高斯小学奥数二年级(上)第17讲 加减法巧算一

合集下载

高思教育数学课本第1讲加减法巧算讲义

高思教育数学课本第1讲加减法巧算讲义

在进行加减法计算时,“先计算括号中的部分,再从左往右依次计算”是基本的运算法则.但除此之外,还有许多运算技巧,熟练掌握各种运算技巧可以使你算得更快更准.“凑整法”是最常用的巧算方法,就是在计算时优先计算可以得到整十、整百、整千的部分,从而达到巧算的目的.要想凑出整十,两个数的末位相加应该得0,这样的情况除了00+,55+,46+.同学们在做题时要注意观察各+,28+,37+外,还有19加数的个位,看能不能找到合适的凑法.除了加法可以凑整以外,减法同样可以凑整,个位相同的两个数相减后便能得到整十的数.在进行加减法混合运算时,经常会遇到能够巧算的数不在一起的情况,这时候就需要通过调整运算顺序,把能巧算的放在一起先算.但需要注意的是,在调整的过程中,每个数都必须带着自己左边的符号一起移动,这种调整可以形象地称作“带符号搬家”.如果搬家的是算式中的第一个数,前面没有符号,在这个数之前添上一个加号即可.分析 (1)通过个位凑十来配对,但其中以1和9结尾的都分别有2个,应该如何配对呢?(2)加法配对看末位,减法应该如何配对?练习1.(1)计算:36973264168103+++++;(2)计算:24681925323922241234−++−+.除了“带符号搬家”可以调整运算次序外,“脱括号”与“添括号”也是改变运算顺序的常用手段.加减法算式中“脱括号”要遵循下面的规则:括号前面是加号,脱去括号不变号;括号前面是减号,脱去括号变符号.分析 去掉括号会变成什么样?练习2.(1)计算:()()12323454567−−−−;(2)(2(2)计算:()()437200836353−−+−. 小笑话从前,山东省有个大军阀,他横行霸道,却不学无术,经常闹笑话.一次会议开始时,他想点点名,了解一下哪些人来了,哪些人没来.可是,他一看到会的人数比较多,点名很费事.于是这个不学无术的军阀就想了一个“办法”.他认为没有来的人总是少数,只要知道哪些人没来,来的人不用一一点名,也会清楚了.于是他便大声地叫道:“没有来的人举手!”他这么喊过之后,到会的人面面相觑,都感到莫名其妙.上面只是一个小笑话,但是其实这个军阀运用了数学中“补数”的思想,只要知道了没到的人数,再用总人数减去没到的人数就可以了,只是他脱离了实际,结果闹了笑话.其实补数是速算和心算时一个重要的概念.比如,在计算45798−时,可以把98看成1002−来计算,()4579845710024571002359−=−−=−+=.在运用补数进行巧算的时候要注意补数前的符号到底是加还是减.分析 把题目中接近整百整十的数都变成补数的形式,应该怎么变?练习3.(1)计算:999999999++;(2)计算:23452993981198−−−.前面学习了“脱括号”的巧算方法,其实“添括号”也是一个重要的技巧,“添括号”与“脱括号”类似,同样要注意:括号前面是加号,添上括号不变号;(2)当然,这里所说的“括号前面”是指要添上的括号之前,而要改变的符号是新括号里的那些符号.分析 题(1)中全都是减号,在什么位置添上括号可以简化计算?题(2)中有加有减,有哪些数之间是可以凑整的?练习4.(1)计算:379131588742−−−−;(2)计算:9811451813235577+−−+−.最后我们来看两个与数字特点有关的计算:分析 仔细观察每一问里的数字都有什么特点?试着利用这些特点进行巧算.练习5. 计算:(1)714147471555++−;(2)1827364554637281+−+−+−+.(2(2)例题5本讲知识点汇总一、通过末位找到凑整的关系:加法末位和为10,减法末位相同.二、脱括号、添括号的原则:括号前面是加号,脱去/添上括号不变号;括号前面是减号,脱去/添上括号变符号.三、巧用补数:对于靠近整十整百整千的数,可以先用那些整的进行计算,再计算它们的补数.四、把每个数位分开计算.作业1. 计算:2589127175373289−++++.2. 计算:()()62235778600457−−−−.−−−.3.计算:100197396298−−−+.4.计算:3579862138734234++−.5.计算:334343433111。

高斯小学奥数二年级(上)第17讲加减法巧算一

高斯小学奥数二年级(上)第17讲加减法巧算一

第十七讲 加减法巧算一 XX 模块第 X 讲 X 年级第 X 讲; XX 模块第 X 讲 前续知识点:二年级第一讲; 后续知识点: 墨莫 墨莫 把里面的人物换成相应红字标明的人物在计算加减法算式时,我们一般会遵循从左到右的计算法则.但在有些算式里,将一些能凑成整十整百的数放在一起先算,能够大大减小算式的难度.本讲我们将学习一些加减法巧算方法.第一种就是“凑整法” .例题 1你能用巧妙的方法计算下题吗?73 19 231 69 81 17看末位,用凑整法.36 97 32 64 68 103例题 2你能用巧妙的方法计算下题吗?练习 1你能280 24 76 65 35哪两个减数能凑整?你能用巧妙的方法计算下题吗?379 13 58 87 42例题 32) 381 45 81 23 55 77练习2你能用巧妙的方法计算下面各题吗?1) 375 38 247 75 392) 167 62 84 38 167237 116 同号相加凑整,异号相减凑整.练习3你能用巧妙的方法计算下面各题吗? 1) 468 92 268 39224 3499 元的东西,那么我们该怎么付款呢?一般的方式是给营业员100 元,让他找 1 元.这种思想用在加减法算式上,就是一种巧算方法.例题4你能用巧妙的方法计算下题吗?999 599 199把这些数看成整百、整千,再调整.练习4你能用巧妙的方法计算下题吗?9 99 999例题5你能用巧妙的方法计算下题吗?906 199 297 398把这些数看成整百、整千,再调整.例题6你能用巧妙的方法计算下题吗?1 2 3 4 5 6 7 8 L 37 38 39 40看看这些数有什么规律,符号的排列有什么规律?1. 你能用巧妙的方法计算下题吗?作业 有一句话叫做“简单未必好,好却多为简单”,能带给我们很多启示. 一次数学课上,老师给大家出了这样一道数学题:请问,将 1 至 100 之间的所有自然数相加, 和是多少?老师承诺,谁做完这道题,谁就可以放学回家. 为了能尽快回家享受那自由而快乐的美好时光,同学们都努力地算了起来,有的人甚至额头 上都渗出了汗.只有高斯一人静静地坐在自己的座位上.他一只手撑着下巴,一只手无意识地摆 弄着手中的铅笔.他在寻找一种可以快速解答这个问题的办法. 过了一会儿,小高斯举手交答案了. “老师,这道题的答案是 5050.”高斯很自信地说. “你可以给出你的方法吗?别人可连一半都没有加完啊!”老师略带吃惊地问. “当然.你看, 100 1 101 , 99 2 101 ⋯⋯以此类推,到 50 51 101 时,恰好 得到了 50 个 101 ,因此最后的结果也就是 5050 了.” 老师对高斯的解答十分满意,并确信他将来一定会有所作为.后来高斯真的成为世界知名的34 65 16 35 66 842. 你能用巧妙的方法计算下题吗?866 99 13. 你能用巧妙的方法计算下题吗?467 25 367 254. 你能用巧妙的方法计算下题吗?29 98 2975. 你能用巧妙的方法计算下题吗?265 98 49第十七讲加减法巧算一1. 例题 1答案:490详解:凑整法:+90+10073+19+231+69+81+17=490+3002. 例题 2答案:80详解:凑整法:-100280-24-76-65-35=80-1003. 例题 3答案:(1)311;(2)100详解:凑整法:+10+300( 1)375-38+247-75+39-237=311+1+200( 2)167-62+84-38-167+116=100-1004. 例题 4答案:1797详解:把这些数看成整百、整千,再进行加减调整.999 599 1991000 600 200 1 1 1=1800 3=17975. 例题 5答案:12详解:把这些数看成整百、整千,再调整.906 199 297 398900 200 300 400 6 1 3 2=126. 例题 6答案:0详解:把这些数合理分组,40÷ 4=10(组),每组4 个数相加减的结果都是0.这40 个数相加减的结果四是0.37-38-39+40=07. 练习 1答案:400简答:凑整法:+200+10036+97+32+64+68+103=400+1008. 练习 2答案:179简答:凑整法:-100379-13-58-87-42=1799. 练习 3答案:(1)510;(2)300简答:凑整法:100+200 +101) 468-92-268+392-24+34=510 +300+300 -1002) 381+45-81-23+55-77=300+10010. 练习 4答案:1107简答:把这些数看成整百、整千,再调整.9 99 99910 100 1000 1 1 1=1110 3=110711. 作业 1答案:300简答:凑整法:10034+65+16+35+66+84=300.10010012. 作业 2答案:766简答:凑整法:866-99-1=766.-10013. 作业 3答案:100简答:凑整法:467-25-367+25=100.10014. 作业 4答案:424简答:把这些数看成整百、整千,再调整.29 98 29730 100 300 1 2 3=430 6=42415. 作业 5答案:118简答:把这些数看成整百、整千,再调整.265 98 49265 100 50 2 1=115 3=118。

小学三年级奥数讲解:加减巧算

小学三年级奥数讲解:加减巧算

小学三年级奥数讲解:加减巧算(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!小学三年级奥数讲解:加减巧算小学三年级奥数讲解:加减巧算在日常学习、工作或生活中,许多人都知道奥数吧,下面是本店铺为大家收集的小学三年级奥数讲解:加减巧算,供大家参考借鉴,希望可以帮助到有需要的朋友。

二年级奥数速算巧算方法及习题(有答案)

二年级奥数速算巧算方法及习题(有答案)

速算与巧算1、凑整:43+88+572、带符号搬家:43+88-333、变加为乘: 8+8+8+8+8+8+8+74、加减抵消: 92-16+23-23+165、减法巧算: 100-36-24,88-(28+15)6、找基准数: 52+50+49+467、分组: 90-89+88-87+86-85+84-838、等差数列(高斯公式): 1+2+3+……+998+999+1000单数项的等差数列: 3+5+7+9+11 = 7×59、金字塔数列: 1+2+3+……+98+99+100+99+98+……+3+2+1速算第一步:观察!(是否能用公式,数字有什么特点,符号有什么特点,是否有别的简便方法……)速算思想:1、“整”比“散”好!(100+200 比 156+288好算)2、“小”比“大”好!(1+2 比 1257+3658好算)掌握理论:(理论对于三年级的孩子来说比较晦涩,通过简单的例子让他们记忆深刻,会用就可以了)1、加法交换律:1+2 = 2+12、加法结合律:(1+2)+3 = 1+(2+3)3、带符号搬家:加减法中数字就像逛超市,每人推着自己的小车,去哪儿都推着(即符号在前面) 43+88-33 = 43-33+88 = 88+43-335、减括号:5+(3-2)= 5+3-2,5-(3+2)=5-3-2=5-(3+2)一、分组凑整法例:(1350+249+468)+(251+332+1650)=1350+249+468+251+332+1650=(1350+1650)+(249+251)+(468+332)=3000+500+800=4300894-89-111-95-105-94=(894-94)-(89+111)-(95+105)=800-200-200=400567+231-267+269=(567-267)+(231+269)=300+500=8002000-99-9-98-8-97-7-96-6-95-5-94-4-93-3-92-2-91-1=2000-(99+9+98+8+97+7+96+6+95+5+94+4+93+3+92+2+91+1)=2000-[(99+1)+(98+2)+(97+3)+(96+4)+(95+5)+(94+6)+(93+7)+(92+8)+(91+9)]=2000-900=11001+2-3-4+5+6-7-8+9+……+1998-1999-2000+2001=1+(2-3-4+5)+(6-7-8+9)+……+(1998-1999-2000+2001)=1二、加补凑整法适用于:接近于整百(整千……)的数例:165+199 或=165+200-1 =164+1+199=364 =364198+96+297+10=200+100+300-2-4-3+10 注:也可将10拆成2、4、3与198、96、297凑整,最后剩1 =600-9+10=601895-504-97=900-5-500-4-100+3 在减法中,孩子很容易将-504拆成-500+4,将-97拆成-100-3。

小学奥数--速算巧算方法(二)

小学奥数--速算巧算方法(二)

小学奥数--速算巧算方法目录1 (3) (5) (8) (10) (14) (16)181920222323252729 注:《速算技巧》 (33)第五讲常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。

(1)拆成两个分数相减。

例如又如(2)拆成两个分数相加。

例如又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。

分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。

例如(注意:分数减法要用减数的原分母减去被减数的原分母。

)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。

例如方法三:先借后还“先借后还”是一条重要的数学解题思想和解题技巧。

例如做这道题,按先通分后相加的一般办法,势必影响解题速度。

现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。

第六讲常用巧算速算中的思维与方法(5)方法一:个数折半下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。

(1)分母相同的所有真分数相加。

求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。

这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。

(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。

比方(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折半法”求得数。

比方方法二:带分数减法带分数减法的巧算,可用下面的两个方法。

(完整版)二年级奥数速算与巧算

(完整版)二年级奥数速算与巧算

速算与巧算一、寓言小故事:朝三暮四从前,宋国有一个老人,他在家中养了许多猴子。

老人每天都会给每只猴子八颗栗子,早晚各四颗。

后来,猴子越来越多,老人也越来越穷,所以他想每天只给猴子七颗栗子,于是他就和猴子们商量:“从今天开始,我每天早上给你们四颗粟子,晚上给你们三颗栗子,行不行?” 猴子们想了一想,晚上怎么少了一颗呢?于是大叫起来,非常不愿意。

老人一看,连忙说:“那么我早上给你们三颗,晚上再给你们四颗,可以了吧?” 猴子们听了,以为晚上的栗子已经由三个变成四个,跟以前一样,就高兴地同意了。

老人也偷着乐了!计算:3+4=4+3=操场上28 个男生在跳绳,17 个女生在跳绳,问:操场上一共有多少人在跳绳?计算:28+17= 17+28=加法交换律:两个数相加,交换加数的位置,他们的和不变,这叫加法交换律。

用字母表示:a+b=b+a;推广:多个数相加,任意改变加数的顺序,它们的和不变。

例如:1+2+3+4=1+3+2+4=……身边的数学问题:操场上28 个男生在跳绳,17 个女生在跳绳,23 个女生在踢毽子。

问:(1)参加跳绳的有多少人?(2)参加活动的有多少人?(3)参加活动的女生有多少人?(4)参加跳绳和踢毽子的一共有多少人?从以上的计算结果我们可以得到一个等式:先计算,再比较大小:1、(13+28)+1213+(28+12)2、(16+17)+1316+(17+13)根据以上的例子,你能发现在加法运算中,有什么规律吗?加法结合律:三个数相加,先把前面两个数相加,再加上第三个数,或者先把后两个数相加,再和用字母表示:(a+b)+c=a+(b+c)说明:一般地,多个数相加(三个数以上),可以先对其中几个数相加,再与其它几个数相加。

把加法交换律与加法结合律综合起来应用,就能得到加法的一些巧算方法。

1、凑整法:在进行加减法运算时,先把加在一起为整十、整百、整千……的数加起来,然后再与其它的数相加,这样计算比较方便。

小学奥数常用的巧算和速算方法

小学奥数常用的巧算和速算方法

常用的巧算和速算方法【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。

例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1 +2 + ……+ 99 + 100所以,1+2+3+4+……+99+100=101×100÷2=5050。

“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2= 2499。

这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。

张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。

初日织五尺,末日织一尺,今三十日织讫。

问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。

她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。

问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。

”“答曰:二匹一丈”。

这一解法,用现代的算式表达,就是1 匹=4 丈,1 丈=10 尺,90 尺=9 丈=2 匹1 丈。

(答略)张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起来,算式就是5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。

若把这个式子反过来,则算式便是1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。

同样,这一递增的相同的数,也不是一个整数。

假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”这一特点,那么,就会出现下面的式子:所以,加得的结果是6×30=180(尺)但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。

所以,这妇女30 天织的布是180÷2=90(尺)可见,这种解法的确是简单、巧妙和饶有趣味的。

(精品)小学数学奥数基础教程(三至六年级)

(精品)小学数学奥数基础教程(三至六年级)

小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除- 4 -第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。

例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。

小学奥数:计算专题《加减法的巧算》练习题

小学奥数:计算专题《加减法的巧算》练习题

小学奥数:计算专题《加减法的巧算》练习题一.填空题(共15小题)1.计算:(1+3+5+…+2019)﹣(2+4+6+…+2018)=.2.计算:3﹣5+7﹣9+11﹣13+…+1995﹣1997+1999=.3.计算200﹣(16+17+18+…+23+24)=.4.a=4,b=25,则a+b=,a×b=,a÷b=.5.计算:1+2+3+4+5+6+7+8+9=.6.1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98=.7.计算:13+75﹣37+427+85﹣23=.8.计算:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=.9.计算:20172﹣20162+20152﹣20142+20132﹣20122+20112﹣20102+20102﹣20092=.10.计算1000﹣257﹣84﹣43﹣16=.11.计算:2+3+5﹣6+7+1﹣10=.12.193﹣191+189﹣187+……+93﹣91=.13.算式(1+3+5+…+89)﹣(1+2+3+…+63)的计算结果是.14.计算:1+2+4+5+7+8+10+11+13+14+16+17+19+20=.15.算式1+3+4+6+7+9+10+12的计算结果是.二.计算题(共15小题)16.计算:30﹣29﹣28+27+26﹣25﹣24+23+22﹣21﹣20+19.17.计算:19991999+9991999+991999+91999+1999+999+99+9.18.计算:1﹣2+3﹣4+5﹣6+7﹣8+9﹣10+11﹣12+…+991﹣992+993﹣994+995﹣996+997﹣998+999.19.直接写出得数.5.43+1.47=5﹣3.28=0.46÷4.6=4×0.25=85÷(1﹣0.9)=4.5×0.4=0.63÷0.7= 1.8×0.4=9.58×101﹣9.58=3÷0.3=20.计算:(2004﹣1)+(2003﹣2)+(2002﹣3)+…+(1003﹣1002)21.计算:1+2+3+……+50+49+……+2+1=22.计算:1+2+3+…+1999=?23.计算2+4+6+8+…+1990的和.24.用简便方法计算2005+2004﹣2003+2002+2001﹣2000+1999+1998﹣1997+…+1006+1005﹣100425.加减巧算(简便计算).398+642825﹣100366+57+65+53+60+59+62321+127+79+73483+254﹣183 26.计算(说说计算思路):375+283+225+1727.计算1+(1+2)+(1+2+3)+......+(1+2+3+4+ (100)28.计算:2+4+6+8+…+98+10029.速算:500﹣99﹣1﹣98﹣2﹣97﹣3﹣96﹣430.计算:(1)875﹣364﹣236;(2)1847﹣1928+628﹣136﹣64;(3)1348﹣234﹣76+2234﹣48﹣24.小学奥数:计算专题《加减法的巧算》参考答案与试题解析一.填空题(共15小题)1.【解答】解:(1+3+5+...+2019)﹣(2+4+6+ (2018)=1+(3﹣2)+(5﹣4)+(7﹣6)+…+(2017﹣2016)+(2019﹣2018)==1010故答案为:1010.2.【解答】解:3﹣5+7﹣9+11﹣13+……+1995﹣1997+1999=1999﹣1997+1995﹣1993+……+11﹣9+7﹣5+3=(1999﹣1997)+(1995﹣1993)+……+(11﹣9)+(7﹣5)+3=2+2+2+……+2+3=2×499+3=10013.【解答】解:200﹣(16+17+18+…+23+24)=200﹣9×20=200﹣180=204.【解答】解:a+b=[(a+b)×]÷=(40+25)÷=a×b=[(a×)×(b×)]÷(×)=(40×25)÷=a÷b=(a×)÷(b×)=40÷25=故:答案见上面的计算结果.5.【解答】解:1+2+3+4+5+6+7+8+9=(1+9)+(2+8)+(3+7)+(4+6)+5=456.【解答】1+3+5+7+…+97+99﹣10﹣12﹣14…﹣96﹣98=1+3+5+7+9+11﹣10+13﹣12+…+99﹣98=(1+3+5+7+9)+(11﹣10)+(13﹣12)+…+(99﹣98)=(1+9)+(3+7)+5+1×(5×9)=10+10+5+45=25+45=707.【解答】解:13+75﹣37+427+85﹣23=(13+427)+(75+85)﹣(37+23)=440+160﹣60=600﹣60=540故答案为:540.8.【解答】解:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=2016+2014+2012+2010+2008+2006+2004=2010×7=14070故答案为:14070.9.【解答】解:20172﹣20162+20152﹣20142+20132﹣20122+20112﹣20102+20102﹣20092=(20172﹣20162)+(20152﹣20142)+(20132﹣20122)+(20112﹣20102)+(20102﹣20092)=10+10+10+10+10=50故答案为:50.10.【解答】解:1000﹣257﹣84﹣43﹣16=1000﹣(257+43)﹣(84+16 )=1000﹣300﹣100=700﹣100=600故答案为:600.11.【解答】解:2+3+5﹣6+7+1﹣10=(2+3+5+7+1)﹣(6+10)=18﹣16=2故答案为:2.12.【解答】解:193﹣191+189﹣187+……+93﹣91=(193﹣191)+(189﹣187)+……+(93﹣91)=2+2+…+2=2×26=52故答案为:52.13.【解答】解:(1+3+5+...+89)﹣(1+2+3+ (63)=(1+89)×[(89﹣1)÷2+1]÷2﹣(1+63)×63÷2=90×45÷2﹣64×63÷2=2025﹣2016=9故答案为:9.14.【解答】解:1+2+4+5+7+8+10+11+13+14+16+17+19+20=(1+20)+(2+19)+(4+17)+(5+16)+(7+14)+(8+13)+(10+11),=21×7=147故答案为:147.15.【解答】解:1+3+4+6+7+9+10+12=(1+9)+(3+7)+(4+6)+10+12=10+10+10+10+12=52故答案为:52.二.计算题(共15小题)16.【解答】解:依题意可知原式=(30﹣29﹣28+27)+(26﹣25﹣24+23)+(22﹣21﹣20+19)=(57﹣57)+(49﹣49)+(41﹣41)=0综上所述答案为0.17.【解答】解:原式=19992000+9992000+992000+92000+2000+1000+100+10﹣8=19990000+9990000+990000+90000+2000×5+1102=20000000+10000000+1000000+100000﹣10000×3+1102=31100000﹣30000+1102=3107110218.【解答】解:1﹣2+3﹣4+5﹣6+7﹣8+9﹣10+11﹣12+…+991﹣992+993﹣994+995﹣996+997﹣998+999=(1﹣2)+(3﹣4)+(5﹣6)+(7﹣8)+…+(991﹣992)+(993﹣994)+(995﹣996)+(997﹣998)+999=﹣1+(﹣1)+(﹣1)+…+(﹣1)+(﹣1)+999=(﹣1)×(998÷2)+999=(﹣1)×499+999=﹣499+999=50019.【解答】解:5.43+1.47=6.95﹣3.28=1.720.46÷4.6=0.14×0.25=185÷(1﹣0.9)=8504.5×0.4=1.80.63÷0.7=0.91.8×0.4=0.729.58×101﹣9.58=9583÷0.3=1020.【解答】解:(2004﹣1)+(2003﹣2)+(2002﹣3)+...+(1003﹣1002)=2004+2003+2002+...+1003﹣1﹣2﹣3﹣ (1002)=(2004﹣1002)+(2003﹣1001)+…+(1003﹣1)=1002×1002=100400421.【解答】解:1+2+3+……+50+49+……+2+1=50×50=250022.【解答】解:原式=(1+1999)×1999÷2=2000×1999÷2=199900023.【解答】解:2+4+6+8+…+1990=(2+1990)×995÷2=1992×995÷2=99102024.【解答】解:2005+2004﹣2003+2002+2001﹣2000+1999+1998﹣1997+…+1006+1005﹣1004=(2005+2004﹣2003)+(2002+2001﹣2000)+(1999+1998﹣1997)+……+(1006+1005﹣1004)=2006+2003+2000+……+1007=(2006+1007)×334÷2=50317125.【解答】解:(1)398+64=398+2+62=400+62=462(2)2825﹣1003=2825﹣1000﹣3=1825﹣3=1822(3)66+57+65+53+60+59+62=60×7+(6﹣3+5﹣7﹣1+2)=420+2(4)321+127+79+73=(321+79)+(73+127)=400+200=600(5)483+254﹣183=483﹣183+254=300+254=55426.【解答】解:375+283+225+17=(375+225)+(283+17)=600+300=900.27.【解答】解:1+(1+2)+(1+2+3)+......+(1+2+3+4+ (100)=1×2÷2+2×3÷2+3×4÷2+……+100×101÷2=(1×2+2×3+3×4+……+100×101)÷2=(100×101×102÷3)÷2=17170028.【解答】解:2+4+6+8+…+98+100=(2+100)×50÷2=255029.【解答】解:500﹣99﹣1﹣98﹣2﹣97﹣3﹣96﹣4=500﹣[(99+1)+(98+2)+(97+3)+(96+4)]=500﹣100×430.【解答】解:(1)875﹣364﹣236=875﹣(364+236)=875﹣600=275;(2)1847﹣1928+628﹣136﹣64=1847﹣(1928﹣628)﹣(136+64)=1847﹣1300﹣200=347;(3)1348﹣234﹣76+2234﹣48﹣24=(1348﹣48)+(2234﹣234)﹣(76+24)=1300+2000﹣100=3200.。

小学奥数:计算专题《加减法的巧算》练习题

小学奥数:计算专题《加减法的巧算》练习题

小学奥数:计算专题《加减法的巧算》练习题一.填空题(共15小题)1.计算:(1+3+5+…+2019)-(2+4+6+…+2018)=10102.计算:3-5+7-9+11-13+…+1995-1997+1999=-10003.计算200-(16+17+18+…+23+24)=844.a=4,b=25,则a+b=29,a×b=100,a÷b=4/255.计算:1+2+3+4+5+6+7+8+9=456.1+3+5+7+…+97+99-10-12-14…-96-98=507.计算:13+75-37+427+85-23=5608.计算:(2017-1)+(2016-2)+…+(2011-7)=9.计算:-+-+-+-+-=7010.计算1000-257-84-43-16=60011.计算:2+3+5-6+7+1-10=212.193-191+189-187+……+93-91=5113.算式(1+3+5+…+89)-(1+2+3+…+63)的计算结果是72714.计算:1+2+4+5+7+8+10+11+13+14+16+17+19+20=12015.算式1+3+4+6+7+9+10+12的计算结果是52二.计算题(共15小题)16.计算:30-29-28+27+26-25-24+23+22-21-20+19=-217.计算:xxxxxxxx+XXX999+99+9=xxxxxxxx18.计算:1-2+3-4+5-6+7-8+9-10+11-12+…+991-992+993-994+995-996+997-998+999=-49919.直接写出得数。

5.43+1.47=6.94.5×0.4=1.820.计算:(2004-1)+(2003-2)+(2002-3)+…+(1003-1002)=100121.计算:1+2+3+……+50+49+……+2+1=255022.计算:1+2+3+…+1999=xxxxxxx5-3.28=1.72,0.46÷4.6=0.1,4×0.25=19.58×101-9.58=957,85÷(1-0.9)=850,3÷0.3=10,0.63÷0.7=0.9,1.8×0.4=0.7223.计算2+4+6+8+…+1990的和=24.用简便方法计算:略。

小学 奥数 数学课本 二年级 打印版

小学 奥数 数学课本 二年级 打印版
四、基准数法 (1)计算:23+20+19+22+18+21 解:仔细观察,各个加数的大小都接近20,所以可以把每 个加数先按20相加,然后再把少算的加上,把多算的减去. 23+20+19+22+18+21 =20×6+3+0-1+2-2+1 =120+3=123 6个加数都按20相加,其和=20×6=120.23按20计算就少加 了“3”,所以再加上“3”;19按20计算多加了“1”,所以再 减去“1”,以此类推. (2)计算:102+100+99+101+98
99+98+97+96+95=97×5=485
(2)9+99+999=10+100+1000-3
=1110-3=1107
5.解:(1)5+6+7+8&5+10+15+20+25+30+35
=20×7=140
(3)9+18+27+36+45+54
=(9+54)×3=63×3=189
第一讲速算与巧算 一、“凑整”先算
1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的 和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带 着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11) =(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑 整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和, 再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以 凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2 减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运 算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算 19-18=1. (2)45+18-19=45+(18-19) =45-1=44 这样想:加18减19的结果就等于减1.

小学奥数:计算专题《加减法的巧算》练习题

小学奥数:计算专题《加减法的巧算》练习题

小学奥数:计算专题《加减法的巧算》练习题一•填空题(共15小题)1 计算:(1+3+5+…+2019)-( 2+4+6+…+2018 )= ______________ •2 .计算:3 - 5+7 - 9+11 - 13+ …+1995 - 1997+1999 = ______ •3 .计算200-( 16+17+18+…+23+24 )= ____________ .4. _________________________________________ a =1 爲u4, b= “.打「i25,贝U a+b = , a x b= , a+ b = _____________________________________ .5. 计算:1+2+3+4+5+6+7+8+9 = ________ .6. 1+3+5+7+ - +97+99 - 10 - 12- 14…-96 - 98=_________ .7. 计算:13+75 - 37+427+85 - 23= _______ .& 计算:(2017 - 1) + (2016 - 2) + …+ (2011 - 7 )= ____________ .9 .计算:20172 - 20162+20152 - 20142+20132 - 20122+20112 - 20102+20102 - 20092 = ______ .10 .计算1000 - 257- 84 - 43 - 16= ______ .11 .计算:2+3+5 - 6+7+1 - 10 = _______ .12 . 193- 191+189 - 187+ ……+93 - 91 = _____ .13 .算式(1+3+5+…+89)-( 1+2+3+…+63)的计算结果是 ______________ .14 .计算:1+2+4+5+7+8+10+11 + 13+14+16+17+19+20 = _______ .15 .算式1+3+4+6+7+9+10+12的计算结果是_________ .二.计算题(共15小题)16 .计算:30 - 29 - 28+27+26 - 25 - 24+23+22 - 21 - 20+19 .17 .计算:19991999+9991999+991999+91999+1999+999+99+9 .18 .计算:1 - 2+3 - 4+5 - 6+7 - 8+9 - 10+11- 12+…+991 - 992+993 - 994+995 - 996+997 - 998+999 .19 .直接写出得数.5.43+1.47 =5-3.28 =0.46 —4.6=4X 0.25 =85 - (1 - 0.9)4.5X 0.4 =0.63—0.7 = 1.8X 0.4 =9.58 x 101 - 9.58 =3- 0.3=20 .计算:(2004 - 1)+ (2003 - 2) + (2002 - 3) +-••+ (1003 - 1002)21 .计算:1+2+3+ ……+50+49+ ……+2+1 =22 .计算:1+2+3+ …+ 1999 = ?23.计算2+4+6+8+…+ 1990 的和.24.用简便方法计算2005+2004 - 2003+2002+2001 - 2000+1999+1998 - 1997+…+1006+1005 - 100425. 加减巧算(简便计算) .398+64 2825- 1003 66+57+65+53+60+59+62 321+127+79+73 483+254- 183 26. 计算(说说计算思路) :375+283+225+1727. 计算1+ ( 1+2) + (1+2+3) +......+ (1+2+3+4+ (100)28. 计算:2+4+6+8+ … +98+10029. 速算:500- 99- 1- 98- 2- 97- 3- 96-430. 计算:( 1 ) 875- 364- 236;(2) 1847- 1928+628- 136- 64;3) 1348- 234- 76+2234- 48- 24.=45 小学奥数:计算专题《加减法的巧算》参考答案与试题解析•填空题(共15小题)1. 【解答】解:(1+3+5+...+2019)-( 2+4+6+ (2018)=1+ (3 - 2) + (5 - 4) + (7 - 6) +…+ (2017 - 2016) + (2019 - 2018)=:Id j=1010故答案为:1010.2. 【解答】解:3 - 5+7 - 9+11 - 13+……+1995 - 1997+1999=1999 - 1997+1995 - 1993+ ……+11 - 9+7 - 5+3=(1999- 1997) + (1995- 1993) +……+ (11 - 9) + (7- 5) +3=2+2+2+ ......... +2+3=2X 499+3=10013. 【解答】解:200-( 16+17+18+…+23+24)=200 - 9X 20=200 - 180=204.【解答】解:a+b = [ (a+b )x 」y ,I ]十更亍七=(40+25)+I =川山a xb = [ (a X jW 」i )x( b X jy 」i ) ] +(门小」i X j y 」i ) = ( 40 X 25)+m :=ma +b =( a x i ) + 故:答案见上面的计算结果.5. [解答】解:1+2+3+4+5+6+7+8+9=(1+9) + (2+8) + (3+7) + (4+6) +5b x %?;「:)= 40 + 25=6. 【解答】1+3+5+7+ - +97+99 - 10- 12- 14…-96- 98=45=1+3+5+7+9+11 - 10+13 - 12+…+99 - 98=(1+3+5+7+9 ) + (11 - 10) + (13 - 12) +… + ( 99- 98)=(1+9) + (3+7) +5+1 X( 5X 9)=10+10+5+45=25+45=707.【解答】解:13+75- 37+427+85- 23=(13+427) + (75+85)-( 37+23)=440+160 - 60=600 - 60=540故答案为:540.&【解答】解:(2017 - 1) + (2016 - 2) + …+ (2011 - 7)=2016+2014+2012+2010+2008+2006+2004=2010X 7=14070故答案为:14070.9.【解答】解:20172- 20162+20152- 20142+20132- 20122+20112- 20102+20102- 20092 =(20172 - 20162) + (20152 - 20142) + (20132 - 20122) + (20112 - 20102) + (20102 - 20092) =10+10+10+10+10=50故答案为:50.10.【解答】解:1000- 257- 84- 43- 16= 1000-( 257+43) - ( 84+16 )= 1000- 300- 100= 700- 100= 60011. 【解答】解:2+3+5 - 6+7+1 - 10=(2+3+5+7+1 )-( 6+10)=18- 16=2故答案为:2.12. 【解答】解:193- 191+189 - 187+……+93 - 91=(193 - 191) + (189 - 187) + ……+ (93 - 91)=2+2+ …+2=2 X 26= 52故答案为:52.13. 【解答】解:(1+3+5+ ...+89)-( 1+2+3+ (63)=(1+89)X [ (89- 1)- 2+1] -2-( 1+63)X 63- 2=90 X 45 - 2 - 64 X 63 - 2= 2025- 2016=9故答案为:9.14. 【解答】解:1+2+4+5+7+8+10+11+13+14+16+17+19+20=( 1+20) +(2+19) +(4+17) +(5+16) +(7+14) +(8+13) +(10+11),= 21 X 7= 147故答案为:147.15. 【解答】解:1+3+4+6+7+9+10+12=( 1+9) +(3+7) +(4+6) +10+12= 10+10+10+10+12= 52= 52.计算题(共15 小题)16.【解答】解:依题意可知原式=(30 - 29 - 28+27) + (26 - 25 - 24+23) + (22 - 21 - 20+19)=(57 - 57) + (49 - 49) + (41 - 41)=0综上所述答案为0.17. 【解答】解:原式= 19992000+9992000+992000+92000+2000+1000+100+10 - 8=19990000+9990000+990000+90000+2000 X 5+1102=20000000+10000000+1000000+100000 - 10000X 3+1102=31100000 - 30000+1102=3107110218. 【解答】解:1 - 2+3 - 4+5- 6+7 - 8+9- 10+11 - 12+ …+991 - 992+993 - 994+995 - 996+997 - 998+999=(1 - 2) + (3 - 4) + (5 - 6) + (7 - 8) + …+ (991 - 992) + (993 - 994) + (995 - 996) + (997 - 998) +999 =-1+ (- 1)+ (- 1) + …+ (-1)+(- 1)+999=(-1 )X(998 - 2) +999=(- 1 )X 499+999=- 499+999= 50019.【解答】解:5.43+1.47=6.9 5 - 3.28 =0.46 - 4.6 = 4X 0.25= 1 85 - (1 - 0.9)1.72 0.1 8504.5X 0.4= 1.8 0.63 —0.7 = 1.8 X0.4 = 9.58 X 101 -9.58 = 3—0.3= 100.9 0.72 95820.【解答】解:(2004- 1 )+( 2003-2)+( 2002- 3)+…+(1003- 1002)= 2004+2003+2002+ …+1003- 1 - 2--3 -------- 1002) =(2004 - 1002) + (2003 - 1001 ) +…+ (1003 - 1)=1002X 1002=100400421. 【解答】解:1+2+3+……+50+49+……+2+1=50 X 50=250022. 【解答】解:原式=(1+1999 )X 1999 - 2=2000 X 1999 - 2=199900023. 【解答】解:2+4+6+8+ …+1990=(2+1990)X 995 - 2=1992 X 995 - 2=99102024. 【解答】解:2005+2004 - 2003+2002+2001 - 2000+1999+1998 - 1997+…+1006+1005 - 1004=(2005+2004 - 2003) + (2002+2001 - 2000) + (1999+1998 - 1997) + ……+ (1006+1005 - 1004) =2006+2003+2000+ ……+1007=(2006+1007)X 334 - 2=50317125. 【解答】解: ( 1) 398+64=398+2+62=400+62=462(2) 2825- 1003=2825 - 1000 - 3=1825- 3=1822( 3) 66+57+65+53+60+59+62=60 X 7+ (6 - 3+5 - 7 - 1+2)=420+2=422(4)321+127+79+73=(321+79) + (73+127)=400+200=600(5) 483+254 - 183=483 - 183+254=300+254=55426.【解答】解:375+283+225+17=(375+225) + (283+17)=600+300=900.27. 【解答】解:1+ (1+2) + (1+2+3 ) + ……+ (1+2+3+4++100) =1 X 2十2+2 X 3 十2+3 X 4 十2+ ……+100 X 101 十 2=(1 X 2+2 X 3+3 X 4+ ……+100 X 101)- 2=(100X 101 X 102- 3)- 2=17170028. 【解答】解:2+4+6+8+ … +98+100=(2+100)X 50 - 2=255029. 【解答】解:500- 99- 1- 98- 2- 97- 3- 96-4=500 - 100 X 4=500 - [ (99+1 ) + (98+2) + (97+3) + (96+4)] =100.30. 【解答】解:(1) 875 - 364- 236=875-( 364+236)=875 - 600=275;(2)1847- 1928+628- 136- 64=1847-( 1928- 628)-( 136+64)=1847 - 1300 - 200=347;(3)1348- 234- 76+2234- 48- 24=(1348 - 48) + (2234 - 234)-( 76+24)=1300+2000 - 100=3200.。

小学奥数巧算加减法及加减法的竖式数字谜

小学奥数巧算加减法及加减法的竖式数字谜

巧算加减法及加减法的竖式数字谜巧算加减法一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)三、加减法中的速算与巧算速算巧算的核心思想和本质:凑整1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)例题精讲一、加减速算【例1】计算:57911131517192123.【例 2】计算:(1)117+229+333+471+528+622(2)(1350+249+468)+(251+332+1650)(3)756-248-352(4)894-89-111-95-105-94【巩固】同学们,你们有什么好办法又快又准的算出下面各题的答案?把你的好方法讲一讲!也当一次小老师!⑴1847192862813664⑵1234567887661594322⑶200077415923⑷617271438315771二、加补凑整【例 3】计算:(1)298+396+495+691+799+21(2)195+196+197+198+199+15(3)98-96-97-105+102+101(4)399+403+297-501【例 4】199+298+397+496+595+20=___________。

高斯小学奥数二年级(上)第17讲加减法巧算一

高斯小学奥数二年级(上)第17讲加减法巧算一

第十七讲加减法巧算一前续知识点: 二年级第一讲; XX 模块第X 讲后续知识点:X 年级第X 讲;XX 模块第X 讲把里面的人物换成相应红字标明的人物.丿墨莫蚤猛罢恋上了一件垢如恩的>—r 1 x / i I x莫:二I /res A 7在计算加减法算式时,我们一般会遵循从左到右的计算法则•但在有些算式里,将一些能凑成整十整百的数放在一起先算,能够大大减小算式的难度•本讲我们将学习一些加减法巧算方法•第一种就是“凑整法”例题1你能用巧妙的方法计算下题吗?73 19 231 69 81 17练习1【提示】看末位,用凑整法.你能用巧妙的方法计算下题吗?36 97 32 64 68 103例题2你能用巧妙的方法计算下题吗?280 24 76 65 35【提示】哪两个减数能凑整?你能用巧妙的方法计算下题吗?379 13 58 87 42例题3你能用巧妙的方法计算下面各题吗?(1)375 38 247 75 39 237(2)167 62 84 38 167 116 【提示】同号相加凑整,异号相减凑整.你能用巧妙的方法计算下面各题吗?(1)468 92 268 392 24 34(2)381 45 81 23 55 77“凑整法”的思想可以让计算更加的简单•另外一种方法和生活很接近•去超市买东西时,如果买了99元的东西,那么我们该怎么付款呢?一般的方式是给营业员100元,让他找1元•这种思想用在加减法算式上,就是一种巧算方法.例题4你能用巧妙的方法计算下题吗?999 599 199练习4【提示】把这些数看成整百、整千,再调整.你能用巧妙的方法计算下题吗?9 99 999例题5你能用巧妙的方法计算下题吗?906 199 297 398【提示】把这些数看成整百、整千,再调整.例题6你能用巧妙的方法计算下题吗?12345678L 37 38 39 40【提示】看看这些数有什么规律,符号的排列有什么规律?高斯速算的故事有一句话叫做“简单未必好,好却多为简单”,能带给我们很多启示. 一次数学课上,老师给大家出了这样一道数学题:请问,将 1至100之间的所有自然数相加,和是多少?老师承诺,谁做完这道题,谁就可以放学回家.为了能尽快回家享受那自由而快乐的美好时光,同学们都努力地算了起来,有的人甚至额头 上都渗出了汗•只有高斯一人静静地坐在自己的座位上•他一只手撑着下巴,一只手无意识地摆 弄着手中的铅笔•他在寻找一种可以快速解答这个问题的办法.过了一会儿,小高斯举手交答案了.“老师,这道题的答案是 5050 •”高斯很自信地说.“你可以给出你的方法吗?别人可连一半都没有加完啊!”老师略带吃惊地问. “当然•你看,100 1 101,99 2 101……以此类推,到50 51 101时,恰好得到了 50个101,因此最后的结果也就是 5050 了老师对高斯的解答十分满意,并确信他将来一定会有所作为•后来高斯真的成为世界知名的作业1. 你能用巧妙的方法计算下题吗?数学家.34 65 16 35 66 842. 你能用巧妙的方法计算下题吗?866 99 13. 你能用巧妙的方法计算下题吗?467 25 367 254. 你能用巧妙的方法计算下题吗?29 98 2975. 你能用巧妙的方法计算下题吗?265 98 49第十七讲加减法巧算一1. 例题1+ 90答案:490详解:凑整法:+100I I73+ 19 + 231 + 69 + 81+ 17= 490I ____ I+ 3002. 例题2答案:80详解:凑整法:-100I I280-24- 76- 65- 35= 80—1003. 例题3答案:(1) 311; (2) 100详解:凑整法:+ 10+ 30CI I(1)375—38 + 247—75 + 39—237= 311+ 1+ 200 0.I I(2)167—62 + 84 —38—167+ 116= 100—1004. 例题4答案:1797详解:把这些数看成整百、整千,再进行加减调整.—100-100999 599 1991000 600 200 1 1 1=1800 3 =17975. 例题5 答案:12详解:把这些数看成整百、整千,再调整.906 199 297 398 900 200 300 400 6 1 3 2 =126. 例题6 答案:0详解:把这些数合理分组, 40- 4 = 10 (组),每组4个数相加减的结果都是结果四是0.+ . 37-38 - 39+ 40= 0 J v 07. 练习1 答案:400简答:凑整法:+ 200 ” +100 ,\~13|6+ 97 + 32+ 64+ 68 + 103= 400+ 1008. 练习2 答案:179 简答:凑整法:379-13- 58— 87 —42= 1799.练习3答案:(1) 510; (2) 3000•这40个数相加减的简答:凑整法:+ 200 +1P(1)4右8—92 - 268+ 392- 24 + 34= 510+ 300+ 300 - 100I I I I(2)381 + 45- 81 - 23+ 55- 77= 300+ 10010. 练习4答案:1107简答:把这些数看成整百、整千,再调整.9 99 99910 100 1000 1 1 1=1110 3=110711. 作业1答案:300简答:凑整法:100I I34 + 65 + 16+ 35 + 66+ 84= 300.10010012. 作业2答案:766简答:凑整法:866 —99 —1= 766.I _____ I—10013. 作业3答案:100简答:凑整法:467 —25 —367 + 25= 100 .10014.作业4答案:424简答:把这些数看成整百、整千,再调整2998 29730100 300 1 23=4306=42415.作业5答案:118简答:把这些数看成整百、整千,再调整26598 49265100 50 2 1=1153=118=118。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七讲 加减法巧算一
前续知识点:二年级第一讲;XX 模块第X 讲 后续知识点:X 年级第X 讲;XX 模块第X 讲
把里面的人物换成相应红字标明的人物.
墨莫
墨莫
墨莫
阿瓜
阿瓜
阿呆
阿呆
墨莫
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
在计算加减法算式时,我们一般会遵循从左到右的计算法则.但在有些算式里,将一些能凑成整十整百的数放在一起先算,能够大大减小算式的难度.本讲我们将学习一些加减法巧算方法.第一种就是“凑整法”.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
【提示】看末位,用凑整法.
【提示】哪两个减数能凑整?
你能用巧妙的方法计算下题吗?
28024766535----
例题 2
练习1
你能用巧妙的方法计算下题吗?
3697326468103+++++
你能用巧妙的方法计算下题吗?
7319231698117+++++
例题1
【提示】同号相加凑整,异号相减凑整.
练习3
你能用巧妙的方法计算下面各题吗?
(1)468922683922434--+-+
(2)3814581235577+--+-
你能用巧妙的方法计算下面各题吗?
(1)375382477539237-+-+-
(2)167628438167116-+--+
例题3
练习2
你能用巧妙的方法计算下题吗?
37913588742----
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
“凑整法”的思想可以让计算更加的简单.另外一种方法和生活很接近.去超市买东西时,如果买了99元的东西,那么我们该怎么付款呢?一般的方式是给营业员100元,让他找1元.这种思想用在加减法算式上,就是一种巧算方法.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
【提示】把这些数看成整百、整千,再调整.
【提示】把这些数看成整百、整千,再调整.
【提示】看看这些数有什么规律,符号的排列有什么规律?
你能用巧妙的方法计算下题吗?
1234567837383940?--++--+++--+=
例题6
你能用巧妙的方法计算下题吗?
906199297398---
例题5
练习4
你能用巧妙的方法计算下题吗?
999999++
你能用巧妙的方法计算下题吗?
999599199++
例题4
作业
1. 你能用巧妙的方法计算下题吗?
课 堂 内 外
有一句话叫做“简单未必好,好却多为简单”,能带给我们很多启示.
一次数学课上,老师给大家出了这样一道数学题:请问,将1至100之间的所有自然数相加,和是多少?老师承诺,谁做完这道题,谁就可以放学回家.
为了能尽快回家享受那自由而快乐的美好时光,同学们都努力地算了起来,有的人甚至额头上都渗出了汗.只有高斯一人静静地坐在自己的座位上.他一只手撑着下巴,一只手无意识地摆弄着手中的铅笔.他在寻找一种可以快速解答这个问题的办法.
过了一会儿,小高斯举手交答案了.
“老师,这道题的答案是5050.”高斯很自信地说.
“你可以给出你的方法吗?别人可连一半都没有加完啊!”老师略带吃惊地问.
“当然.你看,1001101+=,992101+=……以此类推,到5051101+=时,恰好得到了50个101,因此最后的结果也就是5050了.”
老师对高斯的解答十分满意,并确信他将来一定会有所作为.后来高斯真的成为世界知名的数学家.
高斯速算的故事
346516356684 +++++ 2.你能用巧妙的方法计算下题吗?
--
866991
3.你能用巧妙的方法计算下题吗?
--+
4672536725
4.你能用巧妙的方法计算下题吗?
++
2998297
5.你能用巧妙的方法计算下题吗?
--
2659849
第十七讲加减法巧算一
1.例题1
答案:490
详解:凑整法:
+90
+100
73+19+231+69+81+17=490
+300
2.例题2
答案:80
详解:凑整法:
-100
280-24-76-65-35=80
-100
3.例题3
答案:(1)311;(2)100
详解:凑整法:
+10
+300
(1)375-38+247-75+39-237=311
+200
(2)167-62+84-38-167+116=100
-100
4.例题4
答案:1797
详解:把这些数看成整百、整千,再进行加减调整.
999599199
1000600200111
=18003
=1797++=++----
5. 例题5
答案:12
详解:把这些数看成整百、整千,再调整. 906199297398
9002003004006132=12---=---++++
6. 例题6
答案:0
详解:把这些数合理分组,40÷4=10(组),每组4个数相加减的结果都是0.这40个数相加减的结果四是0.
7. 练习1
答案:400
简答:凑整法:
8. 练习2
答案:179
简答:凑整法:
379-13-58-87-42=179
-100
-100
36+97+32+64+68+103=400
+200
+100
1-2-3+4+5-6-7+8+……+37-38-39+40=0
0 0
9. 练习3
答案:(1)510;(2)300 简答:凑整法:
10. 练习4
答案:1107
简答:把这些数看成整百、整千,再调整. 999999
101001000111
=11103=1107++=++----
11. 作业1
答案:300 简答:凑整法:
12. 作业2
答案:766 简答:凑整法:
34+65+16+35+66+84=300.
100
100
100
(1)468-92-268+392-24+34=510
+300 +200
+10
(2)381+45-81-23+55-77=300
+100
+300
-100
13. 作业3
答案:100 简答:凑整法:
14. 作业4
答案:424
简答:把这些数看成整百、整千,再调整. 2998297
30100300123
=4306=424++=++----
15. 作业5
答案:118
简答:把这些数看成整百、整千,再调整. 2659849
2651005021
=1153=118--=--+++
467-25-367+25=100.
100
866-99-1=766.
-100。

相关文档
最新文档