ad 边射出磁场, 则v 0的最大值v 0m =qBl 3m解析 当粒子带负电, 且恰能从d 点射出磁场时, 如图所示, R =l2, 由qv 0B =mv 20R , 得v 0=qBl 2m, A 对, 若粒子带正电, 粒子恰不碰到cd 挡板时, R -R c os 60°=l2, 解得R =l , 同理得v 0=qBl m, B 错; 若粒子带正电, 由几何关系可知, 粒子不可能恰好从b 点射出磁场, C 错; 若粒子带正电, 粒子能从ad 边射出磁场而不碰ab 板, 如图所示, 由几何关系得R =l3, 所以v 0m =qBl 3m, D 正确. 答案 AD图3-7-1414.(2014·长春市调研测试)如图3-7-14所示, 三角形区域磁场的三个顶点a 、 b 、 c 在直角坐标系内的坐标分别为(0,2 3 cm)、 (-2 cm,0)、 (2 cm , 0), 磁感应强度B =4×10-4T , 大量比荷q m =2.5×105 C/kg 不计重力的正离子, 从O 点以相同的速率v =2 3 m/s 沿不同方向垂直磁场射入该磁场区域.求:(1)离子运动的半径.(2)从ac 边离开磁场的离子, 离开磁场时距c 点最近的位置坐标.(3)从磁场区域射出的离子中, 在磁场中运动的最长时间.解析 (1)由qvB =m v 2R 得, R =mv qB, 代入数据可解得: R =2 3 cm(2)设从ac 边离开磁场的离子距c 最近的点的坐标为M (x , y ), M 点为以a 为圆心, 以aO 为半径的圆周与ac 的交点则x =R sin 30°= 3 cmy =R -R cos 30°=(23-3)cm离c 最近的点的坐标为M [ 3 cm , (23-3)cm](3)依题意知, 所有离子的轨道半径相同, 则可知弦越长, 对应的圆心角越大.易知从a 点离开磁场的离子在磁场中运动时间最长, 其轨迹所对的圆心角为60°T =2πm Bq =π50s t =T 6=π300s 答案 (1)2 3 cm (2)[ 3 cm , (23-3)cm](3)π300s1.求解这类问题的方法技巧解决带电粒子在磁场中运动的临界问题, 关键在于运用动态思维, 寻找临界点, 确定临界状态, 根据粒子的速度方向找出半径方向, 同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.2.带电粒子在有界磁场中运动临界问题的三种几何关系(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当粒子的运动速率v一定时,粒子经过的弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.(3)当粒子的运动速率v变化时,带电粒子在匀强磁场中的运动轨迹对应的圆心角越大,其在磁场中的运动时间越长.高考命题热点7.根据粒子运动的轨迹、电场线(等势面)进行相关问题的判断带电粒子运动轨迹类问题分析的关键是运用曲线运动的知识(受力特征:合外力指向凹侧;运动特征:速度方向沿切向)找出电场力的方向,进而判断出场强方向或电场力做功情况,一系列问题就迎刃而解.(1)确定受力方向的依据①曲线运动的受力特征:带电粒子受力总指向曲线的凹侧;②电场力方向与场强方向的关系:正电荷的受力方向与场强方向同向,负电荷则相反;③场强方向与电场线或等势面的关系:电场线的切线方向或等势面的法线方向为电场强度的方向.(2)比较加速度大小的依据: 电场线或等差等势面越密⇒E 越大⇒F =qE 越大⇒a =qE m越大. (3)判断加速或减速的依据: 电场力与速度成锐角(钝角), 电场力做正功(负功), 速度增加(减少).【典例】 (6分)如图3-7-15所示, 实线表示电场线, 虚线表示带电粒子只在电场力作用下的运动轨迹, a 、 b 为其运动轨迹上的两点, 可以判定( )A .粒子在a 点的速度大于在b 点的速度B .粒子在a 点的加速度大于在b 点的加速度C .粒子一定带正电荷D .粒子在a 点的电势能大于在b 点的电势能图3-7-15审题流程解析该粒子在电场中做曲线运动,则电场力应指向轨迹的凹侧且沿电场线的切线方向,设粒子由a向b运动,则其所受电场力方向和速度方向的关系如图所示,可知电场力做正功,粒子速度增加,电势能减少,A错、D对;b点处电场线比a点处电场线密,即粒子在b点所受电场力大,加速度大,选项B错;因电场线方向不确定,所以粒子的电性不确定,C选项错误.(假设粒子由b向a运动同样可得出结论)答案 D当带电粒子在电场中的运动轨迹是一条与电场线、等势线都不重合的曲线时,这种现象简称为“拐弯现象”,其实质为“运动与力”的关系.运用“牛顿运动定律、功和能”的知识分析:(1)“运动与力两线法”——画出“速度线”(运动轨迹在某一位置的切线)与“力线”(在同一位置电场线的切线方向且指向轨迹的凹侧),从二者的夹角情况来分析带电粒子做曲线运动的情况.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题目中相互制约的三个方面.若已知其中一个,可分析判定各待求量;若三个都不知(三不知),则要用“假设法”进行分析.(6分)如图3-7-16所示,带电粒子在电场中只受电场力作用时沿虚线从a运动到b,运动轨迹ab为一条抛物线,则下列判断正确的是( )A.若直线MN为一条电场线,则电场线方向由N指向MB.若直线MN为一条电场线,则粒子的动能增大C.若直线MN为一个等势面,则粒子的速度不可平行MND.若直线MN为一个等势面,则粒子的电势能减小图3-7-16解析若直线MN为一条电场线,则带电粒子所受电场力沿NM方向,可以判断电场力对粒子做负功,粒子的动能减小,但由于带电粒子的电性未知,因此不能确定电场强度的方向,A、B错;若直线MN 为一个等势面,粒子速度方向垂直于场强方向时平行于等势面,C错;若直线MN为一个等势面,电场力方向垂直于等势面指向轨迹凹侧,与速度间夹角小于90°做正功,粒子的电势能减小,D对.答案 D一、单项选择题1.(2014·宿迁市高三摸底考试)图3-7-17不带电导体P置于电场中,其周围电场线分布如图3-7-17所示,导体P表面处的电场线与导体表面垂直,a、b为电场中的两点,则( )A.a点电场强度小于b点电场强度B.a点电势低于b点的电势C.负检验电荷在a点的电势能比在b点的大D.正检验电荷从a点移到b点的过程中,电场力做正功解析电场线密集的地方场强大,则a点电场强度大于b点电场强度,选项A错误;沿电场线方向电势降低,则a点电势高于P点电势,P 点电势高于b点电势,选项B错误;负检验电荷在电势较高的地方电势能较小,选项C错误;正检验电荷在电势较高的地方电势能较大,正检验电荷从a点移到b点的过程中,电势能减小,电场力做正功,选项D正确.答案 D2.航母舰载机的起飞一般有两种方式:滑跃式(辽宁舰)和弹射式.弹射起飞需要在航母上安装弹射器,我国国产航母将安装电磁弹射器,其工作原理与电磁炮类似.用强迫储能器代替常规电源,它能在极短时间内释放所储存的电能,由弹射器转换为飞机的动能而将其弹射出去.如图3-7-18所示是电磁弹射器简化原理图,平行金属导轨与强迫储能器连接,相当于导体棒的推进器ab跨放在平行导轨PQ、MN上,匀强磁场垂直于导轨平面,闭合开关S,强迫储能器储存的电能通过推进器释放,使推进器受到磁场的作用力平行导轨向前滑动,推动飞机使飞机获得比滑跃起飞时大得多的加速度,从而实现短距离起飞的目标.对于电磁弹射器,下列说法正确的是(不计一切摩擦和电阻消耗的能量)( )图3-7-18A.强迫储能器上端为正极B.导轨宽度越大,飞机能获得的加速度越大C.强迫储能器储存的能量越多,飞机被加速的时间越长D.飞机的质量越大,离开弹射器时的动能越大解析由左手定则可判断,通过ab的电流方向为由b到a,所以强迫储能器上端为负极,A错误;ab所受安培力F=BIL与其有效长度成正比,故导轨宽度越大,推进器ab受到的安培力越大,飞机能获得的加速度越大,B正确;强迫储能器储存的能量越多,飞机能获得的动能越大,但加速时间受滑轨长度、飞机获得的加速度等影响,若滑轨长度一定,加速度越大,加速时间越短,C错误;由能量的转化和守恒定律可知,飞机离开弹射器时的动能取决于强迫储能器储存的能量,D错误.答案 B图3-7-193.(2014·武汉市调研考试)将等量的正、负电荷分别放在正方形的四个顶点上(如图3-7-19所示).O点为该正方形对角线的交点,直线段AB通过O点且垂直于该正方形,OA>OB,以下对A、B两点的电势和场强的判断,正确的是( )A.A点场强小于B点场强B.A点场强大于B点场强C.A点电势等于B点电势D.A点电势高于B点电势解析由电荷的对称分布关系可知AB直线上的电场强度为0,所以选项AB错误;同理将一电荷从A移动到B电场力做功为0,AB电势差为0,因此A点电势等于B点电势,选项C正确,D错误;因此答案选C.答案 C图3-7-204.(2014·山东名校高考冲刺卷二)如图3-7-20所示,a、b是x 轴上关于O点对称的两点,c、d是y轴上关于O点对称的两点,a、b两点上固定一对等量异种点电荷,带正电的检验电荷仅在电场力的作用下从c点沿曲线运动到d点,以下说法正确的是( )A.将检验电荷放在O点时受到的电场力为零B.检验电荷由c点运动到d点时速度先增大后减小C.c、d两点电势相等,电场强度大小相等D.检验电荷从c运动到d的过程中,电势能先减少后增加解析由带正电荷的检验电荷的轨迹可判断出a处为负电荷,b处为正电荷,检验电荷从c到d的过程中,速度先减小后增大,电势能先增加后减少,选项B、D均错;电荷在O点受到的电场力不为零,选项A错;根据等量异种电荷电场的分布及对称性可知选项C正确.答案 C5.(2014·河北省衡水中学调研)如图3-7-21甲所示,真空中有一半径为R、电荷量为+Q的均匀带电球体,以球心为坐标原点,沿半径方向建立x轴.理论分析表明,x轴上各点的场强随x变化关系如图乙所示,则( )。
高考物理动量守恒定律试题经典及解析
高考物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
【答案】(1)3m/s (2)0.1m 【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得 mv 1-Mv 2=022121122P E mv Mv =+ 代入数据解得:v 1=3m/s v 2=1m/s (2)根据动量守恒和各自位移关系得12x xm M t t=,x 1+x 2=L 代入数据联立解得:24Lx ==0.1m 考点:动量守恒定律;能量守恒定律.2.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.3.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】 【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.4.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
【高考物理必刷题】牛顿运动定律(后附答案解析)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
高考物理机械运动及其描述试题经典及解析(1)
高考物理机械运动及其描述试题经典及解析(1)一、高中物理精讲专题测试机械运动及其描述 1.如图所示,实心长方体木块''''ABCD ABCD -的长、宽、高分别为a 、b 、c ,且.a b c >>有一小虫自A 点运动到'C 点,求:()1小虫的位移大小; ()2小虫的最小路程.【答案】(1)222x a b c =++ (2)()22s a b c =++【解析】()1质点从A 运动到'C 的位移大小等于A 、'C 连线的长度,为22222''x AC AC CC a b c ==+=++()2由于a b c >>,所以将矩形''BCC B 转至与前表面在同一平面,A 、'C 连线的长度为从A 运动到'C 的最短路程, 即22()s a b c =++;答: ()1小虫的位移大小为222a b c ++;()2小虫的最小路程为22()a b c ++.点睛:位移的大小等于首末位置的距离,路程等于运动轨迹的长度,当两点之间沿直线距离最短,路程最短.在计算位移时,注意将立体转成平面后再计算.这种解题的思维方法,在以后的题目中用得不多,但将立体图形展开求解最短路程的方法却可以开拓视野,提高能力.2.足球运动员在罚点球时,球由静止被踢出时的速度为30m/s ,在空中运动可看做匀速直线运动,设脚与球作用时间为0.15s ,球又在空中飞行11m 后被守门员挡出,守门员双手与球接触时间为0.2s ,且球被挡出后以10m/s 的速度沿原路反弹,设足球与脚或守门员的手接触的时间内加速度恒定,求:(1)脚与球作用的时间内,球的加速度的大小; (2)球在空中飞行11m 的过程中所用的时间; (3)守门员挡球的时间内,球的加速度的大小和方向【答案】(1)200m/s 2(2)0.37s (3)-200m/s 2;方向与球踢出后的运动方向相反 【解析】试题分析:假设球被踢出时速度方向为正;(1);(2);(3),方向与球踢出后的运动方向相反考点:加速度【名师点睛】解决本题的关键掌握加速度的定义式,注意公式的矢量性,当速度的方向与正方向相同,取正值,当速度方向与正方向相反,取负值。
高考物理动量守恒定律试题经典含解析
高考物理动量守恒定律试题经典含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.4.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典高考物理题解析
2007年10月25日17时55分,北京航天飞行控制中心对嫦娥一号卫星实施首次变轨并获得成功,首次变轨是在远地点发动机点火使卫星加速的。
卫星的近地点高度由约200公里抬高到了约600公里,如图卫星正式进入绕地16小时轨道。
接下来卫星在近地点处还要借助自身发动机的推动经过三次变轨即进入绕地24小时轨道、绕地48小时轨道,最后进入地月转移轨道经过漫长的施行后接近月球,在月球近月点的位置仍要借助自身的发动机的作用,使卫星的速度发生变化,被月球引力俘获后进入绕月12小时轨道、绕月3.5小时轨道,最终进入绕月127分钟的圆形轨道,进行约一年的月球探索之旅……
发射过程图
运行一年以后,嫦娥一号又多运行了4个多月的时间,在2009年3月1日的15时37分开始进行发动机点火,共启动12台发动机中的5台发动机,总推力35牛顿,给了嫦娥一号一定的姿态、加速度,然后开始冲击月球。
2009年3月1日16点13分10秒,嫦娥一号完成所有使命之后,精准撞击月球。
1.嫦娥一号探月卫星发射成功在政治、经济、军事、科技乃至文化领域都具有非常重大的意义。
下图是嫦娥奔月过程全图。
(地球半径R=6400Km ,月球半径r=1700 Km )
请根据图中给出的数据
①计算出嫦娥一号卫星在距离月球200Km 的圆形轨道上运行的速度。
(保留3位有效数字)
②把嫦娥一号卫星工作轨道(即周期为127分钟的圆形轨道)周期1T 近似当作2小时,请根据图中数据计算出卫星在12小时轨道运行时,远月点与月球表面的距离。
(303363. ,计算结果保留2位有效数字)
2.2007年10月31日,“嫦娥一号”卫星在近地点600km 处通过发动机短
公里
时点火,实施变轨。
变轨后卫星从远地点高度12万余公里的椭圆轨道进入远地点高度37万余公里的椭圆轨道,直接奔向月球。
则卫星在近地点变轨后的运行速度()
A.小于7.9km/s B.大于7.9km/s,小于11.2 km/s C.大于11.2 km/s D.大于11.2 km/s,小于16.7 km/s
3.2007年10月31日,“嫦娥一号”卫星在近地点600km处通过发动机短时点火,实施变轨。
变轨后卫星从远地点高度12万余公里的椭圆轨道进入远地点高度37万余公里的椭圆轨道,直接奔向月球。
若地球半径为6400km,地面重力加速度取9.8m/s2,估算卫星在近地点变轨后的向心加速度约为()
A.7 m/s2 B.8 m/s2 C.9 m/s2 D.9.8 m/s2
4.2007年9月24日,“嫦娥一号”探月卫星发射升空,实现了中华民族千年奔月的梦想。
“嫦娥一号”卫星在距月球表面200公里、周期127分钟的圆形轨道上绕月球做匀速圆周运动。
已知月球半径约为1700km,引力常量11
=
G Nm2/kg2,忽略地球对“嫦娥一号”的引力作用。
⨯
10
67
.6-
由以上数据可以估算出的物理量有()
A.月球的质量
B.月球的平均密度
C.月球表面的重力加速度
D.月球绕地球公转的周期
5.2007年11月5日,“嫦娥一号”探月卫星沿地月转移轨道到达月球,在距月球表面200km 的P 点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图所示。
之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200km 的圆形轨道Ⅲ上绕月球做匀速圆周运动。
用1T 、2T 、3T 分别表示卫星在
椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ的周期,用1a 、2a 、3a 分别表示卫星沿三个轨道运动到P 点的加速度,则下面说法正确的是( )
A .1T >2T >3T
B .1T <2T <3T
C .1a >2a >3a
D .1a <2a <3a
6.2007年11月5日,“嫦娥一号”探月卫星沿地月转移轨道到达月球,在距月球表面200km 的P 点进行第一次“刹车制
动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图所示。
之后,卫星在P 点又经过两次“刹车制动”,最终在距月球表面200km 的圆形轨道Ⅲ上绕月球做匀速圆周运动。
则下面说法正确的是 ( ) A .由于“刹车制动”,卫星在轨道Ⅲ上运动的周期将比沿轨道Ⅰ运动的周期长
B .虽然“刹车制动”,但卫星在轨道Ⅲ上运动的周期还是比沿轨道Ⅰ
运动的周期短
C .卫星在轨道Ⅲ上运动的速度比沿轨道Ⅰ运动到P 点(尚未制动)
时的速度更接近月球的第一宇宙速度
D .卫星在轨道Ⅲ上运动的加速度小于沿轨道Ⅰ运动到P 点(尚未制动)
时的加速度
7.2007年9月24日,“嫦娥一号”探月卫星发射升空,实现了中华民族千年奔月的梦想。
若“嫦娥一号”沿圆形轨道绕月球飞行的半径为R,国际空间站沿圆形轨道绕地球匀速圆周运动的半径为4R,地球质量是月球质量的81倍,根据以上信息可以确定()
A.国际空间站的加速度比“嫦娥一号”大
B.国际空间站的速度比“嫦娥一号”大
C.国际空间站的周期比“嫦娥一号”长
D.国际空间站的角速度比“嫦娥一号”小
8、关于“嫦娥一号”在近月圆形轨道上到撞击月球的过程,下列说法正确的是()
A、“嫦娥一号”绕月运行需要向后喷气加速,才能降低到相应的轨道。
B、“嫦娥一号”绕月运行需要向前喷气减速,才能降低到相应的轨道。
C、月球对“嫦娥一号”的万有引力做正功。
D、月球对“嫦娥一号”的万有引力做负功。
答案
1. ①根据公式T
R v 1
2π=
, s s T 31062760127⨯=⨯=. 11h r R +==(1700+200)m 310⨯=1.9m 610⨯
解得:s m v /.310571⨯≈
②设卫星在工作轨道上运行的周期为h T 21=,长半轴为Km r 19001= 设卫星在12小时轨道上运行的周期为h T 122=,远月点距离月球表面高度为
x
长半轴为Km x r 2217002002+⨯+= 根据开普勒第三定律得:22
322131T r T r =
解之得:Km x 31098⨯≈.
2.答案:B 解析:7.9km/s 是第一宇宙速度,是卫星在地面附近做匀速圆
周运动所具有的线速度。
当卫星进入地面附近的轨道速度大于7.9km/s 而小于11.2 km/s 时,卫星将沿椭圆轨道运行,当卫星的速度等于或大于11.2 km/s 时就会脱离地球的吸引,不再绕地球运行,11.2 km/s 被称为第二宇宙速度。
“嫦娥一号” 变轨后仍沿椭圆轨道绕地球运动,故B 正确。
3.答案:B 解析:卫星在近地点,有ma h R Mm G
=+2)(,又地面附近mg R
Mm
G =2
,得87000
)104.6(8.9)(2
2622≈⨯⨯=+=h R gR a m/s 2
,故B 正确。
4.ABC 解析:月球对“嫦娥一号”的万有引力提供其做圆周运动的向心
力,由22
2
4)()(T h R m h R Mm G π+=+可估算出月球的质量,由月球质量33
4
R M πρ⋅=,可估算出月球的平均密度,又月球表面万有引力等于重
力,月mg R Mm
G
=2
,月球表面的重力加速度月g 也可以确定。
故A 、B 、C 都正确。
5.A 解析:卫星沿椭圆轨道运动时,周期的平方与半长轴的立方成正比,
故1T >2T >3T ,A 项正确。
不管沿哪一轨道运动到P 点,卫星所受月球的引力都相等,由牛顿第二定律得1a =2a =3a ,故CD 项均错误。
6.BC 解析:卫星沿椭圆轨道运动时,周期的平方与半长轴的立方成正比,
圆形轨道可以看成是半长轴和半短轴相等的椭圆,故卫星在轨道Ⅲ上的周期比轨道Ⅰ上的周期短,B 项正确。
卫星在月球附近做匀速圆周运动所具有的线速度称为月球的第一宇宙速度,故C 正确;卫星沿轨道Ⅰ运动到P 点(尚未制动)时所受月球的引力等于沿轨道Ⅲ运动时所受的引力,故加速度相等,D 项错误。
7.AB 解析:万有引力提供向心力,由22
224T
mr r v m ma r Mm G π===可得向心
加速度之比1681
21222121=⋅=r r M M a a ,A 正确;线速度之比2
9
122121=⋅=
r r M M v v ,B 正确;周期之比9
83231122
1=⋅=
r r M M T T
,C 错;角速度之比89
1221==T T ωω,D 错。
w
8、BC 。
向前喷气,速度变小,向心运动,靠近月球,万有引力做正功。