layoutdesign
LAYOUT设计一般规则
1. 一般规则1.1 PCB板上预划分数字、模拟、DAA信号布线区域。
1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3 高速数字信号走线尽量短。
1.4敏感模拟信号走线尽量短。
1.5 合理分配电源和地。
1.6 DGND、AGND、实地分开。
1.7 电源及临界信号走线使用宽线。
1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2. 元器件放置2.1 在系统电路原理图中:a) 划分数字、模拟、DAA电路及其相关电路;b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;c) 注意各IC芯片电源和信号引脚的定位。
2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3 初步划分完毕后,从Connector和Jack开始放置元器件:a) Connector和Jack周围留出插件的位置;b) 元器件周围留出电源和地走线的空间;c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;b) 将元器件放置在数字和模拟信号布线区域的交界处。
2.5 放置所有的模拟器件:a) 放置模拟电路元器件,包括DAA电路;b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;d) 对於串行DTE模块,DTE EIA/TIA-232-E系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如电容等阻流圈和。
PCB Layout Design
– Note Loop Area of Dynamic Currents – Keep as small as practical – Place smaller capacitors closer to components – Use Multiple Layers
– Connect Thermal Tab unless otherwise specified
• Thermal tab capacitively coupled to entire IC
Thermal Pads
• Dissipate Heat
– Surface Copper
• Extend past IC body
Gate Drives – Hidden Power Loops
• Pulse Current
– 0A – 2A – 0A – Sensitive to Inductance
• 10mm Trace & Return • 6V/50nH = 0.12A/ns • 16ns Rise/Fall time
Schematic Representation of Grounding
Ground Noise
• Impact of noise in the ground between the IC ground and the ground termination of the control components.
• Tight Loops, Wide Traces • Parallel Caps – Smallest should be closest
layout工作总结
layout工作总结
Layout工作总结。
在工作中,layout设计是非常重要的一环。
它不仅仅是为了美化页面,更是为
了提高工作效率和用户体验。
在过去的一段时间里,我在layout设计方面取得了一些成绩,同时也遇到了一些挑战。
在此,我想总结一下我的工作经验,分享一些我所学到的东西。
首先,我发现在进行layout设计时,与其他部门的沟通非常重要。
比如与产品
经理沟通用户需求,与开发人员沟通技术可行性等。
只有与其他部门密切合作,才能确保layout设计不仅美观,还能满足用户需求并且易于实现。
其次,我发现了一些layout设计的常见问题。
比如过于复杂的布局会导致页面
加载速度变慢,影响用户体验;不合理的排版会使得信息难以获取,影响用户使用;不同屏幕尺寸下的适配问题等等。
因此,在layout设计中,需要考虑到各种因素,确保页面能够在各种情况下都能够正常显示和使用。
另外,我也学会了一些layout设计的技巧。
比如采用网格系统进行排版,可以
使得页面更加统一和美观;采用响应式设计,可以使得页面在不同设备上都能够有良好的显示效果;合理运用颜色和字体,可以提升页面的视觉吸引力等等。
这些技巧在我的工作中发挥了很大的作用,使得我的layout设计更加专业和高效。
总的来说,layout设计是一项非常重要的工作,它直接关系到用户体验和工作
效率。
在过去的工作中,我积累了一些经验,也遇到了一些挑战。
我相信,在不断的学习和实践中,我会变得更加优秀。
希望我的总结能够对其他layout设计师有所帮助,也希望在未来的工作中能够取得更好的成绩。
eetop_layout design rule
版图几何设计规则
版图几何设计规则
版图几何设计规则可看作是对光刻掩 模版制备要求。 一般来讲,设计规则反映了性能和成 品率之间可能的最好的折衷。规则越保 守,能工作的电路就越多(即成品率越 高);然而,规则越富有进取性,则电路 性能改进的可能性也越大,这种改进可 能是以牺牲成品率为代价的。
版图几何设计规则
(1)微米规则 (2)λ规则
版图几何设计规则
大部分设计规则都可以归纳入以下描 述的四种规则之一。 (1)最小宽度 (2)最小间距 (3)最小包围 (4)最小延伸
版图几何设计规则
设计规则(硅栅)举例:
版图几何设计规则
版图几何设计规则
版图几何设计规则
版图几何设计规则
版图几何设计规则
版图几何设计规则
版图几何设计规则
版图几何设计规则
版图几何设计规则
版图几何设计规则
版图几
layout的几种意思
layout的几种意思
layout有如下几种意思:
1.布局、设计:这主要是在工程领域中,表示物体或者空间的整体安排和设计,包括物体
的位置、形状、大小等。
2.排版、版面设计:在出版领域中,layout通常指代排版和版面设计,这是出版流程中一
个重要的环节,目的是让文字、图片等内容以美观、易读的方式呈现在纸张或电子设备上。
3.规划、计划:在某些语境下,layout也可以表示规划或计划,例如项目layout、生产layout
等,用来描述一个计划或项目的整体安排和实施方案。
4.展示方式:在展示设计或展览领域中,layout通常指代展品的摆放方式和展示效果,包
括展台设计、展板布局等。
以上为“layout”的一些主要意思,这个词的含义会因上下文的不同而有所变化,建议根据具体的语境进行理解。
layout design
画一个standard cell 最重要的是要小、快、工整,必免不必要的电容效应 ( t= RC )一般而言,要达到小、快、工整最重要的是floor plan,所以在拿到电路图的一开始要先考率清楚输出入的位置再决定layout 的方式一般输出入以 1 对 1 为最常见也最为简单习惯上电路会再修改增加电路都是输出入两部份所以习惯都是将输出入的MOS放置在最两侧以方便未来的modify.其次就是1对多的输出入一般就会考虑它未来会不会再modify成其它的电路部份做优先考虑会的部份一定优先放置最外侧,可能就会将输入放在中间两两对称的输出放置在两侧,如果是多输入一输出,则还是会考虑将输出放置在最外侧以方便未来改size,增加电路优先考虑‧其次是常见的是clock互换电路,也就是 a 和 a_ 的电路其实整个电路是一样的只是clock线互换一般常见错误的 layout 是将clock的 Inverter 放置在电路中间造成由a 改成 a_ 时其它MOS会接不到换线的讯号,或是改用polygate来接线,将会影响clock的讯号速度所以最好floor plan时可以将ck_inverter放置在最外侧,换线时直接改ck_inverter的方向或layout就好了,也没有放置中间时和其它和临近的DRC Rule 问题STD layout 注意事项0. Abut 共享电源端的Source node和所有cell上下左右 1/2 的DRC Rule1. CMOS 间的diffusion 要最近 (如此CMOS反应会快)2. polygate 要少(diffusion 拉近,polygate就会相对减少)3 poly contact area 要最小4 讯号Drain node 的oxide 最好是最小面积,最多contact 数(减少电容效应,并联电阻R//R= 1/2 R)5 接VDD 和 GND的Source node 的面积可大就大点,增加电容量,contact 越多越好,减少电阻( Q=CV C= m* A/l*l)6. 量测好每一个 contact 到 contact间的oxide间距相等,达到电阻值都相同,电流量一致如: .18 制程中的 widthwidth = 1u contact=.22u[1-(0.22*2)]/4=0.14则contact 之间就有.28u间距,contact到oxide edge 就有.14u7 避免用poly gate 接线,可用poly contact 和 metel 换线就换8 .若有折根数的MOS以偶数根为主,信号端放置中间,电源端则放两侧,如此信号端的面积小速度快9 折根后的width 要先考虑9.1 大小根数对称9.2 考虑contact数量如 : z size NMOS width=3.3 ,1.2 和 0.9都可打下2颗co 数 (1) 就会折成 1.2 1.2 0.9 (可打下一颗sub-co)PMOS width=4.8 (打下3颗 co 数)(2) 就会折成 1.7 1.7 1.4(同上)(3) width= 5.0 ~> 1.8 1.8 1.49.3 考虑可以打下一颗substrate 的width10. 画完后,先检查有无Metal绕远路的现像11. 包Metal 是否过多过少 , Metal 线环绕太大圈12. 连接vdd和gnd的Metal 最好是大边对大边包,增加电流量降低电阻值13. 不同讯号和或电位的Metal 间的距离在允许下,能离远就远或分均14 . Metal 包讯号线的contact能大小边就大小边,若能多打contact就采用小边包大边15. poly endcap 一定要最短16. substrate co 最好多打,且最好能作butte,增加电荷量,电流量也会比教多,电阻也小,metal area小17. substrate co 最好接近device18. substrate co 最好贴近prbound region ,确保Abut邻近cell是没有su bstrate的问题19.pin metal 尽量不要和contact 有重迭(overlap)一起,因为该contact 比较容易溶化20.pin metal 尽量不要放置在最上和下一条grid 上,离电源端太近易有噪声电容21.pin metal area 最好是正方形(square),刚刚大小,除非是source 和 dr ian 端,就不必遵循22. ViaBlockage 是要避免Apllo 将pin点出在contact上所加上的保护层,所以只需加在grid可能和contact overlap处就可以23. 多加上的ViaBlockage layer可能会造成 P&R 上的出pin问题,所以不要多加ViaBlackage 在metal 上24. 最后必须check所有cell是flatten 并且是Merge25. check creat contact 内的symbolic 是否被移除(remove symbol)26. check Metal Text 是否和pin metal在一起(在z cell中常发现未在一起)27. check ViaBlockage 和 pin metal 是否overlap28.About其它cell 看看有无DRC Rule29 .check pin metal 下有无metal draw layer,没有要加上30. run program of Caliber's DRC and LVS and ERC31. run program of Random 50000 cell32. 输出端的inverter 的oxide 一定要尽量小,如此输出才快33. 输出端的metal如果可以尽量和metal 包pin一样大,如此电流密度才大34. metal间的间距尽量balance 小可减少metal 电容——IC设计基础(流程、工艺、版图、器件)——1、我们公司的产品是集成电路,请描述一下你对集成电路的认识,列举一些与集成电路相关的内容(如讲清楚模拟、数字、双极型、CMOS、MCU、RISC、CISC、DSP、ASIC、FPGA 等的概念)。
Layout设计原理和方法
Layout设计原理和方法1)设施布置的主要目标1.符合工艺过程的要求。
尽量使生产对象流动顺畅,避免工序之间的往返交错,使设备投资最小,生产周期最短2.最有效的利用空间。
要是场地利用达到适当的建筑占地系数(建筑物、构筑物占地面积与场地总面积的比率),是建筑物内部设备的占有空间和单位制品的占有空间较小3.物料搬运费用最少。
要便于物料的输入,使产品、废料等物料的运输路线尽量短捷,并尽量避免运输的往返和交叉。
4.保持生产和安排的柔性。
使之可以使因产品需求的变化、工艺和设备的更新及扩大生产能力的需要5.适应组织结构的合理化和管理的方便。
使有密切关系或性质相近的作业单位布置在一个区域幷就近布置,甚至合幷在同一个建筑物内。
6.为职工提供方便、安全、舒适的作业环境。
使之符合生理、心理的要求,为提高生产效率和保证职工身心健康创造条件。
2)设施布置的基本内容设施布置包括以下的内容(见后页图示):1 主要生产地点:包括成品、半成品或处于生产准备阶段的主要原料车间。
如:各Module、包装线、前加工等等2辅助生产地点:为主要生产地点服务的其它生产地。
如:ICT治具室等。
3动力设施:如配电间4仓库及料场:如原材料仓、半成品仓、待检仓、不良仓、贵重物品仓等5工程技术管线:如上下水道、动力管网等6运输设施:包括管道、通道、吊装平台、机械化运输设施等。
7行政福利设施:如办公室、医务室、食堂等8厂区环境:如大门、围墙及美化绿化等3)设施布置决策的依据1 布置的结果应达到的目标是使存储费用、劳动力、闲置设备和保管费用保持在一定的水平下,从而达到预期的产量和利润2 生产需求量的预测对布置设计决策的“目标确定”有着重要意义3 加工过程的要求是设施布置决策重要依据4 第四个主要依据是要进行布置的建筑物或场所的有效空间总数。
4)机器设备布置原则1 按照人机关系布置原则(1)根据机器与人之间的信息交换频率布置机器。
将使用频率高的机器布置在离操作者近的地方.(2)根据信息交换的重要程度布置机器。
做layout的流程 -回复
做layout的流程-回复做layout的流程,指的是设计和规划页面或空间的布局。
在进行任何设计工作之前,一个好的layout是至关重要的,因为它直接影响到用户体验和信息的传达。
在以下文章中,将详细解释做layout的流程,包括准备工作、调研、设计和评估。
一、准备工作在开始任何设计工作之前,了解项目的背景和目标至关重要。
这包括了解客户的需求、目标受众、品牌定位以及所涉及的内容和功能。
1. 确定项目需求:与客户或项目团队进行会议,讨论项目的目标、功能和设计需求。
了解他们希望通过layout传达的信息,并确定所有必需的元素和功能。
2. 集合相关资料:收集与项目相关的资料,包括图片、文本内容、品牌标准或素材等。
这些资料将成为设计过程中的参考和素材。
3. 确定页面或空间要求:根据项目需求确定页面或空间的尺寸、比例和形状。
这可以根据所用平台或设备的要求来确定,也可以根据设计的独特需求来调整。
二、调研在设计layout之前,需要进行调研来了解相关的行业趋势和最佳实践。
这将帮助你了解用户喜好和常见的效果,以便制定一个合适的设计方案。
1. 研究目标受众:了解目标受众的特点、习惯和喜好。
这可以通过市场分析、用户调查、用户反馈和竞争对手分析等方式获得。
2. 调研相关行业:研究和了解相关行业的最新趋势和设计方法。
这可以通过阅读行业报告、参观竞争对手网站或空间,或者参加行业会议和展览等途径获取。
3. 收集灵感和参考资料:浏览设计网站、画廊和专业平台,收集与项目相关的灵感和参考资料。
这有助于你了解不同的设计风格和创意。
三、设计在进行设计过程之前,先画出草图来规划页面或空间的结构和内容分布。
这有助于你在开始设计时有一个清晰的目标和方向。
1. 制定结构和页面层次:根据项目需求,规划页面或空间的基本结构和内容分布。
确定主导元素、导航栏、内容区域和页脚等。
2. 创建草图或线框图:使用纸笔或设计软件,制作页面或空间的草图或线框图。
Layout Design
Return-policy Travel model
返回策略下的Travel模型 总距离(the total expected travel distance )Lr 是 within aisle部分LrI 和across aisles部分LrE的和,即 Lr= LrI+LrE
其中:LrI=v*(wE+2*lI*R(n)) within aisle部分LrI中假设每一个廊道进入的概率是 相同的
Example
解:由题可知l=1.r=3 step1: 路线 ,花费 路线 ,花费
Example
step2: 路线 = 是
同理: 路线 = 是
= (花费
(花费
)或者 )选择较小的,于
=
(花费 (花费
)或者 )选择较小的,于
Example
step3: 路线 :
(花费
(花费
)或者 ) 取两者中较小的,
定义: 定义最左边起始子通道编号l,最右边结束子通道 编号r , 为从起始子通道l到子通道j的线路,存在 两种情况:
结束时在子通道j的末端 结束时在子通道j的前端
combined heuristic
从子通道j-1到子通道j的方法有以下几种: 从子通道的末端通过 从子通道的前端通过 在子通道j中拣选产品的方式有以下几种: 贯穿整个通道 不走此通道 从此通道的前端进去和出来 从此通道的末端进去和出来
The Travel model
假设: 最小化travel time就是最小化水平运行时间;廊道 很窄,穿越廊道的时间比起沿着廊道拣选货物的 时间是微不足道的; 最小化horizon travel time与系统的相关参数有关: 比如一次拣选操作的拣选单位,基于COI的ABC 斜率(the COI-based ABC curve),仓库布局(货 位和廊道的数量、长度、宽度)。
Layout design
价 值 流 程 图
11
Metals of China
2. Layout设计的一般流程 Layout design basic procedure
Layout设计
最终建筑布局计划
头脑风暴
12
Metals of China
2. Layout设计的一般流程 Layout design basic procedure
3. 布局设计 Layout design
功能模块面积确认
找出各区域要求条件
-高度:设备/材料/人搬运设备的安装,运转的条件 -基础:设备或设施所要求的支持力,防震的要求
-照明:为减轻作业的疲劳的照明及提高自然光的利用率
-温度及换气:各构成要素的期待温度及通风/换气/湿度等空调设施的要求 -供排水及电力供给:有效的使用量及使用频率,供给方式的要求
布局设计 Layout design
1
第一部分:基本概念 Part1:Basic concepts
2
J 2ohnson Controls PowerPoint Guidelines | February 8, 2008
1. 基本概念 Basic concepts
ห้องสมุดไป่ตู้
工厂布局(Plant layout) :
6. 员工操作安全 方便 舒适(内部) 7. 生产现场简洁 美观 透明(外部)
5
Metals of China
1. 基本概念 Basic concepts
Layout设计的类别
1. 新工厂或厂房建设:限制条件较少 2. 新产品及新生产线 :考虑新产品本身以及与现有布置间的关系 3. 现有产品变化:对付变化的消极活动(设计/产量/工艺要求 ) 4. 降低成本改善活动:原工厂布局的合理化
DDR3 Layout Design
Freescale SemiconductorApplication NoteThe design guidelines presented in this application note apply to products that leverage the DDR3 SDRAM IP core, and they are based on a compilation of internal platforms designed by Freescale Semiconductor, Inc. The purpose of these guidelines is to minimize board-related issues across multiple memory topologies while allowing maximum flexibility for the board designer.Freescale highly recommends that the system/board designer verify all design aspects (signal integrity, electrical timings, and so on) through simulation before PCB fabrication.Document Number:AN3940Rev. 1, 03/2010Contents1.Designer Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.Termination Dissipation . . . . . . . . . . . . . . . . . . . . . . . 73.V REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74.VTT Voltage Rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8yout Guidelines for the Signal Groups . . . . . . . . . . 86.Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127.Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138.Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Hardware and Layout Design Considerations for DDR3 SDRAM Memory Interfacesby Networking and Multimedia GroupFreescale Semiconductor, Inc.Austin, TXDesigner Checklist1Designer ChecklistIn the following checklist, some of the items are phrased as question, others as requirements. In all cases, it is recommended to consider the line item and check it off in the rightmost column of Table1.Table1. DDR3 Designer’s ChecklistItem Description Yes/NoSimulation1.Have optimal termination values, signal topology, trace lengths been determined through simulation for eachsignal group in the memory implementation? If on-die termination is used at both the memories and the controller,no additional termination is required for the data group.The following unique groupings exist:1.Data Group: MDQS(8:0), MDQS(8:0), MDM(8:0), MDQ(63:0), MECC(7:0)2.Address/CMD Group: MBA(2:0), MA(15:0), MRAS, MCAS, MWE.3.Control Group: MCS(3:0), MCKE(3:0), MODT(3:0)4.Clock Group: MCK(5:0) and MCK(5:0)These groupings assume a full 72-bit data implementation (64-bit + 8 bits of ECC). Some products may onlyimplement 32-bit data and may choose to have fewer MCS, MCKE, and MODT signals. Some products supportthe optional MAP AR_OUT and MAP AR_ERR for registered DIMMs. In such cases, MAP AR_OUT should betreated as part of the ADDR/CMD group and MAPAR_ERR can be treated as an asynchronous signal.2.Does the selected termination scheme meet the AC signaling parameters (voltage levels, slew rate, andovershoot/undershoot) across all memory chips in the design?Termination SchemeIt is assumed that the designer is using the mainstream termination approach as found in commodity PC motherboards. Specifically, it is assumed that on-die termination is used for the data groups and that external parallel resistors tied to VTT are used for the Address/CMD and the control groups. Consequently, differing termination techniques may also prove valid and useful. However, they are left to the designer to validate through simulation.3.Is the worst case power dissipation for the termination resistors within the manufacturer’s rating for the selecteddevices? See Section2, “Termination Dissipation.”4.If resistor packs are used, have data lanes been isolated from the other DDR3 signal groups?Note: Because on-die termination is the preferred method for DDR3 data signals, external resistors for the datagroup should not be required. This item would only apply if the ODT feature is not used.5.Have V TT resistors been properly placed? The R T terminators should directly tie into the V TT island at the end ofthe memory bus.6.Is the differential terminator present on the clock lines for discrete memory populations? (DIMM modules containthis terminator.) Nominal range => 100–120 Ω.7.Recommend that an optional 5pF cap be placed across each clock diff pair. If DIMM modules are used, the capshould be placed as closely as possible to the DIMM connector. If discrete devices are used, the cap should beplaced as closely as possible to the discrete devices.V TT Related Items8.Has the worst case current for the V TT plane been calculated based on the design termination scheme? SeeSection2, “T ermination Dissipation.”9.Can the V TT regulator support the steady state and transient current needs of the design?Designer ChecklistTable1. DDR3 Designer’s Checklist (continued)Item Description Yes/No 10.Has the V TT island been properly decoupled with high frequency decoupling? At least one low ESL cap, or twostandard decoupling caps for each four-pack resistor network (or every four discrete resistors) should be used. Inaddition, at least one 4.7-μF cap should be at each end of the V TT island.Note: This recommendation is based on a top-layer V TT surface island (lower inductance). If an internal split isused, more capacitors may be needed to handle the transient current demands.11.Has the V TT island been properly decoupled with bulk decoupling? At least one bulk cap (100–220μF) capacitorshould be at each end of the island.12.Has the V TT island been placed at the end of the memory channel and as closely as possible to the last memorybank? Is the V TT regulator placed in close proximity to the island?13.Is a wide surface trace (~150 mils) used for the V TT island trace?14.If a sense pin is present on the V TT regulator, is it attached in the middle of the island?V REF15.Is V REF routed with a wide trace? (Minimum of 20–25 mil recommended.)16.Is V REF isolated from noisy aggressors? In addition, maintain at least a 20–25 mil clearance from V REF to othertraces. If possible, isolate V REF with adjacent ground traces.17.Is V REF properly decoupled? Specifically, decouple the source and each destination pin with 0.1uf caps.18.Does the V REF source track variations in V DDQ, temperature, and noise as required by the JEDEC specification?19.Does the V REF source supply the minimal current required by the system (memories + processor)?20.If a resistor divider network is used to generate V REF, are both resistors the same value and 1% tolerance?Routing21.The suggested routing order within the DDR3 interface is as follows:1.Data address/command2.Control3.Clocks4.PowerThis order allows the clocks to be tuned easily to the other signal groups. It also assumes an open critical layeron which clocks are freely routed.22.Global items are as follows:•Do not route any DDR3 signals overs splits or voids.•T races routed near the edge of a reference plane should maintain at least 30–40 mil gap to the edge of the reference plane.•Allow no more than 1/2 of a trace width to be routed over via antipad.23.When routing the data lanes, route the outermost (that is, longest lane first) because this determines the amountof trace length to add on the inner data lanes.24.The max lead-in trace length for data/address/command signals, are not longer than 7 inches?25.Are the clock pair assignments optimized to allow break-out of all pairs on a single critical layer?Designer ChecklistTable1. DDR3 Designer’s Checklist (continued)Item Description Yes/No 26.The DDR3 data bus consists of 9 data byte lanes (assuming ECC is used). All signals within a given byte laneshould be routed on the same critical layer with the same via count.Note: Some product implementations may only implement a 32-bit wide interface.Byte Lane 0—MDQ(7:0), MDM(0), MDQS(0), MDQS(0)Byte Lane 1—MDQ(15:8), MDM(1), MDQS(1), MDQS(1)Byte Lane 2—MDQ(23:16), MDM(2), MDQS(2), MDQS(2)Byte Lane 3—MDQ(31:24), MDM(3), MDQS(3), MDQS(3)Byte Lane 4—MDQ(39:32), MDM(4), MDQS(4), MDQS(4)Byte Lane 5—MDQ(47:40), MDM(5), MDQS(5), MDQS(5)Byte Lane 6—MDQ(55:48), MDM(6), MDQS(6), MDQS(6)Byte Lane 7—MDQ(63:56), MDM(7), MDQS(7), MDQS(7)Byte Lane 8—MECC(7:0), MDM(8), MDQS(8), MDQS(8)T o facilitate fan-out of the DDR3 data lanes (if needed), alternate adjacent data lanes onto different critical layers.See Figure1 and Figure2.Note: If the device supports ECC, Freescale highly recommends that the user implement ECC on the initialhardware prototypes.27.DDR3 data group—impedance range and spacingOption #1 (wider traces—lower trace impedance)•Single-ended impedance = 40 Ω. The lower impedance allows traces to be slightly closer with less cross-talk.•Utilize wider traces if stackup allows (7–8mils)•Spacing to other data signals = 1.5x to 2.0x•Spacing to all other non-DDR signals = 4xOption #2 (smaller traces—higher trace impedance)•Single-ended impedance = 50 Ω.•Smaller trace widths (5–6mil) can be used.•Spacing between like signals should increase to 3x (for 5mil) or 2.5x (for 6mil) respectively28.Check the following across all DDR3 data lanes:•For MPC8572 and MPC8536, are all the data lanes matched to within 0.1 inch?•For all other devices, are all the data lanes matched to within 2.0 inch?29.Is each data lane properly trace matched to within 20 mils of its respective differential data strobe? (Assumeshighest frequency operation.)30.When adding trace lengths to any of the DDR3 signal groups, ensure that there is at least 25 mils betweenserpentine loops that are in parallel.Designer ChecklistTable1. DDR3 Designer’s Checklist (continued)Item Description Yes/No 31.MDQS/MDQS differential strobe routingNote: Some product implementations may support only the single-ended version of the strobe.•Match all segment lengths between differential pairs along the entire length of the pair. T race match the MDQS/ MDQS pair to be within 10 mils.•Maintain constant line impedance along the routing path by maintaining the required line width and trace separation for the given stackup.•Avoid routing differential pairs adjacent to noisy signal lines or high speed switching devices such as clock chips.•Differential 75–95 Ω•Diff Gap = 4–5 mils (as DQS signals are not true differential...aka pseudo differentialOption #1 (wider traces—lower trace impedance)•Single-ended impedance 40 Ω. The lower impedance allows traces to be slightly closer with less cross-talk.•Utilize wider traces if stackup allows (7–8mils)•Spacing to other data signals = 2x.•If not routed on the same layer as its associated data, then 4x spacingOption #2 (smaller traces—higher trace impedance)•Single-ended impedance = 50 Ω.•Smaller trace widths (5–6mil) can be used.•Spacing between like signals (other data) should increase to 3x (for 5mil) or 2.5x (for 6mil) respectively.•Do not divide the two halves of the diff pair between layers. Route MDQS/MDQS pair on the same critical layer as its associated data lane.32.DDR3 address/command/control group—impedance range and spacing•Daisy chain from chip to chip. The routing should go from chip 0 to chip n, where chip 0 is the one that has the lower data bits DQ[0:7]… and chip n has the upper data bits. The daisy chain should end at the terminationresistors that are after chip n.•With regards to physical/spacing propertiesOption #1 (wider traces—lower trace impedance)•Single-ended impedance = 40 Ω. The lower impedance allows traces to be slightly closer with less cross-talk.•Utilize wider traces if stackup allows (7–8mils)•Spacing to other like signals = 1.5x to 2.0x•Spacing to all other non-DDR signals =3–4xOption #2 (smaller traces—higher trace impedance)•Single-ended impedance = 50 Ω.•Smaller trace widths (5–6mil) can be used.•Spacing between like signals should increase to 3x (for 5mil) or 2.5x (for 6mil) respectively•Spacing to all other non-DDR signals =3–4x•With regards to tuning•T une signals to 20 mil of the clock at each device.33.DDR3 differential clocksRoute as diff pair. With regards to diff properties, recommendations are as follows:•P-to-N tuning = 10 mils•T arget single-ended impedance 40–50 Ω. The lower impedance reduces cross-talk.•Differential 75–95 Ω•Diff Gap = set per stackupOption #1 (wider traces—lower trace impedance)•Attempt to utilize wider traces if stackup allows (7–8mils)•Spacing to other signals = 4x.Option #2 (smaller traces—higher trace impedance)•Single-ended impedance = 50 Ω.•Smaller trace widths (5–6mil) can be used.•Spacing to other signals = 4x.Designer ChecklistTable1. DDR3 Designer’s Checklist (continued)Item Description Yes/No34.Are all clock pairs routed on the same critical layer (one referenced to a solid ground plane)?35.Are all clock pairs properly trace matched to within 25 mils of each other?36.The space from one differential pair to any other trace (this includes other differential pairs) should be at least 25mils.37.If unbuffered DIMM modules are used, are all required clock pairs per DIMM slot connected?Note: Single ranked DIMM requires 1 clock pair and dual ranked DIMM requires 2 clock pairsMODT/MDIC Related Items38.Are the MODT signals connected correctly?•MODT(0), MCS(0), MCKE(0) should all go to the same physical memory bank.•MODT(1), MCS(1), MCKE(1) should all go to the same physical memory bank.•MODT(2), MCS(2), MCKE(2) should all go to the same physical memory bank.•MODT(3), MCS(3), MCKE(3) should all go to the same physical memory bank.39.Is MDIC0 connected to ground via an 40-Ω precision 1% resistor? Is MDIC1 connected to DDR power via an 40-Ωprecision 1% resistor?Miscellaneous Items40.Are the power-on reset config pins properly set for the correct DDR type?Note: Not all Freescale products support external power-on reset configuration pins for selecting the DDR type.Therefore, this item does not apply to all Freescale products.Registered DIMM Topologies (All items above still apply)41.For memory implementations that use registered DIMM modules, the board designer should attach a reset signalto the DIMM sockets. This reset signal should be derived from a ‘power good’ monitor status circuit.Note: The reset pin to the DRAM is 1.5V LVCMOS.42.Though registered DIMMs require only a single clock per bank, all DDR3 clock pairs at the DIMM connectorshould be attached (analogous to unbuffered DIMMs) so the design can also support unbuffered DIMMs withminimal changes.43.If the controller supports the optional MAPAR_OUT and MAPAR_ERR signals, ensure that they are hooked upas follows:•MAP AR_OUT (from the controller) => P AR_IN (at the RDIMM)•ERR_OUT (from the RDIMM) => MAPAR_ERR (at the controller)44.MAP AR_ERR is an open drain output from registered DIMMs. Ensure that a 4.7K pull-up to 1.5 V is present onthis signal.Discrete Memory Topologies (All items above still apply with exception of registered DIMM items)45.Construct the signal routing topologies for the groups like those found on unbuffered DIMM modules (that is,proven JEDEC topologies).46.When placing components, optimize placement of the discretes to favor the data bus (analogous to DIMMtopologies).Optional: Pin-swap within a given byte lane to optimize the data bus routes further.Caution: Do not swap individual data bits across different byte lanes.Termination Dissipation2Termination DissipationSink and source currents flow through the parallel R T resistors on the address and control groups. The worst case power dissipation for these resistors is as follows:Power =I 2×R T =(13mA)2×(47Ω)=7.9mW.Small resistors that provide dissipation of up to 1/16 W are ideal. See Section 4, “VTT V oltage Rail ,” for assumptions made for current calculations.3V REFThe current requirements for V REF are relatively small, at less than 3 mA. This reference provides a DC bias of 0.75V (V DD /2) for the differential receivers at both the controller interface and the DDR devices. Noise or deviation in the V REF voltage can lead to potential timing errors, unwanted jitter, and erratic behavior on the memory bus. To avoid these problems, V REF noise must be kept within the JEDEC specification. As such, V REF and the V TT cannot be the same plane because of the DRAM V REF buffer sensitivity to the termination plane noise. However, both V REF and V TT must share a common source supply to ensure that both are derived from the same voltage plane. Proper decoupling at each V REF pin (at the controller, at each DIMM/discrete, and at the V REF source) along with adhering to the simple layout considerations enumerated in the checklist in Table 1 prevents potential problems .Numerous off-the-shelf power IC solutions are available that provide both the V REF and V TT from acommon source. Regardless of the generation technique, V REF must track variations in V DDQ over voltage, temperature, and noise margins as required by the JEDEC specifications.47.If a single bank of x16 devices is used, let the DDR3 clocks be point-to-point. Place the series damping resistor (R S ) close to the source and the differential terminator (R DIFF ) at the input pins of the discretes.If more than five discretes are used, construct the clocks like those on unbuffered DIMM modules. Alternatively, place an external PLL between the controller and the memory to generate the additional clocks.48.If multiple physical banks are needed, double stack (top and bottom) the banks to prevent lengthy and undesirable address/cmd topologies.49.Properly decouple the DDR3 chips per manufacturer recommendations. T ypically, five low ESL capacitors per device are sufficient. For further information, see article entitled Decoupling Capacitor Calculation for a DDR Memory Channel, located on Micron’s web site.50.T o support expandability into larger devices, ensure that extra NC pins (future address pins) are connected.51.Ensure access/test points are available for signal integrity probing. This is especially critical if using blind and buried vias within the memory channel. If through-hole vias are used under the BGA devices, then generally these sites can be used for probing.52.Ensure R T , resistors on the address and control groups are located after the last DRAM chip in the-fly-by topology.53.Ensure the reset pin has been considered and connected to the proper reset logic. Note: The reset pin to the DRAM is 1.5V LVCMOS.Table 1. DDR3 Designer’s Checklist (continued)Item DescriptionYes/NoVTT Voltage Rail4V TT Voltage RailFor a given topology, the worst case V TT current should be derived. Assuming the use of a typical R T parallel termination resistor and the worst case parameters given in Table 2, sink and source currents can be calculated.The driver sources (V TT plane would sink) the following based on this termination scheme:(V DD_max –V TT_min )/(R T + R DRVR )=(1.575–0.702 V)/(47+20)=13 mA The driver sinks (V TT plane would source) the following based on this termination scheme:(V TT_max – V OL / (R T + R S + R DRVR )=(0.798–0 V)/(47+20)=12 mAA bus with balanced number of high and low signals places no real demand on the V TT supply. However, a bus with all DDR address/command/control signals low (~ 28 signals) causes a transient current demand of approximately 350 mA on the V TT rail. The V TT regulator must provide a relatively tight voltage regulation of the rail per the JEDEC specification. Besides a tight tolerance, the regulator must also allow V TT along with V REF (if driven from a common IC), to track variations in V DDQ over voltage, temperature, and noise margins.5Layout Guidelines for the Signal GroupsTo help ensure the DDR interface is properly optimized, Freescale recommends the following sequence for routing the DDR memory channel:1.Route data2.Route address/command/control3.Route clocks The data group is listed before the command, address, and control group because it operates at twice the clock speed, and its signal integrity is of higher concern. In addition, the data group constitutes the largest portion of the memory bus and comprises most of the trace matching requirements (those of the data lanes). The address/command, control, and data groups all have a relationship to the routed clock.Therefore, the effective clock lengths used in the system must satisfy multiple relationships. The designer should perform simulation and construct system timing budgets to ensure that these relationships are properly satisfied.Table 2. Worst Case Parameters for V TT Current Calculation ParameterValuesCommentV DDQ (max) 1.575 V From JEDEC spec V TT(max)0.798 V From JEDEC spec V TT(min)0.702 V From JEDEC specR DRVR 20 ΩNominally, full strength is ~ 20Ωs R T 47 ΩCan vary. T ypically 25–47Ωs.V OL0 VAssumes driver reaches 0V in the low state.Layout Guidelines for the Signal Groups 5.1Data—MDQ[0:63], MDQS[0:8], MDM[0:8], MECC[0:7]The data signals of the DDR interface are source-synchronous signals by which memory and the controller capture the data using the data strobe rather than the clock itself. When transferring data, both edges of the strobe are used to achieve the 2x data rate.An associated data strobe (DQS and DQS) and data mask (DM) comprise each data byte lane. This 11-bit signal lane relationship is crucial for routing, and Table3 depicts this relationship. When length matching, the critical item is the variance of the signal lengths within a given byte lane to its strobe. Length matching across all bytes lanes is also important and must meet the t DQSS parameter as specified by JEDEC. This is also commonly referred to as the write data delay window. Typically, this timing is considerably more relaxed than the timing of the individual byte lanes themselves.Table3. Byte Lane to Data Strobe and Data Mask MappingData Data Strobe Data Mask Lane NumberMDQ[0:7]MDQS0, MDQS0MDM0Lane 0MDQ[8:15]MDQS1, MDQS1MDM1Lane 1MDQ[16:23]MDQS2, MDQS2MDM2Lane 2MDQ[24:31]MDQS3, MDQS3MDM3Lane 3MDQ[32:39]MDQS4, MDQS4MDM4Lane 4MDQ[40:47]MDQS5, MDQS5MDM5Lane 5MDQ[48:55]MDQS6, MDQS6MDM6Lane 6MDQ[56:63]MDQS7, MDQS7MDM7Lane 7MECC[0:7]MDQS8, MDQS8MDM8Lane 8NOTEWhen routing, each row (that is, the 11-bit signal group) must be treated asa trace-matched group.5.2Layout RecommendationsFreescale strongly recommends routing each data lane adjacent to a solid ground reference for the entire route to provide the lowest inductance for the return currents, thereby providing the optimal signal integrity of the data interface. This concern is especially critical in designs that target the top-end interface speed, because the data switches at 2x the applied clock. When the byte lanes are routed, signals within a byte lane should be routed on the same critical layer as they traverse the PCB motherboard to the memories. This consideration helps minimize the number of vias per trace and provides uniform signal characteristics for each signal within the data group.To facilitate ease of break-out from the controller perspective, and to keep the signals within the byte group together, the board designer should alternate the byte lanes on different critical layers (see Figure1 and Figure2).Layout Guidelines for the Signal GroupsFigure 1. Alternating Data Byte Lanes on Different Critical Layers —Part 1Data Lane 7Data Lane 5Data Lane 3Data Lane 1Layout Guidelines for the Signal GroupsFigure 2. Alternating Data Byte Lanes on Different Critical Layers—Part 2Data Group 6Data Group 4Data Group 8Data Group 2Data Group 0Simulation6SimulationThis application note provides general hardware and layout considerations for hardware engineers implementing a DDR3 memory subsystem.The rules and recommendations in this document can serve as an initial baseline for board designers to begin their specific implementations. The fly-by memory topology and many interface frequencies are possible from the DDR3 interface, so it is highly recommended that the board designer verify that all aspects (signal integrity, electrical timings, and so on) are addressed through simulation before board fabrication.In tandem with memory vendors, Freescale provides IBIS models for simulation. The board designer can realize a key advantage in the form of extra noise and timing margins by taking the following actions:•Optimizing the clock to signal group relationships to maximize setup and hold times•Optimizing termination values. During board simulation, verify that all aspects of the signal eye are satisfied, which includes at a minimum the following:—A sufficient signal eye opening meeting both timing and AC input voltage levels—Vswing max not exceeded (or alternatively max overshoot/max undershoot)—Signal slew rate within specificationsFigure3 shows the SSTL signal waveform.Figure3. SSTL Signal WaveformFurther Reading 7Further ReadingFollowing is a list of documentation that may be useful:•DDR3 chapter of the corresponding PowerQUICC or QorIQ processor reference manual•Micron web site: . For example, Design Guide for DDR3-1066 UDIMM systems: TN_41_08•JEDEC web site: . For example, the DDR3 SDRAM specification8Revision HistoryTable4 provides a revision history for this application note.Table4. Document Revision HistoryRev.Date Substantive Change(s)Number103/2010In T able1, for item# 28, changed the second bulleted sentence as follows:For all other devices, are all the data lanes matched to within 2.0 inch?001/2010Initial public releaseDocument Number:AN3940 Rev. 103/2010Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.How to Reach Us:Home Page:Web Support:/supportUSA/Europe or Locations Not Listed: Freescale Semiconductor, Inc.T echnical Information Center, EL516 2100 East Elliot RoadT empe, Arizona 852841-800-521-6274 or+1-480-768-2130/supportEurope, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH T echnical Information Center Schatzbogen 781829 Muenchen, Germany+44 1296 380 456 (English)+46 8 52200080 (English)+49 89 92103 559 (German)+33 1 69 35 48 48 (French)/supportJapan:Freescale Semiconductor Japan Ltd. HeadquartersARCO Tower 15F1-8-1, Shimo-Meguro, Meguro-kuT okyo 153-0064Japan0120 191014 or+81 3 5437 9125support.japan@Asia/Pacific:Freescale Semiconductor China Ltd. Exchange Building 23FNo. 118 Jianguo RoadChaoyang DistrictBeijing 100022China+86 10 5879 8000@For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or+1-303-675-2140Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @ Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and word marks and the Power and logos and related marks are trademarks and service marks licensed by .© 2010 Freescale Semiconductor, Inc.。
layout用法(一)
layout用法(一)Layout1. 概述在创作和设计过程中,“Layout” 是一个经常被提及的术语。
它是指页面、文档或其他媒体的布局或安排方式。
通过合理的布局,可以使内容更具可读性、吸引力和易用性。
在以下内容中,我们将介绍一些常见的布局用法。
2. 固定布局固定布局是最简单的一种布局方式,它涉及到固定宽度和高度的元素。
这意味着无论屏幕尺寸如何变化,元素的大小和位置都是固定的。
固定布局常用于简单的网页或传统的打印媒体设计。
3. 流式布局流式布局是指元素根据浏览器窗口大小自动调整其宽度和高度。
这种布局方式相对于固定布局来说更具响应性,可以适应不同屏幕尺寸。
然而,流式布局可能导致元素在较大或较小的屏幕上出现问题,因为其大小可能会变得不合理。
4. 弹性布局弹性布局,也称为弹性盒模型(Flexbox),是一种现代化的布局方式。
它通过将元素放置在一个弹性容器中来实现灵活的布局。
弹性布局通过定义子元素之间和周围的空间分布,使页面适应不同屏幕尺寸和方向。
弹性布局最常用的属性有: - display: flex:将容器设置为弹性布局。
- flex-direction:定义主轴的方向(横向或纵向)。
- flex-wrap:定义是否换行。
- justify-content:定义在主轴上如何对齐元素。
- align-items:定义在交叉轴上如何对齐元素。
5. 栅格布局栅格布局是一种常见的响应式布局方式,它将页面划分为一个个均等的网格区域。
这样可以方便地将内容放置在网格中,从而实现整齐的页面布局。
栅格布局通常用于构建复杂的网站和应用程序,也可以与其他布局方式结合使用。
栅格布局的常见特点包括: - 水平分为几列,并定义每列所占的宽度比例。
- 使用媒体查询(Media Queries)来控制在不同屏幕尺寸下的布局变化。
- 可以定义响应式行为,例如隐藏、折叠或重新排列某些元素。
6. 响应式布局响应式布局是一种通过调整页面布局和元素尺寸来适应不同设备和屏幕尺寸的布局方式。
layout基本知识培训
问题
某工业企业有包括工具车间、生产车间、修理车间,成品库、中间 零件库各一个,办公楼、职工食堂和接收与发运处各一个,该企业 占地呈长方形,两边分别毗邻主干道,你能否正确进行该企业的厂 区布局呢?若该企业是按照对象专业化原则分别生产四种不同类型 的产品,你又应怎样考虑该企业的厂区布局呢?
设想一下你送一个危重病人到一家综合性医院进行急救,到医院后 你要和别人一起分别经过问诊、查体、各种化验、各种器械检查、 住院手术、输血等过程。若该医院为十层办公大楼,若各医院内各 业务部门布局不合理将会出现什么状况?
置场
置
场
模具 维护场
冲压工程
冲压工程
材料 置场
材料进料
工厂墙壁、窗等全部设为 通路带。此外,要设定主 通路。
进料、交货的卡车由外围通 路顺畅流动
零件、完成品置场需全部制品点 数都有。再者,置场的大小是以 能保管的「适当库存」为准
制品的流程是「一个流」, 将设备工程配置成不停滞 的顺流
yout区块化布局思路
为了有效的利用空间,工厂的各区块式进行适当的设计与布置。 - 生产线, 仓库, 配套设施, Dock场, 公司内道路和出入门
yout概要
6.本次课程Layout范围
·建筑物、工场Layout方面,工场长(事业部长)的想法非常重要。
工场管理
办公 大楼
工场
仓 库
工场管理 平面图
侧面图
第二部分:Layout布局类型及原则
yout概要
yout 的定义
Plant Layout 是指为增加设备、物料、人力资源和能源使用的 效率,对公司或工厂内所有设施进行布置的一系列系统的活动
2.Layout 的基本内容
A. 在哪里, B. 把什么, 样的关系配置
有关版式设计的英文作文
有关版式设计的英文作文英文:When it comes to layout design, there are a few key factors that need to be considered. Firstly, the purpose of the design needs to be established. Is it for a website, a magazine, a poster, or something else? The purpose will determine the layout style and the elements that need to be included. 。
Next, the target audience needs to be taken into account. Who will be viewing the design? What are their preferences and expectations? This will influence the color scheme, font choices, and overall aesthetic of the design. 。
Another important aspect is the hierarchy of information. What is the most important information that needs to be conveyed? This should be placed in a prominent position and given emphasis through the use of size, color, or placement. 。
Whitespace is also a vital element of layout design. It helps to create balance and allows the eye to rest. Too much clutter can be overwhelming and detract from the overall message. 。
PadsLayout定义设计规则(DefiningDesignRules)
PadsLayout定义设计规则(DefiningDesignRules)第五节–定义设计规则(Defining Design Rules)–Pads Layout 2007中文教程之Pads Logic2 条评论分类:Pads Layout2007中文教程之PADS Logic投递:Pads时间:2011-11-07 , 标签:pads, pads2007,Pcb层, 差分网格, 设计规则.一旦你输入了网络和元件后,你就可以指定设计规则(Design Rules)和各层的定义(Layer Arrangements)。
包含安全间距(Clearance)、布线(Routing)和高速电路(High Speed)约束等等,这些规则分配作为默认(Default)的条件、类(Class)、网络(Nets)、组(Group)、管脚对(Pin Pairs)、封装(Decal)和元件(Components);另外,你还可以设定指定条件的设计规则(Conditional Design Rules)和差分网络(Differential Pairs)的规则。
本节将显示如何:•· 设置 PCB 各层的定义(Layer Arrangement)•· 设置缺省的安全间距规则(Clearance Rules)•· 设置网络的安全间距规则(Net Clearance Rules)•· 设置条件规则(Conditional Rules)•· 设置层的显示颜色(Layer Colors)在你继续之前,如果 previewnet.pcb 设计文件还没有打开,打开它。
1. 从工具条中选择打开(Open)图标。
2. 当Save old file before reloading?提示出现后,选择No。
3. 在文件打开(File Open)对话框中,双击名为previewnet.pcb 的文件。
IC Layout Design Rule
Poly
场氧
场氧
poly
场氧 SiO2
Pwell Nwell Nwell SiO2 P-type Si
华侨大学厦门专用集成电路系统重点实验室
Copyright by Huang Weiwei
华侨大学厦门专用集成电路系统重点实验室
Copyright by Huang Weiwei
本章主要内容
版图层次定义
Layout
版图设计规则 简单反相器版图
华侨大学厦门专用集成电路系统重点实验室
Copyright by Huang Weiwei
版图层次定义
Layout 1. 有源区 2.N阱 3. 场注入 4. 正常Vth沟道注入 5. 低Vth NMOS沟道注入 6. 低VthPMOS沟道注入 7. 耗尽型NMOS沟道注入 8. 耗尽型PMOS沟道注入 Active NWell ----------------LVN LVP VDN VDP PS ND PD TO TB PT BC
华侨大学厦门专用集成电路系统重点实验室
Copyright by Huang Weiwei
版图层次定义
Layout 17. 金属1 18.M1和M2接触孔 19. 金属2 20. M2和M3接触孔 21. 金属3 22. 焊盘PAD Metal1 VIA1 Metal2 VIA2 Metal3 PAD A1 W1 A2 W3 A3 CP
版图层次定义
有源区
光刻胶
光刻胶 Si3N4 SiO2
Nwell SiO2 P-type Si
华侨大学厦门专用集成电路系统重点实验室
Copyright by Huang Weiwei
版图层次定义
有源区 封闭图形外形成LOCOS