变压器常用的保护方式是什么
变压器差动保护相位补偿原理
变压器差动保护相位补偿原理差动保护是变压器保护中最常用的一种保护方式,它能够有效地检测和定位发生在变压器内部的故障。
然而,在实际应用中,差动保护系统可能会受到相位误差的影响,从而引起误动作或漏动等问题。
为了解决这个问题,差动保护系统引入了相位补偿技术。
相位补偿的原理是通过对差动保护系统中的信号进行精确的相位补偿,以消除或减小相位误差对保护系统的影响。
相位补偿技术通常包括主动补偿和被动补偿两种方式。
主动补偿是指在差动保护系统中引入专门的相位补偿装置,通过校正差动保护所接收到的信号的相位差,从而达到消除或减小相位误差的目的。
主动补偿可以通过控制设备来实现,比如调整信号的延迟时间或者相位角度,从而使得差动保护系统中的信号在相位上保持一致。
主动补偿通常需要较高的精度和灵活性来满足实际应用需求,但也会增加系统的复杂度和成本。
被动补偿是指利用变压器本身的特点,通过配置合适的接线和变压器参数来实现相位补偿。
相比主动补偿,被动补偿更加简单和经济,但对变压器的参数要求较高。
被动补偿通常要求变压器各相之间的电气参数(如绕组电阻、电抗等)对称,同时需要选择合适的接线方式,以确保差动保护中信号相位的一致性。
无论是主动补偿还是被动补偿,相位补偿的关键是准确地测量和校正差动保护系统中各信号的相位。
在实际应用中,常常采用数字差动保护装置来实现相位补偿。
数字差动保护装置可以通过采样和处理差动信号,准确地测量和计算出信号的相位差,并根据预设的补偿算法来进行相位补偿。
相对于传统的模拟差动保护装置,数字差动保护装置具有更高的测量精度和灵活性,可以满足更复杂的保护要求。
在实际工程中,应根据变压器的不同特性和运行要求选择适当的相位补偿方式。
同时,对于差动保护系统的设计、安装和调试要保证准确可靠,以确保差动保护系统的稳定运行和灵敏性。
此外,还应定期检测差动保护系统的性能,进行必要的维护和校准,以保证该系统在正常运行时能够提供可靠的保护。
总结起来,变压器差动保护中的相位补偿原理是通过对差动保护系统中接收到的信号进行相位校正,消除或减小相位误差的影响。
变压器的保护
变压器的保护变压器的保护本课程总体思路:一.变压器的故障、不正常状态及其保护方式(一)变压器的故障(二)变压器的不正常工作状态(三)变压器应装设的保护1、主保护2、外部相间短路的后备保护3、外部接地短路的后备保护4、其他的保护5、其他非电量保护二.瓦斯保护1、瓦斯保护基本原理2.瓦斯保护的评价三.变压器差动保护的基本原理及其不平衡电流1.由励磁涌流所产生的不平衡电流(1)励磁涌流的产生(2)励磁涌流特征,(3)克服励磁涌流对变压器纵差保护影响的措施:2、三相变压器接线产生的不平衡电流3.电流互感器计算变比与实际变比不同引起的不平衡电流4.由电流互感器变比误差及互感器型号、特性不同产生的不平衡电流5.变压器带负荷调节分接头位置改变所产生的不平衡电流。
四、比率制动特性的变压器差动保护五.变压器相间短路的后备保护1、过电流2、低电压启动的过电流保护3、复合电压启动的过电流保护4、负序电流保护+单相式电压保护5、阻抗保护六.变压器的接地保护(一)中性点直接接地变压器的零序电流保护(二)中性点可能接地或不接地运行时变压器的零序电流电压保护最基本的也是最简单的保护,只反应电流,因为灵敏度低,所以一般用于容量较小,电压较低的变压器,电流整定要躲开最大负荷电流(2)低电压启动的过电流保护增加了一个低电压条件,可以把电流原件的值降低,所以比过电流保护灵敏,如果过电流保护不能满足要求,我们可以采用这个(3)复合电压启动的过电流保护对于不对称短路是反应负序电压、对于对称短路是反应低电压,再加上过电流这个条件,就形成了复合电压启动的过电流保护,这个对于不对称短路的灵敏度就大大提高(1)负序电流及单相式低电压起动的过电流保护负序电流只能反应不对称故障,为了反应对称故障,需要加上单相式低电压起动的过电流保护,和(3)不同的是此保护只要有一相故障就可以动作(5)阻抗保护采用阻抗继电器形成阻抗保护3、外部接地短路的后备保护(1)零序电流保护发生接地故障会产生零序电流,所以零序电流可以反应接地故障(2)零序电流方向保护对于多电源变压器,比如说三绕组变压器两边有电源,就要加方向元件,方向是为了保证有选择性,另外自耦变压器零序电流相互流动,所以也要加方向原件(1)零序过电压保护接地时,出现零序电压,构成零序电压保护(2)间隙电流保护和零序电压保护变压器中性点是经间隙接地的,正常状态下,间隙是断开的,相当于中性点不接地变压器,当发生接地故障,产生过电压,若间隙发生击穿,变压器就变成中性点接地,间隙一击穿,就会有零序电流,我们可以采用间隙电流保护和零序电压保护,击穿时有间隙电流,不击穿时有零序电压,两者结合起来构成接地短路的后备保护4、其他的保护(1)过负荷保护反应变压器过负荷情况,只发信号(2)大容量变压器要装过励磁保护5、其他非电量保护轻瓦斯保护、油温高保护、冷却器故障、压力释放保护等二.瓦斯保护1、瓦斯保护基本原理:在变压器油箱内部发生故障(包括轻微的匝间短路和绝缘破坏引起的经电弧电阻的接地短路)时,由于故障点电流和电弧的作用,将使变压器油及其他绝缘材料因局部受热而分解产生气体,因气体比较轻,它们将从油箱流向油枕的上部。
变压器常用的保护方式有什么?
变压器的不正常工作状态主要是过负荷、外部短路从而引起的过电流、外部接地的短路引起中性点过电压、油箱漏油而引起的油面降低或冷却系统故障造成的温度升高等。此外,大容量变压器,由于它的额定工作磁通密度较高,工作磁密与电压频率是成正比,在过电压或低频率下运行的时候,可能会引起变压器的过励磁故障等。针对以上情况,大型变压器一般采用的方式为以下几种:
装设变压器过励磁保护的目的是为了检测变压器的过励磁情况,及时发出信号或动作于跳闸,使变压器的过励磁不超过允许的限度,防止变压器因过励磁而损坏。
本资讯来源于中国变压器交易网!
什么是零序电流保护
利用接地时产生的零序电流使保护动作的装置,叫零序电流保护。在电缆线路上都采用专门的零序电流互感器来实现接地保护。将零序电流互感器套地三芯电缆上,电流继电器接在互感器的二次线圈上,在正常运行或无接地故障时,由于电缆三相电流的向量之和等于零,零序互感器二次线圈的电流也为零(只有很小的不平衡电流),故电流继电器不动作。当发生接地故障时,零序互感器二次线圈将出现较大的电流,使电流继电器动作,以便发出信号或切除故障。
变压器常用保护方式五:过负荷保护
反应变压器对称过负荷的过负荷保护。
对于400kVA及以上的变压器,当台数并列运行或单独运行并作为其他负荷的备用电源时,应根据可能过负荷的情况装设过负荷保护。对自耦变压器和多绕组变压器,保护装置应能反应公共绕组及各侧过负荷的情况。变压器的过负荷电流,在大多数情况下,都是三相对称的,故过负荷保护只要接入一相电流,电流继电器来实现,并进过一定的延时作用于信号。选择保护安装在哪一侧时,要考虑它能够反映变压器所有各侧线圈过负荷情况。在无经常值班人员的变电所,必要时过负荷保护可动作于跳闸或断开部分负荷。
变压器差动保护校验方法
变压器差动保护校验方法变压器差动保护是变压器保护中常用的一种保护方式,它能够有效地检测变压器内部的故障,并及时采取措施,保护变压器的安全运行。
而差动保护的准确性和可靠性则需要通过校验方法进行验证。
变压器差动保护校验方法主要包括以下几个方面:一、校验差动保护系统的接线是否正确。
差动保护系统由变压器主绕组、变压器副绕组和差动保护装置组成,其接线的准确性对于保护系统的正常运行至关重要。
在校验中,需要检查差动保护装置与主、副绕组的连接是否正确,保证信号的准确传递。
二、校验差动保护装置的参数设置是否合理。
差动保护装置中包含了多个参数,如差动电流定值、时间定值等,这些参数的设置对于差动保护的灵敏度和可靠性有着重要影响。
在校验中,需要根据变压器的实际情况,结合差动保护装置的技术要求,合理设置差动保护装置的参数。
三、校验差动保护系统的测试功能是否正常。
差动保护装置通常具备自检功能和定期测试功能,通过这些功能可以检测差动保护系统是否正常工作。
在校验中,需要对差动保护装置进行自检,并定期进行测试,确保差动保护系统的测试功能正常。
四、校验差动保护系统的可靠性和稳定性。
差动保护系统的可靠性和稳定性是保证变压器正常运行的关键因素。
在校验中,需要进行一系列的实验和测试,如故障模拟测试、动作试验等,以验证差动保护系统的可靠性和稳定性。
通过以上校验方法,可以有效地验证变压器差动保护的准确性和可靠性。
在实际应用中,校验工作应该与差动保护装置的选型、安装和调试配合进行,确保差动保护系统的正常运行。
变压器差动保护校验方法是保证差动保护系统正常运行的重要环节。
通过正确的接线、合理的参数设置、正常的测试功能以及可靠的可靠性和稳定性测试,可以保证差动保护系统的准确性和可靠性。
在实际应用中,需要严格按照校验方法进行操作,并不断总结和改进,提高差动保护系统的性能和可靠性,以确保变压器的安全运行。
变压器防护做法及安全措施简易版
变压器防护做法及安全措施简易版变压器是电力系统中常用的电力设备,用于变换电压。
为了保证变压器的安全运行,需要采取一系列的防护措施。
下面是变压器防护做法及安全措施的简易版,详细介绍如下:1.外部防护措施:1.1.安装防护网:变压器周围应安装防护网,防止人员误碰触变压器。
防护网应具有足够的强度和稳定性,能够防止外部物体对变压器的磕碰。
1.2.设置警示标志:在变压器周围设置警示标志,提醒人们注意高压电设备的存在,以防止人员误入工作区域。
2.温度监测与控制:2.1.安装温度传感器:在变压器主绕组和冷却器上安装温度传感器,实时监测变压器的温度情况。
2.2.温度报警与保护:当变压器运行温度超过设定值时,应设立报警系统,及时发出警报,以便采取相应的措施。
同时,可以设置温度保护装置,当温度过高时自动切断电源,以保证变压器的安全运行。
3.绝缘防护:3.1.绝缘监测与维护:定期检测变压器的绝缘电阻,确保其处于正常范围内。
如果发现异常,应及时进行维修和更换。
3.2.绝缘检测仪器:配备绝缘电阻测试仪器,定期对变压器进行测试,以保证绝缘系统的可靠性。
3.3.绝缘涂层保护:在变压器绝缘部分涂覆绝缘涂层,增加其绝缘性能,防止绝缘击穿和漏电。
4.操作安全:4.1.操作规程培训:对使用变压器的人员进行操作规程的培训,使其熟悉操作流程和注意事项,确保操作的安全性。
4.2.安全设施齐全:变压器工作区域应设置相应的安全设施,如绝缘手套、绝缘毯、绝缘靴等,以保护人员的安全。
5.维护保养:5.1.定期维护保养:对变压器进行定期的维护保养,检查变压器的连接状态、冷却系统运行情况等,确保其正常运行。
5.2.清洁保养:保持变压器的清洁,定期清理变压器周围的灰尘和污垢,防止灰尘引发的绝缘故障。
5.3.油水维护:对变压器的油水系统进行定期维护,检查油位、油质等情况,及时更换老化的绝缘油,以确保变压器的正常运行。
综上所述,变压器防护做法及安全措施的简易版包括:外部防护措施、温度监测与控制、绝缘防护、操作安全和维护保养。
变压器主保护原理
变压器主保护原理
变压器主保护的原理是通过监测和保护变压器的重要参数,如电流、温度、压力等,来确保变压器的安全运行。
主要的保护原理如下:
1. 过流保护:通过监测变压器主回路的电流,当电流超过变压器额定电流的设定值时,保护装置会及时切断电源,防止变压器过载损坏。
2. 短路保护:当变压器主回路出现短路故障时,保护装置会通过电流变化的快速监测,迅速切断电源,以避免短路电流对变压器造成更大的损害。
3. 远/近端差动保护:差动保护是保护变压器的一种重要手段。
它通过对变压器两侧电流的差值进行监测,当差值超过设定值时,表示存在故障。
远/近端差动保护根据保护范围的不同,
可以区别监测变压器近端和远端的电流。
4. 温度保护:变压器的温度是影响其正常运行的重要因素。
温度保护装置通过探测变压器的温度,当温度超过安全范围时,会切断电源或发送警报信号,以防止变压器过热引发事故。
5. 油位保护:变压器的油位保护装置可以监测和控制变压器油箱中的油位。
当油位低于安全限制时,保护装置会切断电源,以防止变压器因油位过低而无法正常冷却。
除了以上主要的保护原理外,还有一些辅助的保护原理,如过
压保护、欠压保护、过载保护、接地保护等,它们通过监测和控制变压器运行过程中的各种参数,从而确保变压器的安全运行。
变压器保护整定中的差动保护的整定与校验方法
变压器保护整定中的差动保护的整定与校验方法在变压器保护装置中,差动保护是一种常见且重要的保护方式。
为了确保差动保护能够发挥其应有的保护作用,需要对差动保护进行整定和校验。
本文将从整定和校验两个方面介绍变压器差动保护的相关方法。
一、差动保护的整定方法差动保护的整定是为了确保在变压器正常运行时不发生误动作,同时能够在发生故障时能够准确可靠地动作。
以下是差动保护整定的一般步骤:1. 确定保护区域:根据变压器的接线图和实际情况,确定差动保护所要覆盖的保护区域。
通常情况下,保护区域应包括变压器的高压侧和低压侧。
2. 确定整定电流:根据变压器的额定电流和负载情况,确定差动保护的整定电流。
整定电流一般设置为变压器额定电流的百分之几,具体数值根据实际情况而定。
3. 确定动作特性:根据差动保护的动作特性曲线,确定差动保护的整定参数。
常见的动作特性曲线有梯形曲线、平板曲线等,具体选择应考虑变压器的性能和运行要求。
4. 确定整定参数:根据变压器的特性、接线方式和运行要求,确定差动保护的整定参数。
整定参数包括时间定值、灵敏系数等,可以根据经验值或者故障模拟等方法确定。
二、差动保护的校验方法差动保护的校验是为了验证整定参数的准确性和保护装置的可靠性。
以下是差动保护校验的一般步骤:1. 检查接线:首先,检查差动保护装置的接线情况,确保连接正确可靠。
同时,还应检查变压器主绕组和各侧绕组之间的连接,确保变压器内部电路的连通性。
2. 模拟故障:通过模拟故障的方式进行校验,例如在变压器的高压侧或低压侧接入故障电阻、故障电容等。
模拟故障时,需要记录差动保护的动作时间和动作电流,与整定参数进行对比。
3. 调整整定参数:如果校验结果与整定参数存在较大偏差,需要进行整定参数的调整。
可以通过调整灵敏系数、时间定值等参数来准确匹配差动保护的整定与校验结果。
4. 验证保护可靠性:校验完成后,需要进行保护可靠性的验证。
可以通过变压器的正常运行和模拟故障实验等方式来验证差动保护的可靠性和准确性。
变压器差动保护的基本原理
变压器差动保护的基本原理
变压器差动保护是一种常用的电力系统保护方式,主要用于检测变压器的内部故障。
其基本原理如下:
差动保护是通过比较变压器的输入端和输出端的电流差值来实现的。
正常情况下,输入端和输出端的电流应当相等,因为变压器是一个能量转换设备,输入端的电流应当等于输出端的电流(不考虑损耗)。
如果发生内部故障,例如短路或绕组断线,就会导致输入端和输出端的电流不相等。
差动保护系统的基本组成包括电流互感器、比率变压器、差动继电器和保护装置。
电流互感器用于测量输入端和输出端的电流,传输给差动继电器进行比较。
比率变压器用于调整输入端和输出端电流的比例,以匹配差动继电器的输入要求。
当差动继电器检测到输入端和输出端的电流差值超过设定的阈值时,保护装置将触发,切断故障区域的电源,防止进一步损坏。
变压器差动保护的优点是能够快速、准确地检测到内部故障,并迅速采取保护措施,保证电力系统的安全稳定运行。
主变纵联差动保护误跳闸几种原因分析
主变纵联差动保护误跳闸几种原因分析误跳闸是指在正常操作条件下,保护装置错误地将电力系统的一部分或全部切除电源。
主变纵联差动保护是一种常用的保护方式,用于保护电力系统的主变压器。
误跳闸的原因可能是多方面的。
以下是几种常见的主变纵联差动保护误跳闸的原因分析:1.外部干扰:当电力系统中存在外部干扰时,可能会导致差动保护误跳闸。
例如,周围环境中的闪电放电、强电磁场干扰等都可能引起保护装置的误动作。
这种情况下,应采取防雷措施或在保护装置周围设置屏蔽装置,以减小外部干扰对保护的影响。
2.信号误差:主变差动保护装置通过测量主变压器的高压侧和低压侧电流,进行差动计算并与设定值进行比较,从而判断系统是否存在故障。
然而,由于测量设备的精度限制、传输线路的质量等原因,测量的电流值可能存在误差。
当这些误差超过设定值时,差动保护可能会误动作。
因此,应定期校准测量设备,检查传输线路的质量并及时更换老化设备,以降低信号误差。
3.被保护设备故障:差动保护的作用是保护主变压器免受内部故障的损害。
然而,在主变压器内部发生故障时,例如主绕组短路、绝缘击穿等,电流分布会发生改变,导致差动保护误判为故障。
因此,在主变压器内部进行定期检查和维护,及时处理潜在的故障,可以减少误动作的概率。
4.设备参数变化:保护装置对电力系统进行保护时,需要设定一些参数,例如差动电流阈值等。
然而,由于主变压器的负载变化、温度变化等原因,电气参数可能会发生变化。
如果设定值与实际值不匹配,保护装置可能会误判为故障并跳闸。
因此,应定期检查和校准保护装置的参数,并根据实际情况进行调整。
5.人为操作错误:人为操作错误也可能导致差动保护误跳闸。
例如,误操作了与差动保护装置相关的设备,或者误操作了与主变压器相关的设备。
此外,对主变压器进行维护或检修时,可能会因为未按规定程序进行操作而引起保护装置的误动作。
因此,在操作保护装置前,应进行必要的培训和演练,并按照操作规程进行操作,以减少人为操作错误。
变压器常用的保护方式是什么
变压器常用的保护方式是什么Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998变压器常用的保护方式是什么变压器的不正常工作状态主要是过负荷、外部短路从而引起的过电流、外部接地的短路引起中性点过电压、油箱漏油而引起的油面降低或冷却系统故障造成的温度升高等。
此外,大容量变压器,由于它的额定工作磁通密度较高,工作磁密与电压频率是成正比,在过电压或低频率下运行的时候,可能会引起变压器的过励磁故障等。
针对以上情况,大型变压器一般采用的方式为以下几种:一、瓦斯保护:保护变压器的内部短路和油面降低的故障。
二、差动保护、电流速断保护:保护变压器绕组或引出线各相的相间短路、大接地电流系统的接地短路以及绕组匝间短路。
三、过电流保护:保护外部相间短路,并作为瓦斯保护和差动保护(或电流速断保护)的后备保护。
四、零序电流保护:保护大接地电流系统的外部单相接地短路。
五、过负荷保护:保护对称过负荷,仅作用于信号。
六、过励磁保护:保护变压器的过励磁不超过允许的限度。
变压器瓦斯保护反应变压器油箱内部各种故障和油面降低。
及以上油浸式变压器和及以上车间内油浸式变压器,均应装设瓦斯保护。
当油箱内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。
带负荷调压的油浸式变压器的调压装置,亦应装设瓦斯保护。
变压器一般采用的保护方式二:纵联差动保护或电流速断保护反应变压器引出线、套管及内部短路故障的纵联差动保护或电流速断保护。
保护瞬时动作于断开变压器的各侧断路器。
1. 对以下厂用变压器和并列运行的变压器,以及10MVA以下厂用备用变压器和单独运行的变压器,当后备保护时间大于时,应装设电流速断保护。
2. 对及以上厂用工作变压器和并列运行的变压器,10MVA及以上厂用备用变压器和单独运行的变压器,以及2MVA及以上用电流速断保护灵敏性不符合要求的变压器,应装设纵联差动保护。
变压器常用的保护方式是什么
变压器常用的保护方式是什么变压器的不正常工作状态主要是过负荷、外部短路从而引起的过电流、外部接地的短路引起中性点过电压、油箱漏油而引起的油面降低或冷却系统故障造成的温度升高等。
此外,大容量变压器,由于它的额定工作磁通密度较高,工作磁密与电压频率是成正比,在过电压或低频率下运行的时候,可能会引起变压器的过励磁故障等。
针对以上情况,大型变压器一般采用的方式为以下几种:一、瓦斯保护:保护变压器的内部短路和油面降低的故障。
二、差动保护、电流速断保护:保护变压器绕组或引出线各相的相间短路、大接地电流系统的接地短路以及绕组匝间短路。
三、过电流保护:保护外部相间短路,并作为瓦斯保护和差动保护(或电流速断保护)的后备保护。
四、零序电流保护:保护大接地电流系统的外部单相接地短路。
五、过负荷保护:保护对称过负荷,仅作用于信号。
六、过励磁保护:保护变压器的过励磁不超过允许的限度。
变压器瓦斯保护反应变压器油箱内部各种故障和油面降低。
及以上油浸式变压器和及以上车间内油浸式变压器,均应装设瓦斯保护。
当油箱内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。
带负荷调压的油浸式变压器的调压装置,亦应装设瓦斯保护。
变压器一般采用的保护方式二:纵联差动保护或电流速断保护反应变压器引出线、套管及内部短路故障的纵联差动保护或电流速断保护。
保护瞬时动作于断开变压器的各侧断路器。
1. 对以下厂用变压器和并列运行的变压器,以及10MVA以下厂用备用变压器和单独运行的变压器,当后备保护时间大于时,应装设电流速断保护。
2. 对及以上厂用工作变压器和并列运行的变压器,10MVA及以上厂用备用变压器和单独运行的变压器,以及2MVA及以上用电流速断保护灵敏性不符合要求的变压器,应装设纵联差动保护。
3. 对高压侧电压为330kV及以上变压器,可装设双重纵联差动保护。
4. 对于发电机变压器组,当发电机与变压器之间有断路器时,发电机装设单独的纵联差动保护。
变压器防护方案范文
变压器防护方案范文变压器是电力系统中的重要设备,用于将电能从一级变换成另一级,常用于变压器站和配电系统中。
为了保证变压器的安全运行和延长其使用寿命,需要采取一系列的防护措施。
本文将从外部环境保护、灭火系统、温度保护、过载保护、短路保护等方面进行阐述。
首先,变压器应设置在通风良好、干燥、清洁的环境中。
为了防止雨水和湿气侵蚀变压器,可以在其周围安装遮雨棚或加盖防水罩。
此外,还可以设置遮阳板,以减少太阳直射的影响。
在沿海地区或高海拔地区,由于气候状况极端,对变压器的防护工作更加重要,应选择抗腐蚀性能较好的材料,并增加防腐涂层的厚度。
其次,应配备有效的灭火系统。
变压器内部发生短路或过载时,容易引发火灾,因此安装灭火系统对于保护变压器的安全运行至关重要。
常见的灭火系统包括干粉灭火系统和气体灭火系统。
干粉灭火系统具有快速灭火、适用于各种火源的特点;气体灭火系统则具有无毒、无残留、不会对电气设备造成损伤等优点。
选择合适的灭火系统应根据变压器的使用环境、容量等因素进行综合评估。
温度保护是保护变压器的重要手段之一、变压器内部的绕组和油液会因电流负载而产生一定的热量,过高的温度将损害变压器的绝缘系统和电气性能。
因此,应安装温度控制器和温度传感器,实时监测变压器的温度,当温度超过设定值时,及时采取措施降温。
常用的控温手段有:风扇降温、水冷却、油冷却等。
控温系统的选择要综合考虑变压器的负载情况、环境温度、设备成本等因素进行。
过载保护措施是保护变压器的基本防护措施之一、过载会导致变压器温升过高,进而损坏变压器绕组和绝缘材料。
为了防止过载,应在变压器中安装过载保护器,当电流超过设定值时,自动切断电源,保护绕组的安全运行。
过载保护器的选择要考虑变压器的额定电流、短时过载能力、动稳定能力等因素。
最后,短路保护是变压器保护的重要环节。
短路会导致巨大的电流流过变压器,引发火灾甚至爆炸。
为了保护变压器不受短路的损害,应在变压器中设置短路保护器,当短路故障发生时,及时隔离故障部分,保护变压器的正常运行。
变压器差动保护校验方法
变压器差动保护校验方法变压器差动保护是电力系统中常用的一种保护方式,它在变压器的正常运行和保护方面起着重要的作用。
为了确保差动保护的准确性和可靠性,需要进行校验。
本文将介绍变压器差动保护校验的方法。
一、差动保护的基本原理变压器差动保护是利用变压器两侧电流的差值来判断变压器是否发生故障。
当变压器正常运行时,两侧电流的差值非常小,接近于零;而当变压器发生故障时,差流会显著增大。
通过监测差流的大小,可以及时判断变压器是否存在故障,并采取相应的保护措施。
二、差动保护校验的目的差动保护校验的目的是验证差动保护的准确性和可靠性,确保其在变压器故障时能够及时、准确地判断并进行保护动作。
校验的过程主要包括以下几个方面:差动保护装置的参数设置、差动电流互感器的校验、差动保护装置的动作试验等。
三、差动保护装置的参数设置差动保护装置的参数设置是差动保护校验中的重要环节。
首先需要根据变压器的额定容量、变比等信息,计算出合适的参数值。
具体的参数包括:差动电流互感器的一次/二次变比、滞后/超前动作角、差动电流保护装置的动作电流等。
在设置这些参数时,需要参考相关标准和规范,确保参数的合理性和正确性。
四、差动电流互感器的校验差动电流互感器是差动保护中的重要组成部分,其准确性直接影响到差动保护的可靠性。
为了保证差动电流互感器的准确性,需要进行定期的校验。
校验的方法主要有:比率校验、相位校验和零序校验。
比率校验是通过比对互感器的一次/二次电流比值,判断其准确性;相位校验是通过比对互感器的一次/二次电流相位差,判断其准确性;零序校验是通过比对互感器的零序漏电流,判断其准确性。
五、差动保护装置的动作试验差动保护装置的动作试验是校验差动保护的有效手段之一。
在试验时,需要模拟变压器的故障情况,观察差动保护装置的动作情况。
常用的试验方法包括:一次侧短路试验、二次侧短路试验和变压器内部故障试验。
试验时需要注意安全,确保试验过程的可靠性和准确性。
变压器的阻抗保护
变压器的阻抗保护变压器是电力系统中常见的电力设备之一,它起着将高压电能转换为低压电能的作用。
在变压器的运行过程中,为了保护变压器的安全运行,阻抗保护起着重要的作用。
阻抗保护是一种常用的变压器保护方式,它利用变压器的阻抗特性来实现对变压器的保护。
阻抗保护的原理是通过测量变压器的电流和电压,计算出变压器的阻抗值,并与设定的保护阻抗值进行比较,一旦阻抗值超过设定值,保护装置就会启动,切断故障电路,保护变压器免受损坏。
阻抗保护的主要作用是保护变压器免受过电流和短路故障的损害。
当变压器发生过电流或短路故障时,变压器的阻抗值会发生变化。
通过监测变压器的阻抗值,及时发现故障并进行保护,可以有效地避免变压器受到进一步的损坏。
阻抗保护的特点是灵敏可靠。
由于变压器阻抗保护是通过测量变压器的电流和电压来实现的,所以它对变压器的故障反应非常灵敏。
一旦变压器发生故障,阻抗保护装置能够迅速发现故障并进行保护。
同时,阻抗保护具有一定的可靠性,它能够有效地判别故障和非故障情况,避免误动作。
阻抗保护的优点还包括操作简便、成本低廉等。
阻抗保护装置的操作相对简单,只需要对保护阻抗值进行设定即可。
而且,阻抗保护装置的成本相对较低,适用于各种规模的变压器。
然而,阻抗保护也存在一些不足之处。
首先,阻抗保护对变压器的内部故障反应相对较慢。
由于阻抗保护是通过测量电流和电压的变化来判断故障的,所以对于一些内部故障,如绝缘损坏等,阻抗保护的灵敏度较低。
其次,阻抗保护在面对接地故障时的响应不够迅速。
对于接地故障,电流的变化较小,阻抗保护的灵敏度较低,可能导致保护不及时。
为了解决阻抗保护的不足,可以采用其他的变压器保护方式进行补充。
常见的变压器保护方式还包括差动保护、过电流保护等。
差动保护是通过测量变压器的输入和输出电流的差值来实现对变压器的保护。
过电流保护是通过测量变压器的电流来实现对变压器的保护。
这些保护方式可以与阻抗保护相结合,提高变压器的保护能力。
变压器常用的保护方式是什么
变压器常用的保护方式是什么Prepared on 24 November 2020变压器常用的保护方式是什么变压器的不正常工作状态主要是过负荷、外部短路从而引起的过电流、外部接地的短路引起中性点过电压、油箱漏油而引起的油面降低或冷却系统故障造成的温度升高等。
此外,大容量变压器,由于它的额定工作磁通密度较高,工作磁密与电压频率是成正比,在过电压或低频率下运行的时候,可能会引起变压器的过励磁故障等。
针对以上情况,大型变压器一般采用的方式为以下几种:一、瓦斯保护:保护变压器的内部短路和油面降低的故障。
二、差动保护、电流速断保护:保护变压器绕组或引出线各相的相间短路、大接地电流系统的接地短路以及绕组匝间短路。
三、过电流保护:保护外部相间短路,并作为瓦斯保护和差动保护(或电流速断保护)的后备保护。
四、零序电流保护:保护大接地电流系统的外部单相接地短路。
五、过负荷保护:保护对称过负荷,仅作用于信号。
六、过励磁保护:保护变压器的过励磁不超过允许的限度。
变压器瓦斯保护反应变压器油箱内部各种故障和油面降低。
及以上油浸式变压器和及以上车间内油浸式变压器,均应装设瓦斯保护。
当油箱内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。
带负荷调压的油浸式变压器的调压装置,亦应装设瓦斯保护。
变压器一般采用的保护方式二:纵联差动保护或电流速断保护反应变压器引出线、套管及内部短路故障的纵联差动保护或电流速断保护。
保护瞬时动作于断开变压器的各侧断路器。
1. 对以下厂用变压器和并列运行的变压器,以及10MVA以下厂用备用变压器和单独运行的变压器,当后备保护时间大于时,应装设电流速断保护。
2. 对及以上厂用工作变压器和并列运行的变压器,10MVA及以上厂用备用变压器和单独运行的变压器,以及2MVA及以上用电流速断保护灵敏性不符合要求的变压器,应装设纵联差动保护。
3. 对高压侧电压为330kV及以上变压器,可装设双重纵联差动保护。
变压器差动保护作用及原理是什么
变压器差动保护作用及原理是什么1、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35kV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。
简单地讲,就是输入的两端TA之间的设备。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作;差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器做主保护。
2、保护原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。
差动保护把被保护的变压器看成是一个接点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。
在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的;从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。
当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过程序的运行,各侧电流存在的相位差由软件自动开展校正,自动计算出各侧电流IH-(IM- IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流),则保护不动作。
当变压器内部发生相间或匝间短路故障时,两侧(或三侧)向故障点提供短路电流,在差动回路中由于IM或IL改变了方向或等于零,流入差动继电器的电流IH-(IM- IL)不再接近于零;当差动电流大于差动保护装置的整定值时,保护动作,将被保护变压器的各侧断路器跳开,使故障变压器断开电源。
电力系统主设备保护概述
电力系统主设备保护概述1. 引言在电力系统中,主设备的保护是确保电力系统平安运行的重要环节。
主设备包括变压器、发电机、母线、断路器等重要组件。
保护措施的有效实施和运行对于系统的可靠性和稳定性至关重要。
本文将对电力系统主设备保护进行概述,并介绍主要的保护设备和功能。
2. 变压器保护变压器是电力系统中非常重要的设备,用于改变电压的大小。
为了保证变压器的平安运行,需要对其进行保护。
常见的变压器保护设备包括差动保护、油温保护、短路保护等。
差动保护是最常用的一种变压器保护装置,通过对变压器两侧电流进行比拟,及时发现并切除故障线路,保护变压器不受损坏。
油温保护通过监测变压器内部油温,当油温超过设定值时,自动切除电源,防止变压器过热。
短路保护用于检测变压器绕组的短路故障,及时切除电源,防止故障扩大。
3. 发电机保护发电机是电力系统中的能量转换设备,其保护同样非常重要。
发电机保护主要包括差动保护、过流保护、欠频保护等。
差动保护是最常见的发电机保护装置,通过对发电机定子电流、励磁电流进行比拟,及时发现并切除故障线路,保护发电机。
过流保护用于检测发电机电流超过额定值的情况,及时切除电源,防止电流过载引起发电机损坏。
欠频保护用于监测发电机输出频率,当频率过低时,自动切除电源,防止发电机超负荷运行。
4. 母线保护母线是电力系统中连接各个主要设备的重要局部,其保护同样重要。
常见的母线保护设备包括差动保护、电压保护、过流保护等。
差动保护通过对母线两侧电流进行比拟,及时切除故障线路,保护母线。
电压保护用于监测母线电压,当电压异常时,自动切除电源,防止电压过高或过低对母线造成损害。
过流保护用于检测母线电流超过额定值的情况,及时切除电源,防止电流过载引起母线损坏。
5. 断路器保护断路器是电力系统中用于控制和保护设备的关键局部,其保护同样至关重要。
常见的断路器保护设备包括过电流保护、短路保护、欠频保护等。
过电流保护用于监测断路器电流,当电流超过额定值时,自动切除电源,防止电流过载引起断路器损坏。
变压器保护定值整定计算方法
变压器保护定值整定计算方法变压器是电力系统中最为重要的设备之一,它通过变换电压和电流的比值,实现了电能在输电和配电过程中的有效传输。
在电力系统中,变压器的保护是至关重要的,一旦变压器发生故障,不仅会导致电力系统的瘫痪,还会给变压器本身造成严重的损坏。
因此,定期进行变压器保护定值整定是电力系统运行中不可或缺的一环。
变压器保护定值整定是指根据实际变压器的性能和运行条件,确定相应的保护装置的整定值,以保证变压器在正常运行和故障状态下都能得到可靠的保护。
常见的变压器保护装置包括差动保护、继电保护和热保护等,下面将以差动保护为例,介绍变压器保护定值整定的方法。
首先,差动保护是一种经典的变压器保护方式,它通过比较变压器的进线和出线电流,判断变压器是否发生内部故障。
差动保护中常用的保护原理包括直流差动保护和交流差动保护,其中直流差动保护适用于小型变压器,交流差动保护适用于大型变压器。
以下以交流差动保护为例进行定值整定计算。
交流差动保护的基本原理是根据电流的相量和幅值来比较进出线电流,当差流超过设定的定值时,保护装置将动作。
定值整定计算的关键是确定差流保护的动作定值和动作时间。
首先,对于变压器的不同运行条件,需要选择不同的动作定值。
常见的运行条件包括变压器的额定容量、容量变比、对称短路容量和零序容量等。
根据变压器的额定容量和容量变比,可以计算出进线和出线侧电流的变比值。
根据变压器的对称短路容量和零序容量,可以计算出进出线电流的最大允许差值。
根据变压器的性能曲线,可以进一步确定差流保护的动作定值。
其次,对于不同类型的故障,需要选择不同的动作时间。
常见的故障类型包括内部故障、外部故障和过电流故障等。
在定值整定计算中,一般会根据实际情况选择适当的动作时间,以实现快速故障检测和隔离保护。
最后,为了确保差动保护的可靠性,还需要进行整定参数的验证。
通过实际测试和调试,可以验证差动保护的动作定值和动作时间是否符合设计要求。
如果发现任何偏差或问题,应及时进行调整和修正。
变压器继电保护原理
变压器继电保护原理
变压器继电保护是为了防止变压器发生故障而采取的保护措施。
其原理主要包括电压保护、电流保护和温度保护三个方面。
电压保护是指当变压器的电压异常时,继电器会及时动作,切断变压器的电源,保护变压器不受电压过高或过低的损伤。
常用的电压保护方式有过压保护和欠压保护。
过压保护是通过检测变压器输入侧的额定电压是否超过设定的阈值来实现的,一旦超过阈值,继电器会动作,切断电源。
欠压保护则是检测变压器的输入侧电压是否低于设定的阈值,如果低于则继电器动作。
电流保护是为了防止变压器的电流超过额定值而引起变压器过载,造成变压器损坏。
电流保护常用的方式有过流保护和短路保护。
过流保护是通过检测变压器的输入或输出侧电流是否超过额定值来实现的。
当电流超过额定值时,继电器会动作,切断电源。
短路保护则是通过检测电流是否突然增大到异常高的数值来实现的,一旦检测到短路故障,继电器会动作。
温度保护是为了避免变压器过热引起的故障。
变压器继电保护常用的温度保护方式是通过变压器上设置的温度传感器来监测变压器的温度。
当温度超过设定的阈值时,继电器会动作,切断电源,以保护变压器不受过热的损伤。
综上所述,变压器继电保护原理包括电压保护、电流保护和温度保护三个方面,通过检测电压、电流和温度的异常情况,继电器及时动作,切断电源,以保护变压器的安全运行。
主变差动保护的原理
主变差动保护的原理主变差动保护是电力系统中常用的一种保护方式,主要用于保护高压主变压器。
其原理是通过比较同一个主变压器的不同位置的电流,来判断是否存在电流差动,从而判断是否存在故障。
一、原理介绍:1. 基本原理:主变差动保护的基本原理是通过差动电流比较来实现的。
将主变线圈分为两部分,并将其分别与差动保护装置相连。
当主变器的两侧绕组之间的电流没有故障时,主变保护装置的两个继电器的吸引线圈电流应该相等,继电器保持正常状态。
当主变压器受到内部或外部故障的影响时,电流差会出现在主变压器的绕组中,从而导致差动电流的改变,差动保护装置的动作。
2. 故障检测:主变差动保护应该能够快速、准确地检测到发生的故障,并及时动作切断故障区域。
差动保护装置通常通过采用不同的故障标志,如过电流、零序电流、负序电流等来进行故障的判断。
二、工作原理:1. 基本工作原理:主变差动保护的工作原理主要是通过比较主变压器的两个继电器的吸引线圈电流,来判断差动电流是否存在,以及电流差是否超出设定范围。
一般来说,差动保护装置包含两种电流检测通路:正序通路和零序通路。
2. 正序通路:正序通路是用来检测主变压器的正序差动电流的,它采用主变压器两侧的正序电流进行比较。
当主变电流存在差异时,正序通路中的差动保护装置会发出信号,并启动继电器动作,切断故障电路。
3. 零序通路:零序通路是用来检测主变压器的零序差动电流的,并且主要用于检测主变压器的接地故障。
当主变电流发生不平衡时,零序通路中的差动保护装置会发出信号,并启动继电器动作,切断故障电路。
4. 继电器:继电器是主变差动保护装置的核心元件,它通过电磁原理来工作。
继电器保护装置通常由两个继电器构成,分别连接到主变压器的两个绕组上。
当两个继电器的电流差异超出设定范围时,继电器会发出信号,并切断故障电路。
三、应用范围:主变差动保护广泛应用于各类工业和民用电力系统中,特别是在需要对主变压器进行保护的情况下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器常用的保护方式是什么
变压器的不正常工作状态主要是过负荷、外部短路从而引起的过电流、外部接地的短路引起中性点过电压、油箱漏油而引起的油面降低或冷却系统故障造成的温度升高等。
此外,大容量变压器,由于它的额定工作磁通密度较高,工作磁密与电压频率是成正比,在过电压或低频率下运行的时候,可能会引起变压器的过励磁故障等。
针对以上情况,大型变压器一般采用的方式为以下几种:
一、瓦斯保护:保护变压器的内部短路和油面降低的故障。
二、差动保护、电流速断保护:保护变压器绕组或引出线各相的相间短路、大接地电流系统的接地短路以及绕组匝间短路。
三、过电流保护:保护外部相间短路,并作为瓦斯保护和差动保护(或电流速断保护)的后备保护。
四、零序电流保护:保护大接地电流系统的外部单相接地短路。
五、过负荷保护:保护对称过负荷,仅作用于信号。
六、过励磁保护:保护变压器的过励磁不超过允许的限度。
变压器瓦斯保护反应变压器油箱内部各种故障和油面降低。
0.8MVA及以上油浸式变压器和0.4MVA及以上车间内油浸式变压器,均应装设瓦斯保护。
当油箱内故障产生轻微瓦斯或油面下降时,应瞬
时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。
带负荷调压的油浸式变压器的调压装置,亦应装设瓦斯保护。
变压器一般采用的保护方式二:纵联差动保护或电流速断保护
反应变压器引出线、套管及内部短路故障的纵联差动保护或电流速断保护。
保护瞬时动作于断开变压器的各侧断路器。
1. 对 6.3MVA以下厂用变压器和并列运行的变压器,以及10MVA 以下厂用备用变压器和单独运行的变压器,当后备保护时间大于0.5s 时,应装设电流速断保护。
2. 对6.3MVA及以上厂用工作变压器和并列运行的变压器,
10MVA及以上厂用备用变压器和单独运行的变压器,以及2MVA及以
上用电流速断保护灵敏性不符合要求的变压器,应装设纵联差动保护。
3. 对高压侧电压为330kV及以上变压器,可装设双重纵联差动
保护。
4. 对于发电机变压器组,当发电机与变压器之间有断路器时,
发电机装设单独的纵联差动保护。
当发电机与变压器之间没有断路器时,100MVA及以下发电机与变压器组共用纵联差动保护;100MVA以上发电机。
除发电机变压器共用纵联差动保护外,发电机还应单独装设纵联差动保护。
对200~300MVA的发电机变压器组亦可在变压器上增
设单独的纵联差动保护,即采用双重快速保护。
反应变压器外部相间短路并作瓦斯保护和纵联差动保护(或电流速断保护)后备的过电流保护、低电压起动的过电流保护、复合电压起动的过电流保护、负序电流保护和阻抗保护,保护动作后应带时限动作于跳闸。
1、过电流保护宜用于降压变压器。
2、复合电压起动的过电流保护,宜用于升压变压器、系统联络变压器和过电流保护不满足灵敏性要求的降压变压器。
3、负序电流和单相式低电压起动过电流保护,可用于63MVA及以上升压变压器。
4、当采用上述2、3的保护不能满足灵敏性和选择性要求时,可采用阻抗保护。
变压器常用保护方式四:零序电流保护
反应大接地电流系统中变压器外部接地短路的零序电流保护。
110kV及以上大接地电流系统中,如果变压器中性点可能接地运行,对于两侧或三侧电源的升压变压器或降压变压器应装设零序电流保护,作变压器主保护的后备保护,并作为相邻元件的后备保护。
什么是零序电流保护
利用接地时产生的零序电流使保护动作的装置,叫零序电流保护。
在电缆线路上都采用专门的零序电流互感器来实现接地保护。
将零序电流互感器套地三芯电缆上,电流继电器接在互感器的二次线圈上,在正常运行或无接地故障时,由于电缆三相电流的向量之和等于零,零序互感器二次线圈的电流也为零(只有很小的不平衡电流),故电流继电器不动作。
当发生接地故障时,零序互感器二次线圈将出现较大的电流,使电流继电器动作,以便发出信号或切除故障。
变压器常用保护方式五:过负荷保护
反应变压器对称过负荷的过负荷保护。
对于400kVA及以上的变压器,当台数并列运行或单独运行并作
为其他负荷的备用电源时,应根据可能过负荷的情况装设过负荷保护。
对自耦变压器和多绕组变压器,保护装置应能反应公共绕组及各侧过负荷的情况。
变压器的过负荷电流,在大多数情况下,都是三相对称的,故过负荷保护只要接入一相电流,电流继电器来实现,并进过一定的延时作用于信号。
选择保护安装在哪一侧时,要考虑它能够反映变压器所有各侧线圈过负荷情况。
在无经常值班人员的变电所,必要时过负荷保护可动作于跳闸或断开部分负荷。
变压器保护方式六:过励磁保护
反应变压器过励磁的过励磁保护。
目前的大型变压器设计中,为了节省材料,降低造价,减少运输重量,铁心的额定工作磁通密度都设计得较高,约在1.7~1.8 T,接近饱和磁密(1.9~2 T),因此在过电压情况下,很容易产生过励磁。
另因磁化曲线比较“硬”,在过励磁时,由于铁心饱和,励磁阻抗下降,励磁电流增加的很快,当工作磁密达到正常磁密的1.3~1.4倍时,励磁电流可达到额定电流水平。
其次由于励磁电流是非正弦波,含有许多高次谐波分量,而铁心和其他金属构件的涡流损耗与频率的平方成正比,可引起铁心、金属构件、绝缘材料的严重过热,若过励磁倍数较高,持续时间过长,可能使变压器损坏。
因此,高压侧为500kV 的变压器宜装设过励磁保护。
装设变压器过励磁保护的目的是为了检测变压器的过励磁情况,及时发出信号或动作于跳闸,使变压器的过励磁不超过允许的限度,防止变压器因过励磁而损坏。
本资讯来源于中国变压器交易网!。